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Abstract—Tremendous advances in pervasive networking have enabled wide-area distributed systems to connect distributed
resources or users such as corporate data centers and high-performance computing centers. These distributed pervasive
systems take advantage of resources and enhance collaborations worldwide. However, due to lack of central management, they
are severely threatened by a variety of malicious users in today’s Internet. Current reputation- and anonymity-based technologies
for node communication enhance system trustworthiness. However, most of these technologies gain trustworthiness at the cost
of efficiency degradation. This paper presents a P2P-based infrastructure for trustworthy and efficient node communication
in wide-area distributed systems. It jointly addresses trustworthiness and efficiency in its operation in order to meet the high
performance requirements of a diversified wealth of distributed pervasive applications. The infrastructure includes two policies:
trust/efficiency-oriented request routing and trust-based adaptive anonymous response forwarding. This infrastructure not
only offers a trustworthy environment with anonymous communication, but also enhances overall system efficiency through
harmonious trustworthiness and efficiency trade-offs. Experimental results from simulations and the real-world PlanetLab testbed
show the superior performance of the P2P-based infrastructure in achieving both high trustworthiness and high efficiency in
comparison to other related approaches.
Index Terms—Wide-area distributed systems, Peer to peer networks, Reputation systems, Anonymity, Efficiency
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1 INTRODUCTION
The immense popularity of the Internet has provided

a significant stimulus to the advancement of wide-area
distributed pervasive systems that provide high scalabil-
ity, efficiency, and other benefits not found in centralized
models. These Internet-based distributed pervasive systems
(e.g., corporate data centers and high-performance comput-
ing centers) attract Internet users from across the world
to donate their computer resources for various objectives
ranging from file sharing to distributed computing, from
instant messaging to content distribution. For example, over
the past year, the total traffic on the BitTorrent P2P file
sharing application has increased by 12%, driven by 25%
increases in per-peer hourly download volume [1], and 471.5
million users in one day connect to the Akamai P2P-assisted
content delivery network (CDN) [2].

An open wide-area distributed system consists of many
diverse and autonomous peers without preexisting trust
relationships, in which malicious or selfish users may drop
forwarding messages in node communication. Thus, it is
important for nodes to communicate with each other effi-
ciently (i.e., quickly with low overhead), trustworthily (i.e.,
reliably and anonymously). Currently, many technologies,
including reputation- and anonymity-based approaches,
have been proposed to prevent, detect, and counter
malicious attacks and enhance system trustworthiness.

A reputation system collects, distributes, and aggregates
feedback about participants’ past behaviors to help peers
decide whom to trust, encourage trustworthy behavior,
and discourage uncooperative or dishonest behavior. In a
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distributed system, a node needs to choose a server from a
candidate pool for a service such as forwarding a query or
providing a file. A straightforward approach for nodes to
use reputation metrics is to select the node with the highest
reputation value as a providing server. However, biasing
the nodes with the highest reputation may overload them
and also prevent a system from fully taking advantage of
all resources to achieve system-wide high performance.

Current research on reputation systems [3–15] mainly
focuses on accurate reflection of node trustworthiness and
high scalability of systems. However, even the accurate
calculation of reputation values offered by a highly scalable
reputation system may not be adequate as a mechanism
to provide proper incentives for nodes to choose the best
servers, and to improve the achievable efficiency of dis-
tributed systems. Reputation systems need to be comple-
mented by an unbiased trust-based node selection policy
that also considers efficiency for trustworthy and efficient
node communication.

For anonymous transmission, tunnelled communication
with a number of proxies between the two endpoints in the
routing path provides anonymity for the two endpoints, since
each node has no information about the message routing
path other than the identity of its previous and succeeding
node. Technologies such as Tor [16] randomly chooses the
proxies. Directly using the randomized selection method in
an open distributed system is not able to ensure successful
routing, as the chosen nodes may be malicious nodes that
drop or corrupt messages. Freenet [17] and Mute [18]
achieve anonymity by requiring that all data is forwarded
back hop-by-hop from a data provider to a requester rather
than using direct communication. OneSwarm [19] pro-
vides anonymity by multi-path message forwarding and by
providing users with configurable control over their data:
data can be shared publicly or anonymously, with friends,
with some friends but not others, or only among personal
devices. However, these methods introduce high commu-
nication overhead. Efficiency for high performance should
not be greatly compromised while exploring trustworthy
technologies for distributed systems.
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Unlike OneSwarm which relies on users’ extra effort for
configuration and high-cost multi-path message routing, we
tackle this problem from another angle: leveraging repu-
tation systems. Specifically, we propose an infrastructure
built on a structured P2P middleware overlay to supply
trustworthy and efficient node communications for wide-
area distributed systems. It can be easily used by a variety
of distributed systems such as P2Ps, grids, and collaborative
clouds. The infrastructure incorporates two policies:
• Trust/efficiency-oriented request routing policy
(FairTrust). FairTrust guides nodes to consider both
reputation and capacity in node selection in order to choose
trustworthy nodes while avoiding bottlenecks. It creates a
trustworthy distributed communication environment, while
providing flexibility in resource sharing between nodes.
Furthermore, it facilitates taking full advantage of system
resources for high performance of distributed systems.
• Trust-based adaptive anonymous response forwarding
policy (TrustAar). TrustAar adapts the path length
of response forwarding to node reputation in order
to protect client-server connectivity and anonymity,
while enhancing communication efficiency over current
anonymity approaches.

In this paper, we use P2P file sharing systems as an
example for a wide-area distributed system. This article
combines the methods proposed in previous conference
versions [20, 21], refines and enhances the methods and
presents extensive experimental results. The rest of this
paper is structured as follows. Section 2 introduces the P2P-
based infrastructure design including the aforementioned
two policies. Section 3 shows the performance of these
policies in comparison with other related policies in sim-
ulation and on PlanetLab. Section 4 concludes this paper
with remarks on possible future work. The supplemental
document presents a concise review of related work and
more experimental results.

2 DESIGN OF THE P2P-BASED INFRAS-
TRUCTURE
2.1 Background and Overview
Structured P2P overlay networks are a class of decentralized
systems that partition ownership of a set of objects among
participating nodes and can efficiently route messages to
the unique owner of any given object. The overlay network
provides two main functions: insert(key,data) and
lookup(key) to store the data to a node responsible
for the key and to retrieve the data. The message for
each function is forwarded from node to node through
the overlay until it reaches the data’s owner. Each node
maintains a routing table, which records its neighbors in
the overlay network. After a node receives a message, it
forwards the message to one of its neighbors in the routing
table based on the P2P routing algorithm.P2P overlays
such as Tapestry [22] and Cycloid [23] have no rigidly
defined topologies and routing algorithms (i.e., an entry
in a node’s routing table can have multiple node choices),
which facilitates the implementation of anonymity in the
infrastructure. Any such P2P overlay can be the basis for
our system’s infrastructure. We choose Cycloid [23] as an
example to serve as the foundation of the infrastructure.

Anonymity allows data sharing between clients and
servers in such a manner that no one can determine the
identities of the clients and servers. In order to hide the
client and server of a communication, it is necessary to form
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Fig. 1: Node communication in a structured P2P.

an anonymous path between the two endpoints and ensure
that nodes on the path do not know where the endpoints
are. A P2P overlay contributes to achieving anonymity in
the application level. It obscures the physical locations of
nodes from each other, and restricts a node’s view only to
its neighbors. In addition, initial messages and forwarded
messages are constructed and processed similarly, so nodes
cannot differentiate message forwarding neighbors from ini-
tial message generating neighbors. Furthermore, tunnelled
communication provides certain protection to two endpoints.

Figure 1 depicts a tunnelled communication between
client A and server E in traditional structured P2P overlays.
The request is routed along the path A → B → C →
D → E, and the response is forwarded directly from E
to A. We define a client-server path as a tunnelled path
from a client to a server, and a server-client path as a
tunnelled path from a server to a client. The client-server
path in the figure is not directly between A and E; rather,
it travels through three other nodes. Each node on the path
does not know the source or the final destination of the
messages transferred. For example, node C does not know
if the communication is between nodes B and D or if
they are passing the messages elsewhere. Nodes only have
knowledge of their immediate neighbors in the proxy chain.
This provides a certain degree of anonymity. However, the
direct communication from E to A reveals their identities to
each other. Also, in most traditional structured P2P overlay
networks, because of their strictly controlled topologies and
rigidly defined routing algorithms, there is only one node
option in the system for each entry in a node’s routing table,
and hence only one neighbor option to forward a request.
This enables a malicious node to analyze the message traffic
to identify the client, server, and path. Also, the rigid routing
algorithm cannot avoid overloaded nodes in routing, leading
to low efficiency. For example, in Figure 1, requests from
clients A, F and G towards E must travel through nodes
C and D, which could easily become overloaded.

Cycloid’s flexibility in topology construction and routing
algorithm (that enables to select a neighbor from multiple
options) facilitates the exploration of techniques for both
anonymity and efficiency. We propose the FairTrust policy
to prevent traffic analysis in the client-server path, and the
TrustAar policy for data forwarding in the server-client
path. These policies provide anonymity to both clients and
servers with reduced overhead through a harmonious trade-
off between reliability/anonymity and efficiency.

In this paper, we assume the existence of a decentralized
reputation system [3, 4] that is scalable and can accurately
and securely provide reputation values of nodes. We also
assume that a node’s reputation value can represent its
general trustworthiness, and that a high-reputed node is
unlikely to drop (or corrupt) a message or be a spy or
unscrupulous organization that conducts censoring or anal-
ysis of data traffic. Please refer to papers [3–15] for the
designs of scalable, accurate and secure reputation systems.
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As our work does not focus on reputation system design,
these works are beyond the scope of this paper. Specifically,
we can use the reputation system designed for anonymous
networks proposed in [15]. In this reputation system, nodes
are represented by pseudonyms. The reputation of each node
is closely related to its real identity rather than to its current
pseudonym. This allows an honest node to switch to a new
pseudonym, thus keeping its good reputation, while hinder-
ing malicious nodes from erasing their bad reputations with
new pseudonyms. As a result, the reputation values can be
reported and queried without disclosing node real identities.

2.2 Trust/Efficiency-Oriented Request Routing
Policy
Problem Statement. This section handles the problem
of forwarding a request to its destination trustworthily
(i.e., reliably and anonymously) and efficiently. Cycloid
has a flexible topology in that its routing table has a
set of neighbors in each entry. For example, Cycloid
node i (4,10111010) has one neighbor entry pointing to
nodes (3,10100000), (3,10100001) and (3,10100010). If it
receives a query that should be forwarded to this neighbor
entry based on its original routing algorithm, there are three
candidates to which the query can be sent. This topology
flexibility enables a node to choose a neighbor from several
options to forward a request along the client-server path
routing. Then, how should a node be chosen to forward a
query for trustworthy and efficient communication?

Discussion on Existing Methods. Randomized node
selection in Tor [16] is not enough to ensure communication
security with successful routing in an open distributed
system. With malicious nodes, the requests may be dropped,
corrupted, or delivered to a malicious node instead of a
legitimate file owner. Also, the randomized node selection
cannot guarantee that the selected nodes are never over-
loaded, possibly degrading the routing efficiency.

With a reputation system, a straightforward approach for
nodes to utilize reputation metrics is to select the node with
the highest reputation value as a providing server. Such an
approach may give rise to unexpected problems. First, bias-
ing high-reputed nodes may overload them and cause inef-
ficiency. Second, some high-reputed but not-highest-reputed
nodes are excluded from service offering. Consequently,
their resources cannot be fully utilized, and they are de-
prived of opportunities to earn their reputation. Eventually,
this will result in gradual decomposition of the nodes in the
system. Therefore, as explained in Section 1, the reputation
values have to be complemented with an unbiased trust-
based policy that helps a node decide a candidate for service
with consideration of both trustworthiness and efficiency.

To avoid overloading high-reputed nodes, the “peer-
approved” policy [24] enables nodes to download files
from others with lower or equal reputations, and the
“comparable reputation” policy [25] restricts nodes to
communicate only with other nodes at the same reputation
level. These policies help high-reputed nodes to avoid low-
reputed nodes, but also have a number of drawbacks. First,
newly-joined nodes will be in a hazardous environment,
surrounded by low-reputed or even malicious nodes for
communication. Second, newly-joined nodes are provided
with few opportunities to increase their reputation. Third,
median-reputed nodes are deprived of access to services
provided by high-reputed nodes, and also high-reputed
nodes are deprived of access to services provided by

median-reputed nodes. This prevents distributed systems
from achieving their ultimate goal of wide resource sharing.

Our Proposed Policy. In choosing a forwarder from the
options for request routing, biasing the highest-capacity
nodes cannot guarantee reliable routing due to uncooperative
participants. Similarly, biasing the highest-reputed nodes
causes node overload and low efficiency. To address these
problems, we introduce FairTrust that considers node ca-
pacity and reputation simultaneously to choose a providing
node from a candidate pool. The policy contributes not only
to the trustworthiness of the system but also to the overall
high performance by making full utilization of all node
resources and avoiding overloading high-reputed nodes.

To identify trustworthy nodes from untrustworthy nodes,
many reputation systems [3–15] set a reputation threshold.
If a node has a reputation no less than the threshold, it is
considered a trustworthy node; otherwise, it is considered
an untrustworthy node. Trustworthy nodes also provide
trustworthy services, though their QoS may be lower than
that of the highest-reputed node. In our daily life, when we
buy a computer, we do not have to choose the one with
the highest rating and highest price. We can choose a less
expensive computer with high rating that still meets our
requirements. Similarly, in a distributed system, different
requests have different requirements for the levels of repu-
tation. For example, while a node must choose the highest-
reputed nodes for confidential data, it does not necessarily
depend on such nodes when conveying public news with
delay tolerance. Also, a node may prefer to download a file
from a higher-reputed node rather than from the highest-
reputed node in order to avoid flooding the highest-reputed
node with requests. Therefore, FairTrust trades reliability
for efficiency by mapping messages of different desired
trust levels to nodes with corresponding reputation levels.
Later on, we will introduce an economic payment method
to provide incentives for nodes to choose trustworthy nodes
based on their own needs instead of always choosing the
highest-reputed node.

Algorithm 1 (in the supplemental document) shows the
pseudocode of the FairTrust policy. Specifically, when node
i needs to choose a server from a number of candidates, it
firstly determines reputation level T based on its desire. It
then acquires the reputation value of each candidate, and
filters out candidates whose reputation values are below T .
The rest of the candidates include both the highest-reputed
nodes and nodes that are trustworthy enough based on the
requester’s desired trust level. Then, as an unbiased trust-
based policy, FairTrust guides a node to sift the rest of
candidates for the final choice for request routing with the
consideration of both trustworthiness and efficiency.

For efficiency purposes, the policy takes into account
load status and proximity to ensure that no node becomes
a bottleneck for request routing for quick routing. Our
previous work [26] introduced a method to calculate an
integer for a node to represent its proximity. We define
congestion of node i as li/ci, where li represents the load
of node i and ci represents the capacity of node i. We refer
to the node whose actual load is larger than its capacity
(i.e. li > ci) as an overloaded node; otherwise, it is a
lightly loaded node. To select a forwarding node, node j first
considers load status by identifying lightly loaded nodes.
From the identified candidates, it then considers proximity,
in which nodes logically closer (in hops) to the destination
and then physically closer to node j have higher priority to
be chosen.
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Checking every server’s load status and proximity is
not an efficient method. To reduce overhead, instead of
probing all of the neighbors to find the best candidate, we
restrict the search space to a small set of size b. That is,
b nodes are randomly chosen first and then the nodes in
the set are probed to retrieve load status and proximity
information. If all nodes are overloaded, then the node
with the lowest congestion is selected. If only one node
is lightly loaded, then this node is selected. If multiple
nodes are lightly loaded, a node selects the best candidate
with two extra criteria explained previously: closeness to
the target ID by logical distance in the overlay network
and closeness to the node by physical distance. In the case
that the candidates have the same logical distance, the
node with shorter physical distance to the selecting node is
chosen. In the case that the nodes have the same physical
distance, then a node is randomly chosen. For example, if
b = 2, node i receives a query with key (2,10100011). It
first identifies its query forwarding neighbors according to
the Cycloid routing algorithm and chooses neighbors with
reputations no less than the required trust level. Node i then
randomly chooses two options (3,10100010), (3,10100001)
among the identified neighbors. It then probes each node’s
congestion and physical distance and finally chooses one
node based on the algorithm in the FairTrust policy.

In addition to message forwarding, the proposed method
for choosing a server can also be used in server selection
for other purposes, such as file server selection and rout-
ing neighbor selection. Rather than always biasing on the
highest-reputed nodes, FairTrust enhances system efficiency
by distributing the load among trustworthy nodes with rep-
utation values higher than the client’s required level; thus,
it will not overload the highest-reputed nodes while avoid-
ing untrustworthy nodes. Also, offering high-reputed (not-
highest-reputed) nodes opportunities to provide services
enables them to further increase their reputations and takes
advantage of their resources. Unlike rigid routing, FairTrust
prevents a malicious node from identifying the routing path
to find the client and the server while improving routing
trustworthiness and efficiency by relying on randomized se-
lection with consideration of trustworthiness and efficiency.

A node may tend to specify a desired reputation level
higher than what it really needs in order to receive high
QoS. Also, low-reputed nodes may not be motivated to
provide high QoS since their low reputations do not prevent
them from receiving high QoS. To handle these problems,
FairTrust adopts the economic payment method in [27].
That is, a server prices its services based on its reputation
and service quality, and a client pays a server for the
service it requests. The payment is in the form of virtual
credits. This economic payment method encourages nodes
to provide high QoS in order to gain higher reputations that
allow them to earn more credits to buy services, while also
preventing the situation where higher-reputed and lower-
reputed nodes receive the same QoS for the same cost.
Trustworthiness aside, efficiency can also be controlled by
the economic payment method. Servers can adaptively raise
their service prices to discourage clients from asking for
service from them when overloaded, and offer discounts
when lightly loaded. The adaptive load control not only
prevents servers from being overloaded, but also helps to
take full advantage of server capacities. To address the
newly joined node problem mentioned above, we can offer
each node a certain number of credits on first joining the
system that can be used for transactions to increase its

reputation. This economic payment method makes service
accessible to all nodes and provides freedom in service
requesting and offering while providing protection from
malicious nodes and leech nodes.

2.3 Trust-based Adaptive Anonymous Response
Forwarding Policy
Problem Statement. Most traditional P2P overlay networks
use direct connections to download files, thus disclosing the
identities of the server and the client. A general approach to
achieving anonymity on overlay networks is to construct an
indirect path between a client and a server. For instance, in
Freenet [17], Mute [18] and OneSwarm [19], after a file
is located, instead of using a direct connection between
two nodes, the data is sent back along the nodes in the
request routing path. Figure 2 depicts an example of such
anonymous communication. However, the hop-by-hop file
forwarding comes at the cost of high communication over-
head and leads to inefficient communication considering the
fact that file downloading constitutes most Internet traffic.
For instance, measurement results [28] showed that only
2.24% of all connections were download connections, but
they were carrying 70.5% of the total traffic. P2P resource
sharing applications have evolved into one of the major traf-
fic sources, approximately 80% of Internet traffic. To reduce
the overhead for request forwarding, Mantis [29] allows
clients to exchange anonymity for download efficiency. It
uses anonymous communication to search for files and send
control signals, while letting the data be sent directly from
the server to the client using return address spoofed UDP
as shown in Figure 3. Instead of providing full anonymity,
Mantis only protects the privacy of servers.

A B C D E
Request: A -> B Request: A -> B -> C Request: B -> C -> D Request: C -> D -> E Request: D -> E
Reply: B->A Reply: C->B->A Reply: D->C->B Reply: E->D->C Reply: E->D 

Fig. 2: Freeenet/MUTE: tunnelled server-client path.

A B C D E

Request: A -> B Request: A -> B -> C Request: B -> C -> D Request: C -> D -> E Request: D -> E
Reply: E->A 

Fig. 3: Mantis: direct server-client path.

A B C D E

Request: A -> B Request: A -> B -> C Request: B -> C -> D Request: C -> D -> E Request: D -> E
Reply: C->A Reply: E->C 

Fig. 4: TrustAar: reduced tunnelled server-client path.

Our Proposed Policy. We propose the TrustAar policy
to provide anonymity for both clients and servers, and to
reduce communication overhead by shrinking path lengths
based on endpoint reputation. In order to prevent proxies
from seeing the contents of the queried data, a client
generates a public and private key pair for its request and
sends the public key along with its request. The server uses
the public key to encrypt the queried file before forwarding
it back to the client and the client uses the private key to
decrypt the file. Since proxies on the path do not know the
private key, they are not able to decrypt the file.

The server needs to prevent the client from identifying
that it is the source of the file, and the client needs to prevent
the server from identifying that it is the requester of the file.
The level that an endpoint i needs protection from another
endpoint j is determined by the trustworthiness of endpoint
j. That is, endpoint i needs higher protection from lower-
reputed endpoint j and needs lower protection from higher-
reputed endpoint j. Also, more tunnelled transfers along
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the server-client response forwarding path provide higher
anonymity but lower efficiency. We use tc and ts to denote
the reputation of the client and of the server, respectively.
To provide anonymity while guaranteeing high efficiency,
TrustAar adapts the extent to which a tunnelled server-
client path length shrinks to the value of t = min{tc, ts}.
Particularly, the higher the value of t, the fewer hops are
needed in the server-client path, and vice versa. If the
reputation values of two endpoints are very high, i.e., both of
them can be trusted, then it is acceptable not to use proxies.
We describe this policy in more detail in the following.

As mentioned previously, we use the reputation system
designed for anonymous networks proposed in [15]. In
this system, a node’s reputation is queried based on its
pseudonyms, and nodes always change their pseudonyms
to avoid being tracked. As with other structured P2Ps,
Cycloid requires log n hops per lookup request on average,
where n is the network size [23]. The reputation system
normalizes node reputation values to the range of [1, log n].
After a server receives a request from a client, it queries the
reputation values of the client and itself (ts and tc) from the
reputation system, using the client’s pseudonym contained
in the file request and its own pseudonyms. Let l denote
the path length of the client-server path. Then, the response
is approximately passed l/t (t = min{tc, ts}) hops along
the original client-server path from the server to the client.

For example, as shown in Figure 4, if t = 2, E sends
data to C, and C repeats the same process to send data to
A. One question is, how can E know C’s IP address, and
can C know A’s? We first introduce a simple method to
address this question and then present a method for higher
anonymity protection. In the simple method, the server
passes an address request including its own IP address and a
counter equal to t along the server-client path. The counter is
decremented each time before it is passed to the immediate
preceding node, and the node with counter equal to 0 is the
node t hops away from the server. The node then sends its
IP address back to the server, and repeats the operation after
it receives the file from the server.

However, if using a certain rule to determine the
forwarding proxies, malicious nodes along the path may
tamper with or falsify the counter for traffic analysis, and
the server may tamper with or falsify the counter to find
proxies along the path. Also, disclosing the IP addresses
of the server and relay proxies in the server-client path to
every group of t nodes in the path segment leaks partial
path information, which could be used by malicious nodes
for traffic analysis. We use a cryptography technique to
handle these problems. Algorithm 2 (in the supplemental
document) shows the pseudocode of the TrustAar policy.
The reputation system [15] signs the responses for {tc, ts}
before replying to the server in order to prevent nodes from
tampering with the values. The server generates a public
and private key pair, and sends the public key and the signed
{tc, ts} along the server-client path. Each message receiver
first checks the authority of the signature of {tc, ts}, and
then decides if it becomes a proxy in the server-client
path with 1/t probability. Specifically, a message receiver
i generates a random number v from [0,1]. If v ≤ 1/t, it
forwards the message to the next hop; otherwise, it becomes
a server-client path proxy. In this case, proxy i uses the
server’s public key to encrypt its own IP address, and sends
it with its public key along the client-server path successors
until reaching the node that has the private key to decrypt
the message to derive proxy i’s IP address (i.e., the server).

The server then encrypts the file using proxy i’s public key
and sends it to proxy i. Node i decrypts the message to
derive the file. It conducts the same operation as the server
and sends the file encrypted by the next proxy j’s public
key to j in the server-client path. This process repeats until
the client receives the message from a proxy k. The client
then passes its encrypted IP address to node k, and receives
the file encrypted by the client’s public key from node k.

Rather than relying on static hop-by-hop or direct
communication in response forwarding, TrustAar
dynamically adjusts path lengths based on the endpoints’
trustworthiness, ensuring high anonymity and efficiency.
Admittedly, there are problems that need to be solved for
strong anonymity protection. For example, the server and
the relay proxies in the server-client path may collude to
find the identity of the client, the client and the proxies in
the client-server path may collude to find the identity of the
server, or the server may try to find all the proxies in the path
by tampering with tc or ts. Also, as high-reputed endpoints
have fewer proxies in file transfers, high-reputed nodes
become weak points in the network for malicious nodes to
compromise in order to find identifies of file owners. We
leave these interesting problems as our future work.

3 PERFORMANCE EVALUATION
We conducted experiments on a simulator developed by
ourselves and on the PlanetLab real-world testbed [30].
We compared the performance of FairTrust with the Ran-
dom, MaxTrust, and MaxCap policies. Given a number of
nodes, Random chooses a node randomly, while MaxTrust
and MaxCap choose the node with the highest reputation
and available capacity, respectively. We also compared the
performance of TrustAar with Freenet [17], Mute [18] and
Mantis [29], and include the results of the “comparable
reputation” policy in [25] denoted by SameTrust, in which
a requester randomly selects a server from the servers with
the same reputation as itself.

TABLE 1: Environment and algorithm parameters.
Environment parameter Default value
Cycloid dimension d 8 (simulation), 6 (PlanetLab)
Number of nodes n 2048 (simulation), 384 (PlanetLab)
Number of options per hop 10 (simulation), 6 (PlanetLab)
or file servers per request
r (node reputation) Negative Bounded Pareto: shape = 10

lower bound = 0.1
upper bound = 1

Node routing capacity Bounded Pareto: shape = 2
lower bound = 1
upper bound = 100

Node file service capacity Bounded Pareto: shape = 2
lower bound = 0.5
upper bound = 50

Forwarding latency in 0.02/0.1 second (simulation)
a light/overloaded node Actual time (a)/a + 0.25s (PlanetLab)
File service latency in a 0.2/1 second (simulation)
light/overloaded file server 1/5 second(s) (PlanetLab)

File requests were consecutively generated with a random
source node and a random target. As in [31], file requests
are generated according to a Poisson process at an expected
rate of one per second. Table 1 lists the parameters and their
default values in simulation and on PlanetLab respectively,
unless otherwise specified. We assumed a bounded Pareto
distribution for the capacity of nodes [32]. In the experi-
ment, a node with capacity ci can handle ci queries at one
time. We define node i’s load (li) as the number of requests
in its request processing queue. If node i has more than ci
queries in its queue, it is overloaded. In order to make sure
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some high-capacity nodes have low reputations, we set the
reputation of half of the nodes with capacity higher than
ten times of the capacity lower bound to 0.2. We assume
a bounded Pareto distribution for nodes’ reputation (i.e., a
majority of nodes are not malicious). The probability that a
node provides a requested service equals to its reputation.

The metrics to evaluate the performance are listed below:
• Success rate. After a request arrives at a server, the
probability that a request can be resolved depends on the
server’s reputation. The success rate is the successfully
resolved service requests over the total requests. This
metric shows the trustworthy performance on receiving
successful service from servers.
• Number of failures. A request routing fails if one node in
the routing fails to forward a request. This metric represents
the effectiveness of a routing policy in trustworthy routing.
• Congestion. Recall that node i’s congestion is defined
as li/ci. Ideally, congestion should be no more 1, which
means that the node is lightly loaded. The higher the
congestion is greater than 1, the less efficient performance.
We record the maximum congestion of each node during the
experiment process, and take the 99.9th (99th) percentile of
these maximum congestions as the 99.9th (99th) percentile
maximum congestion to show the performance.
• Number of overloaded nodes encountered. This metric
shows the effectiveness of a policy in avoiding overloaded
nodes in directing traffic flow in order to reduce request
routing latency.
• Lookup path length. This is defined as the number of
hops in a routing path. We use this metric to evaluate the
performance of FairTrust on reducing lookup path length.
• Request routing time. This is the time used for a request
routing. The number of overloaded nodes in request routing
and the lookup path length are main factors for request
routing time. This metric represents the efficiency of routing.
• Request processing time. This is the time used for
processing file requests in servers. This metric represents
the efficiency of server selection policies in avoiding
overloaded file servers to achieve fair load distribution, and
ultimately speeding up service provision.
• File retrieval time. This is the sum of the routing time,
request processing time and response forwarding time. The
metric reflects the performance of efficient and trustworthy
file retrieval.

3.1 Trust/Efficiency-Oriented Request Routing
Policy
This experiment aims to show the performance of FairTrust
in achieving both high trustworthiness and high efficiency in
request forwarding. We varied the number of requests from
1000 to 5000 with a step size of 1000. In FairTrust, we
set two desired trust levels, 1 and 0.2, and represent them
as FairTrust/1 and FairTrust/0.2, respectively. Figure 5(a)
and Figure 6(a) show the number of failures in routings for
different policies in simulation and PlanetLab experiments,
respectively. We observe that the number of failures of Max-
Cap grows rapidly when the number of requests increases,
followed by Random and FairTrust/0.2. We also observe that
MaxTrust and FairTrust/1 generate the least failures, and
that they exhibit similar behaviors. MaxCap considers node
available capacity, but does not consider the trustworthiness
when choosing a forwarding node. Thus, it performs the
worst among the different policies in terms of trustworthy
routing. Random also does not consider trustworthiness, but
it may choose high-reputed nodes, leading to fewer failures

than MaxCap. In contrast, MaxTrust and FairTrust take into
account node trustworthiness in routing, and achieve the best
trustworthy performance. FairTrust/0.2 has relatively more
failures. Considering its desired success rate is 0.2, it still
performs effectively in terms of routing trustworthiness.
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Fig. 5: Trustworthy and efficient routing in simulation.
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Fig. 6: Trustworthy and efficient routing on PlanetLab.

Trustworthiness aside, efficiency is also important in
measuring the overall performance of the different routing
policies. Figure 5(b) and Figure 6(b) demonstrate the
99.9th percentile and 99th percentile maximum congestion
in each policy in simulation and PlanetLab experiments,
respectively. We see that the congestion rates increase
as query load increases. Also, MaxTrust has the highest
congestion. This is because MaxTrust biases on the highest-
reputed nodes for routing. By comparison, Random has
lower congestion than MaxTrust, because it is comparatively
efficient in load distribution due to its randomness. MaxCap
and FairTrust lead to much lower congestion rates. They
tend to direct requests to lightly loaded nodes such that
nodes are not likely to be overloaded. FairTrust/0.2 has
a slightly lower congestion rate than FairTrust/1 because
FairTrust/0.2 has more options for choosing a lightly loaded
node. The results also show that FairTrust has marginally
higher congestion than MaxCap. This is the cost for its
high trustworthy performance. However, the low congestion
benefit of MaxCap is outweighed by its poor trustworthy
performance as shown in Figure 5(a) and Figure 6(a).

Routing latency is determined by two factors: the number
of overloaded nodes encountered in routings and lookup
path length. Figure 7(a) and Figure 8(a) show the number
of overloaded nodes encountered in request routings. The
number increases as the query load increases, and the num-
ber of MaxTrust increases faster than others. This is because
MaxTrust overburdens the highest-reputed nodes by biasing
them. This result confirms that MaxTrust cannot distribute
query load among nodes in balance, while MaxCap and
FairTrust avoid generating overloaded nodes. Fewer over-
loaded nodes in routing leads to higher efficiency in routing.
FairTrust has marginally higher results than MaxCap. This
is because FairTrust considers node reputation when choos-
ing a forwarding node, reducing the number of available
options. The relative performance between MaxTrust, Ran-
dom, MaxCap and FairTrust is consistent with the 99.9th
percentile maximum congestion in Figures 5(b) and 6(b).
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Fig. 7: Efficiency of request routing policies in simulation.
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Fig. 8: Efficiency of request routing policies on PlanetLab.

In this experiment, if a request was dropped due
to low reputation of a forwarder, the sender resent
the request and one more hop was added to the
lookup path length. This process was repeated un-
til the request was successfully forwarded. Figure 7(b)
and Figure 8(b) show that average lookup path length
over different numbers of nodes in simulation and on
PlanetLab, respectively. The path length follows Max-
Cap>Random>FairTrust/0.2≈FairTrust/1≈MaxTrust. Suc-
cessful forwarding in each hop is a main factor in de-
termining the path length as dropped requests are resent.
Since the failure probability in forwarding follows Max-
Cap>Random>FairTrust/0.2>FairTrust/1≈MaxTrust as in
Figures 5(a) and 6(a), the lookup path length follows a
similar trend. These results confirm that FairTrust has more
efficient and trustworthy routing performance than others.
Note that the average number of contacts to the reputation
system per request of MaxTrust and FairTrust is similar to
the average lookup path of MaxTrust, while MaxCap does
not need to contact the reputation system.

Figure 7(c) and Figure 8(c) show the total request routing
time of successfully delivered requests as the combined
effect of overloaded nodes and lookup path lengths in sim-
ulation and on PlanetLab, respectively. Three main obser-
vations can be made from the figures: (1) MaxTrust has the
highest routing latency, followed by Random, due to their
neglect of node load status; (2) MaxCap has much lower
routing latency because relying on lightly loaded nodes
speeds up the routing process; (3) FairTrust significantly
decreases routing latency because it directs query load to
lightly loaded nodes, as does MaxCap, and reduces lookup
path length, although FairTrust does not perform as well as
MaxCap in reducing overloaded nodes and congestion rates.
The results show that the combined effect of overloaded
node reduction and lookup path length reduction result
in great savings of routing latency, causing FairTrust to
outperform MaxCap. We calculated that FairTrust’s average
routing time per request is around 1s on PlanetLab.

3.2 Trust-based Adaptive Anonymous Response
Forwarding Policy
Anonymity is important in building a trustworthy
environment. The probability that an endpoint is at a

risk of ID exposure to the other endpoint depends on three
factors. First, whether the other endpoint is a malicious
node or not. Second, the number of proxies forwarding a
file back from a server to a client; more forwarding proxies
provide higher anonymity protection to the endpoints.
Third, whether the proxies are malicious or not. Since the
third factor is determined by the request routing policy
and FairTrust chooses trustworthy nodes, we did not
consider it in the evaluation of TrustAar. Because the first
factor depends on the node trustworthiness, we define the
exposure probability due to the first factor as the minimum
endpoint trustworthiness, and define the probability due to
the second factor as 1−d×0.1, where d denotes the number
of proxies between a server and a client. The product of the
two factors is the probability that a server ID is disclosed
to a malicious client. Freenet [17] and Mute [18] achieve
anonymity by requiring that all data be forwarded back
hop-by-hop along the server-client path, while Mantis [29]
allows the data to be sent directly from a server to a
client. TrustAar provides a different degree of anonymity
based on the minimum endpoint trustworthiness by tuning
the number of forwarding hops to adapt to the minimum
endpoint trustworthiness. In this experiment, we compare
the anonymity protection and efficiency performance
of these policies. We assume that there are 5 levels of
trustworthiness from 0.2 to 1 with a 0.2 increase for each
level. We assume that the server has trustworthiness 1,
so the minimum endpoint trustworthiness is always the
client’s trustworthiness. In simulation, as file encryption
and decryption dominate the latency, we assumed that the
latency of finding a proxy and sending a file to the proxy
takes 0.4s. In the PlanetLab experiments, the size of a file
and a key was set to 64KB and 1KB, respectively.

Figure 9(a) and Figure 10(a) show the average and the
1st and 99th percentiles of exposure probabilities versus the
minimum endpoint trustworthiness level in simulation and
PlanetLab experiments, respectively. A number of important
observations can be made from this figure: (1) As we
expected, the exposure probability of each policy decreases
as the minimum endpoint trustworthiness increases. When
clients have the highest trustworthiness, the exposure proba-
bility is 0, which means there is no response forwarding that
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Fig. 9: Efficiency of different anonymity response forwarding policies in simulation.
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Fig. 10: Efficiency of different anonymity response forwarding policies on PlanetLab.
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Fig. 11: Total latency of forwarding.

makes a server unsafe; (2) Mantis has the highest exposure
probability, TrustAar reduces the probability more than one
third, and Freenet generates the least exposure probability;
(3) Freenet/Mute exhibits a larger variance than TrustAar,
while Mantis has no variance at all. This is because the
exposure rate of Mantis depends on the minimum endpoint
trustworthiness directly without the involvement of proxies.
Figure 9(b) and Figure 10(b) show the average exposure
probability of the policies versus the number of requests in
simulation and PlanetLab experiments, respectively. They
demonstrate similar behaviors for each policy as in Fig-
ure 9(a) and Figure 10(a). As predicted, more hops along
the server-client path result in higher server privacy pro-
tection. Mantis has the highest exposure probability due
to its direct communication between a client and a server.
On the other hand, Freenet/Mute has the lowest exposure
probability due to its static hop-by-hop routing along the
server-client path. However, its benefits are outweighed by
its high overhead and efficiency degradation in forwarding.
By adapting the number of hops to the minimum endpoint
trustworthiness elastically, TrustAar improves the privacy
protection of Mantis significantly, and reduces the overhead
of Freenet/Mute considerably.

Next, let’s see the efficiency performance of different
policies. Figure 9(c) and Figure 10(c) show the total number
of hops for file forwarding along the server-client paths to
the clients versus the number of requests in simulation and
PlanetLab experiments, respectively. We can observe that
Freenet/Mute has the highest results, Mantis has the lowest
results, and TrustAar lies in the middle. The results imply
that Freenet/Mute incurs a high forwarding cost, leading
to efficiency degradation; TrustAar decreases the overhead

dramatically, and Mantis achieves the highest efficiency
in file forwarding. Figure 9(d) and Figure 10(d) show the
total number of hops for forwarding files and messages
along the server-client paths to clients using our proposed
cryptography technique versus the number of requests.
TrustAar produces the highest number of forwarding hops
since it first transmits a message to find a file transmission
proxy hop by hop and then transmits a message from the
proxy to the server or the previous proxy hop by hop.
Then, the file is transmitted from the server or the previous
proxy to the identified proxy. However, only around 1/4
of forwarding hops in TrustAar are for file forwarding,
which generates longer latency than message forwarding.
Figure 11(a) and Figure 11(b) show the total latency of
forwarding along the server-client paths to clients versus the
number of requests. We used file encryption and decryption
for each file transmission in each method. Because file
transmission takes long time than message transmission,
Freenet/Mute produces the highest latency. TrustAar
significantly reduces the latency of Freenet/Mute due to
much less file forwarding operations. These experimental
results show that Freenet/Mute provides high anonymity
protection at a high cost, while Mantis does not provide
sufficient anonymity though it has high efficiency. TrustAar
achieves a harmonious trade-off between anonymity and
efficiency by reducing overhead while maintaining a high
level of anonymity for both clients and servers.

3.3 Performance of the P2P-based infrastructure
It is known that some Internet-based distributed systems
such as P2P systems are characterized by dynamism,
in which nodes join, leave, and fail continually and
rapidly. This experiment aims to evaluate the behavior
of the P2P-based infrastructure integrating FairTrust and
TrustAar policies under different levels of dynamism. We
use FairTrustAar to denote the infrastructure for a harmo-
nious trade-off between trustworthiness and efficiency. We
compared the performance of FairTrustAar with Random,
MaxTrust and MaxCap. These policies use TrustAar for
response forwarding. In this experiment, the desired trust
level was set to 1. There were 3000 queries, and the query
rate was modeled by a Poisson process with a rate of 1;
one request per second. The node join/departure rate was
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Fig. 12: Effectiveness of combination of FairTrust and TrustAar in dynamism in simulation.
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Fig. 13: Effectiveness of combination of FairTrust and TrustAar in dynamism on PlanetLab.

also modeled by a Poisson process [33]. We varied the
node interarrival/interdeparture rate from 1 to 5 per second
with a step increment of 1 in simulations, and varied it
from 0.1 to 0.5 per second with a step increment of 0.1 on
PlanetLab. A rate of 1 corresponds to one node joining and
leaving per second on average. A higher rate corresponds to
higher dynamism. Our results are collected from all nodes
including the departed nodes and current nodes in the system
when all query processing operations complete.

A query failure occurs when it is dropped by a routing
node or it cannot be routed due to dynamism. We assume
that if a query arrives at its file server successfully, the
subsequent time that routing nodes stay in the system is
long enough for response forwarding. Therefore, we did not
consider the failures in response forwarding. Figure 12(a)
and Figure 13(a) show the total number of query fail-
ures in simulation and on PlanetLab, respectively. We see
that the number of failures increases as the node interar-
rival/interdeparture rate increases. This is because a faster
node join/departure rate leads to higher failures. Another
factor that affects the number of failures is trustworthiness.
Since Random and MaxCap do not consider node trust-
worthiness in routing, they have the highest failures. Max-
Trust and FairTrustAar, which consider node trustworthi-
ness in routing, significantly reduce the number of failures.
This implies that the reputation system provides important
guidance for node selection based on trustworthiness, and
FairTrustAar generates a high success rate for file queries.

We then tested the efficiency performance of each policy.
Figure 12(b) and Figure 13(b) illustrate the 99.9th percentile
and 99th percentile maximum congestion of each policy
in simulation and PlanetLab experiments, respectively. The
rate of MaxTrust still is the highest because it biases on the
highest-reputed node. Random has a lower congestion rate
because it distributes load among nodes by randomized
node selection. MaxCap achieves the best congestion rate
as it considers node available capacity. FairTrustAar has
a marginally higher rate than MaxCap because it chooses
the node with the lowest congestion among the trustworthy
nodes and offers higher trustworthy performance.
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Fig. 14: Total file retrieval time without node dynamism.

In this experiment, we set the same resending policy as
Figures 7(c) and 8(c). Figure 12(c) and Figure 13(c) show
the total file retrieval time of each policy in simulation
and PlanetLab experiments without the file decryption
and encryption operations, respectively. Figure 12(d)
and Figure 13(d) show the total file retrieval time of
each policy in simulation and PlanetLab experiments
with the file decryption and encryption operations,
respectively. We can see that the time grows as the node
interarrival/interdeparture rate increases. This is because
node departures and failures result in invalid entries in
node routing tables. Consequently, detour routings lead to
longer routing path lengths, and thus longer transmission
latencies. The results show that the latencies of MaxTrust
are much higher than those of Random, and the latencies
of Random are much higher than those of FairTrustAar
and MaxCap. These observations are consistent with
those of Figure 12(b) and Figure 13(b). This implies that
FairTrustAar and MaxCap perform the best in reducing
overloaded nodes and query processing even in dynamism.
The results also show that the latencies of FairTrustAar
are slightly lower than those of MaxCap because FairTrust
has a shorter routing time than MaxCap, as shown in
Figures 7(c) and 8(c). We calculated that the average file
retrieval time per request of FairTrustAar is approximately
7.9s and 2.93s on PlanetLab with and without file decryption
and encryption, respectively, which is acceptable. From
the results, we can determine that FairTrustAar performs
the best with dynamism in term of trustworthiness and
efficiency compared to the other policies.
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Figure 14(a) and Figure 14(b) show the total file retrieval
time without dynamism versus the number of requests in
simulation and on PlanetLab, respectively. We see that
FairTrustAar has the lowest file retrieval latency, followed
by MaxCap, Random and MaxTrust due to the same reasons
as in Figure 12(d) and Figure 13(d). The results confirm that
FairTrustAar performs the best in term of trustworthiness
and efficiency in a stable environment without dynamism.

4 CONCLUSIONS
Most of today’s advanced technologies for Internet-based
distributed systems gain trustworthiness at the cost of over-
head or performance degradation. This paper presents a P2P-
based infrastructure that jointly considers trustworthiness
and efficiency in node communication in order to meet
the high trustworthiness and efficiency requirements of a
wealth of diverse distributed applications. The infrastructure
includes two policies: a trust/efficiency-oriented request
routing policy and a trust-based adaptive anonymous re-
sponse forwarding policy. Depending upon the reputation
system, the infrastructure not only offers a trustworthy
environment, but also enhances overall system performance
with a harmonious trade-off between trustworthiness and
efficiency. It provides a high probability of successful node
communication, protects node privacy, and improves node
communication efficiency by making full use of each node’s
capacity while keeping each node’s load below its capacity.
Simulation and PlanetLab experimental results illustrate
the superior performance of the infrastructure compared
with other related approaches in both static and dynamic
environments, and show the effectiveness of each policy
component in the infrastructure. In the future work, we will
study the impact of the proposed policies on node behaviors
and investigate strategies to combat malicious behaviors that
try to take advantage of these policies.
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5 PSEUDOCODE OF TWO ALGORITHMS

——————————————————————————-
Algorithm 1: Pseudocode for the FairTrust policy.
——————————————————————————-

Determine the set of neighbors for the request
routing based on the P2P routing algorithm
//choose trustworthy neighbors with required reputation level
Determine the required reputation level T
Query reputation value (R) of each neighbor
Choose a set of options J = {j1, j2 . . . } with R > T
Randomly choose b nodes Jb = {j1, j2 . . . jb} from J
//choose a node from Jb

Probe each node in Jb for its congestion
if all nodes in Jb are overloaded nodes then

Select the node with the lowest congestion
else

if only one node is lightly loaded then
Select this lightly loaded node

else //many nodes in Jb are all lightly loaded nodes
Compute the logical distance from each lightly loaded
node in Jb to destination respectively
if all nodes do not have the same logical distance then

Choose the node with the lowest logical distance
else

Acquire the physical distance from each lightly
loaded node in Jb to destination respectively
if all nodes do not have the same physical distance then

Choose the node with shortest physical distance
else

Randomly choose a lightly loaded node in Jb

Ask the selected node for routing service
Pay virtual credits to the server for its received service

——————————————————————————-

—————————————————————————————-
Algorithm 2: Pseudocode for the TrustAar policy executed by node i.
—————————————————————————————-
/*i−1: the predecessor of node i in the client-server path*/
/*i+1: the successor of node i in the client-server path*/

if isServer() then {
Query the reputations of client and itself, {tc, ts},
based on pseudonyms
Generate a pair of public and private keys (Ks

pub, Ks
pri)

Send Msg({tc, ts}, Ks
pub) to node i−1 }

if receive Msg({tc, ts}, Ks
pub) from node i+1 then {

Check the authority of the signature of {tc, ts}
Decide if it becomes a proxy with probability 1/t
(t = min{tc, ts})

if it becomes a proxy then {
//notify its previous proxy in the server-client path
Use Ks

pub to encrypt its IP address: (i)Ks
pub

Generate a pair of public and private keys (Kp
pub, Kp

pri)
Send Msg(Kp

pub,(i)Ks
pub

) to node i+1}
//look for its successor proxy in the server-client path
Generate a pair of public and private keys (Ks

pub, Ks
pri)

Send Msg({tc, ts}, Ks
pub) to node i−1}

else //it is not a forwarding proxy
Forward received Msg({tc, ts}, Ks

pub) to node i−1 }

if receive Msg(Kp
pub,(j)Ks

pub
) from node i−1 then

if it does not have Ks
pri to decrypt the message then

Forward Msg(Kp
pub,(j)Ks

pub
) to node i+1

else //send the file to the next proxy in the server-client path
Decrypt (j)Ks

pub
using its Ks

pri and retrieve IP address j

if isNotServer() then
Decrypt the file using its own Kp

pri

Encrypt the file using Kp
pub and send it to node j}

—————————————————————————————-

6 PERFORMANCE EVALUATION ON THE EF-
FECTIVENESS IN FILE SERVER SELECTION
We now evaluate the effectiveness of FairTrust in file
server selection. We assume that a client can locate the
five servers successfully. We assume there are five levels
of reputation, with the probability of successfully providing
service ranging from 0.2 to 1, with a 0.2 increase for
each level. Each node is randomly assigned one of the five
reputation levels.
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Fig. 15: Success rate of service requests.
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Fig. 16: Node congestion in simulation.
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Fig. 17: Node congestion on PlanetLab.

An efficient server selection policy should distribute the
load among the servers while considering trustworthiness
and efficiency. In this experiment, we study the effect of
FairTrust in trustworthiness and efficiency compared to
other related policies. In the experiment, 1000 different files
were requested, with each file requested 10 times. We varied
the desired trust level in FairTrust from 0.2 to 1, with a
0.2 increase for each step. We also took this rate as the
reputation level of requesters in SameTrust. We compare the
success rate (i.e., the percent of the successfully resolved
service requests) between FairTrust, Random, MaxTrust,
FairTrust/1, and FairTrust/desired. FairTrust/desired repre-
sents the policy with different desired trust levels as set
in the experiment. Figure 15(a) and Figure 15(b) plot the
success rate versus the desired trust level in the simulation
and PlanetLab experiments, respectively. Both figures show
that the success rates of FairTrust/1 and MaxTrust are the
highest compared to the others, and the rates are close to 1.
The rate of FairTrust/desired is marginally lower than the
rates of FairTrust/1 and MaxTrust, and it increases as the
desired trust level increases. The results imply that FairTrust
and MaxTrust achieve highly trustworthy performance. We
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expected that the curve of FairTrust/desired would be y=x.
It is surprising to see that FairTrust/desired achieves a
much higher success rate than expected. This is because
FairTrust/desired guarantees the desired trust level first, and
then seeks a higher trust level while considering efficiency.
Random does not consider reputation in node selection, so it
has a lower success rate. Unlike the others, the success rate
of SameTrust increases dramatically with the desired trust
level, i.e., the trust level of requesters. Recall that SameTrust
restricts communication to nodes in the same reputation
level. Therefore, in addition to the server reputation, whether
or not there exists a server with the same reputation level as
the requester also determines the success of a request. For
example, if a requester has reputation level 0.2, but there is
no server of the requested file within reputation level 0.2,
the requester has nowhere to request the file. If there is
such a server, the probability of successful file provision
is only 0.2. Consequently, the success rate increases as
the requester reputation level increases, and is much lower
than others due to the constraint of server reputation. The
experimental results show the effectiveness of FairTrust in
trustworthy performance in comparison to the other related
policies. Next, we evaluate the performance of each policy
with regards to efficiency.
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Fig. 18: Request processing efficiency in simulation.
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Fig. 19: Request processing efficiency on PlanetLab.

We measured each node’s maximum congestion during
all test cases and calculated the average and 99th percentile
of the maximum node congestions. Figure 16(a) and
Figure 17(a) show the average of maximum congestion
rate versus desired trust level in simulation and PlanetLab
experiments, respectively. We can see that MaxTrust
and SameTrust generate the highest rates. This is within
expectations because MaxTrust and SameTrust strongly
bias on the highest-reputed or same reputation level nodes
for service provision and those nodes may turn out to
be overloaded. The results indicate that MaxTrust and
SameTrust have poor efficiency performance, although
MaxTrust has high trustworthy performance as illustrated
in Figure 15(a) and Figure 15(b). In contrast, FairTrust/1
and FairTrust/desired have much lower congestion rates.
Since FairTrust/1 has the highest reputation level as its
desired trust level, how can it achieve a lower congestion
rate than MaxTrust? This is because FairTrust/1 distributes

load between nodes among the highest-reputed nodes rather
than biasing on a single node. On the other hand, with
a lower desired trust level, FairTrust/desired expands the
server candidate pool and achieves a more balanced load
distribution, thus achieving higher efficiency.

Figure 16(b) and Figure 17(b) show the 99.9th percentile
and 99th percentile maximum congestion of each policy
based on the average maximum congestions in simulation
and PlanetLab experiments, respectively. We can observe
that the rates of MaxTrust and SameTrust are much higher
than the others, and that FairTrust/1 has lower rates than
MaxTrust and SameTrust due to the same reason as in
Figure 16(a) and Figure 17(a). Random keeps the rate
around 1 in simulation but around 4.5 on PlanetLab since
PlanetLab provides fewer servers, so a low-capacity server
is more easily to be overloaded. FairTrust/desired keeps
congestion low, which slightly increases as the desired trust
level increases. This is because FairTrust/desired expands
the server candidates to the servers above the desired repu-
tation level rather than biasing on the highest-reputed node,
which increases the possibility of selecting a lightly loaded
server. The results confirm the high efficiency performance
of FairTrust.

We also tested the service request processing efficiency
in different server selection policies. Figures 18(a) and
(b), and Figures 19(a) and (b) show the number of over-
loaded servers chosen and service request processing time
versus the desired trust level in simulation and PlanetLab
experiments, respectively. The figures show that MaxTrust
and SameTrust have significantly higher results than the
others. This is due to the side-effect of high trustworthy
performance by biasing the highest-reputed or same rep-
utation level nodes. The biasing policy overburdens those
nodes, generating more overloaded nodes and longer request
processing times. In contrast, FairTrust and Random have
much fewer overloaded servers and processing times. The
figures also illustrate that FairTrust/desired has lower results
than Random and FairTrust/1, and it has fewer overloaded
servers chosen in most cases. FairTrust/desired trades sur-
plus trustworthiness for efficiency by mapping tasks of
different desired trust levels to nodes with corresponding
trustworthiness levels. The results imply the efficiency of
FairTrust in avoiding overloaded nodes and speeding up
service request processing.

The experimental results show that in server selection,
MaxTrust and SameTrust can achieve high trustworthiness,
but have difficulty in improving efficiency. Random can
achieve high efficiency, but does not consider trustworthi-
ness. FairTrust has superior performance over the others
with both high trustworthiness and efficiency.

7 RELATED WORK
Routing algorithms and reputation systems. In order
to improve the routing efficiency in P2P networks, some
previously proposed routing algorithms choose the highest-
capacity nodes in routing. Castro et al. [34] proposed a
neighbor selection algorithm to direct most traffic to high
capacity nodes. Some algorithms [34–36] forward queries
to high capacity nodes in routing to enhance communication
efficiency. However, these algorithms cannot guarantee
reliable routing because of uncooperative participants.

To provide incentives that promote cooperative (or dis-
courage uncooperative) behavior, many reputation sys-
tems [3–15] have been proposed in the last few years. Most
works aim to design a reputation calculation method to
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more accurately reflect node trustworthiness (e.g., [3]) and
(or) realize decentralized reputation management for higher
scalability (e.g., [3, 4]).

Though many reputation systems help to achieve accuracy
of reputation values, higher scalability, and security of
reputation systems, effectively using reputation values is
also critical for building a trustworthy environment for
distributed systems. Most of the approaches for using rep-
utation metrics are to select the node with the highest
reputation as a providing peer. However, this may lead to un-
expectedly low efficiency of high-reputed nodes and prevent
P2P systems from making full use of system resources. To
address this problem, Ranganathan et al. proposed a “peer-
approved” policy [24] in which nodes can download files
only from others with a lower or equal rating. This policy
encourages a node to provide high-quality service in order to
improve its reputation. However, a node’s received quality is
questionable, as it may select services from lower reputed-
nodes. To handle this problem, Papaioannou [25] proposed
a “comparable reputation” policy aiming to restrict nodes
to communicate only with others at the same reputation
level. Restricting the eligibility of a node to interact with
others prevents nodes from sharing resources freely, which
is a main goal of P2P systems. We develop the FairTrust
server selection policy that not only enables nodes to share
resources freely, but also ensures trustworthy resource allo-
cation. It avoids overloading high-reputed nodes and takes
full advantage of all resources in the system.
Anonymity protocols. Anonymity protocols aim to hide the
relationship between an observable action and the identity
of the users involved with this action. The Mute [18] and
Mantis [29] anonymity systems implement the Ants proto-
col [37], in which a requester broadcasts a query, and the
response is forwarded back along its query route. Tor [16]
provides anonymity using the Onion routing protocol [38],
in which messages are randomly routed, and each router
obtains no information about the message routing path other
than the identity of the following router through the use
of encryption technology. Freenet [17] is a searchable P2P
system which makes it impossible for an attacker to find all
copies of a particular file by allowing each node to store all
the files that pass across it. Freenet uses response forwarding
along its query route to enable provider anonymity, and uses
broadcast to obscure the intended recipient. Some systems
including DC-nets [39] and Secret-sharing-based mutual
anonymity protocol [40] rely on broadcasting to achieve
anonymity.

These protocols and systems are effective in building a
secure environment with anonymity protection. However,
approaches such as broadcasting in Ants, random router
selection in Tor, tunnelled communication in Freenet lead to
system scalability and efficiency penalties. Motivated by the
observation that most current anonymity approaches focus
on enforcing security while neglecting efficiency, we aim to
explore an approach that considers both.

OneSwarm [19] also aims for a trade-off degree of
anonymity for communication efficiency. OneSwarm uses
multi-path message forwarding and provides users with
explicit configurable control over the amount of trust they
place in peers and in the sharing model for their data:
the same data can be shared publicly, anonymously, or
with access control, with both trusted and untrusted peers.
Though sharing similar goals with OneSwarm, our work
is different in that it leverages reputation systems to tackle
the trade-off problem for providing both high anonymity

protection and efficiency.
Our proposed request routing and response forwarding

policies are unique in that they provide trustworthy (i.e., re-
liable and anonymous) communication between nodes while
enhancing the efficiency of node communication based on
the reputation system.


