
1

Refining Reputation to Truly Select High-QoS
Servers in Peer-to-Peer Networks
Haiying Shen*, Member, IEEE , Yuhua Lin, Ze Li, Student Member, IEEE

Abstract—Peer-to-peer networks (P2Ps) use reputation systems to provide incentives for nodes to offer high quality of service (QoS)
and thwart the intentions of dishonest or selfish nodes. Existing reputation systems have two problems. First, they directly regard node
reputation as trust. Rather, reputation represents the opinions formed by others about a node’s QoS behavior, while trust represents a
node’s honesty and willingness to cooperate. In addition to trust, factors such as node capacity and lifetime also influence reputation.
Due to these factors’ heterogeneity and variance over time, reputation cannot directly reflect a node’s trust or current QoS. Second,
existing reputation systems guide a node to select the server with the highest reputation, which may not actually select the highest QoS
server and would overload the highest-reputed nodes. This work aims to accurately reflect node trust and provide guidance for high QoS
server selection. Through experimental study, we find that node trust, available capacity, and lifetime positively affect node reputation.
Based on this observation, we first propose a manual trust model and an automatic trust model that remove the influence of additional
factors on reputation to truly reflect node trust. We then propose a high-QoS server selection algorithm that separately considers node
trust, current available capacity, and lifetime. Extensive simulation results demonstrate the effectiveness of the trust models in accurate
node trust reflection compared with an existing reputation system. Moreover, the server selection algorithm dramatically increases the
success rate of service requests and avoids overloading nodes.

Index Terms—Peer to peer networks, Reputation systems, Server selection, Bayesian networks, Quality of service

�

1 INTRODUCTION

Peer-to-peer networks (P2Ps) enable the sharing of
globally-scattered computer resources, allowing them
to be collectively used in a cooperative manner for
different applications such as file sharing [1–4], instant
messaging [5], audio conferencing [6], and distributed
computing [7]. P2P applications scale to a large commu-
nity of users and take full advantage of heterogeneous
resources widely scattered all over the world. Node
cooperation is critical in achieving reliable performance
of P2Ps. However, cooperation is challenging in P2Ps,
where many diverse and autonomous parties without
preexisting trust relationships work together. Some in-
ternal nodes may be compromised, misbehaving, selfish,
or even malicious.

Reputation systems [8–15] such as those in eBay [16]
and Amazon [17] are a main method used to tackle this
problem. These systems collect, distribute and aggregate
feedback on participants’ past behavior and evaluate
a node’s trustworthiness to help nodes decide whom
to trust, encourage cooperative and honest behavior,
and deter uncooperative and dishonest participants.
The ability to accurately reflect node trust and provide
guidance for high-QoS server selection is vital to the
effectiveness of a reputation system.

In reputation systems, a service receiver (i.e., client)
usually rates a service provider (i.e., server) based on its
received QoS. That is, reputation represents the opinions
formed by other nodes on a node’s QoS behavior. Exist-
ing reputation systems usually guide a node to select
the server with the highest reputation. However, this

• * Corresponding Author. Email: shenh@clemson.edu; Phone: (864) 656
5931; Fax: (864) 656 5910.

• The authors are with the Department of Electrical and Computer Engi-
neering, Clemson University, Clemson, SC, 29634.
E-mail: {shenh, yuhual, zel}@clemson.edu

Trustworthiness Capacity Longevity

Service QoS

Reputation

(a) Reputation system

Reputation

Capacity Longevity

Remove the impact

Derive Currently
available

Currently
available

Trustworthiness

QoS for server selection

available
capacity

Trust model

available
longevity

QoS for server selection
Optimal server selection

(b) The proposed trust system
Fig. 1: The traditional and the proposed trust systems.

server selection strategy may not actually select a high-
QoS server and would also overload the highest-reputed
nodes. We present the reasons below.

We define trust as a measure of a node’s willingness
to be cooperative in providing service. We call a node’s
lifetime in the network longevity. A node’s available
longevity is the time it will stay in the network from
the present. If a node does not have sufficient available
capacity or available longevity (hence serving time), it
cannot provide high QoS, while high available capacity
and longevity enable a server to provide high QoS.
As shown in Figure 1(a), in addition to node trust,
node reputation is determined by additional factors such
as node capacity and longevity. Different nodes have
different capacities and longevities and the available
capacity and longevity of a node vary over time. Due
to these heterogeneous and time-varying attributes of the
factors, reputation cannot directly reflect a node’s trust.

Altruistic but low-longevity, low-capacity, or over-
loaded nodes may have low reputation values. Nodes
that reject requests sometimes but have high-longevity
and high-capacity may gain high reputation values. A
high-reputed node that had significant available capacity
to handle requests in the past does not necessarily have
sufficient capacity for requests in the present. Similarly, a
high-reputed node that had previously stayed in the sys-
tem for a long time in the past does not necessarily stay
for a long time from the present. Thus, servers selected
by the highest-reputed node selection policy may not
offer high QoS. The selected highest-reputed node may

Digital Object Indentifier 10.1109/TPDS.2012.338 1045-9219/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

be (1) a high-trust node that currently has insufficient
available capacity or low longevity, or (2) a low-trust
node that has high capacity or high longevity. Also, the
policy may miss high-trust nodes with sufficient avail-
able capacity and longevity for the requested service. In
addition, it would overload the highest-reputed nodes
by biasing them.

Therefore, neglecting additional factors such as capac-
ity and longevity will result in an inaccurate node trust
measurement and an inadequate capability to provide
correct guidance for high-QoS node selection, leading
to suboptimal or degraded overall system performance.
This work aims to address these neglected issues. The
contributions of this work can be summarized as follows.
(1) We study the relationship between node trust, repu-
tation, and additional factors through experiments and
analysis, and observe that the additional factors posi-
tively impact node reputation.
(2) Based on the previous observation, we develop two
trust models (one manual and one automatic) that re-
move the impact of additional factors on reputation in
order to derive accurate node trust (Figure 1(b)).
(3) We propose an optimal server selection algorithm that
separately considers node trust and the current values
of additional factors to ensure high QoS (Figure 1(b)).
By optimal server, we mean that the selected server has
high trustworthiness and sufficient available capacity
and longevity for the requested services.

As far as we know, this is the first work that focuses
on deriving accurate trust by removing the impact of
additional factors on reputation and providing accurate
guidance for high-QoS server selection.

The rest of this paper is organized as follows. In
Section 2, we study the relationship between additional
factors and reputation, and introduce the trust models
and server selection policy. Section 3 presents the experi-
mental performance of the trust models in comparison to
a reputation system, and the server selection algorithm
in comparison to other server selection algorithms. Sec-
tion 4 presents a review of related work on reputation
systems. The final section concludes with a summary of
contributions and discussions on further work.

2 REPUTATION-BASED TRUST MODELS
A P2P network usually has a reputation system for
reliable operation and high performance. Our proposed
trust system, built upon a reputation system, includes
two components: trust models and optimal server selec-
tion. Based on the reputation values offered by the repu-
tation system, trust models conduct a trust evaluation that
excludes additional factors. By considering the derived
trustworthiness with the additional factors, the optimal
server selection algorithm provides the correct guidance
for server selection. This work contributes not only to
the reliability of the P2Ps, but also to their efficiency.
For reliability, it enhances the accurate guidance of the
reputation system. For efficiency, it helps to enable full
utilization of all node resources and avoid overloading
high-reputed nodes.

2.1 Study of Reputation and Trust
We conduct experiments to study the relationship of
reputation with capacity and longevity. The experiment
parameters and settings are presented in Section 3. In
this experiment, all nodes are trustworthy with a 100%

probability of serving requests, and they receive approxi-
mately the same number of requests. As the work in [18],
we assume node capacity can be represented by one
metric. A node’s available capacity equals ca = c − w,
where c is its capacity represented by the number of
service requests it can handle during a time unit, and w
is its workload represented by the number of its received
requests during a time unit. We assume that every node
is rational and it gives reputation rating based on its
received QoS. Also, a node’s offered QoS is determined
by its available capacity [19]; higher available capacity
enabling it to offer higher QoS and vice versa.

Firstly, we test the relationship between node reputa-
tion and capacity with the assumption that each server’s
longevity is high enough to complete the requested
services. In this case, since a higher available capacity en-
ables a server to offer higher QoS, a node gives its server
a reputation value of rc, which equals the server’s avail-
able capacity ca. Figure 2 shows the reputation of each
node versus its capacity. We see that the reputation in-
creases linearly as capacity grows. That is, for fully trust-
worthy nodes, a higher-capacity node has a higher rep-
utation because such a node can offer higher QoS hence
receives higher reputation rating. The results mean that
node capacity positively influences a node’s reputation.

Secondly, we test the relationship between node repu-
tation and node longevity with the assumption that each
server has the same amount of available capacity that is
high enough to complete a service requested from it.
We use la to denote the available longevity of a server
and use lr to denote the time requirement of a requested
service. In this case, when la ≥ lr, the requested service
can always be fully completed, and when la < lr, only
la/lr percent of a requested service can be completed.
Since each server has the same amount of available ca-
pacity for a service, to evaluate a server’s QoS based only
on longevity, a server’s reputation should be evaluated
according to the percent of a requested service it has
completed. Thus, the reputation value rl equals

rl =

{
la/lr if la/lr < 1

1 otherwise.
(1)

Figure 3 shows the reputation of each node versus its
longevity. We observe that the relationship between rep-
utation and longevity exhibits a logarithmic trend, and
higher-longevity nodes have higher reputations. Here,
the relationship is non-linear because the reputation
evaluation is based on the percent of requested services
completed by a server. As long as a server’s available
longevity exceeds the requested service’s required time,
they receive the same reputation regardless of the dif-
ferences in their available longevities. For those servers
whose available longevities are lower than the required
time, lower available longevity leads to lower reputation.

Thirdly, we test the relationship between node repu-
tation and both capacity and longevity. In this case, the
reputation value given is r = rc · rl. Figure 4 illustrates
the joint effect of both factors on reputation. The series
of nodes indicated with A − J are the nodes with the
same longevity. We make a number of observations from
the figure. First, for nodes with the same longevities,
those with higher capacities have a higher reputation.
For example, in each of the series indicated by A − J ,
nodes with larger capacities have higher reputations.
Second, a node’s low longevity significantly reduces its

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

0

2

4

6

8

10

12

0 100 200 300

Re
pu

ta
tio

n

Capacity

Fig. 2: Reputation vs. capacity.

0

2

4

6

8

10

12

0 5 10 15

Re
pu

ta
tio

n

Longevity (min.)

Fig. 3: Reputation vs.
longevity.

0
10

20
30

0

5

10
0

0.5

1

1.5

2

Capac
ity

Longevity

Re
pu
ta
tio
n

B

J

C...
A

Fig. 4: Reputation vs. longevity
& capacity.

N15

16/0N10’s trust host

model
Trust

N15

requester
Trust

N6

requester

N10

N8

Fig. 5: Reputation informa-
tion aggregation.

reputation. Comparing nodes with capacity 10 in series
A and B in the circled region, we see that the nodes
with higher longevities have higher reputations than
those with lower longevities. This is because higher
longevity decreases the probability that a server leaves
while performing a requested service. Nodes with low
capacity but high longevity still have low reputations.
This is because low-capacity nodes become overloaded
easily; thus, no matter how long a node stays in the
system, it cannot gain a high reputation.

The experimental results confirm that a reputation
value alone cannot directly reflect node trust. It is also
affected by capacity and longevity. Thus, reputation
cannot be directly used for optimal server selection since
a node’s available capacity and longevity constantly
change, so high-reputed nodes in the past may not have
sufficient available capacity and longevity to provide
high QoS. Therefore, the effect of a node’s previous
capacity and longevity on the reputation should be
removed when evaluating a node’s trustworthiness, and
the currently available capacity and longevity should be
considered with trust in choosing a service provider. The
experimental results in Section 3 confirm the effective-
ness of the combined consideration of currently available
values of additional factors in server selection.

2.2 Reputation Information Aggregation
Our proposed trust models can be built on any reputa-
tion system that collects feedback and calculates global
node reputation values. The proposed methods for ef-
ficiently collecting feedback and calculating reputation
values in [9, 10, 14, 15] are orthogonal to our study. We
use PowerTrust [8] as an example for the underlying
reputation system. PowerTrust uses a number of high-
reputed power nodes for reputation aggregation and cal-
culation. We call these power nodes trust hosts (THs). We
use IDi to represent the structured P2P ID of node i, that
is the consistent hash value of node i’s IP address. The
TH for reputation feedback of node i is the P2P owner
of IDi. The nodes use P2P functions Insert(IDi,ri)
to send the feedback of node i (ri) to its TH, and
Lookup(IDi) to query the reputation value of node i
from its TH. A TH periodically collects the feedback and
computes the reputation values of its nodes.

The THs need information on additional factors when
evaluating node trust. When a client selects a server from
a number of server options, it needs to query the server
options’ available capacity and available longevity to
make the final decision. We assume that a node knows
its approximate departure time in this paper. Thus,
when a client reports a server’s reputation rating, it also
reports the server’s available capacity (ca) and available
longevity (la) using the function Insert(IDi,ri + Vi),

where Vi =< ca, la, · · · >. The server’s TH uses the re-
ported reputation rating and Vi to derive its trust by ap-
plying the proposed trust models. Using Lookup(IDi),
a node’s query for node i’s trust is forwarded to the TH,
which returns node i’s trust.

A node is unlikely to misreport its Vi to a queried
client with values lower than its actual values in order
to receive a high reputation. First, low ca and la will
prevent it from attracting service requests to increase
reputation. Second, if a server cannot provide a service
that corresponds to its trust, the client can report this
to the server’s TH. The server’s TH can also notice this
from other feedbacks on the server. The TH will then
punish the server by greatly reducing its reputation. For
example, in our proposed methods, a client chooses a
server with sufficient capacity and longevity. If a node’s
TH notices that many reputation evaluations on this
server do not match its trust value, the server is regarded
as a cheater and its trust value is reduced. Thus, a
rational node will not misreport its information, since
this is unlikely to bring about benefits but will lead
to a reputation penalty if detected. Admittedly, clever
cheaters can find a way to avoid being punished. We
will study the possible methods used to circumvent
punishment and explore strategies to counteract these
malicious behaviors in our future work. Techniques to
deal with dishonest reports [20, 21] can also be adopted.

Figure 5 presents a 4-node reputation system built
on top of Chord [3] with a 4-bit identifier space.
Node N10 periodically reports its V to its TH N15 by
Insert(10,VN10). Others report to N15 about N10’s
local reputation by Insert(10,rN10). N15 calculates
N10’s reputation value and then calculates its trust value
based on its V using our proposed trust models. When
a node, say N6, wants to select a server from several
candidates, it queries for the trust value and V of each
server. For example, it uses Lookup(10) to query N10’s
trust value and V . Then, it uses the proposed optimal
server selection algorithm to choose a server.
2.3 Manual Trust Model
The overall QoS of P2P applications depends on
the cooperation of the individual nodes in service.
A reputation system is a widely used means to get
a quantifiable measure of each node’s trust based
on evaluations from others about its performance.
However, as demonstrated in Section 2.1, the reputation
actually cannot directly represent node trust. This is
essentially because a server’s QoS or reputation is also
affected by its capacity and longevity, in addition to its
trust. To address the problem, we introduce two trust
models: manual and automatic. The models help to
remove the influence of node capacity and longevity on
reputation when determining node trust.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

As verified by the experimental results, for trustwor-
thy nodes with a willingness to contribute their complete
resources, those with higher capacities have higher repu-
tation values and vice versa. Similarly, nodes with higher
longevities receive higher reputations. Therefore, we
regard nodes whose reputations are high with respect to
their capacity and longevity as trustworthy nodes. This
means medium-reputed and even low-reputed nodes
with low capacity or longevity but a correspondingly
high reputation should also be regarded as trustworthy.

Based on this rationale, we propose a manual trust
model for node trust evaluation. From Figure 2, we
know that reputation has an approximately linear rela-
tionship with capacity. Thus, if there are no other factors
that influence reputation except capacity, we can use the
ratio of a node’s reputation over its capacity to measure
its trust, i.e., tc = r/c, where r and c denote the node’s
reputation and capacity, respectively. tc represents the
reputation earned by a node for each unit of capacity it
has contributed to providing service. We assume there
are m levels of trust in the system. The normalized
tc determines a node’s trust level. Figure 6 shows a
coordinate graph with the x axis representing capacity
and the y axis representing reputation. The space is
divided into different sections, each representing a trust
level. A higher trust level means a node’s reputation is
high relative to its capacity. We map a node’s normalized
tc to the graph according to its capacity. Based on its
coordinate location, the node’s trust level is determined.

From Figure 3, we know that reputation has a log-
arithmic relationship with longevity. Using MATLAB,
we transform the curve to a line by changing longevity
l to loglog(l + 1) as demonstrated in Figure 8. Hence,
reputation has a linear relationship with loglog(l + 1).
Similar to capacity, depending on a coordinate as in
Figure 6, we can use r/loglog(l + 1) to measure a
node’s trust level when there are no other additional
factors except longevity. By considering both capacity
and longevity, we introduce spatial/temporal values. By
viewing node capacity in a spatial domain and node
longevity in a temporal domain, the spatial/temporal
value (u) is defined as:

u = α× (c · loglog(l + 1)), (2)
where α is a constant factor. A higher α leads to lower
absolute trust value and vice versa, but the α value
does not affect the relative trust levels between nodes.
Based on the above analysis, the relationship between
reputation r and u can be approximately regarded as
a linear relationship. A node with a higher u should
have higher reputation and vice versa. Thus, each TH
builds a trust model as shown in Figure 7. The model is
a two-dimensional space where spatial/temporal value
and reputation are coordinates. A node’s trust value is
calculated by tv = r/u. We use a locality-preserving
hashing [22] to normalize the trust value in order to get
trust level tl. That is, tl = m · (tv −min(tv))/(max(tv) −
min(tv)), where m is the number of trust levels in the
system and max(tv) and min(tv) are the maximum and
minimum values of tv in the system, respectively. We
explain how THs can get max(tv) and min(tv) later on.

Previous reputation systems always set a reputation
threshold. The nodes with reputations higher than the
threshold (i.e., nodes above the horizontal dotted line)
are trustworthy nodes, and others are untrustworthy

Re
pu

ta
tio

n
(r

)

Capacity (c)

Tr
us

t =
 m

Re
pu

ta
tio

n T

1
C it

2

r/c

Fig. 6: Capacity-based trust.

Re
pu

ta
tio

n
(r

)

Tr
us

t =
 m

1)loglog(lcα

Re
pu

ta
tio

n T

1
2

Threshold

r/u

Fig. 7: Capacity & longevity-
based trust.

0

2

4

6

8

10

12

0 5 10 15

R
ep

ut
at

io
n

(r
)

Longevity (l)

0

2

4

6

8

10

12

-0.6 -0.4 -0.2 0 0.2

R
ep

ut
at

io
n

(r
)

loglog(l+1)

Fig. 8: Reputation vs. longevity and log log(l + 1).

nodes. Rather than using an absolute reputation value
for node trust evaluation, the proposed trust model
considers the relative reputation increase rate of the
node corresponding to node capacity and longevity, and
derives accurate node trust by removing the influence
of capacity and longevity from node reputation. In
Figure 7, the nodes located in area 1 are the nodes
whose reputations are higher corresponding to their
spatial/temporal values than the average tv rate. These
nodes have relatively higher trust than the average trust
in the system. Among these nodes, some have low
reputations only because of their low longevity or low
capacity. In contrast, nodes in area 2, whose tv is lower
than the average level, are the nodes whose reputations
are low corresponding to their spatial/temporal values.
These nodes are relatively untrustworthy. A node with
high longevity, large capacity and low reputation has
low trust, while a node with low longevity, low capacity
and high reputation has high trust. To evaluate a node’s
trust in the system, its TH first locates the node’s po-
sition in the two-dimensional trust model based on its
reputation and spatial/temporal value; then, that level
is the node’s trust level.

Below, we present how a TH can get the max(tv)
and min(tv) in the system. To solve this problem, THs
form a d-nary tree to collect tv values of nodes in
the system in a bottom-up manner. After the tree root
receives all the ratio values, it finds the max(tv) and
min(tv) and then propagates the information along the
tree in a top-down manner. Based on the values, each
TH calculates the trust levels of its nodes. We briefly
describe how to dynamically arrange THs into a d-nary
tree for information collection. For more details, please
refer to [23]. For an ID space [0, n − 1], the tree root is
the TH whose ID is the closest to n

2 , holding the whole
ID space. This ID space is partitioned into d parts with
equal size. The TH whose ID is the closest to the middle
ID of each part is selected as the tree node to hold this
part of ID space. These d representatives become the
children of the root. Each part is further partitioned into
d parts with equal size, and so on, until there is only one
TH in the ID part. In this way, each TH can calculate
the IDs of its children and parent in the d-nary tree.
Using the P2P function Insert(ID,object), children

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

Input units (p) Hidden units (h) Output unit (y)
(1)w

1h

longevityp2

capacityp1

(1)

(2)
11w
(2)
12w2h

(1)
11w
(1)
21w

…

1

1

(1)
knw

1

12

(2)w
1kh [0 10]

W)y(P,
reputationp3

Trust
y

1b b

1

1

(2)
1kw [0,10]…

…

1
2b

Fig. 9: Neural network based trust model.
report their tv values to their parents. Then, the tree root
collects all tv and propagates the information of max(tv)
and min(tv) from the top to the bottom along the tree,
such that all THs receive the values.

2.4 Automatic Trust Model
A node’s capacity, longevity, trust, and other factors
determine its reputation value. It is a challenge to deter-
mine the weight of each factor’s influence on reputation.
The proposed automatic trust model uses a neural net-
work technique [24] for node trust evaluation by captur-
ing the nonlinear relationship between reputation, trust,
and additional factors including capacity and longevity.
The neural network can have any number of layers.
It has been indicated that only one layer of hidden
units can successfully approximate any function [25].
Thus, we build a neural network with one layer of
hidden units [25] as shown in Figure 9. It is a nonlinear
function from a set of input variables P = {p1, p2, · · · }
to output variable y ∈ [0, 10] controlled by a set of
vectors of adjustable weight parameters W (wji : 1 ≤
i ≤ n, 1 ≤ j ≤ k). The input units are a node’s attribute
variables including reputation, longevity, capacity and
other additional factors, and the output is the node’s
trust level. The inputs are fed into the hidden units,
which are merely “fan-out” units; no processing takes
place within these units. The output of the hidden units
is fed into the y output unit. The activation of a hidden
unit is a function Fi of the weighted inputs plus a bias
as given in the following equation:

y(P,W) = Fj(
k∑

j=1

w
(2)
1j Fi(

n∑
i=1

w
(1)
ji pi + b1) + b2),

where
F (x) =

1

1 + e−x
.

After building the neural network, we use training
data, including the nodes’ capacities, longevities, and
desired trust to train the neural network to learn how to
evaluate a node’s trustworthiness based on its attribute
variables. The neural network adaptively changes its
structure based upon multiple inputs that flow through
the network during the training phase in order to reduce
errors in training.

Errors are the differences between the generated trust
values by the output layer unit and the desired trust
values. We use the sum-of-squares error function [24]
to measure the errors. That is, given a training set
comprised of Pi together with a corresponding set of
desired values di, the error function is:

E(W) =
1

2

n∑
i=1

|yi(Pi,W)− di|2.

During the training, after the outputs are computed,
we use the backpropagation algorithm [26] to minimize

the sum-of-squares error in training. In the algorithm,
the errors are propagated backward through the neural
network to adjust connection weights W . Every time
the weights are updated, the approximation errors are
decreased. The weight update process continues until
the neural network provides satisfying trustworthiness
estimations.

After training, a TH can directly use the trained neural
network for trust evaluation of its responsible nodes.
Given the attribute values of calculated reputation, ca-
pacity, longevity, and other additional factors, the neural
network can automatically output the node’s trust.

The automatic trust model has two distinguishing fea-
tures. First, the weight parameters determined through
training are precise indicators to measure the influence
of different factors on trust. Second, the training of the
neural network is an adaptive process and the results of
trust evaluation are more objective.

2.5 Optimal Server Selection Algorithm
An effective server selection policy is needed for true
high-QoS server selection. Our proposed optimal server
selection algorithm considers the trust derived by the
trust model and the current available capacity and
longevity. Recall that in the system, each node period-
ically reports information on its available capacity and
longevity to its TH using Insert(ID,object). When
selecting a server from b (b > 1) options, a client sends
Lookup(IDi)(1 ≤ i ≤ b) to query the trust and V of
each server. Each query will reach the TH of each server,
where the client can retrieve the trust level, available
capacity, and current longevity of the server.

when choosing a server, a client first identifies all
servers with sufficient capacity and longevity to meet
its needs. It then chooses the nodes from these options
that have the highest trust. As the available capacity
and longevity are time-varying, the client probes the
selected servers and chooses the nodes with sufficient
current capacity and longevity. These selected servers
have sufficiently high capacity to serve the request, and
sufficiently high longevity to complete the requested
service before their departure. They can reliably satisfy
the client’s request. Second, in order to distribute the
load among nodes according to their available capacity
without overloading a server, lottery scheduling [27]
is adopted in the final server selection so that servers
owning higher available capacity receive more requests
and vice versa. Specifically, a client assigns tickets to
the servers according to their available capacity units.
A server having e units of available capacity receives e
tickets. Then, the client randomly chooses a ticket and
selects the server holding this ticket.

Combining the components of the proposed trust
system, Algorithm 1 shows the pseudocode for a node’s
operations in the system.
2.6 Reliable Trust Management
Recall that this proposed system depends on a number
of THs to collect information, calculate trust values,
and respond to trust queries. However, the trust sys-
tem’s function is interrupted if THs are compromised by
malicious nodes and the trust information is tampered
with or falsified. The malicious nodes can change their
own low trust values to high trust values. Then, the
nodes requiring services would be misled by the falsified

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Algorithm 1 Pseudocode for node i’s operation in the trust
system.

1: //Executed by node i in the system
2: while receive a service from node j do
3: Evaluate the service
4: Insert(IDj , rj) //Report the local reputation value
5: end while
6:
7: //Periodically report its status of additional factors
8: Insert(IDi, Vi)
9:

10: if it is a trust host then
11: for each of its responsible node j ∈ I do
12: Calculate node j’s global reputation value using existing

reputation system approach
13: Calculate node j’s trust level using the proposed automatic

or manual trust model
14: end for
15: Report tvj (j ∈ I) to its parent in the dynamic tree
16: end if
17:
18: //Server selection from a group of servers Sk (1 ≤ k ≤ b) for a service

with required duration Ls and capacity Cs

19: Choose servers Ŝ ∈ S with Ca > Cs and La > Ls

20: for each node j ∈ Ŝ do
21: tlj = Lookup(IDj) //Query trust level
22: end for
23: Order tlj (j ∈ Ŝ) in a descending order
24: Choose the servers with the highest tlj
25: Choose one server using the lottery-scheduling algorithm

information and may select low-reputed servers. We can
use previously proposed security techniques to prevent
this security attack. Here, we introduce a method to
reinforce the system’s ability to handle this problem.
This method uses redundant THs for a node to help
ensure the uninterrupted function of the trust system.
Specifically, a reporting node applies c consistent hash
functions on ni’s IP address to generate c IDs. Then,
it uses Insert(IDik,Ri) (1 ≤ k ≤ c) to report ni’s
reputation to the c THs of ni. These THs update ni’s
trust level. When a requester queries the trust of node
ni, it also generates c IDs using the c consistent hash
functions, and then executes Lookup(IDk)(1 ≤ k ≤ c)
to retrieve the values. The requester first calculates
the average of the c returned values. The TH whose
returned trust value greatly deviates from the average
is suspected as a compromised or malevolent TH. The
node then regards the average value of the trust values
from the other THs as ni’s trust value. It reports the
potentially malevolent TH to other THs. The suspicious
TH is then dismissed by other THs from the trust system
and replaced by the highest reputed node in the system.
Since the THs are chosen from the highest reputed
nodes, we assume that most of the c THs of a node are
trustworthy. We will explore a method to handle the case
when most of them are malevolent or compromised in
our future work.

3 PERFORMANCE EVALUATION

We used P2PSim [28] as our testbed for performance
evaluation. We built an unstructured P2P network of
1000 nodes, each with 200 randomly chosen neighbors.
We implemented the PowerTrust [8] reputation system,
upon which we built our proposed trust models. 10
power nodes form a structured P2P for calculating
reputation and trust in a distributed manner. Table 1
shows the default experiment parameters. We assume

Network size 1000 nodes
Reputation evaluation phase 400 min
Transaction phase 1000 min
Num. of transactions 106

Request interval 60s
Request service time [15− 60]s
Reputation/Trust level [0, 10]
Node capacity Bounded Pareto distribution

max=300, min=3, shape=1
Node longevity Exponential distribution

mean=240s

TABLE 1: Default experiment parameters.

a bounded Pareto distribution for node capacity. This
distribution reflects real world situations where machine
capacities vary by different orders of magnitude [29].
Node longevity is exponentially distributed [30]. A
node joins and leaves the network at the interval of its
longevity. We set α in Equation (2) to 1.

From eBay, we randomly chose 100 sellers from each
seller group with a final rating in [0.1x, 0.1x + 0.1)(x ∈
[1, 9]). We then randomly mapped the 1000 sellers to the
1000 nodes in the P2P. We regarded a node’s final rating
as its actual trust level. A node with actual trust level
t has t probability of successfully providing service. In
the experiment, each node generated a service request
every 60s until the specified testing time duration had
elapsed. A request’s service time was randomly chosen
from [15, 60]s. There are two occasions in which a server
drops a request: when it does not have sufficient capacity
or longevity, and when it is not willing to provide service
(determined by its trust). In both occasions, a client gives
a reputation of 0 to the server. Otherwise, a client gives
a reputation based on the QoS provided by the server
according to the method introduced in Section 2.1.

10

5

6

7

8

9

d
tru

st
 le

ve
ls

0

1

2

3

4

Ev
al

ua
te

d

Trust_manual (Med)
Trust_automatic (Med)
Trust_manual (Avg)
Trust_automatic (Avg)
Actual trust

0
1 2 3 4 5 6 7 8 9 10

Actual trust levels

(a) Accuracy of trust evaluation

0.01

0.1

1

10

10 9 8 7 6 5 4 3 2 1

O
ve

rlo
ad

 d
eg

re
e

(a
ve

ra
ge

)

Actual trust value

MaxRep MaxCap
Trust-manual Trust-automatic

(b) Overload status
Fig. 10: Trust evaluation and node load.

The experiment has two phases: the reputation eval-
uation phase and the transaction phase. The reputation
evaluation phase is used to build each node’s reputation
and trust. We normalized the reputation and trust levels
to [0, 10] with locality-preserving hashing. In this phase,
each node randomly chose one node from other nodes
in the system as the server for its requests. In the
subsequent transaction phase, a node’s neighbors are
the server options for its requests. A node selected a
server from the options using different server selection
policies. Since there is no work specifically for server
selection and all reputation systems encourage nodes to
choose the highest-reputed server, we compared the per-
formance of our proposed optimal server selection algo-
rithm with MaxRep [8–15] and MaxCap [31] algorithms,
which select the server with the highest reputation and
the highest available capacity, respectively. We use Trust-
manual and Trust-automatic to represent our proposed
manual and automatic trust models, respectively. We
also use them to represent the optimal server selection
algorithm using the trust values calculated by the two

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

0

10

Tr
us

t-
m

an
ua

l

0

5

10

1 251 501 751 1001

Tr
us

t-
au

to
m

at
ic

Time (min.)

0

5

10
R

ep
ut

at
io

n

Fig. 11: Reputation/trust over
time.

0.0E+0

5.0E+4

1.0E+5

1.5E+5

2.0E+5

2.5E+5

3.0E+5

3.5E+5

4.0E+5

4.5E+5

5.0E+5

200000 400000 600000 800000 1000000

Su
cc

es
sf

ul
 tr

an
sa

ct
io

ns

Number of transactions

MaxRep
MaxCap
Trust-manual
Trust-automatic

Fig. 12: Number of successful
transactions.

0.01

0.1

1

10

100

2000 4000 6000 8000 10000

O
ve

rlo
ad

 d
eg

re
e

Number of transactions

MaxRep MaxCap
Trust-manual Trust-automatic

Fig. 13: Overload status.

0 4

0.6

at
e

0

0.2

0.4

10 25 50 100 150 200

Su
cc

es
s

ra

Number of training itemsNumber of training items

0
500

1000
1500
2000

ni
ng

 ti
m

e(
s)

0
10 25 50 100 150 200Tr

ai
n

Number of training items

Fig. 14: Success rate / training
time vs. amount of training
data.

trust models. The final result of each experiment is the
average of 3 runs of the experiment. We collected 260
data items from the reputation evaluation phase for the
neural network training in Trust-automatic. Supplemen-
tary material in Section 6 presents additional experimen-
tal results for comprehensive performance evaluation.

3.1 Accuracy of Trust Evaluation
Figure 10(a) illustrates the median and average values of
the evaluated node trust levels in both Trust-manual and
Trust-automatic versus the actual node trust level. The
median and average values of the evaluated trust levels
of both models increase approximately linearly as the
actual trust level increases, though they sometimes fluc-
tuate slightly. This implies that the evaluated trust level
can represent actual node trust level. In Trust-manual,
the increase rate of the median value slows down when
the actual trust level increases from 6 to 9, while the
median value of Trust-automatic grows relatively more
smoothly in the entire range of [1,10]. Also, the median
value of Trust-manual deviates from the actual trust level
more than other values. Both the median and average
values of Trust-automatic are close to the actual trust
levels. The experimental results show that both proposed
trust models can generally derive trust levels that reflect
actual node trust.

Figure 10(b) shows the average overload degree of
each group of nodes with the same actual trust value.
We see that nodes with a higher trust level tend to have
higher average overload degrees. The overload degree
for a node is determined by both the number of received
requests and the node’s trust. A node with a higher
trust level is more likely to receive requests and less
likely to drop requests, thus producing a higher overload
degree. In MaxRep, a client always chooses the server
with the highest reputation in server options. Trust-
manual and Trust-automatic choose the highest-trust node
that is lightly loaded. Therefore, servers with higher
trust levels attract more service requests and produce
higher overload degrees. As MaxRep is biased toward
the highest-reputed node, it does not distribute the
load among different groups as evenly as Trust-manual
and Trust-automatic and many of its average overload
degrees are greater than 1. MaxCap always chooses the
server with the highest available capacity. As high-trust
nodes have lower probabilities of dropping requests,
higher-trust nodes have higher overload degrees than
lower-trust nodes in MaxCap. Nodes in MaxCap have
much lower overload degrees than in all other methods
because many requests are dropped since MaxCap does
not consider node trust in server selection.

In addition to overloading the highest-reputed nodes,
MaxRep would also lead to detrimental reputation

fluctuation. A node with a high reputation can receive
many requests over its available capacity. It is then
unable to offer high-QoS, resulting in a low reputation.
Later, due to its low reputation, it receives few requests,
which enables it to offer high-QoS, resulting in a
high reputation value. This cycle occurs repeatedly.
To confirm our analysis, we chose a node with high
capacity and average longevity and kept track of its
reputation and trust levels during the entire transaction
phase. Figure 11 shows the node’s reputation level with
MaxRep and trust level with the optimal server selection
algorithm over time. As expected, the node’s reputation
fluctuates dramatically and the change spans the entire
time duration. Therefore, reputation is not a stable
measurement of nodes’ innate trustworthiness. The trust
level only changes slightly over time in Trust-manual
and stays almost constant in Trust-automatic. The results
show that the trust derived in our proposed methods
can accurately reflect nodes’ willingness to offer service,
and MaxRep leads to reputation fluctuation, which
impairs the accuracy of trust reflected by reputation.

3.2 Effectiveness of Server Selection Algorithm
Figure 12 shows the number of successful transac-
tions in the MaxRep, MaxCap, Trust-manual and Trust-
automatic server selection algorithms. We see that in
each algorithm, the number of successful transactions
increases as the total number of transactions grows. Also,
Trust-manual and Trust-automatic achieve more successful
transactions than the others, which confirms the effec-
tiveness of our proposed trust evaluation methods and
server selection algorithm. The figure also shows that
Trust-automatic achieves more successful transactions
than Trust-manual. This is because the properly trained
non-linear neural network can better reflect the joint
influence of both capacity and longevity of nodes on
reputation. In this experiment, the workload generated
by all transactions was much higher than the capacity
of the nodes with trust 10 in the system. This is the
reason that some transactions cannot be performed. We
can see that MaxRep generates the least number of suc-
cessful transactions. This is because MaxRep chooses the
highest-reputed server regardless of its current available
capacity and longevity. The server may be overloaded
or leave the system before completing the requested
service. Similarly, by biasing the server with the highest
available capacity without considering node trust and
longevity, MaxCap leads to fewer successful transactions.
MaxRep performs worse than MaxCap because a high
workload severely overloads the highest-reputed nodes.
Though nodes chosen in MaxCap may be untrustworthy,
they still have a certain probability of accepting requests
and providing service with sufficient capacity.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

A
ve

ra
ge

 d
el

ay
 o

f c
al

cu
la

tin
g

a
tr

us
t v

al
ue

(m
s)

Trust-manuaul Trust-automatic

Fig. 15: Delay for trust value
calculation.

0.01

0.1

1

10

1 10 100 1000

R
ep

ut
at

io
n

Capacity

Trust=10
Trust=5
Trust=1

B

A

Fig. 16: Reputation vs. capac-
ity.

0

2

4

6

8

10

12

0 10 20 30

R
ep

ut
at

io
n

Longevity (min.)

Trust=10
Trust=5
Trust=1

A

B

Fig. 17: Reputation vs.
longevity.

0 50 100 150 200 0

10

20

30

0

0.5

1

1.5

2

Lo
ng
ev
ity

Capacity

R
ep
ut
at
io
n

A

Trust=10
Trust=5

Trust=1
B

C

D
E

Fig. 18: Reputation vs. capac-
ity & longevity.

We define a node’s overload degree as the ratio of
its workload to its capacity. We measured the highest
overload degree that each node in the system has ever
experienced during the entire testing, and calculated the
1st, 50th, and 99th percentiles of overload degree for all
the methods. Figure 13 shows the experimental results
versus the number of transactions. We see that MaxRep
has a significantly higher 99th percentile overload degree
than the others since it does not take into account the
available capacity when selecting a server. The highest-
reputed servers are chosen by many clients and be-
come very overloaded. In contrast, MaxCap produces the
least 99th percentile overload degree because it always
chooses the server with the highest available capacity.
However, it fails to achieve load balance, with a median
and 1st percentile of 0 for overload degree. The 99th per-
centile overload degrees for nodes in Trust-manual and
Trust-automatic stay around 1, avoiding server overload
thanks to the proposed optimal server selection algo-
rithm, which selects nodes with high trust and enough
capacity and longevity.

3.3 Effectiveness and Efficiency of the Automatic
Trust Model
The amount of training data affects the accuracy of the
derived trust values and the efficiency of the training
process. We define the success rate as the percentage
of successful transactions out of all transactions. The
upper and lower half of Figure 14 shows the success rate
and training time versus the amount of training data,
respectively. We use the training data to train the neural
network repeatedly for 5× 106 times. By increasing the
training times, training error will converge to a small
value. From the figure, we observe that the success rate
increases as the number of training items increases. This
result shows that more training data can reduce errors
and better train the neural network for accurate trust
derivation. From the lower half of the figure, it can be
observed that the training time of the neural network
increases almost linearly as the number of training items
increases. This is because the training time is directly
determined by the number of training items. More train-
ing items cause the neuron weights to be adjusted for
more times. Combining the success rate result, we can
conclude that it is critical to choose a proper amount
of training data for high effectiveness and efficiency of
training. We also can see that the training time is accept-
able even when the amount of training data is large.

Figure 15 shows the average time delay to calculate
the trust value of a node in Trust-manual and Trust-
automatic. The time delay stays around 0.018ms. Trust-
manual needs to calculate the trust value for each server
manually. Trust-automatic calculates the trust value

through a neural network. As a result, Trust-manual
generates slightly higher time delay than Trust-automatic.

3.4 Accuracy of Trust Reflection by Reputation
In order to see the sole impact of capacity on reputa-
tion, we first assume that all servers have high enough
longevities to complete requested services. Figure 16
shows each node’s reputation versus its capacity for
three groups of nodes with trust levels 1, 5 and 10,
respectively. We observe that node reputation has a
linear relationship with node capacity in each group.
That is, if two nodes have the same trust level, the
higher-capacity node has the higher reputation. This
result implies that node capacity affects node reputation,
and a node’s reputation is not sufficiently accurate to
reflect its trust. Directly using reputation to evaluate a
node’s trust is unfair to low-capacity nodes.

Comparing the different groups, we observe that for
equal capacity nodes, higher-trust nodes receive higher
reputations. This means that without the impact of ad-
ditional factors, node reputation can accurately reflect
node trustworthiness. Higher-trust nodes offer a higher
probability of successful service, thus earning higher
reputations. Most importantly, we see that some nodes
(e.g., nodes in region A) with high trust and low capacity
have low reputations, whereas some nodes (e.g., nodes
in region B) with low trust and high capacity have high
reputations. This result confirms that node reputation is
affected by node capacity. Even though a node has a
low willingness to serve requests, because it has a high
capacity to satisfy a request when it chooses to serve a
request, it still earns a high reputation. In contrast, even
though a node has 100% willingness to serve requests,
it has to drop some requests when overloaded due to
its limited capacity, resulting in low reputation. The
phenomenon that low-trust nodes in region B exhibit
higher reputations than high-trust nodes in region A
shows that under the influence of capacity, reputation
cannot directly reflect trust.

Similarly, in order to see the sole impact of longevity
on reputation, we assume all servers have sufficient
available capacities to handle all requests. Figure 17
shows the relationship between reputation and longevity
for the three groups of nodes. Unlike the linear rela-
tionship between reputation and capacity, the reputation
increases logarithmically with longevity. Recall that as
long as the longevities of two nodes are high enough to
complete a request, they receive the same reputation re-
gardless of the difference in longevities. Given the same
longevity, higher-trust nodes receive higher reputations
due to the same reason as in Figure 16.

Figure 18 shows the joint effect of capacity and
longevity on the reputation of three groups of nodes

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

with trust levels 1, 5 and 10, respectively. We can see
that the reputation results of each of the three node
groups form into one layer. For the nodes with the same
capacity or longevity, higher-trust nodes receive a higher
reputation. We can also observe that some nodes with
high trust (e.g., nodes in region A) have a low reputation,
and some nodes with relatively low trust (e.g., nodes
in region B) gain a high reputation. These results are
consistent with the results in Figures 16 and 17. The
results confirm that reputation is influenced by capacity
and longevity, and cannot directly reflect node trust.

Moreover, for nodes with the same trust in each
layer, nodes with high capacity but low longevity (e.g.,
nodes in region D) do not obtain reputations as high as
the nodes with the same capacity but higher longevity
(e.g., nodes in region E). This is because low-longevity
nodes have a high probability of leaving the system
before completing a requested service, thus earning low
reputations. It is interesting to see that nodes with the
lowest capacity but the highest longevity (e.g., nodes
in region C) have lower reputations than nodes with
the highest capacity but the lowest longevity (e.g.,
nodes in region D). This is because nodes with the
lowest capacity and the highest longevity drop most of
the requests due to insufficient capacity, which causes
them to receive low reputations most of the time. The
nodes with the highest capacity and lowest longevity
can partially process some requests, which helps them
obtain a relatively higher reputation.

4 RELATED WORK
One group of recently proposed reputation systems fo-
cus on improving the scalability and reputation accuracy
in P2P networks. Zhou and Hwang [8] proposed Pow-
erTrust, which dynamically selects some most reputable
power nodes to collect feedback to improve aggregation
speed. The authors also proposed GossipTrust [32], which
adapts to peer dynamics and is robust to disturbance
from malicious peers by resorting to a gossip protocol
and leveraging power nodes. Song et al. [12] presented a
P2P reputation system based on fuzzy logic inferences,
which can better handle uncertainty, fuzziness, and in-
complete information in peer trust reports.

Liu [9] presented PeerTrust, which includes a coherent
adaptive trust model for quantifying and comparing the
trustworthiness of nodes based on a transaction-based
feedback system and a decentralized implementation of
such a model over a structured P2P. Kamvar et al. [10]
proposed a distributed and secure method to compute
global trust values based on Power iteration. Zhang et
al. [33] developed a trust-incentive resource management
framework that integrates values of prices, trust, and
incentives, and a weighted voting scheme to secure the
grid system by declining join requests from malicious
nodes. Zhang and Fang [34] presented a reputation
system built upon the multivariate Bayesian inference
theory for reliable service selection. The system offers a
theoretically sound basis for clients to predict the relia-
bility of candidate servers along with a fine-grained QoS
differentiation method to satisfy the diverse QoS needs
of individual nodes. Wang and Vassileva [14] pointed
out that trust is multi-faceted, and nodes need to develop
differentiated trust in different aspects of nodes capabil-
ity. They proposed a flexible method to present differen-
tiated trust and to combine different aspects of trust.

Sonnek et al. [35] presented a model in which reliabil-
ity is not a binary property but a statistical one based on
a node’s prior performance and behavior. The authors
used this model to construct several reputation-based
scheduling algorithms that employ estimated reliability
ratings of nodes for efficient task allocation. Piatek et
al. [36] proposed a one hop reputation protocol for
P2P networks, which limits propagation to at most one
intermediary. This protocol improves performance and
incentives compared to when contribution information
is globally visible and tit-for-tat in BitTorrent. In order
to motivate peers to cooperate, Satsiou and Tassiulas [37]
proposed a distributed reputation-based system accord-
ing to which peers earn reputations analogous to their
contributions. In this way, each node has to trade off the
capacity it will dedicate for serving other nodes in order
to increase its reputation for receiving services.

Zhang et al. [38] proposed a trust model called SFTrust
based on a double trust metric: service providing and
feedback. Compared with the single trust metric model,
SFTrust can take full advantages of all the peers’ service
abilities for high performance. Gutowska and Buck-
ley [39] proposed an improved distributed agent-based
reputation mechanism which contributes to measuring
the reputations of online providers. The system consid-
ers a number of the parameters that have a bearing on
trust and reputation. Credential chains are needed in
trusted P2P applications, where trust delegation must
be established between each pair of peers at a specific
role level. Chen et al. [40] proposed a heuristic-weighting
approach for selecting the most likely path to construct
a role-based trust chain. Dewan and Dasgupta [41]
proposed a cryptographic protocol for ensuring secure
and timely availability of the reputation data of a
peer to other peers at extremely low cost. The crypto-
graphic protocol is coupled with self-certification and
cryptographic mechanisms for identity management and
countering Sybil attacks. Our previous work [42] pro-
posed SocialTrust, which adaptively adjusts the weight
of ratings based on the social distance and interest
relationship between peers to enhance the capability of
reputation systems in combating collusion.

In spite of these efforts, there has been no research
devoted to finding an accurate reflection of node
trustworthiness by removing the influence of node
capacity and longevity. Our proposed methods can
complement the existing reputation systems for more
accurate node trustworthiness calculation and for true
high-QoS server selection.

5 CONCLUSIONS
In this paper, we studied the relationship between rep-
utation and trust, and found that in addition to node
trust, factors such as capacity and longevity also influ-
ence node reputation. Since a node’s available capac-
ity and longevity are heterogeneous and time-varying,
reputation cannot provide accurate guidance for nodes
in choosing a high-QoS server. Thus, we propose a
manual trust model and an automatic trust model to
accurately derive node trust by removing the influence
of additional factors on reputation. To enable nodes to
choose high-QoS servers, we further propose an optimal
server selection algorithm. It considers node trust and
the current values of additional factors to ensure success-
ful and efficient transactions. We also propose a method

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

to handle compromise attacks on trust hosts for reliable
trust management. Experimental results confirm the su-
perior performance of our proposed approaches. In our
future work, we will explore other additional factors and
study their influence on node reputation, and explore
methods for measuring node longevity and capacity.

ACKNOWLEDGMENT
This research was supported in part by U.S. NSF grants
CNS-1249603, OCI-1064230, CNS-1049947, CNS-1156875,
CNS-0917056 and CNS-1057530, CNS-1025652, CNS-
0938189, CSR-2008826, CSR-2008827, Microsoft Research
Faculty Fellowship 8300751, and U.S. Department of
Energy’s Oak Ridge National Laboratory including the
Extreme Scale Systems Center located at ORNL and DoD
4000111689. An early version of this work was presented
in the Proceedings of ICCCN’11 [43].

REFERENCES
[1] Kazaa, 2001. http://www.kazaa.com.
[2] Bittorrent sites. http://www.bittorrent.com/.
[3] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.

Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scalable Peer-
to-Peer Lookup Protocol for Internet Applications. TON, 2003.

[4] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized
Object Location and Routing for Large-scale Peer-to-Peer Systems.
In Proc. of Middleware, pages 329–350, 2001.

[5] Skype. http://www.skype.com/.
[6] X. Wang, Z. Yao, Y. Zhang, and D. Loguinov. Enhancing

application-layer multicast for p2p conferencing. In Proc. of
CCNC, 2007.

[7] H. Shen, Z. Li, T. Li, and Y. Zhu. PIRD: P2P-Based Intelligent
Resource Discovery in Internet-Based Distributed Systems. In
Proc. of ICDCS, 2008.

[8] R. Zhou and K. Hwang. Powertrust: A Robust and Scalable
Reputation System for Trusted Peer-to-Peer Computing. TPDS,
2007.

[9] L. Xiong and L. Liu. Peertrust: Supporting Reputation-based Trust
for Peer-to-Peer Electronic Communities. TKDE, 2004.

[10] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigen-
trust Algorithm for Reputation Management in P2P Networks. In
Proc. of WWW, 2003.

[11] A. Singh and L. Liu. TrustMe: Anonymous Management of Trust
Relationships in Decentralized P2P Systems. In Proc. of P2P, 2003.

[12] S. Song, K. Hwang, R. Zhou, and Y. K. Kwok. Trusted P2P
Transactions with Fuzzy Reputation Aggregation. IEEE Internet
Computing, 2005.

[13] M. Srivatsa, L. Xiong, and L. Liu. Trustguard: Countering Vul-
nerabilities in Reputation Management for Decentralized Overlay
Networks. In Proc. of WWW, 2005.

[14] Y. Wang and J. Vassileva. Trust and Reputation Model in Peer-
to-Peer Networks. In Proc. of P2P, 2003.

[15] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer
Information System. In Proc. of CIKM, pages 310–317, 2001.

[16] ebay. http://www.ebay.com.
[17] Amazon. http://www.amazon.com/.
[18] P. Brighten Godfrey and I. Stoica. Heterogeneity and Load

Balance in Distributed Hash Tables. In Proc. of INFOCOM, 2005.
[19] S. Ran. A model for web services discovery with qos. ACM

SIGecom Exchanges, 4(1):1–10, 2003.
[20] Q. Feng, Y. Yang, Y. L. Sun, and Y. Dai. Modeling Attack Behaviors

in Rating Systems. In Proc. of ICDCS, 2008.
[21] T. G. Papaioannou and G. D. Stamoulis. Achieving Honest

Ratings with Reputation-Based Fines in Electronic Markets. In
Proc. of INFOCOM, 2008.

[22] M. Cai, M. Frank, and P. Szekely. MAAN: A multi-attribute
addressable network for grid information services. JGC, 2004.

[23] Y. Zhu and Y. Hu. Efficient, Proximity-Aware Load Balancing for
DHT-Based P2P Systems. IEEE TPDS, 16(4), 2005.

[24] C. M. Bishop. Pattern Recognition and Machine Learning .
Information Science and statistics, Springer, 2006.

[25] K. Hornik, M. Stinchcombe, and H. White. Multilayer Feed-
forward Networks are Universal Approximators. Neural Networks,
1989.

[26] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
[27] C. Waldspurger and W. Weihl. Lottery Scheduling: Flexible

Proportional-Share Resource Management. In Proc. of OSDI, 1994.
[28] p2psim. http://pdos.csail.mit.edu/p2psim/.

[29] H. Shen and C. Xu. Locality-aware and churn-resilient load
balancing algorithms in structured peer-to-peer networks. TPDS,
2007.

[30] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the
Evolution of Peer-to-Peer Systems. In Proc. of PODC, 2002.

[31] H. Shen and C. Xu. Elastic routing table with provable perfor-
mance for congestion control in dht networks. TPDS, 2009.

[32] R. Zhou, K. Huang, and M. Cai. GossipTrust for Fast Reputation
Aggregation in Peer-To-Peer Networks. TKDE, 2008.

[33] Y. Zhang, J. Huai, Y. Liu, L. Lin, and B. Yang. A Framework
to Provide Trust and Incentive in CROWN Grid for Dynamic
Resource Management. In Proc. of ICCCN, 2006.

[34] Y. Zhang and Y. Fang. A Fine-Grained Reputation System for
Reliable Service Selection in Peer-to-Peer Networks. TPDS, 2007.

[35] J. Sonnek, A. Chandra, and J. B. Weissman. Adaptive Reputation-
Based Scheduling On Unreliable Distributed Infrastructures.
TPDS, 2007.

[36] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson. One Hop
Reputations For Peer To Peer File Sharing Workloads. In Proc. of
NSDI, 2008.

[37] A. Satsiou and L. Tassiulas. Reputation-Based Resource Alloca-
tion In P2P Systems of Rational Users. TPDS, 2010.

[38] Y. Zhang, S. Chen, and G. Yang. SFTrust: A Double Trust Metric
Based Trust Model in Unstructured P2P System. In Proc. of IPDPS,
2009.

[39] A. Gutowska and K. Buckley. Computing Reputation Metric in
Multi-Agent E-Commerce Reputation System. In Proc. of ICDCS,
2008.

[40] K. Chen, K. Hwang, and G. Chen. Heuristic Discovery of Role-
Based Trust Chains in Peer-to-Peer Networks. TPDS, 2009.

[41] P. Dewan and P. Dasgupta. P2P Reputation Management Us-
ing Distributed Identities and Decentralized Recommendation
Chains. TKDE, 22(7):1000–1013, 2010.

[42] Z. Li, H. Shen, and K. Sapra. Leveraging Social Networks to Com-
bat Collusion in Reputation Systems for Peer-to-Peer Networks.
In Proc. of IPDPS, 2011.

[43] H. Shen and L. Zhao. Refining Reputation to Truly Select High-
QoS Servers in Peer-to-Peer Networks. In Proc. of ICCCN, 2011.

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineering
from Wayne State University in 2004 and 2006,
respectively. She is currently an Assistant Pro-
fessor in the Department of Electrical and Com-
puter Engineering at Clemson University. Her
research interests include distributed computer
systems and computer networks, with an em-
phasis on P2P and content delivery networks,
mobile computing, wireless sensor networks,

and grid and cloud computing. She was the Program Co-Chair for
a number of international conferences and member of the Program
Committees of many leading conferences. She is a Microsoft Faculty
Fellow of 2010 and a member of the IEEE and ACM.

Yuhua Lin Yuhua Lin received both his BS de-
gree in Software Engineering and MS degree in
Computer science from Sun Yat-sen University,
China in 2009 and 2012 respectively. He is
currently a Ph.D student in the Department of
Electrical and Computer Engineering of Clem-
son University. His research interests include
social networks and reputation systems.

Ze Li Ze Li received the BS degree in Electron-
ics and Information Engineering from Huazhong
University of Science and Technology, China,
in 2007. He is currently a Ph.D. student in
the Department of Electrical and Computer En-
gineering of Clemson University. His research
interests include distributed networks, with an
emphasis on peer-to-peer and content delivery
networks, wireless multi-hop cellular networks,
game theory and data mining. He is a student
member of IEEE.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

