
A Geographically-aware Poll-based Distributed File
Consistency Maintenance Method for P2P Systems

Haiying Shen*, Member, IEEE , Guoxin Liu

�

Abstract—File consistency maintenance in P2P systems is a technique
for maintaining consistency between files and their replicas. Most pre-
vious consistency maintenance methods depend on either message
spreading or structure-based pushing. Message spreading generates
high overhead due to a large amount of messages; structure-based
pushing methods reduce this overhead. However, both approaches
cannot guarantee that every replica node receives an update in churn,
because replica nodes passively wait for updates. As opposed to push-
based methods that are not effective in high-churn and low-resource
P2P systems, polling is churn-resilient and generates low overhead.
However, it is faced with a number of challenges: (1) ensuring a
limited inconsistency; (2) realizing polling in a distributed manner; (3)
considering physical proximity in polling; and (4) leveraging polling to
further reduce polling overhead. To handle these challenges, this paper
introduces a poll-based distributed file consistency maintenance method
called Geographically-aware Wave (GeWave). GeWave further reduces
update overhead, enhances the fidelity of file consistency, and takes
proximity into account. Using adaptive polling in a dynamic structure,
GeWave avoids redundant file updates and ensures that every node
receives an update in a limited time period even in churn. Furthermore, it
propagates updates between geographically close nodes in a distributed
manner. Extensive experimental results from the PlanetLab real-world
testbed demonstrate the efficiency and effectiveness of GeWave in com-
parison with other representative consistency maintenance schemes. It
dramatically reduces the overhead and yields significant improvements
on effectiveness, scalability and churn-resilience of previous file consis-
tency maintenance methods.

Keywords: Consistency maintenance, File replication, Peer-to-
peer systems, Proximity, Churn.

1 Introduction
Over the past several years, the immense popularity of the

Internet has produced a significant stimulus to peer-to-peer

(P2P) computer networks. A P2P computer network uses

the cumulative resources of network participants, rather than

conventional centralized resources, in which a relatively low

number of servers provide services to clients. P2P systems

enable peers to find data without relying on a centralized index

server. File sharing is one of the most popular applications

of P2P systems. Users who engage in P2P file sharing on

the Internet both provide and receive files in a decentralized

• * Corresponding Author. Email: shenh@clemson.edu; Phone: (864) 656
5931; Fax: (864) 656 5910.

• Haiying Shen and Guoxin Liu are with the Department of Electrical and
Computer Engineering, Clemson University, Clemson, SC, 29634.
E-mail: {shenh, guoxinl}@clemson.edu

manner. It was indicated that P2P content responds well to

caching because it has high reuse patterns and most P2P

content is requested multiple times. Thus, file replication and

caching have been studied [1–21] to improve P2P file sharing

system performance. Shared files are replicated on a number of

nodes to improve system reliability and availability. Moreover,

query results are always cached along the routing path to

reduce the querying latency of subsequent queries.

Although files in some P2P file sharing systems (i.e.

KaZaA [22] and Morpheus [23]) are always consistent, other

P2P systems (i.e., OceanStore [24] and Publius [25]) permit

users to modify their files, leading to inconsistency between a

modified file and its replicas [26]. In addition, with the tremen-

dous development of P2P applications, newly-developed P2P

applications require frequent content updates, such as trust

management [27], remote collaboration, bulletin-board sys-

tems, and e-commerce catalogues. In these applications, files

are frequently and regularly changed. Therefore, maintaining

consistency between a file and its replicas is needed for correct

operation of a P2P system so that the service quality of existing

P2P applications is improved and the basic requirements of

newly-developed P2P applications are met. Without effective

consistency maintenance, a P2P system is limited to providing

only static or infrequently-updated file sharing [26].

The number of nodes in a P2P system usually varies from

thousands to millions, and the nodes are scattered across

geographically distributed areas. Also, P2P systems are char-

acterized by churn, in which many nodes join, leave and fail

continuously and rapidly. Thus, a scalable and churn-resilient

consistency maintenance method is demanded. In addition, the

method is required to achieve the following objectives:
(1) High fidelity of consistency of queried results. It is

important that every replica node can receive the update

message in a limited time, so that a file requester can

receive up-to-date files with high probability.

(2) Low overhead. Efficient consistency maintenance meth-

ods do not generate high overhead, which would other-

wise become an obstacle for achieving high scalability.
Centralized schemes, as employed in [28, 10] and current

Facebook datacenters, are a straightforward way to maintain

replica consistency. In these methods, a file owner keeps track

of the replica nodes and notifies the nodes every time the file

is changed. However, these lack scalability and suffer from

single-points of failure. Some decentralized consistency main-

tenance methods rely on message spreading [29, 30], in which

Digital Object Indentifier 10.1109/TPDS.2012.317 1045-9219/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

an update message is flooded in the network. This method

generates very high overhead because of the overwhelming

number of messages. To reduce overhead, other decentralized

methods depend on structures [26, 31–33] to propagate updates

by pushing so that each node receives only one message.

However, node failures may break the structure, leading to

unsuccessful update propagation. For example, in a tree struc-

ture [31], if a parent fails, all of its descendents are not able to

receive the update message. In addition to the update failures,

these methods generate high overhead for structure mainte-

nance. Nodes need to update their neighbors in the structure

to deal with replica node creation and deletion, especially in

churn. In both message spreading and structure-based decen-

tralized pushing approaches, because replica nodes passively

wait for updates, they do not know when they fail to receive

updates due to churn. Therefore, these approaches cannot

guarantee that every replica node receives an update in churn.
Push-based methods are advantageous for real-time updates,

i.e., replica nodes receive an update soon after the file is

updated. In a P2P system with high churn that cannot af-

ford high overhead and does not require real-time updates,

polling is more suitable for file consistency maintenance as

it is churn-resilient and generates low overhead. By “churn-

resilient”, we mean that nodes can be aware that they have not

received update in time due to churn and then actively obtain

the update by polling. For example, a principle for scaling

eBay’s distributed system is “embracing inconsistency” [34].

However, a poll-based method faces a number of challenges:

(1) ensuring a limited inconsistency (i.e., high fidelity of

consistency); (2) realizing polling in a distributed manner; (3)

considering physical proximity in polling; and (4) leveraging

polling to further reduce overhead.
To handle these challenges, this paper introduces a poll-

based distributed file consistency maintenance method called

Geographically-aware Wave (GeWave). GeWave further re-

duces update overhead and enhances the fidelity of file consis-

tency, while considering proximity. In GeWave, each replica

node has a polling frequency for its replica that ensures replica

consistency with high probability when requested. GeWave

builds a tree structure, in which a child’s parent has a higher

polling frequency and is geographically close to the child.

In an update process, children poll their parents from the

top to the bottom, level by level. Due to its wavy pattern

among geographically close nodes, we name this method as

geographically-aware wave. GeWave also has a lightweight

structure maintenance algorithm to resiliently deal with P2P

churn and replica node creation and deletion.
Most previous methods aim to inform all replica nodes

soon after a file is updated. The ultimate goal of consistency

maintenance is to guarantee that query results are not

out-of-date. Therefore, rather than trying to achieve strong

consistency of replicas all the time, GeWave aims to achieve

the consistency of query results with high probability by

avoiding unnecessary updates. A significant feature of

GeWave is that it achieves an optimized tradeoff between

overhead and fidelity of consistency. Specifically, GeWave

possesses the following distinguishing features.

(1) High fidelity of consistency. It uses adaptive polling to

ensure that all replica nodes receive updates, and to

achieve high consistency fidelity of queried results with

high probability.

(2) Low overhead. It conducts update propagation between

geographically close nodes. Also, it avoids redundant

file updates by dynamically adapting to time-varying file

update and query rates, and it generates much lower

overhead for structure maintenance.

(3) High scalability. It conducts consistency maintenance in

a decentralized manner rather than completely relying

on the file owner, and a node receives updates directly

without relay nodes.

(4) Churn-resilience. It ensures that a replica node can always

receive an update, even in churn.

GeWave is proposed for a high-churn and low-resource

system that can tolerate inconsistency for a limited time period

(i.e., minimum update interval), and in which the query rate of

replicas varies in a certain range. Though GeWave can adjust

its file polling frequency in response to the file update rate

and query rate changes, it is not suitable when a replica file’s

update or query rate experiences significant fluctuations very

frequently and abruptly. In such a scenario, GeWave may not

able to adapt to the changes quickly.

2 Related Work
Message spreading. One class of consistency maintenance

methods is based on message spreading. Lan et al. [30] pro-

posed the use of flooding-based push for static files and polling

for dynamic files. In the hybrid push/pull algorithm [29], flood-

ing is replaced with rumor spreading to reduce communication

overhead. A replica node randomly selects a set of replica

nodes and forwards the message to them with a probability.

In order to reduce redundancy and help replica nodes discover

replicas unknown to them, a partial list of replica nodes to

which the same message has been sent is enclosed with the

update message. The update message will not be forwarded to

the replica nodes in this partial list. When a new node joins

or a node reconnects, it contacts online replica nodes to poll

updated content. However, the hybrid push/pull scheme only

offers probabilistic guarantee of replica consistency.

While suitable for unreliable P2P systems with churn, mes-

sage spreading methods generate high propagation overhead

due to a large number of update messages. They also cannot

guarantee that an update message reaches every replica node.

In addition, the scheme does not consider proximity in mes-

sage spreading. In contrast, GeWave generates low overhead

by relying on a GeWave structure comprised of only replica

nodes. It can guarantee that each replica node receives the

update by polling. Further, it considers proximity in update

message transmission.

Structure-based pushing. Another class of methods relies on

push-based structures. Li et al. [26] presented a scheme that

forms the replica nodes into a proximity-aware hierarchical

structure (UMPT): the upper layer is a distributed hash

table (DHT), and a node in the lower layer attaches to a

physically close node in the upper layer. An update tree is

built dynamically when the upper layer propagates update

messages. Though it takes proximity into account, clusters of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

physically close nodes are fragile in churn, which may lead

to update propagation failures. Moreover, periodical message

exchange for cluster maintenance leads to high overhead.

Further, it may not be effective in a network where nodes are

widely scattered without a clustering pattern. Also, it is not

completely decentralized since it relies on the high-capacity

nodes in the upper-layer for update propagation. Further,

the update propagation along the tree is not locality-aware.

SCOPE [31] builds a replica-partition-tree for each key based

on its original P2P system. It keeps track of the locations of

replicas and then propagates updates. SCOPE introduces three

operations to maintain consistency: subscribe, unsubscribe

and update. Hu et al. [35] presented a framework for balanced

consistency maintenance (BCoM) in structured P2P systems.

Replica nodes of each object are organized into a tree for

disseminating updates, and a sliding window update protocol

is developed to bound the consistency. The window enables

BCOM to balance availability, performance and consistency

strictness for various application requirements. One group of

methods propagate updates along routing paths. CUP [32]

is a protocol for performing Controlled Update Propagation

to maintain caches of metadata in P2P networks. The

propagation is conducted by building a CUP tree similar to

an application-level multicast tree. CUP has performance

limitations because it pushes the update along the query path,

and intermediate nodes along the path receive the updated

index even if they do not need it. To improve CUP, Yin and

Cao proposed Dynamic-tree based Update Propagation (DUP)

scheme [33], which builds a dynamic update propagation tree

that consists of nodes interested in update. In Freenet [21],

an update is routed to other nodes based on key closeness.

The structure-based pushing methods also have a number

of problems. First, decentralized pushing cannot guarantee

all replica nodes receive the update with node departures

and failures, hence it cannot always ensure high fidelity of

consistency of queried results. Second, proximity unawareness

in most methods prevents further improvement in consistency

maintenance efficiency. In contrast, GeWave can guarantee that

replica nodes receive updates by polling other nodes or the file

owner. It also achieves proximity-aware consistency mainte-

nance by enabling nodes to poll their geographically close

nodes. Compared to UMPT, GeWave is fully decentralized

and fully locality-aware. Also, GeWave is not limited by the

physical topology of a P2P network.

Push-based methods are advantageous in real-time update

propagation in low-churn systems while GeWave is proposed

for high-churn and low-resource systems that can tolerate

inconsistency for a limited time period. GeWave considers

both proximity and churn in order to provide highly efficient

and reliable consistency maintenance. With active polling, it

provides high consistency fidelity even in churn and reduces

structure construction and maintenance cost. GeWave shares

similarity with the works in [36, 37, 30] in terms of polling

employment and polling rate determination. However, the

novelty of GeWave lies in the decentralized and proximity-

aware polling.

3 Overview of GeWave
In GeWave, each replica node has a periodical polling time

interval for its replica, denoted by time-to-refresh (TTR).

GeWave forms replica nodes of a file into a structure based on

their TTR values and their physical locations. An example of

the GeWave structure is shown in Figure 1. The root node is

the file owner, and the replica nodes are organized in ascending

order of their TTR levels from the top to the bottom. That

is, the first level nodes are the nodes that have the least TTR
level, and the TTR level of the dth level nodes is smaller than

that of the (d + 1)th level nodes, i.e., the polling rate of the

nodes in the dth level is faster than that of the nodes in the (d+
1)th level. The children are physically close to their parents.

In each level, a node connects to its predecessor and successor

(sibling neighbors), which are physically close to the node.

In GeWave, rather than polling the file owner, each replica

node polls its parent for an update. The file update is con-

ducted in the fashion of a wave. After the original file is

updated, the nodes in the first level poll the file owner for

updates before their replicas are queried. Later, the nodes

in the second level poll the nodes in the first level before

their replicas are queried, and so on. Therefore, a file’s

updating process is like a wave from the top to the bottom

between geographically close nodes. In this way, GeWave

is distinguished by a number of features: (1) Depending

on active polling rather than pushing, GeWave enhances the

fidelity of consistency. (2) Polling within geographically close

nodes dramatically improves the efficiency of consistency

maintenance. (3) Relying on decentralized polling instead of

centralized polling, GeWave achieves a high scalability by

distributing the overhead among replica nodes. (4) Compared

to the structure-based pushing methods, GeWave avoids update

failures due to node departures and failures and helps to ensure

file consistency, even in churn. Also, the direct node-to-node

communication enables distant nodes to achieve consistency

and is less sensitive to churn, network size and P2P structure.

Specifically, GeWave addresses the following challenges:

(1) How can the GeWave structure be constructed to con-

sidering file update and query rates and node physical

proximity?

(2) How can consistency maintenance in the GeWave struc-

ture be conducted, in a decentralized manner?

(3) How can the GeWave structure be maintained in churn

in order to enhance the fidelity of file consistency?

Replica nodes are allowed to modify the file but need to notify

the file owner. Techniques for file replication are orthogonal

to our study in this paper. As previously mentioned, though

GeWave can adjust its file polling frequency in response to

the file update rate, it is not suitable for a scenario where a

replica file’s query rate or update rate experiences significant

fluctuations very frequently and abruptly. P2P systems with

relatively stable update and query rates are not uncommon.

Gnutella [38] shows that the popularity of transiently popular

files is stable over a short time period and the popularity of

persistently popular files remains stable. The work in [39]

assumes that a file’s update rate (i.e., number of updates over

a certain period of time) is relatively stable. A scenario with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

Level 0 File ownerLevel 0

Level 1

Level 2

2

2 4 5

4 5

2 5

1 7

1 E

DSmall TTR

Fast polling rate

A

D
E

G

B

A FP O

V

Level 3

Level 4

2

2

2 2 5 5

2 5G

F
Large TTR

Slow polling rate

A
B CC

2 I i Hilb t bd ith Hilb t b H 22 Increasing Hilbert number: a node with Hilbert number H=2

Fig. 1. An example of a four-level GeWave structure.
relatively stable query and update rates in a certain time period

can be found in a P2P trust management system [27], an e-

commerce catalogue and a file sharing system where nodes’

activities are relatively stable in a certain time period.

4 The Design of GeWave
4.1 Adaptive and Lightweight Polling
GeWave uses adaptive polling, in which a replica node polls

a node with an updated file to determine if its replica is

stale. GeWave is developed based on the work in [37] that

considers cases when replica nodes directly poll the file owner

for updates. Specifically, GeWave uses the strategy in the work

to determine the polling frequency. We describe this strategy

in the following.

Consider a file’s maximum update rate is 1/�, which means

it updates every � time units, say seconds, in the highest

update frequency. Therefore, a replica node can ensure that

a replica is never outdated by more than � seconds by

simply polling the owner every � seconds. A TTR value is

associated with each replica that represents the time between

two successive polls. We use � to denote the lowest update

frequency. A file owner can find � and � based on its own

historical updating activities. When it replicates its file to

other nodes, it also sends � and � to the replica nodes. The

polling algorithm begins by initializing TTR =TTRmin=�
and TTRmax= �. It then uses a linear increase multiplicative

decrease algorithm (LIMD) [36] to adapt the TTR value

(and hence, the polling frequency) to the file update rate.

Particularly, the TTR value is increased by a linear factor

(resulting in less frequent polls) if the file does not change

between successive polls. That is,

TTR = TTR+ a (a > 0), (1)

where a is an additive constant. Otherwise, the TTR value

is reduced by a multiplicative factor (causing more frequent

polls). That is,

TTR = TTR/b (b > 1), (2)

where b is the multiplicative decrease constant. The parameters

of a and b are determined by the real system file updating fre-

quency and the requirement of the tradeoff of polling overhead

and the fidelity of consistency maintenance. A system with a

higher file update frequency should have a larger b and smaller

a, while a system with a lower file update frequency should

have a larger a and smaller b. Also, larger a or smaller b leads

to lower polling overhead but lower fidelity of consistency

maintenance and vice versa. Considering the various factors

to determine a and b is a non-trivial task. However, it is not

the focus of this work and we leave it as our future work.

The algorithm takes as input two parameters: TTRmin and

TTRmax, which represent lower and upper bounds on the

TTR values. Values that fall outside these bounds are set to

TTR = max(TTRmin,min(TTRmax, TTR)). (3)

This ensures that the TTR computed by the algorithm is

neither too large nor too small. Thus, each replica node probes

the file owner at a rate at which the file changes and sets the

TTR value accordingly.

The ultimate objective of file consistency maintenance is to

ensure a replica is not outdated when requested. Therefore,

it is not necessary to update all file replicas once a file

is changed. Thus, the file query rate is further considered

in TTR determination in order to reduce the overhead of

consistency maintenance. That is,

TTR =

{
Tquery TTR ≤ Tquery

TTR TTR > Tquery,
(4)

where Tquery denotes the time interval between two successive

queries. A replica node periodically calculates Tquery of its

replica. For example, during a time period, a replica is visited

m times with Tqueryi
(1 ≤ i ≤ m). Then, Tquery =∑m

i=1 Tqueryi
/m. When TTR ≤ Tquery , that is, when the

file update rate is higher than the file query rate, there is no

need to update the replica at the update rate. On the other hand,

when TTR > Tquery , that is, the replica is visited at a higher

rate than its update rate, then the replica should be updated

based on TTR. This polling frequency determination method

avoids unnecessary overhead for file updates while achieving

high fidelity of consistency of queried results.

4.2 Geographically-aware Wave
All replica nodes polling a file owner for consistency main-

tenance may overload the file owner, leading to delayed up-

date message response. The TTR-based and proximity-aware

GeWave structure conducts file consistency maintenance in a

decentralized manner.

Before we present the details of the GeWave structure, let us

introduce a landmarking method to represent node closeness

on the Internet by indices. Landmark clustering has been

widely adopted to generate proximity information [40, 41].

It is based on the intuition that nodes close to each other are

likely to have similar distances to a few selected landmark

nodes, although details may vary from system to system.

We assume m landmark nodes that are randomly scattered

in the Internet. Each node measures its physical distances

to the m landmarks, and uses the vector of distances

< d1, d2, . . . , dm > as its coordinate in Cartesian space. Two

physically close nodes have similar landmark vectors. Note

that a sufficient number of landmark nodes are needed to

reduce the probability of false clustering where nodes that

are physically far away have similar landmark vectors. We

use space-filling curves [42], such as Hilbert curve [41], to

map m-dimensional landmark vectors to real-numbers, called

Hilbert numbers. As a result, physically close nodes will have

similar Hilbert numbers. We use Hi to denote the Hilbert

number of node i.
A GeWave structure is built dynamically based on the

node proximity and polling rate. GeWave takes the file owner

as its root and places nodes into different levels based on

polling rate levels with nodes in the upper levels having higher

polling frequencies than those in the lower levels. A GeWave

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

structure has L levels, where L is determined by the file owner

according to the actual file query rate, TTR distribution and

an estimated number of replica nodes. L should be set to an

appropriate value. If L is too large, it will adversely affect

the effectiveness of the GeWave structure for file updating.

If it is too small, it may overload some nodes with many

children. A real trace from Gnutella [38] shows that the file

query rate can be modeled as a Zipf distribution. Therefore,

TTR values are most likely to be varied in a range based on

Formula (4). No matter whether the TTR values are varied in

a range or not, the file owner partitions the entire TTR range

and assigns each partition to each tree level so that the replica

nodes are not distributed in different levels in imbalance (i.e.,

too many replica nodes are assigned to a level while very few

replica nodes are assigned to another level). The entire TTR
range does not have to be partitioned evenly, more even TTR
distribution leads to move even partitions. We use LTTR to

denote a node’s TTR level. For instance, if the possible TTR
is within [0,100] seconds, L = 10 and each level evenly holds

10 seconds, then the nodes with TTR in [0,10) are on level

1, the nodes with TTR in [10,20) are on level 2, and so on.

The TTR range on level 2 can be [10,30] if there are few

replica nodes with TTR in [10,20) or [20,30). After replica

nodes join in the tree, their TTRs may change over the time

leading to an imbalanced distribution of nodes in different

tree levels. In order to avoid this problem, if many replicas’

TTRs become very close, the file owner further partitions

this TTR range into m levels. When a replica in this TTR
range is created, the file owner assigns this replica to one of

m levels that has the fewest nodes. If there are very few nodes

in a level, the file owner can combine the range of this level

with the range in the level above or below. After the tree re-

construction, the file owner notifies corresponding nodes to

change their neighbors in the tree. To further achieve load

balance, in Section 7.2, we will introduce a load balancing

algorithm that avoids overloading a replica node due to many

connected children.

As shown in Figure 1, the root node is the file owner, and

the replica nodes are organized in ascending order of their

TTR levels from the top to the bottom. That is, the first level

nodes are the nodes that have the least TTR level, and the

TTR level of the dth level nodes is smaller than that of the

(d+1)th level nodes. In other words, the polling rate of nodes

in the dth level is faster than that of nodes in the (d+1)th level.

GeWave uses the Hilbert number [41] to represent node

proximity closeness. Physically close nodes have similar

Hilbert numbers. We use Hi to denote the Hilbert number of

node i. In one level, nodes are arranged in ascending order of

their Hilbert numbers. Nodes in the (d+1)th level choose the

geographically closest nodes in the dth level as their parents.

In one level, a node connects to its predecessor and successor,

which are relatively physically close neighbor(s) whose polling

rate is at the same level as itself. The neighbor links help

to enhance the efficiency of structure maintenance for replica

node joins and departures. As a result, a node has links to its

parent, two neighbors (i.e., predecessor and successor) and its

children. The root node does not have a parent link and the

first node and last node in each level only have one neighbor.

In GeWave, rather than polling the file owner, each replica

node polls its parent for an update. For example, in Figure 1

nodes A, B and C are physically close nodes, and node A is

relatively close to its neighbors P and O. During file updating,

after A polls the file owner, B polls A for an update, and after

that, C polls B for an update. A file has a new version number

after it is updated. When a child polls its parent for an update,

it also piggybacks its own version number on the request. If

the parent finds that the piggybacked version is the same as

its own version number, i.e., it has not received latest update,

it does not respond until it has received a new update with a

newer version number. If a file is not updated at its update rate

within a time period, the file owner replies to the polling node

that the file has not been updated during this update period.

The parents subsequently reply to their children that the file

has not updated during this update period. This policy prevents

nodes from waiting for an update infinitely before replying to

file requests.

The parent assignment algorithm in GeWave ensures that a

child’s parent has the most up-to-date file when the child polls

it for an update and that child is physically close to its parent.

Communication between geographically close nodes reduces

bandwidth consumption and improves efficiency. From the

perspective of the entire GeWave structure, the update process

is modelled as a wave from the top to the bottom between

geographically close nodes, ensuring nodes receive updates

timely and efficiently. Such a decentralized update pattern

distributes updating overhead among replica nodes, thus

significantly improving the scalability of the polling method.

Section 7 in the supplementary file presents other mecha-

nisms of GeWave including those for structure construction

and maintenance, reliability, and load balancing.

5 Performance Evaluation
We designed and implemented the systems on the real-world

PlanetLab testbed [43]. We compared the performance of

GeWave with the SCOPE [31], UMPT [26] and Push/pull [29]

methods. We chose SCOPE as a representative of system-wide

structure-based pushing methods that constitute all nodes in a

P2P system to a structure for consistency maintenance. We

chose UMPT as a representative of per-file structure-based

proximity-aware pushing methods that bulids all replica nodes

of a file into a system for consistency maintenance and prop-

agate updates between geographically close nodes. We chose

Push/pull as a representative of message spreading methods.

In UMPT and SCOPE, we set the k in the propagation k-nary

tree to 2. Below, we briefly introduce each of the methods.

SCOPE [31]. By building a replica-partition-tree (RPT),

SCOPE keeps track of the locations of replicas and then propa-

gates update notifications. Specifically, each node has a consis-

tent hash value (e.g. SHA-1) [44] as its m-bit identifier. RPT is

built by recursively splitting the identifier space. The primary

node of a key in the original identifier space is the root of RPT.

The representative node of a key in each partition, recording

the locations of replicas at the lower levels, becomes one inter-

mediate node of RPT. The leaves of RPT are those representa-

tive nodes at the bottom level. When an update is propagated

from the root to the bottom, an intermediate node decides

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

1.E+04

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

50 100 150 200 250

Co
m

m
un

ic
at

io
n

co
st

(k

m
)

The number of replicas

SCOPE
GeWave
Push/pull
UMPT

(a) Communication cost in distance

0.E+00
5.E+04
1.E+05
2.E+05
2.E+05
3.E+05
3.E+05
4.E+05
4.E+05

50 100 150 200 250

Co
m
m
un

ic
at
io
n
la
te
nc
y

(m
s)

The number of replicas

SCOPE
GeWave
Push/pull
UMPT

(b) Communication cost in latency

Fig. 2. Communication cost.

0%

20%

40%

60%

80%

100%

1000 3000 5000 7000 9000 11000

CD
F

of
 p

er
ce

nt
 o

f
m

es
sa

ge
s

Geographical distance (km)

SCOPE

GeWave

Push/pull

UMPT

Fig. 3. Proximity-aware performance.

whether it needs to forward the update to each of its child par-

tition. In the experiments, we built one RPT in a P2P system.

UMPT [26]. UMPT is a proximity-aware hierarchical struc-

ture. Its upper layer is P2P-based and consists of powerful and

stable replica nodes, while a replica node at the lower layer

attaches to a physically close upper layer node. When a file is

updated, a k-ary update message propagation tree (UMPT) is

built dynamically and the update is propagated in the top-down

manner. Each upper-layer node also forwards the update to

its connected lower-layer nodes. Nodes periodically exchange

messages to maintain the connections between lower-layer

nodes and physically close upper-layer nodes.

Push/pull [29]. In this hybrid push/pull algorithm, the

update messages are propagated in a rumor spreading style.

A replica node randomly selects a set of replica nodes and

forwards the message to them with a probability. In our

experiments, a node selects its neighbors with probability 1

to spread the updates. In order to reduce the redundancy and

help replica nodes discover replicas unknown to them, a partial

list of replica nodes to which the same message has been sent

is enclosed with the update message. The update message will

not be forwarded to the replica nodes in this partial list.

In the PlanetLab experiments, we randomly chose 256 nodes

on PlanetLab worldwide, and distributed 10 files (each of

which is 1MB) to each node. We randomly chose 15 landmark

nodes all over the world, and used the method introduced in

Section 4.2 to generate the proximity of each node. Each node

randomly chose nodes from the other 255 nodes to replicate

its files. The size of an update was set to a value randomly

chosen from [1,5]Kb. The file query rate of each replica file

was randomly generated from [0,100]s. Considering the small

scale of this P2P network, we did not limit the TTL of update

transmission hops in Push/pull. Unless otherwise specified,

each file has 100 replicas.

5.1 Consistency Maintenance Cost
Communication cost constitutes a major part of file consis-

tency maintenance overhead. The cost is directly related to

the update message size and physical path length or latency

of the message travelled. We use the produce of these two

factors of all messages to represent the communication cost.

5.1.1 Single File Update
We first test the communication cost of one file’s consistency

maintenance. In this experiment, the file update rate was

set to 20s. In Push/pull, each node pushes an update to

18 neighbors, 8 neighbors in its finger table and 10 in its

successor list. Figure 2(a) and Figure 2(b) show the average

update communication cost measured by distance and latency

for all replicas in every 20s during the total 500s with

different number of replicas, respectively. We see that the

result follows Push/pull>SCOPE>UMPT>GeWave. From the

figures, we can see that Push/pull generates prohibitively high

cost. In Push/pull, upon receiving an update message, a node

forwards the update to its 18 neighbors. Thus, the number

of messages increases exponentially. In addition, Push/pull
does not consider proximity in message pushing and a node’s

neighbors may be physically far away from itself. Therefore, a

large amount of messages travel long distances in file updates,

leading to a dramatically high cost. We also observe that

GeWave and UMPT incur much lower communication cost

than SCOPE. Because SCOPE propagates an update along

a tree consisting of all nodes in the system, though some

nodes are not replica nodes, the considerably larger number

of messages increases the communication cost. Also, SCOPE
does not take proximity into account in update propagation,

resulting in long message travel distances. Furthermore, we

can see that the communication cost of Push/pull and SCOPE
remains almost constant regardless of the number of replica

nodes. This is because Push/pull employs rumor spreading and

SCOPE propagates the update among all system nodes.

In contrast, GeWave and UMPT constrain the propagation

scope only within replica nodes. Also, they consider proximity

by guiding update messages to travel between physically close

nodes. Therefore, GeWave and UMPT generate significantly

lower communication costs than Push/pull and SCOPE, and

their communication costs increase as the number of replicas

grows. We observe that GeWave produces lower costs than

UMPT. This is because GeWave does not update replicas if

they are visited less frequently than their update rates. This

result shows the advantage of relaxing the strict consistency

requirement that all replicas should be updated once the source

file is updated. the result confirms the low overhead and

latency of GeWave in consistency maintenance measured by

the message transmission cost in the real-world testbed.

5.1.2 Proximity-aware Performance
This experiment shows the proximity-aware performance to

map physically close nodes for communication. Figure 3

shows the proximity-aware performance in propagating update

messages between physically close nodes. It shows that more

update propagations in GeWave are within short distances

than in other methods. Specifically, there are 88%, 82%,

71%, and 57% of all updates that are within 5000km in

GeWave, UMPT, SCOPE and Push/pull, respectively; and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

0

2000

4000

6000

8000

10000

50 100 150 200 250

To
ta

l
n

u
m

b
e

r
o

f
m

e
ss

a
g

e
s

The number of replicas

SCOPE
GeWave
Push/pull
UMPT

Fig. 4. Total number of up-
date messages.

Co
m

m
un

ica
tio

n
co

st
 (k

m
)

Push/pull

SCOPE
UMPT
GeWave

(a) Communication cost in distance

Co
m

m
un

ic
at

io
n

co
st

 (m
s)

Push/pull

SCOPE
UMPT
GeWave

(b) Communication cost in latency

Th
e

nu
m

be
r o

f m
es

sa
ge

s

Push/pull

SCOPE
UMPT

GeWave

(c) The number of update messages

Fig. 5. Performance of file consistency maintenance schemes.

there are 99%, 91%, 84%, and 78% of all updates that are

within 7000km in GeWave, UMPT, SCOPE and Push/pull,
respectively. This result confirms that GeWave and UMPT
have higher proximity-aware performance than SCOPE and

Push/pull, and that GeWave outperforms UMPT in propagating

more updates between physically close nodes when nodes do

not form clusters in a real-world network due to the same

reasons as in Section 5.1.1. The result confirms that GeWave
is effective in guiding update messages to travel between

physically close nodes, leading to fast and lightweight update

propagation.

5.1.3 The Number of Generated Messages
Figure 4 demonstrates the total number of update

messages for all replicas during 100s versus the

number of replicas in the experiment. The result follows

Push/pull>SCOPE>UMPT>GeWave. Push/pull and SCOPE
are stable, and UMPT and GeWave increase in proportion

to the number of replicas. The results are consistent with

Figure 2(a) and Figure 2(b). In Push/pull, each node forwards

an update message to 18 neighbors. Thus, Push/pull generates

the highest number of messages in total for a file’s update

regardless of the number of replicas. SCOPE propagates the

update messages along the tree formed by all nodes in the

system. Therefore, SCOPE produces 255 messages for each

file update regardless of the number of replicas. GeWave and

UMPT propagate update messages only among replica nodes.

Thus, they produce more update messages as the number

of replicas increases. Further, GeWave leads to much fewer

messages due to the same reason as in Figure 2.

5.1.4 Multiple File Updates
In this experiment, we consider 200 files that are classi-

fied into four categories, and the percentage of the files

in each category and their update rates were set to (0.5%,

10s), (2.5%, 20s), (7%, 30s) and (90%, 50s). Figure 5(a),

Figure 5(b) and Figure 5(c) show the total communication

cost in distance and latency, and the number of file up-

date messages versus the number of updates and number

of replicas per file, respectively. In both figures, the results

follow Push/pull>SCOPE>UMPT>GeWave. Also, Push/pull
increases much faster than all other methods. We see that

UMPT and GeWave exhibit much lower costs than Push/pull
and SCOPE, the costs of which grows quickly with the

number of updates. Comparing Figure 5(a) and Figure 5(b)

and Figure 5(c) with Figure 2, we observe that Push/pull
and SCOPE produce much higher communication costs in

updating 200 files than updating 1 file. This is because they

already incur very high costs for updating 1 file due to the

involvement of all nodes in the system. Updating more files

generates a cost that is multiple times higher. UMPT and

GeWave incur much lower costs in updating 1 file. Then,

updating more files brings about incremental cost growth. The

figure demonstrates that the costs of Push/pull and SCOPE
are not affected by the number of replicas per file. This is

because no matter how many replicas a file has, Push/pull
and SCOPE conduct the same operation involving all nodes in

the system. The communication costs of UMPT and GeWave
increase proportionally with the number of replicas per file

and the number of updates, though it is not obvious in the

figure. Recall that UMPT and GeWave only propagate update

messages among replica nodes. Therefore, more replicas of a

file or more updates generate more messages and hence higher

communication costs. The three figures confirm the low cost

and high efficiency of GeWave.

5.2 Fidelity of File Consistency
Recall that GeWave aims to ensure that each replica is never

outdated by more than Δ time units. We define such a replica

file as a soft up-to-date file, otherwise a soft outdated file. Let

v0, v1, v2 . . . denote a file’s version after each update. After a

file owner sends out an update for file version vi, if a replica

node provides the file with a version vj(j < i), the provided

file is defined as a hard outdated file.

Since an update could occur at any time spot during

the unit time interval, we randomly chose the time spot

for each update in an update interval when evaluating the

fidelity of consistency. Our experimental results show that

all methods generate 0 soft outdated files received in a

system without churn. Figure 6(a) shows the number of

received hard outdated files. We see that the result follows

GeWave>SCOPE>Push/pull>UMPT. GeWave aims to reduce

soft outdated files rather than hard outdated files, hence it

generates most hard outdated files.

The update propagation speed of the push-based methods

follows SCOPE>Push/pull>UMPT. With faster speed, more

replica nodes can receive updates in time, leading to less hard

outdated files. To further investigate the delay in updating,

we plot Figure 6(b) that shows the CDF of the received hard

outdated files versus the outdated time, defined as the time

difference between when the file is received and when the file

is hard outdated for the first time. We see that the outdated

time for most received hard outdated files in the push-based

methods is within 5 seconds, while that of GeWave is within

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

1

10

100

1000

50 100 150 200 250

N
u

m
b

e
r

o
f

o
u

td
a

te
d

u

p
d

a
te

s
re

c
e

iv
e

d
 p

e
r

fi
le

Number of replicas per file

SCOPE GeWave
Push/pull UMPT

(a) Received hard outdated files

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23

C
D

F
 o

f
p

e
rc

e
n

ts
 o

f
o

u
td

a
te

d
 f

il
e

s

Outdated time of received file (s)

SCOPE GeWave

Push/pull UMPT

(b) CDF of received hard outdated files

Fig. 6. Performance in achieving goals of consistency.

0

1000

2000

3000

4000

5000

6000

50 100 150 200 250

N
u

m
b

e
r

o
f

re
ce

iv
e

d

o
u

td
a

te
d

 f
il

e
s

The number of replicas

SCOPE GeWave
Push/pull UMPT

(a) Slow file update

0

5000

10000

15000

20000

25000

30000

35000

50 100 150 200 250

N
u

m
b

e
r

o
f

re
ce

iv
e

d

o
u

td
a

te
d

 f
il

e
s

The number of replicas

SCOPE GeWave
Push/pull UMPT

(b) Fast file update

Fig. 7. Performance of the fidelity of consistency.

13 seconds. This result confirms that GeWave can always

constrain the outdated time to a minimum update interval,

and that the push-based methods are advantageous for real-

time updates.

We then measure the fidelity of consistency of GeWave
using the soft outdated files, and measure that of other methods

using the hard outdated files. In Section 8.1 in the supplemen-

tary file, we measures the number of soft outdated files for all

methods in churn, which shows the higher consistency fidelity

of GeWave than other structure-based methods in churn. We

measured the average number of received outdated files every

100s out of the total 1000s experiment time. Figure 7(a)

shows this average number of received outdated files in

100s with different numbers of replicas per file. The result

follows SCOPE>Push/pull>UMPT>GeWave. There are no

received outdated files in GeWave, and the number of outdated

files in the other three methods increases gradually. UMPT
generates fewer outdated files than SCOPE because update

propagation between physically close nodes in UMPT enables

replicas to receive updates faster than in SCOPE. SCOPE
produces fewer outdate files than Push/pull because SCOPE
propagates updates faster along the tree. More replicas lead to

longer latencies in update propagation, and consequently more

outdated files received. Using polling, each node in GeWave
knows whether it has the updated file and only responds with

the updated file, leading to 0 received outdated files.

In order to see the fidelity of consistency provided by

the schemes when most files are updated more frequently,

we change the percentage of the files and their update

rates to (90%, 10s), (7%, 20s), (2.5%, 30s) and (0.5%,

50s). Figure 7(b) shows the average number of received

outdated files in 100s during all 1000s, which also follows

SCOPE>Push/pull>UMPT>GeWave. There are also no re-

ceived outdated files in GeWave, and the number of outdated

files in the other three increases gradually. The reasons for the

results are the same as explained in Figure 7(a). Comparing

Figure 7(b) with Figure 7(a), we see that the number of

received outdated files in each method increases significantly

due to the faster update rate. GeWave still produces 0 received

outdated files in fast update rate, which confirms its perfor-

mance in maintaining high fidelity of file consistency.

GeWave is distinguished by lower communication costs for

updates, and higher fidelity of soft consistency in churn. Also,

it achieves better proximity-aware performance than UMPT.

Pull/push provides high consistency fidelity but at a cost

of high message spreading overhead. We present additional

experimental results in Section 8 in the supplementary file.

0

20

40

60

80

100

120

140

0.2 0.1 0.05 0.03 0.02

N
u

m
b

e
r

o
f

re
c
e

iv
e

d

o
u

td
a

te
d

 f
il

e
s

Update rate (/s)

SCOPE GeWave
Push/pull UMPT

Fig. 8. Num. of received
outdated files.

0
5

10
15
20
25
30
35
40

50 100 150 200 250

Q
u

e
ry

 l
a

te
n

c
y

 (
m

s)

The number of replicas

SCOPE GeWave Push/pull UMPT

Fig. 9. Ave. query latency
per query.

5.3 Different Update Rates
In this experiment, we evaluated the GeWave fidelity perfor-

mance over different update rates of a file with one randomly

chosen file owner and 100 replica nodes. We conducted 20
experiments, each lasting 100 seconds, and then calculated

the average as the final result of each method. Figure 8 shows

the number of outdated files received in different methods

versus different update rates. The number of outdated files

received follows SCOPE>Push/pull>UMPT>GeWave due to

the same reason as Figure 7(a) and Figure 7(b). The fig-

ure also shows that the number of received outdated files

decreases as the update rates decrease. Decreasing update

rate reduces the number of updates during each 100 second

period, thus generating fewer outdated files received in each

method. The figure also shows that the decreasing speed

follows SCOPE>Push/pull>UMPT>GeWave; one reason for

this behavior is that longer update paths lead to longer la-

tencies, and the average path length from a file owner to a

replica node follows SCOPE>Push/pull>UMPT. Updates are

simultaneously pushed to more children in Push/pull than in

SCOPE, so that more nodes in Push/pull receive updates with

short path lengths. UMPT clusters physically close nodes for

one-hop updates to reduce the updating latency and builds

the heads of clusters into a tree. In the tree, children are

not physically close their parents. Thus, an update may be

propagated along physically far-away nodes along the tree. In

GeWave, children are physically close to their parent in the

tree. Children poll their parents for updates and poll the file

owner after a timeout. Therefore, a replica node can always

provide a soft up-to-date file.

5.4 File Query Latency
In this experiment, we evaluated the average query latency

of a file. To make other methods comparable to GeWave,

we assume that replica nodes in other methods also know

whether their replicas are up-to-date when receiving a file

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

2 4 6 8 10

Co
m

m
un

ic
at

io
n

co
st

(k

m
)

The number of replicas of a peer

SCOPE GeWave
Push/pull UMPT
GeWave(w/o)

(a) Distance

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

2 4 6 8 10

Co
m

m
un

ic
at

io
n

la
te

nc
y

(m
s)

The number of replicas of a peer

SCOPE GeWave
Push/pull UMPT
GeWave(w/o)

(b) Latency

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

2 4 6 8 10

To
ta

l n
um

be
r

of

m
es

sa
ge

s

The number of replicas of a peer

SCOPE GeWave
Push/pull UMPT
GeWave(w/o)

(c) Num. of messages

Fig. 10. Communication cost in trace-driven experiments.

0

5

10

15

20

25

2 4 6 8 10

N
um

be
r

of
 o

ut
da

te
d

up
da

te
s

re
ce

iv
ed

 p
er

 fi
le

The number of replicas of a peer

SCOPE GeWave
Push/pull UMPT
GeWave(w/o)

(a) Received hard outdated files

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23

CD
F

of
 p

er
ce

nt
s

of

ou
td

at
ed

 fi
le

s

Outdated time of received file (s)

SCOPE
GeWave
Push/pull
UMPT
GeWave(w/o)

(b) CDF of received hard outdated files

Fig. 11. Performance in achieving goals of consistency in trace-driven
experiments.

0

200

400

600

800

2 4 6 8 10

N
um

be
r o

f r
ec

ei
ve

d
ou

td
at

ed
 fi

le
s

The number of replicas of a peer

SCOPE GeWave
Push/pull UMPT
GeWave(w/o)

Fig. 12. Performance of the fidelity
of consistency in trace-driven experi-
ments.

query. The query latency is defined as the time period from

the arrival of a query at a replica node (or file owner) to the

time when an up-to-date file is ready to respond. When a

node’s replica is not updated, the node delays the response

for file queries until it receives the update or a “no update”

message. Figure 9 shows the average query latency per query

in 2000 seconds for different methods. We see that the average

latency follows SCOPE>Push/pull>UMPT>GeWave, and the

query latency is independent of the number of replicas per

file for all methods. The query rate is uniformly distributed

during [0,100]s, which means that the query distribution

over a time interval between two update arrivals is also

uniform. As explained in Figure 8, the update latency follows

SCOPE>Push/pull>UMPT>GeWave. Therefore, the query

latency also exhibits the same tendency.

5.5 Trace-driven Experiments

We used a 4-hour I/O (read/write) trace from a large-scale

application known as CTH [45] for file reads and writes in

our experiments. The trace has 16,566 files, 3,972,284 file

I/O calls and 3,300 clients. The query rate varies in [0,315]

visits/hour, and update rate varies in [0, 4889] writes/hour. We

selected 200 active files with the highest visit rates.

The BitTorrent User Activity Trace [46] traced the down-

loading status of 3,570,587 peers in 242 countries or districts

all over the world. The number of peers of each country

varying in [1,498,238] follows a power-law distribution. As

the CTH trace has 3,300 clients, we simulated 3,300 peers

following the same geographical distribution as the trace. That

is, a peer is hosted in a randomly selected PlanetLab node in

the same country as the peer among all 330 PlanetLab nodes.

We assigned the 200 files to randomly selected pees. In

the experiment, first, each peer of the 3,300 peers randomly

selected m files to visit, and m was varied from 2 to 10 in

an increase step of 2. Each node replicates its visited file.

Then, file updating and file visiting start at the same time. The

files’ update rate and visit rate follows the rate distributions

in the trace. We conducted each experiment lasting one hour

to measure the update communication cost, communication

latency, and the total number of messages for each m. We also

measured the number of hard outdated files and soft outdated

files to show the performance of the fidelity of consistency in

different methods.

We use GeWave(w/o) to denote GeWave without proximity-

awareness. Figure 10(a) and Figure 10(b) and Figure 10(c)

show the total update communication cost measured by dis-

tance and latency and the number of update messages, re-

spectively. These figures show the same tendency as Fig-

ure 2(a), Figure 2(b) and Figure 4, respectively due to the

same reasons. GeWave produces the highest performance in

all methods, which saves 74.2%, 69.1% and 64.4% more

than UMPT in distance, latency and the number of update

messages, respectively. Compared to GeWave(w/o), GeWave
saves 53.5% and 44.5% more update communication cost

in distance and latency, respectively. This indicates that the

necessity of proximity consideration in GeWave for parent

node selection, which saves around half of the communication

load.

Figure 11(a) shows the number of received hard outdated

files. Due to the same reason as Figure 6(a), GeWave and

GeWave(w/o) generate most hard outdated files. GeWave(w/o)
does not consider the proximity, which makes the update

communication latency larger. Thus, it receives around 3.9%

more hard outdated files than GeWave. Figure 11(b) shows the

CDF of the received hard outdated files versus the outdated

time, which shows the same tendency as Figure 6(b) due to the

same reasons. It also shows that GeWave(w/o) has 2.8% more

outdated files with outdated time larger than 3 seconds than

GeWave due to the same reason as Figure 11(a). Both of the

two figures indicate the necessity of the proximity considera-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

tion in GeWave. Figure 12 shows the number of received soft

outdated files. It exhibits the same tendency as Figure 7 due to

the same reasons, which confirms GeWave’s high performance

in maintaining high fidelity of file consistency.

6 Conclusions
The challenges for consistency maintenance schemes in P2P

systems are twofold: large scale and churn. To handle these

challenges, we propose a Geographically-aware Wave con-

sistency maintenance scheme (GeWave) that conducts con-

sistency maintenance efficiently at a significantly lower cost.

Without relying on a static structure, GeWave is highly re-

silient to P2P churn by adaptive polling with direct node-to-

node communication. It avoids unnecessary file updates by dy-

namically adapting to time-varying file update and query rates.

Also, it transmits update messages in a decentralized manner

between physically close nodes. Extensive experimental results

with PlanetLab demonstrate the effectiveness of GeWave in

comparison to other consistency maintenance schemes. Its low

overhead, high efficiency, and churn-resilience are particularly

attractive to the deployment of large-scale and dynamic P2P

file sharing systems.

Acknowledgements
This research was supported in part by U.S. NSF grants CNS-

1249603, OCI-1064230, CNS-1049947, CNS-1156875, CNS-

0917056 and CNS-1057530, CNS-1025652, CNS-0938189,

CSR-2008826, CSR-2008827, Microsoft Research Faculty

Fellowship 8300751, and U.S. Department of Energy’s Oak

Ridge National Laboratory including the Extreme Scale Sys-

tems Center located at ORNL and DoD 4000111689. An early

version of this work was presented in the Proceedings of

ICPP’08 [47].

References
[1] J. Zhou, L. N. Bhuyan, and A. Banerjee. An Effective Pointer

Replication Algorithm in P2P Networks. In Proc. of IPDPS, 2008.
[2] T. Liu, M. Bao, G. Chang, and Z. Tan. The Improved Research of Chord

Based on File-Partition Replication Strategy. In Proc. of HIS, 2009.
[3] J. Kageyama, M. Kobayashi, S. Shibusawa, and T. Yonekura. A file

replication method based on demand forecasting in P2P networks. In
Proc. of Second ICADIWT, pages 268–74, 2009.

[4] W. K. Lin, C. Ye, and D. M. Chiu. Decentralized Replication Algorithms
for Improving File Availability in P2P Networks. In Proc. of IWQoS,
2007.

[5] S. L. Monni. Adaptive Media Replication in Unstructured P2P File Shar-
ing Systems Based on Geographical Properties and Query Distributions.
In Proc. of AXMEDIS, pages 171–179, 2008.

[6] M. Takaoka, M. Uchida, K. Ohnishi, and Y. Oie. Thermal Diffusion-
based Access Load Balancing for P2P File Sharing Networks. In Proc.
of ICCGI, pages 284–290, 2008.

[7] Y. Fang, L. Huo, and H. Hu. Research of Replication in Unstructured
P2P Network. In Proc. of WiCom, pages 1–4, 2009.

[8] L. Guo, S. Yang, R. Zhang, X. Niu, and H. Song. RBMA: Replication
Based on Multilevel-Agent for P2P Systems . In Proc. of CNMT, 2009.

[9] J. Ni, S. J. Harrington, and N. Sharma. Designing File Replication
Schemes for Peer-to-Peer File Sharing Systems. In Proc. of ICC, 2008.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proc. of SIGCOMM, 2001.

[11] A. Rowstron and P. Druschel. Storage Management and Caching in
PAST, a Large-scale, Persistent Peer-to-peer Storage Utility. In Proc. of
SOSP, 2001.

[12] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stocia. Wide-
area cooperative storage with CFS. In Proc. of SOSP, 2001.

[13] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer Caching Schemes
to Address Flash Crowds. In Proc. of IPTPS, 2002.

[14] M. Theimer and M. Jones. Overlook: Scalable Name Service on an
Overlay Network. In Proc. of ICDCS, 2002.

[15] Gnutella home page. http://www.gnutella.com.
[16] E. Cohen and S. Shenker. Replication strategies in unstructured peer-

to-peer networks. In Proc. of ACM SIGCOMM, 2002.
[17] S. Tewari and L. Kleinrock. Analysis of Search and Replication in

Unstructured Peer-to-Peer Networks. In Proc. of SIGMETRICS, 2005.
[18] S. Tewari and L. Kleinrock. Proportional Replication in Peer-to-Peer

Network. In Proc. of INFOCOM, 2006.
[19] D. Rubenstein and S. Sahu. Can Unstructured P2P Protocols Survive

Flash Crowds? IEEE/ACM Trans. on Networking, (3), 2005.
[20] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher. Adap-

tive Replication in Peer-to-Peer Systems. In Proc. of ICDCS, 2004.
[21] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A

Distributed Anonymous Information Storage and Retrieval System. In
Proc. of the International Workshop on Design Issues in Anonymity and
Unobservability, pages 46–66, 2001.

[22] Kazaa, 2001. Kazaa home page: www.kazaa.com.
[23] Morpheus home page. http://www.musiccity.com.
[24] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. OceanStore: An architecture for global-scale persistent storage.
In Proc. of ASPLOS, 2000.

[25] M Waldman, AD Rubin, and LF Cranor. Publius: A robust, tamper-
evident, censorship-resistant, web publishing system. In Proc. of the
9th USENIX Security Symposium, 2000.

[26] Z. Li, G. Xie, and Z. Li. Efficient and Scalable Consistency Maintenance
for Heterogeneous Peer-to-peer Systems. TPDS, 2008.

[27] R. Zhou and K. Hwang. PowerTrust: A Robust and Scalable Reputation
System for Trusted Peer-to-Peer Computing. TPDS, 2007.

[28] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Protocol for Internet Applications. IEEE/ACM TON, 2003.

[29] A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable,
Replicated Peer-to-Peer Systems. In Proc. of ICDCS, 2003.

[30] J. Lan, X. Liu, P. Shenoy, and K. Ramamritham. Consistency mainte-
nance in peer-to-peer file sharing networks. In Proc. of WIAPP, 2003.

[31] X. Chen, S. Ren, H. Wang, and X. Zhang. SCOPE: scalable consistency
maintenance in structured P2P systems. In Proc. of INFOCOM, 2005.

[32] M. Roussopoulos and M. Baker. CUP: Controlled Update Propagation
in Peer-to-Peer Networks. In Proc. of USENIX ATC, 2003.

[33] L. Yin and G. Cao. DUP: Dynamic-tree Based Update Propagation in
Peer-to-Peer Networks. In Proc. of ICDE, 2005.

[34] R. Shoup and F. Travostino. ebay’s scaling odyssey, growing and
evolving a large ecommerce site. Invited Industrial Talk in LADIS’08,
http://www.slideshare.net/ebayworld/ebays-scaling-odyssey.

[35] Y. Hu, M. Feng, and L. N. Bhuyan. A Balanced Consistency Main-
tenance Protocol for Structured P2P Systems. In Proc. of INFOCOM,
2010.

[36] M. Raunak P. Shenoy B. Urgaonkar, A. Ninan and K. Ramamritham.
Maintaining Mutual Consistency for Cached Web Objects. In Proc. of
ICDCS, 2001.

[37] H. Shen. IRM: Integrated File Replication and Consistency Maintenance
in P2P Systems. TPDS, 2009.

[38] W. Acosta and S. Chandra. On The Need For Query-Centric Unstruc-
tured Peer-To-Peer Overlays. In Proc. of IEEE IPDPS, 2008.

[39] C. Zhang and Z. Zhang. Trading Replication Consistency for Perfor-
mance and Availability: an Adaptive Approach. In Proc. of ICDCS,
2003.

[40] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-
aware overlay construction and server selection. In Proc. of INFOCOM,
2002.

[41] Z. Xu, M. Mahalingam, and M. Karlsson. Turning heterogeneity into
an advantage in overlay routing. In Proc. of INFOCOM, 2003.

[42] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier. Space filling
curves and their use in geometric data structure. TCS, 1997.

[43] PlanetLab. http://www.planet-lab.org/.
[44] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pan-

igrahy. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In Proc. of
STOC, pages 654–663, 1997.

[45] E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, and et al. CTH: A Software
Family for Multi-Dimensional Shock Physics Analysis. Technical report,
Sandia National Laboratories, Albuquerque, New Mexico, USA.

[46] BitTorrent User Activity Traces. http://www.cs.brown.edu/p̃avlo/torrent/.
[47] H. Shen. GeWave: Geographically-aware Wave for File Consistency

Maintenance in P2P Systems. In Proc. of ICPP, 2008.
[48] A. Rowstron and P. Druschel. Storage management and caching in past,

a large-scale persistent peer-to-peer storage utility. In Proc. of SOSP,
2001.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

Haiying Shen Haiying Shen received the BS de-
gree in Computer Science and Engineering from
Tongji University in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Assistant Professor in the
ECE Department at Clemson University. Her
research interests include P2P networks, mobile
computing, and cloud computing. She is a Mi-
crosoft Faculty Fellow of 2010 and a member of
the IEEE and ACM.

Guoxin Liu Guoxin Liu received the BS degree
in BeiHang University 2006, and the MS degree
in Institute of Software, Chinese Academy of
Sciences 2009. He is currently a Ph.D. student
in the Department of Electrical and Computer
Engineering of Clemson University. His research
interests include distributed networks, with an
emphasis on Peer-to-Peer, data center and on-
line social networks. He is a student member of
IEEE.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

