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Abstract—Advancements in cloud computing are leading to a promising future for collaborative cloud computing (CCC), where
globally-scattered distributed cloud resources belonging to different organizations or individuals (i.e., entities) are collectively used in
a cooperative manner to provide services. Due to the autonomous features of entities in CCC, the issues of resource management
and reputation management must be jointly addressed in order to ensure the successful deployment of CCC. However, these two
issues have typically been addressed separately in previous research efforts, and simply combining the two systems generates double
overhead. Also, previous resource and reputation management methods are not sufficiently efficient or effective. By providing a single
reputation value for each node, the methods cannot reflect the reputation of a node in providing individual types of resources. By
always selecting the highest-reputed nodes, the methods fail to exploit node reputation in resource selection to fully and fairly utilize
resources in the system and to meet users’ diverse QoS demands. We propose a CCC platform, called Harmony, which integrates
resource management and reputation management in a harmonious manner. Harmony incorporates three key innovations: integrated
multi-faceted resource/reputation management, multi-QoS-oriented resource selection, and price-assisted resource/reputation control.
The trace data we collected from an online trading platform implies the importance of multi-faceted reputation and the drawbacks of
highest-reputed node selection. Simulations and trace-driven experiments on the real-world PlanetLab testbed show that Harmony
outperforms existing resource management and reputation management systems in terms of QoS, efficiency and effectiveness.

Index Terms—Distributed systems, Reputation management, Resource management, Distributed hash tables, Cloud computing
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1 Introduction
Cloud computing has become a popular computing paradigm,
in which cloud providers offer scalable resources over the In-
ternet to customers. Currently, many clouds, such as Amazon’s
EC2, Google’s AppEngine, IBM’s BlueCloud, and Microsoft’s
Azure, provide various services (e.g., storage and computing).
For example, Amazon [1] (cloud provider) provides
Dropbox [2] (cloud customer) the Simple Storage Service
(S3) (cloud service). Cloud customers are charged by the
actual usage of computing resources, storage, and bandwidth.

The demand for scalable resources in some applications has
been increasing very rapidly. For example, Dropbox currently
has 5 million users, three times the number last year. A single
cloud may not be able to provide sufficient resources for an
application (especially during a peak time). Also, researchers
may need to build a virtual lab environment connecting mul-
tiple clouds for petascale supercomputing capabilities or for
fully utilizing idle resources. Indeed, most desktop systems are
underutilized in most organizations; they are idle around 95%
of the time [3]. Thus, advancements in cloud computing are
inevitably leading to a promising future for collaborative cloud
computing (CCC), where globally-scattered distributed cloud
resources belonging to different organizations or individuals
(i.e., entities) are collectively pooled and used in a cooperative
manner to provide services [4, 5].

As shown in Figure 1, a CCC platform interconnects phys-
ical resources to enable resource sharing between clouds, and
provides a virtual view of a tremendous amount of resources
to customers. This virtual organization is transparent to cloud
customers. When a cloud does not have sufficient resources
demanded by its customers, it finds and uses the resources in
other clouds.

Importance of Resource and Reputation Management
CCC operates in a large-scale environment involving thou-
sands or millions of resources across disparate geographically
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Fig. 1. An example of collaborative cloud computing.
distributed areas, and it is also inherently dynamic as entities
may enter or leave the system and resource utilization and
availability are continuously changing [4, 6]. This environment
makes efficient resource management (resMgt) (i.e., resource
location and resource utilization) a non-trivial task. Further,
due to the autonomous and individual characteristics of entities
in CCC, different nodes provide different quality of service
(QoS) in resource provision. A node may provide low QoS
because of system problems (e.g., machines break down due
to insufficient cooling) or because it is not willing to provide
high QoS in order to save costs. Also, nodes may be attacked
by viruses and Trojan horse programs. This weakness is
revealed in all the cloud platforms built by Google, IBM, and
Amazon [7], and security has been recognized as an important
factor in grids (the predecessor of clouds) [8]. Thus, resMgt
needs reputation management (repMgt) to measure resource
provision QoS for guiding resource provider selection [4, 7].
As in eBay and Amazon, a repMgt system computes each
node’s reputation value based on evaluations from others about
its performance in order to provide guidance in selecting
trustworthy resources.

To ensure the successful deployment of CCC, the issues of
resMgt and repMgt must be jointly addressed for both efficient
and trustworthy resource sharing in three tasks:
(1) Efficiently locating required trustworthy resources.
(2) Choosing resources from the located options.
(3) Fully utilizing the resources in the system while avoiding

overloading any node.
Previous Methods and Challenges The three tasks must

be executed in a distributed manner since centralized methods
are not suitable for large-scale CCC. However, though many
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distributed resMgt and repMgt systems for grids have been
proposed previously, and cloud resource orchestration (i.e., re-
source provision, configuration, utilization and decommission
across a distributed set of physical resources in clouds) [6] has
been studied in recent years, these two issues have typically
been addressed separately. Simply building and combining
individual resMgt and repMgt systems in CCC will generate
doubled, prohibitively high overhead. Moreover, most previous
resMgt and repMgt approaches are not sufficiently efficient or
effective in the large-scale and dynamic environment of CCC.

Previous repMgt systems [9–12] neglect resource hetero-
geneity by assigning each node one reputation value for
providing all of its resources. We claim that node reputation
is multi-faceted and should be differentiated across multiple
resources (e.g., CPU, bandwidth, and memory). For example,
a person trusts a doctor for giving advice on medical issues but
not on financial issues. Similarly, a node that performs well for
computing services does not necessarily perform well for stor-
age services. Thus, previous repMgt systems are not effective
enough to provide correct guidance for trustworthy individual
resource selection. In task (1), RepMgt needs to rely on resMgt
for reputation differentiation across multiple resources.

Previous resMgt approaches only assume a single QoS de-
mand of users, such as efficiency or security. Given a number
of resource providers (i.e., servers), the efficiency-oriented
resMgt policy would choose the one with the highest available
resource, while the security-oriented repMgt policy would
choose the one with the highest reputation. The former may
lead to a low service success rate while the latter may overload
the node with many resource requests. Thus, uncoordinated
deployment of repMgt and resMgt will exhibit contradictory
behaviors and significantly affect the effectiveness of both,
finally leading to degraded overall performance. The results of
the single-QoS-demand assumption and contradictory behav-
iors pose two challenges. First, in task (2), how can we jointly
consider multiple QoS demands such as reputation, efficiency,
and available resources in resource selection? Second, in
task (3), how can we enable each node to actively control
its reputation and resource supply so that it avoids being
overloaded while gaining high reputation and profit?

Our Proposed Method By identifying and understanding
the interdependencies between resMgt and repMgt, we in-
troduce Harmony, a CCC platform with harmoniously inte-
grated resMgt and repMgt. It can achieve enhanced and joint
management of resources and reputation across distributed
resources in CCC. Different from the previous resMgt and
repMgt methods, Harmony enables a node to locate its desired
resources and also find the reputation of the located resources,
so that a client can choose resource providers not only by
resource availability but also by the provider’s reputation of
providing the resource. In addition, Harmony can deal with
the challenges of large scale and dynamism in the complex
environment of CCC. The contributions of this work can be
summarized as below:
(1) Preliminary study on real trace and experimental results.
We analyzed the transaction and feedback rating data we
collected from an online trading platform (Zol [13]). We
found that some sellers have high QoS in providing some
merchandise but offer low QoS in others, and buyers tend to
buy merchandise from high-reputed sellers. The findings verify
the importance of multi-faceted reputation and the drawback
of the highest-reputed node selection policy.
(2) Integrated multi-faceted resource/reputation manage-
ment. Relying on a distributed hash table overlay (DHT),
Harmony offers multi-faceted reputation evaluation across
multiple resources by indexing the resource information and
the reputation of each type of resource to the same directory
node. In this way, it enables nodes to simultaneously access the

information and reputation of available individual resources.
(3) Multi-QoS-oriented resource selection. Unlike previous
resMgt approaches that assume a single QoS demand of users,
Harmony enables a client to perform resource selection with
joint consideration of diverse QoS requirements, such as repu-
tation, efficiency, distance, and price, with different priorities.
(4) Price-assisted resource/reputation control. In a resource
transaction, a resource requester pays a resource provider (in
the form of virtual credits) for its resource. The transactions
are conducted in a distributed manner in Harmony. Harmony
employs a trading model for resource transactions in resource
sharing and leverages the resource price to control each node’s
resource use and reputation. It enables each node to adaptively
adjust its resource price to maximize its profit and maintain a
high reputation while avoiding being overloaded, in order to
fully and fairly utilize resources in the system.

We have conducted extensive trace-driven experiments with
PlanetLab [14] and simulations. Experimental results show the
superior performance of Harmony in comparison with previous
resMgt and repMgt systems, and the effectiveness of its three
components. This work is the first to integrate repMgt with
resMgt for multi-faceted node reputation evaluation to provide
precise guidance for individual resource selection. In addition
to CCC, Harmony can also be applied to other areas such as
large-scale distributed systems, grids and P2P systems.

The preliminary work of this paper was presented in [15,
16]. We introduced an integrated resource and reputation
management system in [15] and an efficient and locality-
aware resource management system in [16]. In this paper, we
combine the two systems and identified CCC as an example
of large-scale distributed systems for the application area of
this combined system. We propose a new system component
called “price-assisted resource/reputation control.” We also
present new trace analysis results to prove the necessity of
the proposed algorithms. We further extensively evaluate the
performance of the system through many experiments.

The rest of this paper is structured as follows. Section 9
presents a concise review of representative resMgt, repMgt,
and economic marketing approaches. Section 2 analyzes our
crawled trace data and studies the relationship between resMgt
and repMgt with experiments. Section 3 details the design of
the three components of Harmony and Section 3.4 presents
how the three components cooperate with each other in the
Harmony system. Section 4 presents trace-driven experimen-
tal results in comparison with previous resMgt and repMgt
approaches. Finally, Section 5 summarizes this paper with
remarks on our future work. The supplemental file presents
the pseudo-codes for two algorithms, additional PlanetLab
experimental results, simulation results of Harmony in a large-
scale system, and an overview of related work.

2 Preliminary Study
Figure 2 shows the three components of Harmony needed in
each stage of resource marketing: location, selection and trans-
action. Below, we describe the motivations of the components.

Price-assisted 
resource/reputati

on control

Multi-QoS-oriented 
resource selection

Integrated multi-faceted 
resource/reputation 

management

Resource location Resource selection Resource transaction
Fig. 2. Harmony components in resource market stages.

2.1 Motivation of Integrated Multi-faceted Res/Rep Mgt
We first study whether a high-reputed node (measured based
on its resource provision services for all types of resources)
provides high QoS for every type of resource. However,
there are no resource markets with a reputation system. We
thus studied an online merchandise trading platform, where
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each seller sells a variety of merchandise. The sellers and
merchandise are regarded as nodes and resources, respectively.
The data analytical results, to a certain extent, reflect the
selling and buying behaviors.

Zol is a top online trading platform in China similar to
Amazon and eBay. Zol is chosen for market data analysis
because neither Amazon nor eBay provides the historical
rating record of each transaction. Zol provides the historical
reputation record of each transaction, which enables to cal-
culate the reputation for each type of a seller’s merchandise
for the multi-faceted reputation study. We collected trace data
including 1,562,548 transaction records from Zol covering the
period from 9/20/2006 to 6/26/2010. In addition to the overall
reputation values of sellers, Zol provides the ratings within
[0,100] for five QoS attributes for each transaction: 1) price,
2) distance, 3) quality, 4) service, and 5) efficiency. Figure 3
shows the number of transactions versus the seller’s overall
reputation from this entire trace dataset. The figure shows that
clients tend to choose higher-reputed nodes for transactions.
Thus, if the resource a node possesses is limited, the highest-
reputed nodes can easily become overloaded.

In order to cluster the transactions by different types of
merchandise, we identified all transactions by 60 merchandise
keywords, and found 140,720 transactions of 50 sellers. The 60
merchandise are the first 60 merchandise of different brands in
the Electronics category such as “Samsung mobile phone” and
“Lenovo laptop”. For these transactions, the transactions of the
same type of merchandise of a seller are classified into a group.
The average of the five ratings of each transaction is calculated
as the seller’s QoS for this transaction. Then, the average QoS
of each group is calculated as the reputation of the seller for
this type of merchandise (named as individual reputation).
Finally, the individual reputation on each merchandise type of
each seller is derived. The results show that the lowest overall
reputation of these sellers is 89, which means that these sellers
are relatively high-reputed. Figure 4(a) shows the distribution
of the individual reputations of these 50 sellers. It shows that
90% of the individual reputations of these sellers are in the
range of [80,100], 4.4% are in [60,80], and 5.1% are in [40,60].
From the identified 50 sellers, 13 sellers who have 3 types of
merchandise in common are identified. Figure 4(b) plots the
individual reputation values for the 3 types of merchandise of
the six top overall reputed sellers. The values on the right side
of the figure are the sellers’ overall reputations. It shows that
the individual reputation for each type of a seller’s merchan-
dise fluctuates greatly, even dropping below 30 sometimes.
The results from the two figures imply that even high-reputed
sellers sometimes offer low QoS for certain types of mer-
chandise, which supports our claim that resource reputation
should be multi-faceted. When choosing a resource supplier,
the individual reputation of the merchandise type should be
referred to rather than the overall reputation of suppliers.

In the 140,720 transactions of the 50 sellers, the rating of
a QoS attribute that is no more than 40 is considered to be a
low rating; similarly an individual reputation that is no more
than 40 is considered to be a low reputation. Figure 5 shows
the percentage of transactions with low ratings in each QoS
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Fig. 6. Importance of joint efficiency and trust consideration.
attribute out of all low individual reputation transactions. It
shows that 100% have low ratings in service and in efficiency,
97% have low ratings in distance, and 10% have low ratings in
quality. This indicates that 97% of transactions of merchandise
with low individual reputations receive low ratings in the
distance, service and efficiency QoS attributes. Thus, there
is no QoS attribute whose extremely low rating leads to a
low individual reputation for a merchandise type. Also, a low
individual reputation merchandise may have a high rating in
a QoS attribute such as price as shown in the figure.
Na is used to denote the set of transactions of low ratings

in a QoS attribute a, and Nt to denote the set of transactions
of low individual reputation. The coherence value of QoS
attribute a is defined as |Nt ∩ Na|/|Nt ∪ Na − Nt ∩ Na|,
which is the correlation between QoS attribute a and the
individual reputation. A higher coherence value for a QoS
attribute means that a low rating of this QoS attribute is more
likely to lead to low individual reputation. Figure 5 also shows
the relationship between each QoS attribute and individual
reputation. It shows that the quality, service, and efficiency
QoS attributes have high coherence values and hence are the
primary factors in the low rating of the individual reputation;
however, Figure 5 shows that most transactions with low
individual reputation may still have relatively high ratings in
the price and distance QoS attributes. Therefore, a seller’s
individual reputation cannot reflect its QoS for each QoS
attribute, which confirms the need to consider multiple QoS
attributes in selecting resources. Based on this observation,
Section 3.2 introduces a multi-QoS-oriented resource selection
algorithm that enables clients to choose resources based on
their priority considerations of the different QoS attributes.
2.2 Motivation of Multi-QoS-oriented Resource Selection

and Price-assisted Control
Simply combining multi-resMgt and repMgt will lead to a few
problems. First, resMgt and repMgt always have their own in-
frastructures. For example, Mercury [17] partitions nodes into
groups based on resources for resMgt, and PowerTrust [11]
builds a P2P system with links connecting interacting nodes
for repMgt. Maintaining two infrastructures generates high
maintenance overhead. Second, most resMgt approaches are
driven by either efficiency or security through choosing the
highest-reputed or highest-capacity node. Hence, a direct com-
bination will lead to contradictory behaviors. Third, since a
node refers to the overall reputation in selecting individual
resources, it may receive incorrect guidance because a high-
overall-reputed node may provide low QoS for individual
resources.
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With the assumption that there is a single resource
bottleneck, an experiment on two node selection policies was
conducted: MaxTrust [18] and MaxCap [17, 19, 20], each
of which chooses the node with the highest reputation and
highest available capacity (i.e., resource), respectively. The
simulation assumed three types of nodes: altruistic, neutral
and egotistic, each of which provides its service successfully
with a probability 1, 0.5, and 0.1, respectively. Each node
is randomly assigned to one of the three types, and every
request has 10 servers that are able to satisfy the request. The
utilization of a node is defined as the ratio of its load to its
capacity. The maximum utilization value of each node during
the experiment was recorded. The 99.9th percentile value in
this group of maximum utilization values is referred to as the
99.9th percentile maximum utilization. A service failure occurs
when the selected node is unwilling to provide a service.
Figures 6(a) and (b) show the number of service failures and
the 99.9th percentile maximum utilization of different policies.
It shows that the efficiency-oriented policy, MaxCap, performs
best in controlling node utilization but incurs a high service
failure rate; in contrast, the trust-oriented policy, MaxTrust,
performs the best in controlling service failure rate but leads to
high node utilization. The fundamental reason for these severe
problems is the neglect of the interdependencies between
repMgt and resMgt; the uncoordinated deployment of either
one will exhibit contradictory behaviors and significantly
reduce the effectiveness of both. Therefore, a method is
needed to jointly consider efficiency and trust in resource
selection, and also need a method to avoid overloading nodes
with resource requests.

3 The Design of Harmony
3.1 Integrated Multi-Faceted Res/Rep Management
Overview of Cycloid Harmony leverages the Cycloid hierar-
chically structured P2P overlay [21] for its substrate. It has
at most n=d · 2d nodes, where d is its dimension. The upper
layer in Figure 7 shows an example of a Cycloid with d = 3.
Each Cycloid node’s ID is represented by a pair of indices
(k, ad−1ad−2 . . . a0), where k ∈ [0, d − 1] is a cyclic index
and ad−1ad−2......a0 ∈ [0, 2d − 1] is a cubical index. For a
given key or node IP address, its cyclic index is its consistent
hash value [22] modulated by d and its cubical index is the
hash value divided by d. All nodes are grouped into different
clusters, which are identified by ad−1ad−2......a0. Within a
cluster, the nodes are differentiated by k. In the Cycloid key
assignment policy, an object/key is assigned to the node whose
ID is closest to the object/key’s ID. It provides two main
functions: Insert(ID, object) and Lookup(ID) to store an
object in its owner node and to retrieve the object, respectively.
It achieves a time complexity of O(log n) per lookup request
by using a constant 7 neighbors per node.

Our previous work [23] introduced the Hilbert number (H),
which represents a node’s geographical proximity so that the
distances between nodes can be inferred from the closeness
of their H values. Physically close nodes have closer Hs. As
shown in Figure 7, Harmony builds all nodes in CCC into
a locality-aware Cycloid [24], where physically close nodes
constitute a cluster and a node’s neighbors are physically close
to itself. To achieve this, Harmony uses a node’s H as its
cubical index. When a node chooses a neighbor for each entry
in its neighbor table, it chooses the proximity-closest one from
the options whose IDs satisfy the requirement of the entry.

Overview of Harmony We assume that resource types
(e.g., CPU, bandwidth and memory) are globally defined and
known by every node. The resource information (denoted by
Ir) includes the resource provider’s IP address, resource type,
available amount, resource physical location, price, etc. A

Harmony platform
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Fig. 7. The Harmony platform.
general distributed method for resource location is to store
resource availability information in some directory nodes, and
forward the resource requests to the corresponding directory
nodes [17, 19, 20, 25–28]. Similarly, a general distributed
method for repMgt is to store reputation information of
nodes in some directory nodes, and forward the reputation
requests to the corresponding directory nodes [9–12]. As in
the previous repMgt systems, we assume that the directory
nodes are trustable, and we leave the study of untrustworthy
directory nodes as our future work. In the reputation system,
nodes may dishonestly report the reputation feedback of their
received service. We can use the previous works [10] that
aim to more accurately evaluate node reputation to handle
this problem. As the focus of this work is how to collect
reputation feedbacks, based on which the node reputation is
calculated. The techniques for accurate reputation calculation
can be directly adopted by this work and they are orthogonal to
our study in this paper. For multi-faceted resource/reputation
management, Ir should be differentiated based on resource
type, the reputation of a node should be differentiated based
on the QoS of providing different types of resources (denoted
by Rr), and a node’s Ir and Rr should be stored in the
same directory node. This enables a resource requester to
find its requested resources (e.g., “CPU speed=1000MHz” and
“Memory=1024MB”) along with the reputations of resource
providers in providing the requested resources, which are used
for selecting providers.

To achieve this goal, as shown in the upper layer in
Figure 7, Harmony pools all the resource information of each
resource type into a cluster. It also distinguishes the reputation
feedbacks for a resource provider by resource types, and
stores the feedback into the corresponding resource cluster. For
example, the reputation feedback of a node’s “Mem” resource
provision is mapped to the cluster for the “Mem” resource.
As a result, for each specific resource type, Harmony pools
together the Ir of available resources and Rr of resource
providers in providing this resource.

Within each cluster, Harmony further groups the resource
information of physically close nodes into one node in order to
enable requesters to find physically close resources. Since all
resource information Ir of each resource type in the system is
stored in a cluster, to search for one resource, a directory node
only needs to probe nodes in its cluster rather than executing
system-wide probing. Pooling together the information of the
same resource into a smaller cluster of physically close nodes
reduces the probing latency and cost, thus improving resource
discovery efficiency.

Details of Harmony With the design described above, each
node periodically reports its available resources to directory
nodes and sends resource requests to directory nodes when it
needs resources. The directory nodes collect Ir and requests,
and function as matchmakers between resource requesters and
providers. The pseudocode of these three procedures is shown
in Algorithm 1 in the supplementary file. Below, we present
the details of each procedure.
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As the STORE procedure in Algorithm 1 shows, for re-
source reporting, node i reports its available resource r by
Insert((Hi, Hr),Ir), where Hr is the consistent value of re-
source r’s name. Based on the Cycloid key assignment policy,
the Ir is stored in the node whose ID is closest to (Hi, Hr).
Recall that in a Cycloid ID, the second index differentiates the
clusters and the first index differentiates the nodes within one
cluster. Then, the Ir with the same Hr is stored in the same
cluster, and Îr ∈ Ir with the same Hi is stored in the same
node in the cluster. Consequently, the resource information for
the same resource type is collected in the same cluster, and
the information is further distributed among the nodes within
the cluster based on resource proximity.

In Figure 7, for example, the Ir of the memory resource
of physically close nodes is forwarded to the same node in
the “Mem” cluster. As the REQUEST procedure in Algo-
rithm 1 shows, to query multiple resources, node i sends
out Lookup(Hi,Hr) requests along with its desired amount,
time period, reputation, price, and so on, with one request for
one resource type. Based on the Cycloid routing algorithm,
the request is forwarded to the owner node of (Hi,Hr) (i.e.,
the requested resource’s directory node), which stores the
information of the requested resource that is physically close
to the requester. As the PROCESS procedure in Algorithm 1
shows, if the directory node has no Ir satisfying the requests
(i.e., the amount and reputation are no less than the requested
values and the price is no higher than the requested value),
it probes its neighbor nodes in its cluster. After the directory
node finds Ir satisfying the request, it uses the multi-QoS-
oriented resource selection algorithm (Section 3.2) to select
the best server(s) for the client, and then replies to the client
with the results. Since all Ir of the requested resource in the
system is in the cluster, if there’s no Ir satisfying the request in
the cluster, then there is no satisfying resource in the system.
The directory node then sends a search failure response to the
requester.

Below, we explain how a directory node probes its neighbor
nodes in its cluster with the consideration of both locality and
dynamism. Since the H represents the physical closeness of
nodes, the Ir of physically close nodes gathers in the same
or logically close nodes. Hence, with locality consideration,
a node should probe its logically close neighbors in order
to map physically close resource requesters and providers.
Specifically, a directory node’s request is forwarded sequen-
tially along the nodes in its cluster. However, such sequential
probing may fail due to node dynamism. It is known that
randomized probing is an effective way to handle dynamism.
It was also proved in [29] that 2-way randomized probing is
effective in dealing with dynamism and could achieve faster
speed over 1-way probing, but m(> 2)-way probing may not
result in much additional improvement. Therefore, Harmony
uses a 2-way randomized probing method. Specifically, the
node randomly generates two cyclic IDs within an increasing
range of proximity in two directions, and probes the nodes
with the random IDs. For example, if a node’s ID is (5,200),
it randomly generates two cyclic IDs within 2 and 8 given
a range of 3. Suppose the generated numbers are 6 and 3.
The node then probes nodes (6,200) and (3,200) at the same
time. If the requested resource still is not found, the node
increases the proximity range and repeats the same process.
This method introduces a factor of randomness in the probing
process in a range of proximity to deal with dynamism and
locality simultaneously. Probing in an increasing range of
proximity helps to map physically close resource requesters
and providers, improving resource management efficiency.

Upon receiving the satisfying Ir, the client further chooses
the servers with a highest reputation and lowest resource price
(Section 3.3), and then randomly chooses one to ask for the

resource. After the client finishes using the requested resource,
it reports its reputation feedback on the server’s resource pro-
vision service using Insert((Hs, Hr), Rr), where s represents
the server. According to the Cycloid key assignment policy,
the feedback receiver is exactly the directory node for resource
r of server s. Therefore, all Rr of server s in providing this
resource, say “Mem”, are collected in this directory node. The
directory node periodically calculates the reputation value of
node s in providing the “Mem” resource based on the feedback
using a reputation calculation method [9–12]. Recall that all
Ir of “Mem” of server s is also reported to this directory
node. Thus, in Harmony, for a specific resource, the Ir of a
resource and Rr of the nodes offering this resource are stored
in the same directory node. Node i can use Lookup(Hi, Hr)
to query a resource and the reputations of providers offering
that specific resource.

P2P’s self-organization mechanism helps Harmony to han-
dle node dynamism. In this mechanism, nodes update their
neighbors periodically and transfer resource and reputation in-
formation based on the DHT key assignment policy when join-
ing or leaving. Also, before a node departs from the system or
after a node joins in the system, it notifies the directory nodes
that store Ir of its resources. Thus, a node’s Ir is always stored
in its directory nodes even in dynamism, and the Lookup(ID)
requests can always be forwarded to the directory nodes. In
a very large-scale distributed system, directory nodes may
become bottlenecks. Our experimental results in Section 8.2
show that Harmony achieves a more balanced load distribution
among directory nodes than the previous DHT-based resource
management systems due to its two-layer hierarchical resource
information distribution. When a directory node is overloaded,
it can use the load balancing algorithm introduced in [29]
to move its load to a lightly loaded node and maintain an
index to the node. Harmony’s resource/reputation management
also features three characteristics: (1) locality-awareness and
dynamism-resilience; (2) low maintenance overhead by relying
on a single DHT for both resource and reputation management;
and (3) multi-resource management using one DHT.

3.2 Multi-QoS-oriented Resource Selection
After a directory node locates the resource providers that have
the required reputation, available amount, and price, it needs
to choose provider(s) for the requester. The final QoS offered
by a provider is determined by a number of factors such as
efficiency, trustworthiness, distance, security and price. We
call these factors QoS demands (or attributes). When choos-
ing from a number of providers, most previous approaches
rigidly consider a single QoS demand at a time. However,
different tasks have different requirements. For time-critical
tasks, distance should be given priority. For a large computing
task, efficiency should be the main deciding factor. Further, a
server’s distances to different clients are different. This means
a server’s final QoS for client i does not necessarily represent
its QoS for client j. Also, a task or user may have multiple
demands with different priorities. A challenge here is how to
consider individual or combined QoS attributes, and a user’s
desired priorities of the attributes in provider selection.

Harmony solves this problem by unifying all attribute values
and a client’s considered attribute priority into an overall QoS
metric. eBay’s reputation system asks users to provide feed-
back on different aspects such as item description and shipping
charge. Similarly, Harmony utilizes a list of QoS attributes.
It requires nodes to give ratings for each QoS attribute and
overall QoS for a resource service in addition to the reputation
for a server. As the reputation feedback, the QoS ratings are
also collected at the directory node of the provided resource of
the server. The overall QoS is actually a result of the combined
influence from the QoS attributes. However, it is not easy to
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Fig. 8. A neural network model for resource selection.
detect how the different attributes influence the overall QoS.
Harmony depends on a neural network [30] (e.g., Bayesian
network [31]) to find out the influence weight of each attribute
on the overall QoS value, and further considers users’ attribute
consideration priority. A neural network can be used to derive
meaning from complicated or imprecise data, and extract pat-
terns and detect trends. It uses adaptive learning to learn how
to do tasks based on the data given for training, and then func-
tions as an “expert” on the data it has been given to analyze.

In Harmony, each directory node builds a neural network
model as shown in Figure 8. Its inputs are the ratings of
each QoS attribute, denoted by {A1, A2, · · · , A5, · · · }, and
its output is the overall QoS value for a provider. The training
process of the neural network is the process of determining
the weight of influence of each attribute on the QoS, denoted
by {w1, w2, · · · , w5, · · · }. These weights reflect the normal
degree of influence from different QoS attributes on the overall
QoS calculated by the collected QoS ratings from many nodes.
Thus, the activation function is QoS =

∑n
i=1 wi ∗ Ai. After

building the neural network, each directory node trains its
neural network model periodically using its newly collected
QoS ratings to keep the model and the calculated weights
wi up-to-date. A requester sends its consideration priority
weight pi(

∑
pi = 1) along with its resource request. After

the directory node locates satisfying resource providers, it
calculates the overall QoS value for each server option by
considering both the normal influence of QoS attributes on
the overall QoS and the requester’s consideration priority.
To do this, the directory node temporarily changes w in the
neural network model according to customer c’s requests:
wi,c = pi,cwi, as shown in Figure 8. It then inputs each
server’s attribute values {A1, A2, · · · , A5, · · · } into the neural
network. The output of the neural network is the overall QoS.
Finally, the directory node determines the server(s) with the
highest overall QoS value. Thus, Harmony jointly takes into
account the client’s considered priority on different attributes
and the influence weights of attributes on the final rating in
server selection.

3.3 Price-assisted Resource/Reputation Control
In managing decentralized resources, Harmony employs a
resource trading model [32–35], which is recognized as an
effective way to provide incentives for nodes to provide high
QoS and thwart uncooperative behaviors. In the model, a node
pays credits to a resource provider for offered resources, and
a resource provider specifies the price of its resources. The
credits could be either virtual money or real money. The price
is the amount of credits to use one unit of resource for one
time unit. Consequently, in order to use others’ resources, a
node must provide its resources to others (or pay real money).

We take one resource type as an example to describe the
price-assisted resource/reputation control scheme. A provider
normally specifies the price of its resources according to the
reputation value, load, and the desirability of the resources.
Resources with higher reputations, lower loads, and higher
demand (frequently requested) should have high prices.
Therefore, in order to earn more income, each node is
motivated to provide high QoS to maintain high reputation,
while avoiding being overloaded.

Previous repMgt methods always encourage nodes to choose
the highest-reputed node as the server. However, with the
highest-reputed server selection policy, a high-reputed server
easily becomes overloaded. This server selection policy is
effective when nodes have unlimited resources, but it does
not hold true in CCC, where each node has limited resources.
Always choosing the highest-reputed node will overload that
node, which then cannot offer high-QoS and receives low
ratings from others. Then, the node will have low reputation
and few chances to be chosen as a server in order to earn
credits and increase its reputation. Though a node in Harmony
chooses a server with a record of sufficient resources in the
directory node, the server still would be overloaded due to
delayed updates of the resource information or many simulta-
neous requests.

Therefore, a challenge here is how to enable a node to keep
a high reputation, fully utilize its resources and avoid being
overloaded. We notice that among the different QoS attributes
in Figure 8, price is the only attribute that can be controlled
by a provider. By fine-tuning its price, a node can control
the calculated overall QoS, thus controlling its own load and
reputation. Hence, Harmony takes advantage of the price to
avoid overloading nodes and strengthen cooperative and high-
QoS resource sharing. Specifically, a node adaptively adjusts
its resource price according to its load in order to always
remain high-reputed and avoid being overloaded while gaining
the highest income.

We define a load factor f = l/c, where l is the amount of
a resource a node has provided to others, and c is the total
amount of that resource the node owns. When a node’s f > 1,
it is overloaded. A node periodically checks its f . If the node’s
f > α (0.8 ≤ α < 1), it increases its price by one price unit to
discourage requesters and avoid being overloaded. Otherwise,
it decreases its price by one price unit in order to promote
its resource usage to raise its own reputation and income. We
choose α < 1 rather than α = 1 in order to avoid delayed
responses to the node’s overloaded status. This control method
is used to deal with the overloaded and underloaded resource
utilization situations. Based on economic theory [36], as long
as the resource demand and supply are stable, the resultant
equilibrium price will be stable.

The price-assisted resource/reputation control scheme pre-
vents uncooperative behaviors, encourages nodes to provide
high QoS, and allows nodes to adaptively adjust their load
to offer high QoS. As a result, all resources in the system
are fully and fairly utilized, nodes are not overloaded, and a
node’s reputation can truly reflect its QoS in offering resources
without the influence of the overloaded status. To address the
problem of low reputation for newly joined nodes, Harmony
assigns the nodes a certain amount of starting virtual credits
that can be used for building initial reputation.

3.4 Combination of Three Components
Algorithm 2 in the supplementary file shows the pseudocode
of the algorithm executed by node i in Harmony
combining three components. In the integrated multi-faceted
resource/reputation management, a node periodically reports
its specified resource prices along with its available resource
amount. When a node needs a resource, it sends a request
with its desired price, amount, time period, and provider’s
reputation. After receiving a request, a directory node searches
its directory, and finds all providers that have qualified
resources satisfying the requester’s requirements. It then uses
the multi-QoS-oriented node selection algorithm to identify
the resource providers with the highest overall QoS values,
and notifies the requester of the providers. The requester then
asks its selected providers for resources. Based on the price-
assisted resource/reputation control, the resource receiver pays
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a resource provider for the provided resources. Also, nodes
periodically check their load and adjust their resource prices
accordingly, in order to remain highly reputed and maximize
their profits, while avoiding being overloaded. If a node’s rep-
utation for a resource is increased, it has a higher probability
of being selected as a resource provider. Then, it gains more
opportunities to earn credits and can have enough credits
to buy its desired resources. On the other hand, if a node’s
reputation for a resource is decreased, it has a lower probability
of being selected as a resource provider. Then, it has fewer
opportunities to earn credits and may not have enough credits
to buy its desired resources. As a result, nodes are motivated
to increase their reputation by providing high QoS. The
time period for the neural network model training and load
factor calculation should be determined with consideration of
several factors, including the performance requirement, the
frequency of transactions, the overhead in the system, etc.
A shorter time period leads to higher effectiveness in QoS
predication accuracy and load controlling but generates higher
overhead. We leave this optimization as our future work.
4 Performance Evaluation on PlanetLab
To validate the design of Harmony, we implemented a pro-
totype on PlanetLab and conducted trace-driven experiments.
Since we can stably access around 234 nodes in PlanetLab, we
set the number of nodes in the system to 234. We created 12
resource types in our system. In order to derive node overall
reputations and individual reputations for these resource types,
we first identified 13 sellers from the Zol trace data with 3
merchandise types in common. We then mapped this trace data
to the 234 nodes and 12 merchandise types. We normalized
the reputation values from [0,100] to [0,10]. The lowest overall
reputation of these sellers is 8.9 in the trace data. To simulate
an environment with high-, medium- and low-reputed nodes,
we generated synthetic data for 1/3 nodes with overall and
individual reputations randomly chosen from [1,3] and [4,6],
respectively. Their individual reputations were set equal to
their overall reputations. On PlanetLab, we selected 21 nodes
(7 from the US, Europe and Asia, respectively) as landmark
nodes for calculating node Hilbert numbers. We randomly
chose 8 nodes as requesters in America, Europe, and Asia,
respectively. In the experiments, unless otherwise specified,
each requester sends one request every 10s for a resource ran-
domly chosen from the 12 types. A different request initiation
rate would not change the relative performance differences be-
tween the systems under evaluation. A resource provider with
individual reputation t for a resource has t/10 probability to
provide this resource. We report the 10 average values of each
group of 500 requests over time as the experimental results.

In order to show the importance of integrating resource
management and reputation management, we first evaluated
Harmony in comparison with Harmony without reputation
management (denoted by resMgt) and the PowerTrust repu-
tation management system [11]. To make the methods com-
parable, we use Harmony’s structure and resource discovery
algorithms for PowerTrust. These methods are only different in
resource selection. After locating resource providers, Harmony
chooses a lightly loaded provider with the highest individual
reputation, PowerTrust chooses the provider with the highest
overall reputation, and resMgt randomly chooses a provider
among lightly loaded nodes.

We compared Harmony with a Single-DHT method [25]
and a Multi-DHT method [20] in order to show Harmony’s
higher efficiency in the complex environment of large-scale
and dynamic CCC. Single-DHT relies on a single DHT,
in which a resource ID owner is the directory node for all
information of this resource. Multi-DHT relies on multiple
DHTs, in which one DHT is responsible for one resource

type, and resource information is distributed among all DHT
nodes based on their resource values.

4.1 Integrated Multi-Faceted Res/Rep Management
Resource management needs reputation management to pro-
vide a cooperative environment for resource sharing. Other-
wise, a node cannot know which resources are trustworthy.
Resource management in turn facilitates reputation manage-
ment to evaluate multi-faceted node reputation in providing
different resources. Therefore, resMgt may choose nodes un-
willing to provide services and generate many service failures.
PowerTrust may choose overloaded nodes that cannot process
requests successfully. By integrating both resource manage-
ment and reputation management, Harmony enables joint
consideration of node reputation and load status and chooses
lightly loaded high-reputed nodes that can always process
requests successfully. Below, we present experimental results
to show the importance of integrating resource management
and reputation management.

4.1.1 Trustworthy Resource Sharing
We first tested different methods when all requests are single-
resource requests. In order to see the effect of reputation
management alone, we assumed that nodes do not drop re-
quests when overloaded but queue the requests for processing
later on. Figure 9(a) shows the average success rate of each
system, which is measured by the ratio of successfully resolved
resource requests over total requests. A request is successfully
resolved if the selected server has provided its requested
resource. We see that Harmony achieves a success rate of
over 96%, while PowerTrust achieves around 73% and resMgt
achieves around 44%. ResMgt selects a resource without
considering reputation and may choose a resource provider
with low reputation for the requested resource, leading to
a low success rate. PowerTrust always selects the highest-
overall-reputed provider. As verified by the trace, a node with
a high overall reputation may provide low QoS for another
resource due to either unwillingness or overloaded status.
Therefore, Harmony significantly outperforms PowerTrust by
always selecting the supplier with the highest individual,
rather than overall, reputation. Figure 9(b) shows the av-
erage individual reputation of every group of 500 selected
resource providers for the requested resources, which follows
Harmony>PowerTrust>resMgt. The experimental results con-
firm the effectiveness of multi-faceted reputation management
and its importance in guiding trustworthy resource selection.

We then tested different methods when all requests are
multiple-resource requests. Figure 9(c) shows the average
success rate of each method, with each request calling for three
resources. A multi-resource request is successfully resolved
only after all three resources are successfully discovered. The
result shows that Harmony>PowerTrust>resMgt due to the
same reasons as in Figure 9(a) and Figure 9(b). Comparing
Figure 9(c) with Figure 9(a), we observe that the average
success rate of Harmony decreases about 0.06, while those
of PowerTrust and resMgt decrease around 0.34 and 0.35,
respectively. This is because if one of the three resource sup-
pliers has a low individual reputation, the final request failure
is low. We also find that Harmony outperforms PowerTrust
and resMgt more significantly for multiple-resource requests
because it can ensure the success rate of each of the three
selected suppliers by considering multi-faceted reputations for
different resources.

We used the product of the individual reputations of the
selected three resource providers of a request as the individual
reputation result of this request. Figure 9(d) shows the average
individual reputation for each group of 500 multi-resource
requests over time. The experimental result also follows
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Fig. 9. Trustworthy resource sharing.
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Harmony>PowerTrust>resMgt, which is consistent with the
success rate result in Figure 9(c). Also, the result of each
method in Figure 9(d) is lower than that in Figure 9(b). This
is caused by the same reasons for the differences between
Figure 9(a) and Figure 9(c), which confirms the importance
of considering individual reputation in selecting resource
providers, especially for multi-resource requests.

4.1.2 Efficient Resource Sharing
Without resource management, reputation management cannot
tell if a resource supplier has sufficient available resources. We
then tested the importance of resource management to repu-
tation management. In this experiment, each node maintains
a waiting queue; an overloaded resource provider inserts its
received request into its waiting queue. The requests staying
in the queue for more than 100s are dropped. Therefore, a
resource provision failure is caused by either a provider’s
overloaded status or its unwillingness to provide a service
as reflected by its reputation. The Pareto distribution reflects
the real world in which the amounts of available resources
vary by different orders of magnitude [29, 37–39]. Thus, we
used a Pareto distribution in determining a node’s capacity
for a resource type, a request’s requested amount, and time
period. We set the shape parameter to 2, and the scale
parameters to 100, 40, and 200 for the above three parameters,
respectively. We arbitrarily set the values in their reasonable
ranges. Different setting values will not change the relative
performance differences of the methods.

Figure 10(a) shows the average success rates for groups
of 500 requests by each method. The black color represents
delayed successful requests that have waited in the queue be-
fore being processed, and the grey color represents successful
requests with no delay. We see that PowerTrust generates a
large number of delayed successful requests, while the other
methods generate no delayed requests. Figure 10(b) shows the
total waiting time for each group of 500 requests, including
failed requests. We see that PowerTrust generates high delay
for a request, while Harmony and resMgt produce little or no
delay, which is consistent with Figure 10(a). This is because
PowerTrust always chooses the highest-overall-reputed nodes
as resource providers without considering node load. These
nodes receive too many requests, causing many to wait in
the queues. Since both Harmony and resMgt select lightly
loaded nodes as resource providers, they generate few delayed
requests. Figure 10(a) also shows that the success rates in

most cases follow Harmony>resMgt>PowerTrust. In order
to further explore the trend, we show in Figure 10(c) the
failure rate due to provider overload or unwillingness to serve
for groups of 500 requests for each method. We see that
PowerTrust generates a higher failure rate due to overload
than resMgt; this is because PowerTrust fails to consider load
in provider selection. However, resMgt has a higher failure
rate due to provider unwillingness than PowerTrust because
resMgt only considers node load but neglects reputation. Only
Harmony can constrain failures due to either cause, as it jointly
considers both load and reputation.

4.2 Multi-QoS-oriented Resource Selection
We then evaluate the effectiveness of the multi-QoS-oriented
resource selection scheme. We used 95×12 transaction records
for 95 sellers, each with 12 types of merchandise. Each trans-
action record has 52 transactions. We used 40×12 for training
and the remaining 55 × 12 for testing. We regard a node’s
individual reputation (rating on its transactions for a type of
merchandise) as its overall QoS for the merchandise (i.e.,
resource) and regard its overall reputation as its reputation in
Harmony. The inputs of the neural network model include the
QoS attributes in each transaction (i.e., price, distance, service,
quality and efficiency) and the seller’s overall reputation. The
output of the model is the seller’s overall QoS. Because the real
trace does not have users’ consideration priorities, we assume
that the six QoS attributes have equal priorities. Figure 11
shows the predicted overall QoS and the real overall QoS for
100 resource requests, both of which almost overlap. Their
root mean square error equals 0.95, a very small value. The re-
sults show the effectiveness and accuracy of the neural network
model in predicting the QoS in individual resource selection.

4.3 Effect of Queuing Timeout
In order to study the effect of the timeout for dropping
requests on the success rate and failure rate, we measured
the two metrics with varying timeout values for 5000 requests.
Figure 12(a) shows the success rates of different methods with
different timeout values. We see that Harmony and resMgt
generate no delayed requests since they choose lightly loaded
nodes, while PowerTrust generates many delayed successful
requests since it does not consider node load. This result
is consistent with that in Figure 10(a). We observe that the
timeout value does not affect the success rate of Harmony
and resMgt. Also, as the timeout value increases, the success
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Fig. 12. Effect of queuing timeout on resource sharing.
rate of PowerTrust for delayed successful requests increases.
As Harmony and resMgt always choose lightly loaded nodes,
they do not need to store requests that cannot be processed
in time into a queue. PowerTrust heavily depends on the
queue since it is very likely to choose an overloaded node. A
smaller timeout introduces more request drops and hence fewer
delayed successful requests, and vice versa. We also observe
that the success rate follows Harmony>resMgt>PowerTrust
except when the timeout equals 1000s for the same reasons as
in Figure 10(a). The large timeout of 1000s allows PowerTrust
to store and resolve more requests, thus producing more
successful requests than resMgt.

Figure 12(b) shows the failure rate due to overload or
unwillingness for the three methods at different timeouts. We
see that the failures in Harmony and resMgt are all caused by
provider unwillingness to provide services, and the failures in
PowerTrust are caused by both overload and unwillingness. As
the timeout value increases, the failure rate caused by provider
overload decreases. A larger timeout enables more requests to
be resolved and leads to few failures and vice versa. These re-
sults are consistent with those in Figure 12(a). We also observe
that the failure rate follows Harmony<resMgt<PowerTrust
except when the timeout equals 1000s, for the same reasons as
in Figure 10(c). The large 1000s timeout allows PowerTrust to
store and resolve more requests, thus producing fewer failed
requests than resMgt. In conclusion, Harmony and resMgt are
not affected by the timeout, while PowerTrust is sensitive to
the timeout and a large timeout enables it to resolve more
requests. Moreover, Harmony always achieves a higher success
rate than the other methods since it considers both reputation
and load status.

4.4 Price-assisted Resource/Reputation Control
We then test the performance on a system with and with-
out the price-assisted resource/reputation control algorithm
denoted by w/Price and w/oPrice, respectively, in a heavy
load situation. We randomly chose nodes from the system
to generate requests. The request generating rate follows a
Poisson process at a rate of 2 requests per second. We set
every request to use 40 units of a resource for 200s. We chose
these values so that some resource providers have insufficient
available resources when requested. We set the price range
to [10, 20] credits. All nodes have the same capacity of 200
and reputation of 9. During the simulation period, no resource
information is updated in the directory nodes. To choose a
resource provider, a requester first identifies the providers
with reputation > 8, then identifies the providers with the
lowest price, and finally randomly chooses one. Nodes with
reputation > 8 have probability 1 to offer the service. A
resource request fails only when its provider is overloaded. If a
requester receives a successful service, the resource provider’s
reputation is increased by 0.001. Otherwise, its reputation is
decreased by 0.02. In every 10s, each node checks its load; if
its load factor f > 0.8, it reduces its price by 1; otherwise, it
increases its price by 1. Also, each provider charges its clients
for its offered resources and its reputation is updated in every
10s. The timeout of the waiting queue of each provider was
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Fig. 13. Effectiveness of price-assisted control algorithm.
set to 60s. We randomly determined the values of the above
parameters in their reasonable ranges, and different parameter
values should not change the relative performance differences
between different methods.

Figure 13(a) shows the total request waiting time in node
queues and total number of request timeouts versus time.
w/oPrice generates a significantly higher total request wait-
ing time than w/Price. Also, the request waiting time of
w/oPrice increases dramatically while that of w/Price grows
only slightly as time goes on. This is because nodes in w/Price
adjust their own load by price, which can effectively prevent
node overload and avoid long queues. In contrast, reputed
nodes in w/oPrice are likely to be overloaded since they have
a high probability of being chosen as providers but have no
strategy to adjust their load. Due to the same reason, the total
number of request timeouts of w/oPrice is much smaller than
that of w/Price.

Figure 13(b) shows the median, 99th and 1st percentiles
of all nodes’ maximum utilizations every 500s. We see
that w/Price generates smaller median values, much smaller
99th percentile values, and larger 1st percentile values than
w/oPrice. These results imply that w/Price distributes request
load among servers more evenly than w/oPrice. w/Price makes
full use of all available resources while constraining node
utilization within 100%; while in w/oPrice, some nodes are
overloaded or underloaded. The experimental results in both
figures further verify the effectiveness of the price-based
control algorithm in fully utilizing available resources and
preventing overloads.

5 Conclusion
In this paper, we propose an integrated resource/reputation
management platform, called Harmony, for collaborative cloud
computing (CCC). Recognizing the interdependencies between
resource management and reputation management, Harmony
incorporates three innovative components to enhance their
mutual interactions for efficient and trustworthy resource shar-
ing among clouds. The integrated resource/reputation man-
agement component efficiently and effectively collects and
provides information about available resources and reputations
of providers for providing the types of resources. The multi-
QoS-oriented resource selection component helps requesters
choose resource providers that offer the highest QoS mea-
sured by the requesters’ priority consideration of multiple
QoS attributes. The price-assisted resource/reputation control
component provides incentives for nodes to offer high QoS
in providing resources. Also, it helps providers keep their
high reputations and avoid being overloaded while maximizing
incomes. The components collaborate to enhance the effi-
ciency and reliability of sharing globally-scattered distributed
resources in CCC. Simulations and trace-driven experiments
on PlanetLab verify the effectiveness of the different Harmony
components and the superior performance of Harmony in
comparison to previous resource and reputation management
systems. The experimental results also show that Harmony
achieves high scalability, balanced load distribution, locality-
awareness, and dynamism-resilience in the large-scale and
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dynamic CCC environment. In our future work, we will inves-
tigate the optimal time period for neural network training and
load factor calculation. We will investigate the challenges of
deploying the Harmony system for the real-world applications
which involve cooperation between cloud providers.
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6 Pseudocode for Two Algorithms

Algorithm 1 Pseudocode for resource information storing and
retrieving conducted by a node.

1: procedure STORE(resource)
2: Calculate its Hilbert Number Hi

3: Calculate the consistent hash value of the resource Hr

4: Generate resource ID (Hi, Hr)
5: Use DHT function Insert((Hi, Hr), Ir) to store the resource
6: information in its local cluster
7: end procedure
8:
9: procedure REQUEST(resource)

10: Calculate its Hilbert Number Hi

11: Calculate the consistent hash value of the resource Hr

12: Generate resource ID (Hi, Hr)
13: Use DHT function Lookup(Hi, Hr) to request the resource
14: information < ip addr(j)... >
15: Request resources from resource provider ip addr(j)
16: end procedure
17:
18: procedure PROCESS(resourceRequest)
19: Check its resource directory
20: if has resource information of requested resource then
21: Return the resource information
22: else
23: while not found the requested resource information do
24: Probe other nodes in its cluster using the 2-way randomized
25: probing method
26: end while
27: end if
28: Return the resource information or a search failure response
29: end procedure

7 Additional PlanetLab Experimental Results
7.1 Price-assisted Resource/Reputation Control
In this experiment, we set the price range to [10, 20] credits.
We tested 39 resource providers in a geographical region for
one resource. We randomly chose three providers. One node
offers the lowest price (10 credits), one offers the highest
price (20 credits), and the other one (called the Harmony
node) executes the price-assisted resource/reputation control
scheme in Harmony. The remaining nodes offer a medium
price (15 credits). All nodes have the same capacity of 200
and reputation of 9. Resource requests were generated once
every 10s for the resource in this region. We set every request
to use 40 units of a resource for 100s in order to make
some resource providers have insufficient available resources
when requested. During the simulation period, no resource
information is updated in the directory nodes. To choose a
resource provider, a requester first identifies the providers with
reputation > 8, then identifies the providers with the lowest
price, and finally randomly chooses one. Nodes with reputation
> 8 have probability 1 to offer the service. A resource request
fails only when its provider is overloaded. If a requester
receives a successful service, the resource provider’s reputation
is increased by 0.001. Otherwise, its reputation is decreased
by 0.02. In every 10s, the Harmony node checks its load; if
its load factor f > 0.8, it reduces its price by 1; otherwise, it
increases its price by 1. Also, each provider charges its clients
for its offered resources and its reputation is updated in every
10s. The timeout of the waiting queue of each provider was
set to 60s. We randomly determined the values of the above
parameters in their reasonable ranges, and different parameter
values should not change the relative performance differences
between different methods.

Figures 14(a), 14(b), 14(c), and 14(d) show the accumulated
income, average load per node, accumulated failure rate,
and reputation for the highest-priced, lowest-priced, medium-
priced, and Harmony nodes at every 1,000s. The lowest-priced
node begins the experiment with a very high load, income,

Algorithm 2 The pseudocode of the algorithm executed by
node i in Harmony.

1: procedure MULTI-FACETED RESOURCE/REPUATION MANAGEMENT
2: Periodically send Insert((Hi, Hr),Ir) to report its available
3: resources to the directory node
4: if need a resource(s) then
5: for each resource type of needed resource(s) do
6: Use Lookup(Hi,Hr) function to send the request to the
7: resource’s directory node
8: end for
9: end if

10: if receive a response from a directory node then
11: for each provider in the response do
12: Send a request to the provider
13: end for
14: end if
15: end procedure
16:
17: procedure MULTI-QOS-ORIENTED RESOURCE SELECTION
18: if it is a directory node then
19: Build a neural network model for QoS calculation
20: Periodically train the neural network model
21: if receive a resource request then
22: Identify the resource providers satisfying the required amount,
23: reputation, resource availability time and price
24: Calculate QoS using the neural network
25: Choose the providers with the highest QoS
26: Notify the requester with the selected providers
27: end if
28: end if
29: end procedure
30:
31: procedure PRICE-ASSISTED RESOURCE/REPUTATION CONTROL
32: Periodically calculate its load factor f = l/c
33: if f > α (0.8 ≤ α < 1) then
34: Increase its price by one price unit
35: else
36: Decrease its price by one price unit
37: end if
38: if provide other nodes with resources then
39: Charge credits from each resource receiver
40: end if
41: if receive resources from other nodes then
42: Pay credits to each resource provider
43: end if
44: end procedure

and failure rate; this clearly is because its price makes it an
attractive provider. As it becomes overloaded with requests,
however, its failure rate increases, which causes its reputation
to fall below 8 and receive no more requests. Its income and
load correspondingly plummet. The medium-priced node is
unlikely to receive requests, as there are many other nodes
with similar prices and reputation, and most of customers
are attracted by Harmony node. As such, its income, load,
failure rate, and reputation stay relatively constant. Similarly,
the highest-priced node is an unattractive provider due to
the cost of its resources. It receives no requests, and thus
its income, load, and failure rate remain 0. The Harmony
node outperforms all other nodes. Its income and load start
out small, but increase until they remain stable. Further, it
produces no failures and its reputation climbs over the course
of the experiment. Since the Harmony node adapts its price to
increase or reduce load when needed, other nodes select it as
a provider only when it has available resources.

7.2 Efficiency of Resource Location
We randomly chose 12 nodes distributed all over the world.
Each of the 12 nodes sends a request every 15s. Because of
resource limitations on PlanetLab, we assumed Multi-DHT
uses 3 DHTs to manage 12 types of resources, with each DHT
managing 4 resources. Figure 15(a) shows the average client-
server distances of each system. We also include the optimal
result for the case in which each client is able to choose the
geographically closest server, denoted by Closest. The figure
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Fig. 15. Efficiency of resource location.
shows that the average distance of Harmony remains closer to
that of Closest than those of resMgt and PowerTrust. The result
demonstrates the effectiveness of Harmony in locality-aware
resource discovery. ResMgt and PowerTrust generate much
longer client-server distances, approximately 10 times that of
Harmony, due to their neglect of locality in resource location.
In contrast, Harmony enables a node to find geographically
close resource providers. Short communication distances help
reduce communication latency and cost, thus enhancing the
entire system performance.

Figure 15(b) shows the latency in discovering resource
providers and requesting resources from the selected providers,
respectively. The former is the time elapsed from when a node
sends out a request to when it receives a response from a
directory node, and the latter is the time elapsed from sending
a message to the selected resource provider to receiving the
response. To show comparable performance with the same
lookup path length, we use Harmony to represent Single-DHT
and let Multi-DHT use the same topology and server selection
method as Harmony. Since the multiple requests are forwarded
simultaneously, it is intriguing to see that Harmony leads
to lower latency than Multi-DHT in both resource discovery
and resource requesting. This is caused by the heavier traffic
generated by more messages in Multi-DHT. A node needs to
send out multiple messages for a request with multiple types
of resources and the nodes in Multi-DHT need to maintain
multiple DHTs with periodical message exchanges. Due to
the heavy traffic, some messages cannot be forwarded in time,
leading to a longer delay.
7.3 Dynamism-resilience and Maintenance Overhead
This experiment tests the dynamism-resilience of the systems
in node departures. Recall that before a node leaves the system,
it notifies the directory nodes that store its resource informa-
tion. In order to see the impact of the notification policy, we
tested the average success rates with and without this policy
when two nodes depart from the system every 10 minutes, as
shown in Figure 16(a) and Figure 16(b). We also show the
results with no node departures in the figures for reference
(marked by w/o churn). Each of 22 randomly chose nodes
continually generated a request every 15s. Both figures show
that the success rate follows Harmony>PowerTrust>resMgt
due to the same reason as in Figure 9(a). Figure 16(a) further
shows that the success rates of Harmony and resMgt decrease
slightly due to node departures, while that of PowerTrust

decreases greatly. This is because a request fails to be served
if a departed node is chosen as a server. PowerTrust is
biased toward the highest-overall-reputed node; if this node
for a resource departs, many requests for the resource fail. In
contrast, Harmony has many options for the highest-individual
reputation nodes, so the probability of choosing a departing
node is lower. Similarly, the probability of resMgt choosing
a departing node is low. The result verifies the dynamism-
resilience of Harmony.

Figure 16(b) illustrates that the success rate of each system
with churn remains approximately the same as that without
churn. This is because with the notification policy, directory
nodes of the resources of a departing node can update their re-
source information once receiving the notification. The figure
also shows that the success rate of Harmony remains nearly
constant, while those of PowerTrust and resMgt fluctuate
even without churn. This is due to the same reason as in
Figure 16(a).

We then test the overhead of the strategy for handling
churn when here was one node departure per minute.
Figure 17 shows the total number of notification mes-
sages for every 10 departures as time goes on. We see
that the maintenance overhead for node departures follows
Harmony<Single-DHT<Multi-DHT. Since Multi-DHT main-
tains multiple DHTs; each for one resource type, its number of
exchanged messages is multiple times that of Single-DHT. The
number of messages per node for one departure notification is
log n in Single-DHT, while it is 7 in Harmony. Thus, Harmony
generates lower overhead for node departure notification.

7.4 Load Balancing on Directory Nodes

To avoid being overloaded due to the load of resource re-
ports and queries, a directory node can have several backup
nodes with a copy of the reported resource information.
When a directory node is overloaded, it redirects a request
to its backup node. If this backup node is also overloaded,
it re-directs the request to another backup node, until the
request arrives at a lightly loaded backup node. We use
“Harmony+LoadBalancer” to denote Harmony with this load
balancing algorithm. In this experiment, each directory node
has 2 backup nodes that are physically close to the directory
node. Each request queries for one resource. The capacity of
each node follows a Pareto distribution with shape 2 and scale
parameter equals 20. Each request needs 2s to process in a
lightly loaded node, and 10s in an overloaded node. As in [40],
the request initiation follows a Poisson process with the arrival
rate equals 20 requests per second. The experiment ran for
2500s. Figure 18 shows the number of requests handled by
overloaded directory nodes with or without the load balancing
algorithm in Harmony with different number of resource re-
quests, and the number of redirection operations with different
numbers of resource requests. We see that without the load
balancing algorithm, the number of delayed requests increases
when more requests are generated. With this algorithm, Har-
mony+LoadBalancer produces 0 delayed requests. The figure
also shows that the number of redirection operations remains
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directory nodes.
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Fig. 19. Maintenance overhead.
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constant at around 47. From the experimental results, we found
that 97% of the redirections are one hop redirections, which
means that one backup node is sufficient to handle the load
in the experiment. The results confirm the effectiveness of the
load balancing algorithm in Harmony to prevent overloading
the directory nodes and avoid delayed requests.

8 Simulation Performance Evaluation
8.1 Maintenance Overhead
Due to the limited number of hosts in PlanetLab, we
developed a simulator in order to test the performance of
Harmony in a large-scale system with many more nodes. In
this experiment, we first set the number of nodes to 500 and
the number of resource types in the system to 2x(x∈[4, 9]).
Figure 19(a) plots the maintenance overhead versus the
number of resource types. We see that the maintenance
overhead follows Harmony<Single-DHT<Multi-DHT. Recall
that each node has 7 neighbors in Cycloid while it has
log n ≈ 9 neighbors in Chord. Therefore, a node in Harmony
needs to send fewer messages to its neighbors than in
Single-DHT. Multi-DHT has one DHT for one resource type.
In Multi-DHT with m DHTs, a node needs to send m log n
messages, leading to significantly higher overhead. This is
also the reason that the maintenance overheads of Harmony
and Single-DHT remain constant, but that of Multi-DHT
increases as the number of resource types increases.

Figure 19(b) demonstrates the maintenance overhead when
the number of nodes in the system was varied from 300 to
1300 with an increase of 200 in each step, and the number of
resource types was set to 64. We observe that the maintenance
overhead of the three systems increases as the number of
nodes increases. In a larger-scale system, each node has
more neighbors and needs to send more messages in one
stabilization operation. Also, more nodes in the system leads
to more message exchanges in stabilization. We notice that the
maintenance overhead of Multi-DHT grows faster than others
because of its multiple DHTs. Also, the result shows that
Harmony<Single-DHT<Multi-DHT due to the same reason
as in Figure 19(a).
8.2 Load Balance
Each directory node needs to store resource information,
search for resource providers in its directory, and reply to
requesters. We test whether a system can reach load balance

in resource management load distribution among nodes. We
refer to a piece of resource information about a provider’s
available resources in a directory node as one resource piece.
We measured the number of resource pieces in each directory
node after a number of resource pieces were distributed among
nodes. We set the number of nodes to 512, and varied the total
number of resource pieces from 104 to 105 with an increment
of 104 in each step. The number of resource types in each
information piece is randomly chosen from [1,512]. Figure 20
plots the median, the 1st and 99th percentiles of the number of
resource information pieces per node. We see that the number
of resource information pieces per node increases linearly with
the number of resource information pieces in the system. The
result of Single-DHT exhibits greater variation than Harmony
and Multi-DHT. This is because Single-DHT assigns all re-
source information pieces of the same type into one node. The
information of one resource type is distributed among all nodes
in the system in Multi-DHT, and among all nodes in a cluster
in Harmony, achieving a more balanced load distribution.

8.3 Efficiency
We also compared Harmony with LAR [29] and LORM [26].
We modified the LAR locality-aware load balancing method
for one resource to locality-aware multi-resource management.
LAR stores the resource information of physically close nodes
into a cluster in Cycloid, and further distributes the information
among cluster nodes based on resource type. LAR searches
for resources by intra-cluster searching and then inter-cluster
randomized probing. Similar to Harmony, LORM enables
multiple resource management on one Cycloid DHT. It maps
resource type and value to the two levels in the hierarchical
Cycloid. Though it provides range querying, it cannot consider
locality in resource location.

Figure 21 shows the 1st percentile, 99th percentile and
the average number of nodes involved in a resource location
operation, which includes message routing nodes and probed
nodes, as a function of network size with n = d·2d nodes with
the dimension d varied from 3 to 8. The number of requests
was set to the twice the number of nodes. We can see that
the numbers of nodes involved in Harmony and LORM are
approximately the same, and less than that in LAR. Since
all of them are built on Cycloid, the number of nodes for
forwarding a message from a requester to the directory node
is the same in all methods. LAR incurs much more involved
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Fig. 22. CDF of total resource requests distribution.
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Fig. 23. Physical probing cost.

nodes because it probes nodes for required resources in a
system-wide manner. It groups the information of different
physically close resources in one cluster. Therefore, when a
cluster does not have the information of a requested resource,
the nodes in the other clusters should be probed, leading to a
large number of involved nodes. In contrast, Harmony and
LORM group each type of resource in one cluster. Thus,
if a cluster does not have the information of a requested
resource, there is no need to probe nodes in other clusters.
The probing scope reduction from system-wide to cluster-wide
helps to reduce the number of nodes involved, resulting in less
overhead and high efficiency.
8.4 Locality-awareness
The number of nodes was set to 4,096 with d = 11, and
number of resource types was set to 100.The resource re-
questers were randomly chosen. We use transit-stub topologies
generated by GT-ITM [41]: “ts5k-large” and “ts5k-small” with
approximately 5,000 nodes each. “ts5k-large” has 5 transit
domains, 3 transit nodes per transit domain, 5 stub domains
attached to each transit node, and 60 nodes in each stub
domain on average. “ts5k-small” has 120 transit domains, 5
transit nodes per transit domain, 4 stub domains attached to
each transit node, and 2 nodes in each stub domain on average.
“ts5k-large” has a larger backbone and sparser edge network
(stub), and it is used to represent a situation in which a CCC
system consists of nodes from several big stub domains. “ts5k-
small” represents a situation in which a CCC system consists
of nodes scattered in the entire Internet and only a few nodes
from the same edge network join the overlay. To account
for the fact that interdomain routes have higher latency, each
interdomain hop counts as 3 hops of latency units while each
intradomain hop counts as 1 hop of latency unit.

In the experiment, we randomly generated 10,000 resource
requests and recorded the distance between the resource
providers and the resource requesters of each request. Fig-
ure 22(a) and (b) show the cumulative distribution function
(CDF) of the percentage of resource requests versus the
distance between resource requesters and providers of different
resource management schemes in “ts5k-small” and “ts5k-
large,” respectively. We can see that in “ts5k-large,” 90%
and 80% of requests in Harmony and LAR, respectively,
find resources within 11 hops, while only about 15% of
requests find resources within 10 hops in LORM. Almost
all requests find resources within 15 hops in Harmony and
LAR, while only 75% of the requests find resources within 15
hops in LORM. The results show that Harmony and LAR can
allocate most resources within short distances from requesters
while LORM allocates most resources in long distances. It
demonstrates the high locality-aware performance of Harmony
and LAR to locate nearby resources for the resource requesters
in resource management. The figure also shows that LAR
allocates more resources within 7 hops than Harmony, while
Harmony allocates more resources between 7 and 15 hops.

We found that in LAR, physically close resource infor-
mation is partitioned into 416 parts (i.e., clusters), while in
Harmony the information is partitioned into at most 11 parts

based on proximity closeness, because each cluster has at most
11 nodes. Fine-grained resource information in LAR leads to
higher locality-aware performance. However, less information
in one directory leads to a lower probability of locating
required resources in the directory. Then, the directory node
uses randomized probing in the entire system for requested
resources in LAR, which may find physically distant resources.
This explains why LAR does not perform as well as Harmony
in distances within 7 to 15 hops. Figure 22(b) shows the same
trends as in ”ts5k-large,” although the performance difference
between mechanisms is not as significant..
8.5 Probing Cost
When a directory node does not have information on required
resources, it probes other directory nodes for requested re-
sources. Therefore, resource probing constitutes a main part of
resource management overhead. The cost is directly related to
message size and physical path length of the message travelled;
we use the product of these two factors to represent the cost.
It is assumed that the size of a message is one unit. In the
experiment, we varied the number of resource requests from
3,000 to 13,000, with a step size of 1,000.

Figures 23(a) and (b) plot the probing cost of Harmony,
LAR and LORM in “ts5k-large” and “ts5k-small,” respec-
tively. From these figures, we can see that the probing cost
of LORM remains at 0, and the costs of Harmony and LAR
increase with the number of requests. The cost of LAR grows
dramatically faster than Harmony, while Harmony only has a
marginal increase. LORM stores the information of a resource
within a certain range into one directory node. If the directory
node does not have the information of requested resources,
then there is no requested resource in the system. Therefore,
the directory node does not need to probe other nodes for the
resource, leading to zero probing cost. In LAR, the directory
node probes nodes in the entire system using randomized-
probing. Therefore, the directory node may contact nodes very
far away from itself, and a request for a non-existing resource
may lead to infinite probing. In addition, the fine-grained
resource information in LAR contributes to more directory
node probings before the requested resource is located. On the
other hand, in Harmony, the directory node only needs to probe
other nodes in its cluster rather than nodes in the entire system.
Consequently, its reduced probing scope helps to significantly
reduce the probing cost. Combined with the experimental re-
sults of locality-aware performance, these results demonstrate
that Harmony achieves locality-aware resource management
at a cost of marginally higher communication overhead than
LORM. However, LORM has poor performance in mapping
physically close resource requester and providers. LAR is
comparable with Harmony in locality-aware performance, but
it generates high node communication overhead in probing.

9 Related Work
Resource Management One group of distributed resource
management systems are based on DHTs. Some efforts
depend on multiple DHTs with each DHT responsible for one
resource [17, 20], while other efforts depend on a single DHT
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overlay [19, 25]. The former generates high maintenance
overhead due to multiple DHTs, while some of the latter
methods may generate bottlenecks because one node is
responsible for all resource information of one resource.
LORM [26] and MARQ [42] use a hierarchical P2P overlay to
realize multi-resource range querying. However, few of these
approaches can handle locality and dynamism simultaneously.
By locality, we mean physically close resource requesters and
providers are mapped to achieve high efficiency. HCO [27]
and PIRD [28] can overcome these shortcomings. HCO
clusters resources so that a node can always locate physically
close multiple resources in its neighborhood. PIRD weaves
multiple resources to one index for multi-resource discovery.
Harmony is based on these previous works. It focuses on the
integration of resMgt and repMgt. That is, it enables a node to
discover its requested resource and this resource’s reputation
simultaneously; to select a resource by considering both effi-
ciency and reputation; and to maintain its highly reputed status
and fully utilize its resources while avoid being overloaded.

Liu et al. [5] presented COPE (Cloud Orchestration Policy
Engine), a distributed platform that allows cloud providers to
perform declarative automated cloud resource orchestration.
Al-Oqily et al. [43] proposed a fault-resilient service overlay
for MediaPort resource discovery. iShare [44] facilitates the
sharing of diverse resources located in different administrative
domains over the Internet. It organizes resources into a hier-
archical name space, which is distributed over the underlying
structured P2P network. Yan et al. [45] incorporated peers’
behavioral rankings into the resource allocation to provide
differentiated services. Jung et al. [46] proposed Mistral, a
holistic controller framework that optimizes power consump-
tion, performance benefits, and the transient costs incurred
by various adaptations and the controller itself to maximize
overall utility. Cardosa et al. [47] proposed the notion of a
resource bundle, a representative resource usage distribution
for a group of nodes with similar resource usage patterns, in
order to provide statistical guarantees for resource capacities
and achieve scalability. Di et al. [48] used a proportional share
model to maximize resource utilization, and designed a multi-
attribute range query protocol for locating qualified nodes
efficiently in a gigantic self-organizing cloud. Konstantinou et
al. [49] proposed a hybrid method that adaptively utilizes
iterative key redistribution and node migration to achieve both
fast and cost-effective load-balancing in distributed systems
that support range queries.

However, few works have exploited the effective usage of
a reputation metric for high-QoS resource selection. The joint
consideration of a server’s reputation and a client’s multiple
QoS demands is an innovative aspect of Harmony. Different
from the previous resource management methods, Harmony
enables a node to locate its desired resources and find the
reputation of the located resources. This allows nodes to jointly
consider resource reputation in resource selection in order to
receive high QoS. That is, Harmony enables clients to choose
resource providers not only by resource availability but also
by the provider’s reputation on providing the resource.

Reputation Management Many reputation systems have
been proposed aiming to improve scalability or accuracy of
reputation calculation. These works include PeerTrust [9],
TrustGuard [10], PowerTrust [11] and GossipTrust [12]. Wang
et al. [50] proposed a flexible method to present differentiated
trust, such as file quality and file type in file sharing, and
combine different aspects of trust. The concept of differenti-
ated trust shares similarity with the multi-faceted reputation
in Harmony. However, Wang’s work focuses on presenting
different trust aspects of one service and combining them
for a global trust, while Harmony focuses on the reputation
differentiation and the integration between resMgt and repMgt.

Hwang and Li [51] proposed to build a trust-overlay network
over multiple data centers to implement a reputation system for
establishing trust between service providers and data owners in
clouds. Many other trust models [52, 53] have been proposed
recently in grid and cloud computing systems. Chen et al. [54]
proposed a heuristic-weighting approach to selecting the most
likely path to construct a role-based trust chain to establish
trust among any pair of anonymous peers in P2P networks.
Li et al. [55] proposed a scalable feedback aggregating overlay
to provide an efficient and effective way to build a reputation-
based trust relationship among peers in P2P networks. Sat-
siou et al. [56] proposed a distributed reputation-based system
according to which peers earn reputation analogous to their
contributions. However, all of these reputation systems give a
node one global reputation value, and thus are not effective
enough to provide precise guidance for trustworthy individual
resource selection.

Harmony is the first to integrate resMgt with repMgt for
multi-faceted reputation evaluation and trustworthy individual
resource selection. Different from previous reputation systems
that only provide the overall reputation for a resource provider,
Harmony enables nodes to find the reputation of a specific
resource by distributing the reputation information of different
resources to different node clusters. Therefore, when a node
locates its desired resource, it can also know the reputation of
the resource, which helps it to select trustworthy resources.
Harmony also enables a client to consider multiple QoS
criteria such as price, distance, and reputation when selecting
resources.

Economic Marketing Approaches Economic marketing
approaches have been proposed [32–35] in recent years to
provide incentives for cooperation. Mowbray et al. [32] studied
reciprocation based mechanisms to encourage donation in P2P
grids, where multiple services are shared. Lee et al. [33]
studied the interaction between ISPs at different tiers and
provided insightful evidence to show that ISPs can still gain
profits as they upgrade their network infrastructures. Jaeok
et al. [34] investigated incentives in content production and
sharing over P2P networks using a game theoretic model.
Zhang et al. [35] developed an analytical framework that
characterizes a coding based P2P content distribution market,
where peers selfishly seek for individual payoff maximization.
Chard et al. [57] addressed the performance limitations of
existing economic allocation models by defining strategies to
reduce the failure and reallocation rate, increase occupancy
and thereby increase the obtainable utilization of the system.
Kantere et al. [58] proposed a price-demand model designed
for a cloud cache and a dynamic pricing scheme for queries
executed in the cloud cache. The pricing solution estimates the
correlations of the cache services in a time-efficient manner,
and maximizes cloud profit while giving guarantees for user
satisfaction. Son et al. [59] proposed a multi-issue negotiation
mechanism that considers the tradeoff between price and time-
slot utilities for cloud service reservations. Han et al. [60]
proposed the cache as a service (CaaS) model as an optional
infrastructure service offering disk cache using a large pool
of memory. They proposed a efficient novel pricing scheme
to benefit both users and providers. Due to the uncertainty of
customer resource demand, Chaisiri et al. [61] studied how to
reduce customer cost by choosing reservation or on-demand
plans of resources in cloud and proposed an optimal cloud
resource provisioning algorithm to minimize the total customer
cost. Yi et al. [62] proposed a scheme based on checkpointing
and migration to minimize the cost and volatility of resource
provisioning in cloud to reduce both monetary costs and
task completion time. Zhu et al. [63] proposed a framework
based on a multi-input-multi-output feedback control model
in a cloud computing environment to minimize resource costs
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while meeting an application’s need.
Harmony is the first effort on leveraging price to jointly

control each node’s resource load and reputation, leading to
system-wide high performance. It can be used to complement
the previous economic marketing approaches.


