
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 1

Secure Continuous Aggregation in Wireless Sensor Networks
Lei Yu, Member, IEEE, Jianzhong Li, Member, IEEE, Siyao Cheng, Shuguang Xiong, Haiying Shen, Member, IEEE

Abstract—Continuous aggregation is usually required in many sensor applications to obtain the temporal variation information of aggregates.
However, in a hostile environment, the adversary could fabricate false temporal variation patterns of the aggregates by manipulating a
series of aggregation results through compromised nodes. Existing secure aggregation schemes conduct one individual verification for each
aggregation result, which could incur great accumulative communication cost and negative impact on transmission scheduling for continuous
aggregation. In this paper, we identify distinct design issues for protecting continuous in-network aggregation and propose a novel scheme to
detect false temporal variation patterns. Compared with the existing schemes, our scheme greatly reduces the verification cost by checking
only a small part of aggregation results to verify the correctness of the temporal variation patterns in a time window. A sampling-based
approach is used to check the aggregation results, which enables our scheme independent of any particular in-network aggregation protocols
as opposed to existing schemes. We also propose a series of security mechanisms to protect the sampling process. Both theoretical analysis
and simulations show the effectiveness and efficiency of our scheme.

Index Terms—wireless sensor network, network security, secure continuous aggregation, sampling.

�

1 Introduction
In applications of wireless sensor networks(WSNs), the aggregations

of sensed data, such as sum, average and predicate count, are very

important for the users to get summarization information about the

monitored area. Instead of collecting all sensor data [1]–[3] and com-

puting aggregation results at the base station, in-network aggregation

allows sensor readings to be aggregated by intermediate nodes, which

efficiently reduces the communication overhead. Many in-network

aggregation schemes have been proposed [4]–[7]. However, since

WSNs are often deployed in an open and unattended environment,

an adversary could undetectably take control of one or more sensor

nodes and subvert correct in-network aggregations by manipulating

the partial aggregation results or reporting arbitrary readings through

compromised nodes.

In this paper we consider the security of continuous in-network

aggregation in WSNs. In many WSN applications for environment

monitoring, the users often need the temporal variation information

in a series of aggregation results rather than an individual aggregation

result. Thus, continuous aggregation of sensed data is usually desired.

For a continuous aggregation query, a time interval, called epoch, is

specified and the aggregation is evaluated in every epoch. The dura-

tion of every epoch specifies the amount of time sensor nodes wait

before acquiring and transmitting each successive sample. Continuous

aggregation is not merely for one-shot responses to sporadic queries.

It helps the users to understand how the environment changes over

time and track real-time measurements for trend analysis.

Because of the importance of temporal variation information of

aggregation results, we focus on the attack against continuous in-

network aggregation that the adversaries attempt to distort the real

temporal variation pattern of the aggregate by disrupting a series of

successive aggregation results. Figure 1 shows an example. The user

is interested in a special variation pattern of average temperature

shown in the shadowed box and could make critical decisions when

the pattern is observed. The adversary can modify aggregation results

• A preliminary version of this paper appears in the proceedings of IEEE
INFOCOM 2011.

• Lei Yu and Haiying Shen are with the Department of Electrical and
Computer Engineering at Clemson University, SC, United States.

• Jianzhong Li and Siyao Cheng are with the Department of Computer
Science and Technology, Harbin Institute of Technology, Heilongjiang,
China.

• Shuguang Xiong is with Baidu Inc, Beijing, China.
Email: {leiy, shenh}@clemson.edu, lijzh@hit.edu.cn, csyhit@126.com,
n2xiong@gmail.com

time
window

interested
pattern

real average
temperature

epoch

epoch

average
temperature
under attack

representative
point

Fig. 1. The fabrication of the temporal variation pattern in a
continuous aggregation

in the time window to fabricate the variation pattern that actually does

not appear, which can lead to wrong decisions.

A number of secure aggregation schemes have been proposed [8]–

[11]. SIA [8] addresses secure aggregation within the single aggre-

gator network topology. A number of hierarchical secure aggregation

schemes [9]–[11] are proposed for aggregation in tree network

topology in which each node computes an intermediate aggregation

result accounting for all sensing data of nodes in the sub-tree rooted

at it. All these schemes aim to protect a single aggregation com-

putation. Directly using these schemes in a continuous aggregation

results in individual verification for every aggregation result in every

epoch, which will incur a great communication cost especially for

continuous aggregation having a long period or high frequency (i.e.,

small epoch). The additional communication caused by interactive

procedures between the base station and sensor nodes for verification

in every epoch also has a negative impact on the efficiency of

transmission scheduling for a continuous data aggregation [12].

Besides, these schemes [8]–[10] also are tightly coupled with the

tree topology and thus unable to work with various other in-network

aggregation protocols [6], [7].

In this paper, we present an efficient scheme to detect false

temporal variation patterns in a continuous aggregation. Our scheme

verifies the correctness of the observed temporal variation pattern in

a time window by checking only a small part of aggregation results

termed representative points. The representative points are selected

to capture the temporal variation pattern of the aggregate, as shown

in Figure 1. Compared with the existing secure aggregation schemes,

our scheme can considerably reduce the communication cost through

selective verifications of aggregation results.

In our scheme, the correctness of representative points is checked

by hypothesis testing techniques with samples from the WSN. While

Digital Object Indentifier 10.1109/TPDS.2013.63 1045-9219/13/$31.00 ©  2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 2

providing nice security properties, the sampling-based approach

only requires a part of nodes to be involved in the verification,

and enables verification not to rely on any particular in-network

aggregation protocol. To protect the sampling procedure, verifiable

random sampling is proposed to protect the legitimacy of sampled

nodes, and local authentication based on spatial correlation among

sensor readings is proposed to protect the validity of sample readings.

As a result, our scheme can effectively verify the temporal variation

patterns for continuous aggregation, while being able to achieve low

additional energy cost and work with various in-network aggregation

protocols [6], [7]. We evaluate our scheme based on extensive

experiments using a real trace of sensor readings. The experiment

results show the efficiency and effectiveness of our scheme.

The rest of the paper is organized as follows. We present system

models and design goals of our scheme in Section 3. We propose the

details of our scheme in Section 4. We evaluate the performance and

security of our scheme in Section 5. We present simulation results in

Section 6. Finally, we conclude this paper in Section 7.

2 RelatedWork
Due to the importance of aggregation computation for WSN, secure

aggregation has received great attention in recent years. A lot of

secure aggregation schemes have been proposed [8]–[11], [13]–[17].

Wagner [13] evaluates the resilience of several aggregation func-

tions against malicious nodes’ contribution to the final computation

results, and proposes to improve the resilience by truncation and trim-

ming on the set of sensor readings as well as using robust estimators

to compute aggregation. Under one single-aggregator network model,

Przydatek et al. [8] propose an aggregate-commit-prove framework

SIA to detect false aggregation results. In SIA, the base station gen-

erates a commitment to the collection of sensor readings by Merkle

hash tree, and the home server verifies the results through reliable

random sampling achieved by data commitment and interactive proofs

with the base station. Yu et al. propose to directly use sampling to

compute approximate aggregation results with provable guarantees

that can always correctly answer aggregation queries [15].

A number of hierarchical secure schemes [9]–[11], [14], [16] have

been proposed for in-network aggregation on tree topology, where

each node computes an intermediate aggregation result accounting

for the sensor readings of nodes in the sub-tree rooted at it. Hu and

Evans [14] propose a secure aggregation scheme against one single

malicious node in the network, in which each node checks the incon-

sistency of MACs from their children and grandchildren. Garofalakis

et al. propose to combine cryptographic signatures and Flajolet-

Martin sketch [18] to achieve verifiable count aggregation [16].

Several secure hierarchical aggregation schemes [9]–[11] follow

an aggregation-commitment-attest framework. During the in-network

aggregation, each node computes the hash as commitment over the

input of its aggregation computation, intermediate results and data

commitments from its children, and then sends the hash to its parent.

Based on the commitments, interactive attest is performed between

the base station and sensor nodes when aggregation completes.

Yang et al. propose a secure hop-by-hop data aggregation protocol

SDAP [9]. The tree topology is partitioned into multiple logical

subtree groups, and sensor data are aggregated in every subtree

separately to reduce the trust on high-level nodes. The groups

returning outlier results are attested by checking the aggregation

correctness along a random path. Chan et al. propose a provably

secure hierarchical aggregation scheme SHIA [10]. In the attest phase

of SHIA, the final commitment at the base station is broadcasted

and each node checks that its own contribution was added into the

aggregation by recomputing the final commitment with necessary

information disseminated from its ancestor nodes. Frikken et al

introduce modifications of SHIA which reduce original O(dmax log2 n)

communication per node to O(dmax log n) where dmax is the maximum

degree of the aggregation tree and n is the number of nodes. Based

on SHIA, Roy et al. propose a scheme to verify the histogram

computation in order to securely estimate the median [17].

All these previous works address secure in-network aggregation

within a snapshot query, so their approaches conduct verification for

each single aggregation result. Unlike them, our work focuses on

continuous in-network aggregation and aims to protect the temporal

variation patterns of aggregation results. To protect continuous ag-

gregation, previous approaches would conduct individual verification

in every epoch and thus can incur a significant communication cost.

In contrast, our approach only selectively verifies a small part of

aggregation results in a time window.

3 Problem Statement
3.1 Network and Query Model

We assume a large-scale multi-hop WSN with a set of sensor nodes

S = {s1, . . . , sN} and a trusted base station. The base station knows

the total number of nodes N = |S |. All the nodes and the base station

are loosely time synchronized with a secure time synchronization

service [19], [20]. Each node has the same communication radius Rc.

We assume a continuous querying environment for WSNs. For a

continuous aggregation query, the base station initially disseminates

a query into the network, consisting of the epoch duration, the period

of the aggregation query and a nonce number nonce. The nonce

number is a cryptographically secure random number generated by

the base station and used only once to to uniquely identify current

query and prevent replay of old messages. The aggregation query

period is divided into epochs. In each epoch, each node calculates a

partial aggregate with its current sensor readings, and the base station

obtains a final aggregation result.

Since most physical quantities in practical environments, such as

temperature and humidity, usually change continuously, we assume

that the duration of an epoch is small enough to reflect the continuous

variation of the measured physical quantities with respect to time. As

a result, the aggregation results would exhibit continuous variations.

Such continuity actually can be characterized as that the difference

between aggregation values at two successive epochs is bounded, i.e.,

|A(t) − A(t + 1)| ≤ Λ (1)

where A(t) is the true aggregation result in epoch t. Here Λ is

determined by the characteristics of the observed physical quantities

and the length of epoch duration.

The user is interested in some temporal variation pattern of

the aggregation results which last for more than one epoch. As

opposed to previous works [8]–[10], we assume the aggregation is

performed over the network without specifying any particular in-

network structure such as tree [5].

3.2 Security Assumptions

We assume that each sensor node has a unique identifier and shares

a unique secret symmetric key with the base station. By pairwise

key establishment schemes [21], [22], each node shares a pairwise

key with each of its direct neighbors and two-hop neighbors. A

broadcast authentication protocol such as μTESLA [23] exists such

that any node can authenticate a message from the base station.

We also assume that WSNs have a short safe bootstrapping phase

right after network deployment [21], during which adversaries cannot

successfully compromise any nodes.

3.3 Attack Model and Security Goal

We assume that the adversary can compromise multiple nodes and

obtain the security information embedded in these nodes, but cannot

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 3

compromise the base station which is well-secured. We assume the

Byzantine fault model where a compromised node is under the full

control of the adversary and can misbehave in an arbitrary way.

Multiple compromised nodes can collude to attack.

We focus on the attacks against in-network continuous aggregation,

which aim to make the base station to accept a series of false

aggregate results of which the temporal variation pattern deviates

from the real one in a noticeable scale. The ways to carry out these

attacks include providing false sensor readings and manipulating

partial results via compromised nodes. However, no matter which

way the attacks use, we can generally model the attacks as

Ag(t) = A(t) + D(t) ts ≤ t ≤ te (2)

where Ag(t) is the aggregation result received by the base station in

epoch t and D(t) is the deviation of the aggregation result in epoch

t caused by the attack. Ag(∗), A(∗) and D(∗) are regarded as time-

variant functions. [ts, te] is the duration where the temporal variation

pattern of aggregation results is manipulated. We assume that the

attack preserves the continuity in the fabricated aggregation results,

since if not it can be easily detected by the users through checking

Formula (1). In other words, we have |Ag(t) − Ag(t + 1)| ≤ Λ.

Our security goal is to protect the authenticity of the temporal

variation pattern observed by the users. Specifically, for a series of

aggregation results Ag = (Ag(t), Ag(t+1), . . . , Ag(t+l)) in a continuous

aggregation, we want to guarantee that if the base station accepts Ag,

the temporal variation pattern of Ag is close to the true pattern with

a high probability.

Notations We list below notations in this paper.

• u,v,w (in lower case) are sensor nodes.

• N is the total number of sensor nodes.

• Nu is the set of u’s neighbors in u’s communication range

including itself.

• N2
u is the set of u’s two-hop neighbors outside its communication

range.

• Rc is the communication radius of sensor nodes.

• Kuis u’s individual key shared between u and the BS.

• MAC(K,m) is the message authentication code of message m
generated with a symmetric key K.

• ru,t is the sensor reading of u in epoch t.

4 SECURE CONTINUOUS AGGREGATION
4.1 Overview

During the period of a continuous aggregation query, each sensor

node caches lmax number of sensor readings that contribute to the

aggregations in the latest lmax epochs. lmax determines the maximum

length of the time window in which the temporal variation pattern of

the aggregation results can be verified.

Once the users observe an interesting temporal variation pattern of

the aggregate, they can verify its authenticity on-demand. However,

in the circumstance that the adversary is interested in suppressing the

real appearance of an interesting temporal variation pattern, the users

cannot decide when to conduct verification since they do not know

when the interesting pattern really appears. Thus, periodic verification

is required. To this end, the period of the aggregation query is divided

into successive time windows. Each time window consists of several

successive epochs. At the end of each time window, the temporal

variation pattern in this time window is verified.

Either in the on-demand verification or in the periodic verifica-

tion, the Base Station (BS) selects some points from the series of

aggregation results in the time window to be verified, and checks

their correctness to detect any fabrication of temporal variation

patterns. Considering that the adversary can manipulate only a small

number of aggregation results such as extreme points to tamper

with the temporal variation pattern, it may be ineffective to check

epoch

Ag(*)

t t+l

(ei, Ag(ei))Fp(*)

Fig. 2. Definition of representative points

a set of randomly selected points to detect forged patterns, because

the selected points may not cover these manipulated points, which

causes that the attack is not detected. Thus, to guarantee effective

attack detection, the selected points should be able to capture the

temporal variation pattern in the time window like extreme points.

We refer to these points as representative points and the epoch of

a representative point as representative epoch hereinafter. After the

selection of representative points, the BS broadcasts a verification

request, which includes the representative epochs, the sampling ratio

� and a nonce number noncev, to the WSN. Once receiving the

verification request, each node decides whether to act as a sampled

node. Before the sampled nodes send to the BS their sensor readings

of every representative epoch, their neighboring nodes verify the

correctness of sample data and authenticate the sample messages.

With the sensor reading samples, the BS checks the correctness

of the aggregation results of each representative epoch by hypothesis

testing. The general form of the hypothesis tests is

H0 : A(t) = Ag(t) vs Ha : A(t) � Ag(t) (3)

If the aggregation results in all representative epochs are verified as

correct, the temporal variation pattern in the time window is assumed

to be authentic.

In the rest of this paper, we suppose that the time window to be

verified is from epoch t to epoch t + l, denoted by [t, t + l], and we

always take the points at the boundary epochs t and t + l as two

representative points. Obviously, l + 1 < lmax.

4.2 Representative Point Selection

We first give the definition of representative point to formally

characterize the requirement that is to capture the temporal pattern

of the whole aggregation result series. Figure 2 shows an example.

Definition 1 (representative points): Let P = {(ei, Ag(ei)) | 1 ≤
i ≤ p, e1 = t < e2 < . . . < ep−1 < ep = t + l} be a set of

points in the time window [t, t + l] where Ag(ei) is the aggregation

result in epoch ei. Let FP(∗) be the piece-wise linear function

consisting of connected line segments, each of which is between

point (ei, Ag(ei)) and (ei+1, Ag(ei+1)) for 1 ≤ i ≤ p − 1. If FP is a

best approximation of the series of aggregation results Ag(∗) within

[t, t + l] among all possible FP′ where P′ = {(e′i , Ag(e′i )) | 1 ≤ i ≤
p, e′1 = t < e′2 < . . . < e′p−1 < e′p = t + l}, we say P captures

the temporal pattern of aggregation results and the points in P are

representative points in the time window [t, t + l]. Here the goodness

of approximation is assessed by the approximation error between

FP(∗) and Ag(∗), which is measured by their Euclidean distance

E(t, t + l) =

√
t+l∑
k=t
{Ag(k) − FP(k)}2.

4.2.1 Representative Point Selection

Given Definition 1, the representative point selection (RPS) problem

can be described as follows. Given an integer p (p ≥ 2), find a set

of points P = {(ei, Ag(ei)) | 1 ≤ i ≤ p, e1 = t < e2 < . . . < ep−1 < ep =

t + l} such that the error of approximation of Ag(∗) by FP(∗) in the

time window [t, t + l] is minimized and |P| = p.

Let F(a,b)(x) (a < b) be the linear function through point (a, Ag(a))

and (b, Ag(b)). I(a, b) is the approximation error of the aggregation

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−1

−0.5

0

0.5

1

epoch number

A
gg

re
ga

tio
n

false aggregation
real aggregation
representative point

Fig. 3. An example of attack against RPS algorithm.

results from epoch a to b by F(a,b)(x). Then, we have

F(a,b)(x) =
Ag(b) − Ag(a)

b − a
(x − a) + Ag(a) (4)

I(a, b) =

b∑
k=a

{Ag(k) − F(a,b)(k)}2. (5)

Assuming t′ > t, we let E(t, t′, pt′ ) be the minimum approximation

error when pt′ (pt′ ≥ 2) number of points between epoch t and

t′ (> t) (including t and t′) are selected as representative points for

the time window [t, t′]. Suppose e′1 = t, e′2, . . . , e
′
pt′ −1, e

′
pt′ = t′ are

representative epochs, the points of epochs e′1, e
′
2, . . . , e

′
pt′ −1 must be

an optimal selection of pt′ − 1 points for approximating Ag(∗) in the

time window [t, e′pt′ −1]. By the optimal substructure of the problem,

the following recursive formula is given to compute E(t, t′, pt′ ),

E(t, t′, pt′ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
min

t+pt′ −2≤k<t′
{E(t, k, pt′ − 1) + I(k, t′)},
if 2 < pt′ < t′ − t + 1,

0, if pt′ ≥ t′ − t + 1,
I(t, t′), if pt′ = 2.

(6)

Based on (6), we propose a dynamic programming algorithm

called RPS algorithm to solve the RPS problem. The pseudocode

of RPS algorithm is shown in Appendix A (All appendices are in

the supplementary file). The algorithm takes O(lp) space and O(l3 p)

time, considering the O(l) time of the computation of formula (5).

4.2.2 RPS with Pre-specified Points
With the knowledge of RPS algorithm and the ability of predicting

the real temporal variation pattern of the aggregate, the adversary

may try to forge a series of aggregation results of which the selected

representative points have aggregation values equal or close to the

real ones. If such attempt is successful, the check of representative

points will not detect the fabrication of the temporal variation.

Figure 3 shows an example of fabricated series of aggregation results

and the representative points selected by RPS algorithm over the

fabricated series. The aggregation values of representative points

are the same as the real aggregation results, which causes that the

false pattern between epoch 0 and 9 cannot be detected. Considering

such possibility, the randomness is introduced to make the output

of the selection algorithm unpredictable. To this end, each data

point in (t, t + l) (not including epoch t and t + l) is pre-specified

as a representative point with a probability of q in our scheme.

Then, the remaining number of representative points including the

ones at two boundary epochs t and t + l are selected to minimize

the approximation error. On the other hand, some points such as

the maximum and minimum aggregation results, which describe the

significant characteristics of the temporal variation pattern, should be

always pre-specified as representative points.

Therefore, we consider the problem of RPS with pre-specified

points (RPS-P): given a set of pre-specified points P̃ (P̃ ⊇
{(t, Ag(t)), (t + l, Ag(t + l))}) and an integer p (p ≥ |P̃|), find a

set of representative points P such that the approximation error

of Ag(∗) by FP(∗) in [t, t + l] is minimized while P̃ ⊂ P and

|P| = p. We can see that RPS-P problem becomes RPS when

P̃ = {(t, Ag(t)), (t + l, Ag(t + l))}.

Let P̃ = {(ti, Ag(ti))|1 ≤ i ≤ p̃ (p̃ ≥ 2), t1 = t < t2 < . . . < tp̃−1 <

tp̃ = t + l}. Assuming i ≥ 2, we let Ẽ(t1, ti, pi) be the minimum

approximation error when pi (pi ≥ i) number of representative

points, which includes pre-specified ones {(t j, Ag(t j))|1 ≤ j ≤ i}, are

selected for the approximation in the time window [t1, ti]. Similarly,

the following recursive formula is given to compute Ẽ(t1, ti, pi),

Ẽ(t1, ti, pi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
i−1≤k≤ci

{Ẽ(t1, ti−1, k) + E(ti−1, ti, pi − k + 1)},
if i < pi < ti − t1 + 1, i > 2

0, if pi ≥ ti − t1 + 1, i > 2
i−1∑
j=1

I(t j, t j+1), if pi = i > 2.

E(t1, ti, pi), if i = 2.
(7)

where ci = min{ti−1− t1+1, pi−1}. E(ti−1, ti, pi−k+1) and E(t1, ti, pi)

are computed by (6).

Based on (7), a dynamic programming algorithm is also proposed

to solve RPS-P problem, referred to as RPS-P algorithm. The

pseudocode is shown in Appendix B. Considering the function call

RPS() to RPS algorithm takes O(l3 p) time and O(lp) space, RPS-P

algorithm takes O(l3 p3 p̃) time and O( p̃p + lp) space.

4.2.3 The number of representative points
Selecting more representative points can further enhance the capa-

bility of our scheme to detect forged temporal variation pattern,

because a larger number of representative points can better capture the

variation pattern of aggregation results and have a higher probability

to cover the manipulated period. However, since each representative

point needs to be verified by collecting sensor reading samples in

the corresponding representative epoch from the WSN, more repre-

sentative points mean higher communication cost. Therefore, there

is a tradeoff between detecting capability and communication cost.

Section 4.2.1 and 4.2.2 actually address the optimal representative

point selection to minimize the approximation error with a given

budget on communication cost, i.e., a given number of representative

points. On the other hand, the users would need to decide at least

how many representative points are required to achieve the desired

detecting capability of the scheme. Thus, here we consider the

problem of minimizing the number of representative points given a

certain degree of the approximation error that the users can tolerate.

The problem can be formally described as follows. Given a set of

pre-specified points P̃ and the maximum approximation error that the

users can tolerate, denoted by E, find a set of representative points

P such that the approximation error of Ag(∗) by FP(∗) in [t, t + l] is

not greater than E and |P| is minimized. Based on RPS-P algorithm,

the solution for this problem is simple. Let p = l + 1. According to

Formula 7, RPS-P algorithm will generate the result of Ẽ(t, t+l, k) for

all p̃ ≤ k ≤ l+1. Because it is obvious that Ẽ(t, t+ l, k) decreases as k
increases, we can simply conduct a linear or binary search to find the

first entry with Ẽ(t, t + l, k) ≤ E, where k is the minimum number of

representative points for the problem. By auxiliary matrix s[i, j], we

can obtain the corresponding representative points in the same way as

RPS-P algorithm except pl is initialized with the obtained minimum

k in line 22. The computation takes O(l6 p̃) time and O( p̃l+ l2) space.

4.3 Secure Sampling

After selecting the representative points, the BS checks the correct-

ness of each representative point by sampling and hypothesis testing

shown in Formula (3). In our scheme, the WSN is uniformly sampled.

Sampling provides nice security properties that the integrity of each

sample can be authenticated by a single node with its individual key,

and malicious nodes cannot fabricate or change the reported samples

of honest nodes. However, the adversary can provide forged samples

through the compromise nodes to make the BS accept the null

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 5

hypothesis in (3). Besides, if without any protection, the malicious

nodes can easily and always pretend to be sampled to provide

false samples while not being detected. Therefore, we consider the

following problems in the sampling process: first, how the BS verifies

the legitimacy of sampled nodes; second, how to detect false samples

provided by the malicious nodes.

4.3.1 Verifiable Random Sampling
In the verifiable random sampling, each node decides whether it

is sampled by computing a cryptographically secure pseudo-random

function h. h uniformly maps the input values into the range of [0, 1).

Specifically, being informed of a sampling ratio � broadcasted from

the BS, each node, say v, checks the inequality

hKv (nonce|noncev) ≤ � (8)

where nonce and noncev are nonce numbers that are disseminated

within each aggregation query and verification request respectively.

If Inequality (8) holds, v sends its sample Rv = (rv,e1
, rv,e2
, . . . , rv,ep ),

i.e., its sensor readings in the representative epochs, to the BS. In this

way, whether a node is sampled is decided by the node individual key

and two nonce numbers which are known by the BS. Since each time

of verification different nonce|noncev is used, the nodes are randomly

selected to be sampled for every verification. Also, a malicious node

cannot arbitrarily claim to be sampled, since the BS can verify the

legitimacy of v as sampled node by checking whether (8) holds.

The actual number of samples returned by this sampling approach

is random. Thus, the determination of sampling ratio � needs to

provide a probabilistic guarantee to achieve the target sample size

of at least mt. Here Theorem 1 is given to decide �. The proofs of

all theorems in this paper are given in the supplementary file.

Theorem 1: Given a target sample size of at least mt, to guarantee

the final sample size m ≥ mt with a probability of at least 1− δs(δs <
0.5), the sampling ratio � is at least �∗

�∗ =
0.5

N ∗ c2 + N2
(Nc2 + 2(mt − 0.5)N

+ (N2c4 + 4N2c2(mt − 0.5) − 4(mt − 0.5)2Nc2)0.5)

where c = Φ−1(δs).

4.3.2 Local Sample Authentication
In many applications like environment monitoring, the measurements

from multiple sensors in the same space are often highly correlated

and exhibit a high similarity on statistical distributions. This fact has

been widely exploited in efficient information extraction [24], routing

protocols [25], scheduling algorithms [26] and attack detection [27].

We also exploit such fact to propose a local sample authentication

mechanism to prevent the malicious sampled node from arbitrarily

providing false samples.

In the local sample authentication, each sampled node, say v,

broadcasts its sample Rv to its neighbors in order to obtain authenti-

cation from its neighbors before sending Rv to the BS. Each neighbor

u verifies the validity of Rv. If the verification is successful, u sends

to v the message authentication code of Rv computed by u’s key used

for the authentication of v’s sample.

Local Authentication Key Setup. To derive keys for the local

sample authentication, each node u is loaded with a seed key Ks
u

before deployment. The BS holds the seed keys of all nodes. During

the safe bootstrapping phase, u discovers its one-hop neighbors and

computes a key by Ka
u,v = H(Ks

u |v) for each neighbor v, where H is

a secure cryptographic hash function. Then, u erases Ks
u. The key

Ka
u,v is stored and used by u to authenticate samples from v. Since

each authentication keys is bound with a neighbor pair, the adversary

cannot use it to authenticate samples from arbitrary nodes except

for the corresponding neighboring node. The erasure of seed keys

prevents the adversaries from deriving all the authentication keys.

Local Verification and Authentication. Once receiving v’s sample

Rv = (rv,e1
, rv,e2
, . . . , rv,ep ), each neighbor u collects necessary informa-

tion from its neighborhood and verifies the validity of Rv by checking

the following two conditions:

ρu,v > ρ
u
T (9a)

μv � OutlierDetect({μw|w ∈ Ñu, Ñu ⊆ Nu}) (9b)

where ρu,v is the Pearson correlation coefficient between Ru =

(ru,e1
, ru,e2
, . . . , ru,ep ) and Rv, ρ

u
T is a threshold determined by node

u or pre-specified by the user. ρu,v is computed by

ρu,v = ρ(Ru,Rv) =

p∑
i=1

(ru,ei − μu)(rv,ei − μv)√
p∑

i=1

(ru,ei − μu)2

√
p∑

i=1

(rv,ei − μv)2

where μx(x = u, v,w) is the average of Rx denoting sensor readings

of node x in the representative epochs. OutlierDetect(S ) is a function

call to some outlier detection method to identify and return outliers

in set S .

The condition (9a) is used to detect possible abnormal reductions

of spatial correlation. Considering that real sensor readings from two

proximate nodes are often highly correlated and hold similar temporal

variation patterns, the fabricated data from a malicious node is very

likely to have a low correlation coefficient with the real data from

neighboring nodes.

Generally, ρ(Ru,Rv) depends on the distance d(u, v) between u and

v. In Geostatistics, a covariance function γ(·) is used to model the

relation between ρ(Ru,Rv) and d(u, v) [28]. The covariance function

is assumed to be nonnegative and decrease monotonically with

increasing distance d. With the knowledge of the covariance model

for observed physical qualities, the users can decide the value of ρu
T .

For example, given Power Exponential model γ(d) = e−d/θ1 (θ1 > 0),

since u is within the communication range of v, we have d(u, v) ≤
Rc < τRc(1 < τ ≤ 2), then ρu

T can be set as γ(τRc) according

to that γ(d) decreases monotonically with increasing d. The users

can determine τ according to the spatial correlation model of sensor

readings in the monitored area, with following the rule that τ should

be large enough such that the condition (9a) is true for real sensor

readings with a high probability, and also should be as small as

possible in order to efficiently filter false sensing data.

If the users cannot prior estimate and pre-specify ρu
T by the

knowledge of the covariance model before network deployment, we

need to determine it during operation. We propose to estimate ρu
T

autonomously by a model-free method. The node u randomly selects

a subset of nodes from its two-hop neighbors N2
u , denoted by Ñ2

u , and

collets their sensor readings in the representative epochs. For each

node w′ ∈ Ñ2
u , u computes the correlation coefficient ρu,w′ , and sets

ρu
T = MEDIAN({ρu,w′ |w′ ∈ Ñ2

u }). The median value is used to replace

average to defend against the attack of deflating ρu
T by malicious

samples, since median is more robust than average [13]. Because u
usually has a longer distance to its any two-hop neighbors than to its

one-hop neighbors, we have ρu,v > ρ
u
T .

The condition (9b) exploits the amplitude similarity of sensor read-

ing series in the neighborhood. Beside sharing the similar temporal

pattern, two series of sensor readings Ru and Rv from the proximate

neighborhood do not have too much deviation on their amplitude

scales μu and μv. To check the condition, u first collects the means of

sensor readings in the representative epochs from a set of randomly

selected nodes in Nu, denoted by Ñu. For a sparse network, u may

also collect the means of its two-hop neighbors. Then, the outlier

detection technique is used to check the abnormality of μv, which

achieves statistically robustness and effectiveness. Considering that

there may be multiple malicious neighbors to provide forged data,

we use Rosner’s test [29] for outlier detection. It is a generalization

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 6

of Grubbs’ test [30] for multiple outliers. To use it, an upper limit

Ur must be specified on the number of potential outliers present. In

our scheme Ur depends on |Ñu| and Ur can be set to at most |Ñu|/2.

In this paper, a significance level α = 0.05 is used for Rosner’s test.

Once u finds both (9a) and (9b) hold for Rv, u computes

MAC(Ka
u,v,Rv) with its local authentication key Ka

u,v and sends

MAC(Ka
u,v,Rv) to v. Otherwise, u ignores the authentication request. A

pseudo-code of the entire procedure of local authentication is shown

in Appendix D, including the procedure of Rosner’s test.

4.3.3 Sample Message Transmission

After v collects c (c ≥ 1) number of MACs from its neighbors

{ui|1 ≤ i ≤ c}, v transmits to the BS its sample message

S v = {Rv, (v, u1, . . . , uc), XMAC}
, where XMAC = MAC(Kv,Rv)⊕MAC(Ka

u1 ,v,Rv) . . .⊕MAC(Ka
uc ,v,Rv).

The XOR of MACs reduces the communication cost, which has been

proved to be secure [31]. Here c is a security threshold pre-specified

by the users.

4.4 Aggregation Verification

Once broadcasting the verification request, the BS waits for some

time tw to ensure the arrivals of all samples. Considering the network

delivery time of the verification requests and sample messages, tw

should be at least twice of the message delivery time from the network

boundary to the BS plus the time for the local sample authentication.

According to the procedure of local sample authentication, the time

required to complete it consists of the time of one hop broadcast from

a sample node and two hop broadcast from each of its neighbor nodes,

and also the time for each neighbor to collect sensor readings in its

two hop neighborhood and for the sampled node to collect MACs

from its one-hop neighbors. These times can be easily estimated

and accordingly the time for the local sample authentication can be

estimated. When time expires, the BS first checks the validity of every

arrived sample and the sample size, and then verifies the aggregation

results in representative epochs.

4.4.1 Sample Message Verification

For every sample message, say S v claimed from node v, the BS

verifies its validity in two steps. First, the BS verifies the legitimacy

of the claimed sampled node v by checking whether Inequality (8)

holds because the BS knows h, nonce, noncev and Kv. Then, the BS

verifies XMAC in the sample message. Since the BS holds the seed

key Ks
u of any node u, it can generate u’s authentication key Ka

u,v. The

BS generates Ka
ui ,v for each node ui in the ID list (u1, . . . , uT ) in S v,

recomputes XMAC and compare it with the one in S v for equality. If

the verification in any step above fails, the BS drops S v and raises an

alarm. Otherwise, the BS accepts S v. In this way, all invalid sample

messages are dropped.

During the local sample authentication, a false sample may pass

the local verification and be successfully authenticated by c neighbors

due to sufficient number of compromised nodes in the same neigh-

borhood. However, it is expensive for the adversary to provide a large

portion of false samples because of the verifiable random sampling

and local sample authentication. Thus, we assume the number of false

samples is relatively small to the total sample size and we can use

Rosner’s test to detect outlying sensor readings in each representative

epoch. The sampled nodes from which outlying sensor readings are

detected are labeled as outlying nodes and the hypothesis testing is

conducted over the samples excluding those from outlying nodes.

4.4.2 Hypothesis testing for aggregation verification

Let m be the final sample size after the sample message verification.

The set of nodes where the final samples are from is denoted by

{si|1 ≤ i ≤ m}. Here we discuss the verification for the count, average

and sum queries in a representative epoch k respectively.
Predicate Count Aggregate. The predicate count query is used to

determine the total number of nodes whose sensor readings have some

property in the network (e.g., number of sensors sensing temperature

> 30◦C). Let Ac(Θ)(k) and Agc(Θ)(k) be the true aggregation result and

the in-network aggregation result respectively for counting the nodes

whose sensor readings in epoch k satisfy some predicate Θ. The

predicate count aggregation is verified by the following hypothesis

testing with regard to probability distribution:

H0 : p1 =
Agc(Θ)(k)

N
, p2 = 1 − Agc(Θ)(k)

N

Ha : p1 �
Agc(Θ)(k)

N
, p2 � 1 − Agc(Θ)(k)

N

(10)

where p1 is the probability of a sensor node satisfying Θ and p2 =

1 − p1.
According to the hypothesis testing theory, the χ2 goodness-of-fit

test can be used for (10). m1 be the number of samples satisfying Θ

in epoch k and m2 = m − m1. The test statistic is computed by

X2 =
(m1 − m Agc(Θ)(k)

N )2

m Agc(Θ)(k)

N

+
(m2 − m(1 − Agc(Θ)(k)

N ))2

m(1 − Agc(Θ)(k)

N )
(11)

When H0 is true, X2 approximately follows χ2-distribution with

one degree of freedom. Let χ2
α(1) be the upper 100α percentage point

of χ2-distribution with one degree of freedom. Given a significance

level α, if X2 ≥ χ2
α(1) or the p-value of X2 is smaller than α, H0 is

rejected. Otherwise, H0 is not rejected and the BS accepts Agc(Θ)(k)

as true.
For the predicate count aggregation in epoch k, the use of χ2

goodness-of-fit test assumes adequate expected numbers in each cell,

i.e., mp1 ≥ 10 and mp2 ≥ 10. Then, the hypothesis testing would be

inefficient in the case that p1 >> p2 (e.g., p2 is small) or p1 << p2

(e.g., p1 is small), because a large sample size is required to achieve

mp2 ≥ 10 or mp1 ≥ 10 respectively. Suppose p2 = 0.01, the sample

size should be 1000 at least. To address this problem, we use an

alternative verification approach which verifies whether the minority

is true, i.e, either checking p2 if p1 >> p2 or checking p1 if p1 << p2.

This is because that if the result is not true, it most likely matters

only when the attacks cause the number in a category to decrease

too much to a small degree. Therefore, if p1 << p2 (p1 >> p2 ) and

p1 (p2) is not true, we assume that Ac(θ) (N − Ac(θ)) is notably larger

than Agc(θ) (N − Agc(θ)).
Suppose Mg = min{Agc(θ)(k),N − Agc(θ)(k)} and M is the true

number in the cell corresponding to Mg. We conduct sampling with

ratio � against the nodes within the smaller cell. Then, the number of

received samples m follows a Binomial distribution B(M, �). Given m,

if m > Mg, then the aggregation result is rejected. Otherwise, we can

use one-tail binomial test to verify whether Mg is correct. Let X be

a random variable following Binomial distribution B(Mg, �). Given

a significant level αB, we compute mU = min{k | Pr(X ≥ k) ≤ αB}, If

m > mU , the aggregation result is rejected.
Average Aggregate. Let Aa(k) and Aga(k) be the true aggregation

result and the in-network aggregation result of average query in epoch

k respectively. According to the central limit theorem, the sample

mean is approximately normally distributed for large sample sizes.

Thus, t-test is used to test the hypothesis

H0 : Aa(k) = Aga(k) vs Ha : Aa(k) � Aga(k). (12)

With the sample mean Âa(k) = 1
m

m∑
i=1

rsi ,k and the sample variance

σ∗2 = 1
m−1

m∑
i=1

(rsi ,k − Âa(k))2, the test statistic is computed by

T =
Âa(k) − Aga(k)

σ∗/
√

m
(13)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 7

When H0 is true, T follows t-distribution with m − 1 degrees of

freedom. Let t α
2
(m − 1) be the upper 100α/2 percentage point of t-

distribution with m−1 degrees of freedom. Given a significance level

α, if |T | ≥ t α
2
(m − 1) or the p-value of T is smaller than α, H0 is

rejected. Otherwise, the BS accepts Aga(k) as true.

Sum Aggregate. For the sum query, the sum aggregation result

Ags(k) is checked by verifying the average aggregation
Ags(k)

N .

5 Analysis and Parameter Determination
In this section we analyze the effectiveness of our scheme for detect-

ing false temporal variation patterns of aggregates, and discuss how to

determine the parameters including sampling ratio and probability of

pre-specifying representative point used in our scheme. The analysis

of our scheme’s overhead is given in Appendix F.

5.1 Effectiveness Analysis

5.1.1 Verification Effectiveness of Representative Point
Our aggregation verification scheme provides a statistical security

guarantee for the aggregation result in each representative epoch.

This is because two kinds of errors could occur in the hypothesis

testing: Type I (false positive) if H0 is rejected when it is actually

true; Type II (false negative) if H0 is not rejected when its actually

false. Type I error causes the BS to reject the true aggregation results

and the Type II error causes the BS to accept the false aggregation

results.

Theorem 2: Let m be the number of samples and α be the

significance level used for the hypothesis testing, we have:

• If the in-network aggregation result Ag(k) is true, then the BS

accepts it with probability at least 1 − α.

• Given a constant value Δ, if |Ag(k) − A(k)| > Δ, then:

– 1) With χ2 goodness-of-fit test for the predicate count

aggregation, the BS rejects Agc(θ)(k) with probability at least

1 −
{
Φ

[
1

σc

(
aχ + m

Δ

N

)]
− Φ
[

1

σc

(
−aχ + m

Δ

N

)]}
(14)

where pr =
Ac(Θ)(k)

N , p1 =
Agc(Θ)(k)

N , aχ =
√
χ2
α(1)mp1(1 − p1),

σc =
√

mpr(1 − pr) and Φ is the standard normal cumulative

distribution function. Here we assume pr(1 − pr) � 0.

2) Through verifying the smaller number of two cells with

one-tail binomial test and sampling ratio �, the BS rejects

Agc(θ)(k) with probability at least

Mg+Δ∑
i=mU+1

(
Mg + Δ

i

)
�i(1 − �)Mg+Δ−i (15)

– For the average aggregation over the whole network, the BS

rejects Aga(k) with probability at least

1 −
[
Φ

(
t α

2
(m − 1) +

Δ

σ/
√

m

)
− Φ
(
−t α

2
(m − 1) +

Δ

σ/
√

m

)]
(16)

where σ2 is the population variance of sensor readings in

epoch k.

5.1.2 Verification Effectiveness of Aggregation Variation Pattern
Successful verification of the representative points means that the

temporal variation pattern observed by the users shares these common

points with the real one. This at least indicates that the variation

pattern given by linear piece-wise function Fp is embedded in the

real variation pattern of aggregate and provides users the pattern in-

formation in a certain extent. The verification of representative points

forces the adversary to distort the variation pattern by manipulating a

series of aggregation results between two representative points, i.e.,

in a time window where no epochs are selected as representative

epochs. However, we can show that it is difficult for the adversary

to generate such an undetected series including true representative

points.

Except for pre-specified representative points, RPS-P algorithm

selects the representative points at the positions where the approxi-

mation error by piece-wise linear function is minimized. Hence, for

the variations of the aggregation results, our algorithm most likely

captures the turning points in them, which is inevitable especially

when the adversary wants to fabricate some change trends of interest

to users. The way for the adversary to avoid turning points is to

generate linear trends with two true end points, since the algorithm

tends to select two end points on the line. But randomness introduced

in the selection of optimal representative points can help to prevent

such attempt, because every point in the series is pre-specified as

representative point with probability q.

We assume that the adversary manipulates a series of aggregation

results of length l f , denoted by Ag(1), Ag(2), . . . , Ag(l f ), which devi-

ate from the true values by at least D(1),D(2), . . . ,D(l f ) respectively.

Each data point of aggregation results is verified with a probability

of q. If being verified, Ag(i) is rejected with probability at least

Prre ject(D(i)), which is given by Theorem 2. Therefore, the probability

of Ag(i) being detected is at least qPrre ject(D(i)). Then, since there are

l f number of aggregation results, the fabricated series can be detected

with probability at least

1 −
l f∏

i=1

(1 − qPrre ject(D(i))) (17)

We can see it increases with l f , q and D(i).
Suppose that Dmax is the maximum deviation of the fabricated

series from the true values, i.e., Dmax =
te

max
t=ts

D(t). Given successful

verification of representative points, the undetected fabricated series

should return to true values at the start and end positions, which

means that the deviation decreases to zero. According to the conti-

nuity assumptions for the real and fabricated aggregation results in

Section 3, the difference between aggregation values at two successive

epochs is bounded by Λ, then the maximum decreasing speed of the

difference between the real and fabricated aggregation results is 2Λ.

Then, we have

l f ≥ 2
Dmax

2Λ
=

Dmax

Λ
(18)

We note that Dmax is infinity norm distance between two series and

characterizes the difference between their variation patterns. Formula

(18) indicates that the adversary needs to fabricate a longer series of

aggregation results to achieve larger distortion of variation pattern,

which then increases the detection probability due to larger l f .

5.2 Parameter Determination

5.2.1 Sampling Ratio
A larger sample size can reduce the probabilities of Type I and Type

II error in the hypothesis testing. Since the probability of Type I error

is limited by the significance level α, the determination of the sample

size aims at limiting the probability of Type II error. Formally, given

the maximum deviation Δ which the user can tolerate, the problem

is how to determine the sample size such that if |Ag(k) − A(k)| > Δ
for some k ∈ {e1, e2, . . . , ep}, the probability of H0 being rejected is

at least 1 − β.
For the verification against the smaller number in cells when p1 <<

p2 or p1 >> p2, the desired sampling ratio � should satisfy that the

probability of Formula (15) is at least 1 − β. we can use Theorem 1

to compute �, by letting mt = mU + 1, N = Mg + Δ and δs = β.
For the verification using χ2 goodness-of-fit test, according to

Theorem 2, the desired sample size should satisfy

Φ

[
1

σc

(
aχ + m

Δ

N

)]
− Φ
[

1

σc

(
−aχ + m

Δ

N

)]
≤ β (19)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 8

for the predicate count aggregation in epoch k.

For the average aggregation in epoch k, the desired sample size

should satisfy

Φ

(
t α

2
(m − 1) +

Δ

σ/
√

m

)
− Φ
(
−t α

2
(m − 1) +

Δ

σ/
√

m

)
≤ β (20)

If σc and σ in (19) and (20) are known, we can use a binary

search in [1,N] to find the least sample size in epoch k, denoted by

m(k), required to satisfy the inequalities (19) and (20). However, σc

and σ are most likely unknown in practice. To address this problem,

the BS could first broadcasts the verification request with an initial

sampling ratio �1 to collect samples for estimating σc and σ in each

representative epoch k. Then, the BS computes m(k). The number of

received samples m may be smaller than m(k) because of insufficient

initial sampling ratio �1, packet loss and local verification filtering.

In these cases, a new sampling ratio �2(k) is computed for epoch

k according to Theorem 1 with mt = m(k). The BS broadcasts

{�2(k) | m < m(k), k ∈ {e1, e2, . . . , ep}} to the network. Any sensor

node, which satisfies Inequality (8) where � = �2(k), transmits its

reading in epoch k to the BS if the node was not sampled at the time

of the previous round of sampling.

5.2.2 Probability of Pre-specifying Representative Point
Assuming that the adversary attempts to fabricate a series of ag-

gregation results which deviate from the real ones by at least Δ (Δ

is the maximum deviation that the user can tolerate). According to

Formula (17), the detection probability is at least 1−(1−qPrre ject(Δ))l f .

The adversary may reduce the detection probability by decreasing

l f which is the length of fabricated aggregation series. Howev-

er, Formula (17) also indicates that we can ensure the detection

probability by increasing q, the probability of a data point being

specified as representative point, to offset the impact of decreasing

l f . Accordingly, we can determine the minimum value of q.

The sampling ratio given in Section 5.2.1 ensures Prre ject(Δ) ≥ 1−β.
Then, we have 1−(1−qPrre ject(Δ))l f ≥ 1−(1−q(1−β))l f . According to

Formula (18), the minimum detection probability that the adversary

can achieve is

1 − (1 − q(1 − β)) ΔΛ (21)

We choose q in order to ensure a desired lower bound γ for the

detection probability by

1 − (1 − q(1 − β)) ΔΛ ≥ γ (22)

Then we have

q ≥ 1 − (1 − γ) ΛΔ
1 − β (23)

As we can see, q increases with Λ which is the bound of the

difference between aggregation values at two successive epochs for

characterizing continuity. Larger Λ enables the adversary to create

the same degree of pattern distortion within a shorter length series

of aggregation results. Therefore, a larger q is required in order to

ensure representative point selection from the forged series and thus

to preserve the detection probability. With prior knowledge about

measured physical quantity, the users can estimate bound Λ and

compute the corresponding probability q by Formula (23).

6 Evaluation
In this section, we evaluate the performance of local sample authenti-

cation and aggregation verification by simulations. We use Matlab to

perform the simulations. To evaluate our local sample authentication

approach, we simulate a WSN based on a real world deployment with

54 sensor nodes (ID from 1 -54) in the Intel Research lab, which

includes a trace of sensor readings collected between February and

April, 2004 [32] and node locations. We suppose the communication

radius Rc = 10m. The sensors collected time-stamped humidity,

temperature and voltage values in 31 second intervals. Excluding

two nodes having incomplete data and one node having abnormal

data, we use the first 2000 epochs of the data in the day 03/08 from

the remaining 51 nodes. We assume a continuous aggregation query

on the temperature attribute during the first 2000 epochs. During

this period the temperature varies between 20 and 35. The periodic

verification is conducted with a time window size l + 1 = 200, and

10 time windows are numbered in the order. We note that in the real

trace nodes have missing readings in some epochs and we estimate

these missing data by linear regression in a time window.

6.1 Performance of Local Sample Authentication

In this section, the representative epochs are uniformly chosen from

a time window with an interval of 10 epochs. The performance of the

local sample authentication is evaluated by the following two metrics:

• Approval rate of real samples: The ratio of the number of

nodes whose data can be successfully authenticated by at least

c neighbors to the total number of nodes in the benign envi-

ronment. Even in benign environment, not all samples would

be successfully authenticated in practice because Formula (9a)

and (9b) are two statistical conditions and there may be not

sufficient neighbors. The samples that cannot be authenticated

will not be accepted by the BS. This metric indicates the degree

of influence of the local sample authentication on the availability

of real samples.

• Disapproval rate of false samples: The ratio of the number of

false samples that cannot be successfully authenticated by up to c
neighbors to the total number of compromised sampled nodes in

the hostile environment. It indicates the degree of the prevention

of the false samples by the local sample authentication.

Figure 4 illustrates the approval rate of real samples in each time

window under different security threshold c. As we can see, the

approval rate in each time window decreases as c increases. This

is because the number of nodes having up to c neighbors decreases

as c increases. When c = 1 and c = 2, the approval rate is higher

than 90% and 85% respectively. However, the approval rate is lower

than 80% when c = 3, which is because that the simulated network

is sparse (the average degree of the nodes is 5). It indicates that with

a reasonable value of c, here say 2, our local sample authentication

approach have a small effect on the availability of real samples.

To measure the disapproval rate of false samples, we assume that

Nc number of nodes are randomly compromised in the network. We

also assume a collusion attack in which a compromised node always

provides valid authentication for another one in the neighborhood.

The security threshold t = 2. The compromised nodes generate false

samples in three manners: first, a false sample is generated by adding

a constant noise e = 100 to each sensor reading in the representative

epochs as ru,ei ← ru,ei + e; second, ru,ei ← e where e is drawn from a

uniform random distribution U(20, 35); third, ru,ei ← ru,ei + e where

e is drawn from a normal distribution N(20, 100). The first manner

preserves the correlation between the real sample and the other ones

in the neighborhood. The second manner preserves the amplitude

similarity. The third manner brings changes both in the correlation

and in the amplitude.

Figure 5(a)∼5(c) show the disapproval rate of false samples respec-

tively generated by the above three manners under different Nc. The

results are averaged over 50 runs. In each run, Nc nodes are randomly

selected as compromised nodes. In each figure, we can see that the

disapproval rate of false samples decreases as Nc increases in every

time window. This is because that more compromised nodes would

incur a higher probability for that a compromised node providing false

samples has c compromised neighbor nodes to launch the collusion

attack. When Nc = 1 and Nc = 4, the disapproval rate is higher than

80% in all three figures. Since the network size is small (51 nodes),

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 9

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

Ap
pr

ov
al

 ra
te

 o
f r

ea
l s

am
pl

es

time window number

= 1 = 2 = 3

Fig. 4. Approval rate of real samples in every time window.

10 compromised nodes make up a significant fraction of the network

and cause the worst results.

6.2 Performance of Aggregation Verification

To evaluate our aggregation verification scheme, we simulate a large-

scale WSN of 1000 nodes and the sensing readings of each node

are synthesized by adding random noises drawn from N(0, 0.25) to

the sensor readings of a random node from the above real world

deployment. We consider continuous average and predicate count

aggregation which counts the number of nodes whose temperature

readings are greater than 25 in the time window [800 1000].

We simulate two attacks against the continuous average aggrega-

tion and predicate count aggregation in the time window [800 1000]

respectively. In the attack against average aggregation, the adversary

aims to delay the true time when the temperature rapidly increases.

In the attack against predicate count aggregation, the adversary aims

to fabricate a false fluctuation of predicate count value.

Figure 6 and 7 show both the real aggregation results and forged

ones. Real aggregation results have a rapid increase pattern between

(800 900) for both average and count. Figure 8 shows the population

variance of temperature in every epoch. For the representative point

selection, the total number of representative points p = 20. To decide

the probability q of pre-specifying random representative points, we

investigate the continuity of real aggregation results, and we have

that the value difference between two successive epochs falls in

[−0.15, 0.15] with probability 99.6% for average aggregation, and

in [−20, 20] with probability 98.9% for predicate count aggregation.

Then, we let Λ = 0.15 and Λ = 20 for two types of aggregation

respectively. By Formula (23) with γ = 0.9 and β = 0.05, we have

q ≥ 0.033 for average aggregation with Δ = 0.5 and q ≥ 0.043 for

count aggregation with Δ = 50. Hence, we pre-specify each data

point in (800 1000) as a representative point with q = 0.05.

Figure 6 and 7 also show the representative points selected by

RPS-P algorithm. We can see these points well capture the temporal

variation in the continuous aggregation. In the figures, some of points

are clustered together, which indicates it is not necessary to use as

many as 20 number of representative points to capture the patterns.

Figure 9 shows the approximation errors with different numbers

of representative points. Initially, representative point selection for

average aggregation has 12 pre-specified points including randomly

selected points, and for count aggregation has 10 pre-specified points.

As we can see, the approximation errors are maximum when using

only pre-specified points, and more representative points gain little

after 13 and 11 numbers respectively. Only one additional point

can significantly reduce the approximation error. This is because

of single change point in variation patterns. Given the maximum

tolerant approximation error, we can determine the minimum number

of representative points by the method in Section 4.2.3.

We use α = 0.02 significant level in the hypothesis testing. In

the simulation, we conduct two round samplings as described in

Section 5.2.1. The initial sampling ratio is set to 0.05. The sample

variance of first-round collected samples is computed. Based on

that, new sampling ratio is computed with β = 0.05 in Formula

(19) and (20), and additional samples are collected if necessary.

800 820 840 860 880 900 920 940 960 980 1000
0

0.1

0.2

0.3

0.4

0.5

epoch number

S
am

pl
in

g 
ra

tio

Δ=0.5
Δ=0.6

(a) Average aggregation.

800 820 840 860 880 900 920 940 960 9801000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

epoch number

Sa
m

pl
in

g 
ra

tio

Δ=100
Δ=50

(b) Count aggregation.

Fig. 10. Sampling ratio for average and count aggregation in
epochs of [800 1000]

Given different maximum tolerable deviations Δ, Figure 10(a) and

10(b) show the new sampling ratios estimated by Formula (19) and

(20) for average and predicate count aggregations in every epoch in

[800 1000] respectively. The figures indicate that less samples are

required for verification with a larger maximum tolerable deviation.

The sampling ratio for average aggregation verification is strongly

correlated with the variance of sensor readings, as we can see from

Figure 10(a) and Figure 8. In contrast, Figure 10(b) shows that the

sampling ratio for predicate count verification has a lower correlation

with population variance than for average aggregation, because the

sampling ratio for count aggregation verification is decided by the

proportion of nodes satisfying the predicate and the aggregation result

in every epoch, instead of population variance.

It is worth to note that the sampling ratio between epoch 800

and 850 in Figure 10(b), which is estimated by Formula (19), is not

valid, because χ2 goodness-of-fit test would be failed when the count

aggregation is zero or close to zero. As described in Section 4.4.2, we

use binomial test to verify the smaller number among two cells and

compute the sampling ratio satisfying Formula (15). For Agc(θ)(k) = 0,

we have mU = 0 and Mg = 0 in Formula (15), and � should satisfy
Δ∑

i=1

(
Δ

i

)
�i(1−�)Δ−i ≥ 1−β = 0.95. Then, we derive � = 0.03 for Δ = 50,

and � = 0.015 for Δ = 100. Here the aggregation results claim no

nodes having readings larger than 25. Our scheme actually ensures

at least one node returns its sample with a high probability if there

are at least Δ nodes having readings greater than 25.

We run simulations 100 times in two scenarios of without attacks

and under attacks respectively, shown in Figure 6 and 7. We find

that our scheme achieves 100% detection rate for the attacks against

two types of aggregations. Without any attacks, our scheme incurs

about 5% and 10% false alarm rate for predicate count aggregation

with Δ = 50 and Δ = 100 respectively. For average aggregation, our

scheme incurs about 4% and 7% false alarm rate with Δ = 0.5 and

Δ = 0.6 respectively. We can see that a bigger Δ causes a higher false

alarm rate. This is because the estimated sampling ratio decreases

when Δ increases, and less samples cause higher probability of Type

I error. Our results indicate that the false alarm rate can be decreased

by choosing a smaller significant level α = 0.01.

7 Conclusion

In this paper, we identify distinct design issues for secure continuous

aggregation in WSNs. An efficient verification scheme is proposed

to protect the authenticity of the temporal variation patterns in the

aggregation results. Compared with the existing secure aggregation

schemes, our scheme only need to check a small portion of aggrega-

tion results in a time window and thus greatly reduces the verification

cost. We define representative points and propose corresponding

algorithms for representative point selection. By exploiting the spatial

correlation among the sensor readings in close proximity, a series

of security mechanisms are also proposed to protect the sampling

procedure. Our simulations validate our scheme design.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Di
sa

pp
ro

va
l r

at
e o

f f
al

se
 sa

m
pl

es

time window number

Nc=1
Nc=4
Nc=7
Nc=10

(a) Disapproval rate of false samples generated
by the first manner.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Di
sa

pp
ro

va
l r

at
e 

of
 fa

lse
 sa

m
pl

es
 

time window number 

Nc=1
Nc=4
Nc=7
Nc=10

(b) Disapproval rate of false samples generated
by the second manner.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Di
sa

pp
ro

va
l r

at
e o

f f
al

se
 sa

m
pl

es

time window number

Nc=1
Nc=4
Nc=7
Nc=10

(c) Disapproval rate of false samples generated
by the third manner.

Fig. 5. Disapproval rate under three manners of forging false samples.

0 500 1000 1500 200020

22

24

26

28

epoch number

A
ve

ra
ge

 a
gg

re
ga

tio
n

real average
false average
representive point

Fig. 6. Continuous average ag-
gregation under attack.

0 500 1000 1500 20000

100

200

300

400

500

600

epoch number

C
ou

nt
 a

gg
re

at
io

n

real count
false count
representive point

Fig. 7. Continuous count ag-
gregation under attack.

800 820 840 860 8800

2

4

6

8

10

12

14

16

epoch number

po
pu

la
tio

n 
va

ria
nc

e

Fig. 8. Population variance in
each epoch of [800 1000].

0

0.5

1

1.5

2

2.5

3

3.5

4

10 11 12 13 14 15 16 17 18 19 20

Ap
pr

ox
im

at
io

n 
er

ro
r 

the number of representative points p 

RPS for Average Aggregation
RPS for Count Aggregation

Fig. 9. The number of rep-
resentative points V.S. approx-
imation error

Acknowledgements
This research was supported in part by U.S. NSF grants NSF-CSR
1025649,OCI-1064230, CNS-1049947, CNS-1156875, CNS-0917056
and CNS-1057530, CNS-1025652, CNS-0938189, Microsoft Research
Faculty Fellowship 8300751, and Sandia National Laboratories grant
10002282, and in part by the National Grand Fundamental Research 973
Program of China under grant 2012CB316200, the Major Program of
National Natural Science Foundation of China under grant 61190115,
the Key Program of the National Natural Science Foundation of China
under grant 61033015, and the National Natural Science Foundation of
China under grant 60933001.

References
[1] Z. Cai, S. Ji, J. S. He, and A. G. Bourgeois, “Optimal distributed data

collection for asynchronous cognitive radio networks,” in IEEE ICDCS,
2012, pp. 245–254.

[2] S. Ji and Z. Cai, “Distributed data collection and its capacity in
asynchronous wireless sensor networks,” in IEEE INFOCOM, march
2012, pp. 2113 –2121.

[3] S. Ji, R. Beyah, and Z. Cai, “Snapshot/continuous data collection
capacity for large-scale probabilistic wireless sensor networks,” in IEEE
INFOCOM, march 2012, pp. 1035 –1043.

[4] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks,” in
MobiCom. New York, NY, USA: ACM, 2000, pp. 56–67.

[5] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong, “Tag: a tiny
aggregation service for ad-hoc sensor networks,” in OSDI, 2002.

[6] K.-W. Fan, S. Liu, and P. Sinha, “On the potential of structure-free data
aggregation in sensor networks,” in IEEE InfoCom, 2006, pp. 1–12.

[7] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and deltas: Efficient
and robust aggregation in sensor network streams,” in ACM SIGMOD,
2005, pp. 287–298.

[8] B. Przydatek, D. Song, and A. Perrig, “SIA: secure information aggre-
gation in sensor networks,” in ACM SenSys, 2003, pp. 255–265.

[9] Y. Yang, X. Wang, S. Zhu, and G. Cao, “SDAP:a secure hop-by-hop data
aggregation protocol for sensor networks,” in ACM MobiHoc, 2006, pp.
356–367.

[10] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network
aggregation in sensor networks,” in ACM CCS, 2006, pp. 278–287.

[11] K. B. Frikken and J. A. Dougherty, IV, “An efficient integrity-preserving
scheme for hierarchical sensor aggregation,” in ACM WiSec. New York,
NY, USA: ACM, 2008, pp. 68–76.

[12] B. Yu, J. Li, and Y. Li, “Distributed data aggregation scheduling in
wireless sensor networks,” in IEEE INFOCOM, 2009, pp. 2159 –2167.

[13] D. Wagner, “Resilient aggregation in sensor networks,” in Proc of the
2nd ACM workshop on Security of ad hoc and sensor networks. New
York, NY, USA: ACM, 2004, pp. 78–87.

[14] L. Hu and D. Evans, “Secure aggregation for wireless networks,” in
Workshop on Security and Assurance in Ad hoc Networks. IEEE
Computer Society, 2003, p. 384.

[15] H. Yu, “Secure and highly-available aggregation queries in large-scale
sensor networks via set sampling,” in ACM/IEEE IPSN, 2009.

[16] M. Garofalakis, J. Hellerstein, and P. Maniatis, “Proof sketches: Verifi-
able in-network aggregation,” in IEEE ICDE, april 2007, pp. 996 –1005.

[17] S. Roy, M. Conti, S. Setia, and S. Jajodia, “Securely computing an
approximate median in wireless sensor networks,” in Proc of the 4th
international conference on Security and privacy in communication
netowrks. ACM, 2008, pp. 6:1–6:10.

[18] P. Flajolet, G. N. Martin, and G. N. Martin, “Probabilistic counting
algorithms for data base applications,” 1985.

[19] S. Ganeriwal, S. Capkun, C. chieh Han, and M. B. Srivastava, “Secure
time synchronization service for sensor networks,” in Proc of the 4th
ACM workshop on Wireless security. ACM Press, 2005, pp. 97–106.

[20] K. Sun and P. Ning, “Tinysersync: secure and resilient time synchro-
nization in wireless sensor networks,” in ACM CCS, 2006, pp. 264–277.

[21] S. Zhu, S. Setia, and S. Jajodia, “Leap: efficient security mechanisms for
large-scale distributed sensor networks,” in ACM CCS, 2003, pp. 62–72.

[22] D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor
networks,” in ACM CCS, 2003, pp. 52–61.

[23] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS:
Security protocols for sensor networks,” in Wireless Networks, 2001, pp.
189–199.

[24] H. Gupta, V. Navda, S. R. Das, and V. Chowdhary, “Efficient gathering
of correlated data in sensor networks,” in ACM MobiHoc, 2005, pp.
402–413.

[25] S. Pattem, B. Krishnamachari, and R. Govindan, “The impact of spatial
correlation on routing with compression in wireless sensor networks,”
in ACM/IEEE IPSN. New York, NY, USA: ACM, 2004, pp. 28–35.

[26] S. Slijepcevic and M. Potkonjak, “Power efficient organization of wire-
less sensor networks,” in IEEE International Conference on Communi-
cations, vol. 2, 2001, pp. 472–476.

[27] F. Liu, X. Cheng, and D. Chen, “Insider attacker detection in wireless
sensor networks,” in IEEE InfoCom, May 2007, pp. 1937–1945.

[28] M. C. Vuran and I. F. Akyildiz, “Spatial correlation-based collaborative
medium access control in wireless sensor networks,” IEEE/ACM Trans
on Networking, vol. 14, no. 2, pp. 316–329, 2006.

[29] T. H. S. C. Yu, R.C. and J. Froines, “Quality control of semi-continuous
mobility size-fractionated particle number concentration data,” Atmo-
spheric Environment, vol. 38(20), pp. 3341–3348, 2004.

[30] F. E. Grubbs, “Procedures for detecting outlying observations in sam-
ples,” Technometrics, vol. 11, no. 1, pp. 1–21, February 1969.

[31] R. G. M. Bellare and P. Rogaway, “Xor macs: New methods for message
authentication using finite pseudo-random functions,” in Proc. of Crypto,
1995.

[32] “Intel lab data,” in http://berkeley.intel-research.net/labdata.
[33] P. S. Mann, Introductory Statistics. Wiley, 2006.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 2010 11

Lei Yu received the PhD degree in computer sci-
ence from Harbin Institute of Technology, China,
in 2011. He currently is a post doctoral research
fellow in the Department of Electrical and Com-
puter Engineering at Clemson University, SC, U-
nited States. His research interests include sensor
networks, wireless networks, cloud computing and
network security.

Jianzhong Li is a professor in the School of Com-
puter Science and Technology at Harbin Institute
of Technology, China. In the past, he worked as
a visiting scholar at the University of California at
Berkeley, USA, as a staff scientist in the Informa-
tion Research Group at the Lawrence Berkeley Na-
tional Laboratory, USA, and as a visiting professor
at the University of Minnesota, USA. His research
interests include data management systems, sen-
sor networks and data intensive computing. He
has published more than 150 papers in refereed

journals and conferences, and has been involved in the program committees
of major computer science and technology conferences, including SIGMOD,
VLDB, ICDE, INFOCOM, ICDCS, and WWW. He has also served on the
editorial boards for distinguished journals, including TKDE.

Siyao Cheng received the PhD degree in com-
puter science from Harbin Institute of Technology,
China, in 2012. Her research interests include data
management and wireless communication in sen-
sor networks.

Shuguang Xiong received the PhD degree in
computer science from Harbin Institute of Tech-
nology, China, in 2011. He is currently a software
engineer in Baidu inc, Beijing, China. His research
interests include data management and networking
in wireless ad hoc and sensor networks.

Haiying Shen received the BS degree in Computer
Science and Engineering from Tongji University,
China in 2000, and the MS and Ph.D. degrees in
Computer Engineering from Wayne State Univer-
sity in 2004 and 2006, respectively. She is cur-
rently an Assistant Professor in the Department of
Electrical and Computer Engineering at Clemson
University. Her research interests include distribut-
ed computer systems and computer networks, with
an emphasis on peer-to-peer and content deliv-
ery networks, mobile computing, wireless sensor

networks, and grid and cloud computing. She was the Program Co-Chair
for a number of international conferences and member of the Program
Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


