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Abstract—The explosive growth of unsolicited emails has prompted the development of numerous spam filter techniques. Bayesian spam
filters are superior to static keyword-based spam filters in that they can continuously evolve to tackle new spam by learning keywords in
new spam emails. However, Bayesian spam filters are easily poisoned by clever spammers who avoid spam keywords and add many
innocuous words in their emails. Also, Bayesian spam filters need a significant amount of time to adapt to a new spam based on user
feedback. Moreover, few current spam filters exploit social networks to assist in spam detection. In order to develop an accurate and
user-friendly spam filter, we propose a SOcial network Aided Personalized and effective spam filter (SOAP) in this paper. In SOAP, each
node connects to its social friends; that is, nodes form a distributed overlay by directly using social network links as overlay links. Each
node uses SOAP to collect information and check spam autonomously in a distributed manner. Unlike previous spam filters that focus on
parsing keywords (e.g, Bayesian filters) or building blacklists, SOAP exploits the social relationships among email correspondents and their
(dis)interests to detect spam adaptively and automatically. In each node, SOAP integrates four components into the basic Bayesian filter:
social closeness-based spam filtering, social interest-based spam filtering, adaptive trust management, and friend notification. We have
evaluated the performance of SOAP using simulation based on trace data from Facebook. We also have implemented a SOAP prototype
for real-world experiments. Experimental results show that SOAP can greatly improve the performance of Bayesian spam filters in terms
of accuracy, attack-resilience, and efficiency of spam detection. The performance of the Bayesian spam filter is SOAP’s lower bound.

Index Terms—Distributed overlays, Spam filtering, Social networks, Bayesian spam filters.
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1 INTRODUCTION
Internet email is one of the most popular communication
methods in our business and personal lives. However,
spam is becoming a penultimate problem in email
systems. Currently, 120 billion spam emails are sent
per day [1], with a projected cost of $338 billion by
2013 [2]. Spam emails interfere with both email service
providers and end users. A fundamental way to prevent
spam is to make it unprofitable to send spam emails,
thereby destroying the spammers’ underlying business
model [3]. Boykin et. al. indicated that there is a strong
relationship between the average cost of sending spam,
spam detection accuracy, and spam filter deployment
by users [3]. Specifically, if a spam filter can stop spam
from reaching users’ inboxes with probability p and
it is deployed by users with probability q, then it can
increase the average cost of sending spam by 1/(1− pq).
This means that in order to increase the cost of sending
spam, a spam filter should increase detection accuracy
p and user deployment q. Such a spam filter should be
attack-resilient, personalized, and user-friendly.

The attack-resilient and personalized features are impor-
tant to achieve high accuracy. A more accurate filter
generates less false positives and false negatives. False pos-
itives are legitimate emails that are mistakenly regarded
as spam emails. False negatives are spam emails that are
not detected. There are two primary types of spam filter
attacks: poison attacks and impersonation attacks. In a poison
attack, many legitimate words are added to spam emails,
thus decreasing its probability of being detected as spam.
In an impersonation attack, a spammer impersonates the
identities of ordinary users by forging their IDs or com-
promising their computers. An estimated 50% - 80% of all
spam worldwide was sent by compromised computers,
also known as zombies, in 2005 [4].
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By personalized, we mean that an accurate spam filter
should consider the social context of a particular individ-
ual. First, it considers closeness between correspondents.
A closer social relationship between two persons implies
higher trust between them [5]. People treat emails sent
by strangers and emails sent by acquaintances differently.
Emails containing keywords such as “lose weight” are
usually regarded as spam. However, such keywords may
be in emails between members of a health club. Second,
a spam filter considers different (dis)interests of indi-
viduals. For example, an email about “football” is not
spam to football fans, but is spam to those who are not
interested in football. Thus, what constitutes a legitimate
email differs from person to person. A user-friendly (i.e.,
easy-to-use) spam filter does not require a large amount
of manual spam detection from users.

However, few previous spam filters can meet the re-
quirements of being user-friendly, attack-resilient, and per-
sonalized. We list the main approaches in Table 1 with their
features. Most approaches do not take into account the
closeness relationships and (dis)interests of individuals.
Previous spam filtering approaches can be mainly divided
into two categories: content-based and identity-based.

In the content-based category, emails are parsed and
scored based on keywords and patterns that are typical
in spam. Machine learning approaches [6]–[14] (including
the Bayesian filter [6]) train spam filters with a corpus
of both spam and legitimate emails, identify their char-
acteristics, which are used to automatically categorize
future emails into two classes. However, these approaches
still suffer from a number of problems. First, in order to
increase the efficiency and accuracy of training, the spam
filters are normally installed in an email server to collect
all the training samples; thus, they are not personalized.
Second, the spam filters are vulnerable to poison attacks.
Third, the spam filters are not user friendly; they require
much user effort to manually distinguish spam from
legitimate emails for training.

Identity-based spam filters identify spam based on
the identities of email senders. In the simplest method,
a user maintains a whitelist and a blacklist for email
addresses [19]–[22]. Social interaction-based spam fil-
ters [23]–[26] exploit friend’s friend (FoF) relationships
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TABLE 1: Features of previous spam filtering approaches.

Approaches Person- Attack-resilient User-
alized impersonation Poison friendly

Content-based spam filters
Static keyword [15] No Yes No No
Machine learning [6]–[14] No Yes No No
Collaborative [16]–[18] No Yes No Yes

Identity-based spam filters
Black/white list [19]–[22] No No Yes No
Social interaction-based [23]–[26] No No Yes Yes
Reputation [27] No No Yes No

Social network aided content and identity based spam filter
SOAP Yes Yes Yes Yes

among email correspondents to create whitelists and
blacklists. Since these spam filters do not consider email
content, they are resilient to poison attacks. Addition-
ally, because these filters automatically identify spammers
from normal users according to their communication
patterns, they are user-friendly. However, they are not
personalized. Also, they are vulnerable to impersonation
attacks. If a user’s email account is compromised or the
user’s ID is forged by a spammer, the user’s friends can
be easily attacked by the spammer because of the highly
clustered nature of people’s interaction network [28].
Moreover, as indicated in [29], the assumption that person
A’s FoF is also A’s friend is not generally true.

In this paper, we propose a SOcial network Aided
Personalized and effective spam filter (SOAP) for spam
detection to meet the three requirements. SOAP incorpo-
rates an social network (including social relationships and
user (dis)interests) into the email network. In SOAP, users
register their emails in SOAP client and are encouraged
to provide their social information, such as (dis)interests,
religions, occupations, affiliations and social relationships,
in order to avoid spam. Each node connects to its social
friends in the locally stored friendlist; that is, nodes form
an overlay network by directly using social network links
as overlay links. Each node uses SOAP to collect infor-
mation and check spam autonomously. Different from
social interaction-based spam filters [23]–[26] that only
focus on the interaction via emails, SOAP also explores
personal information in social networks and infers the
relationship closeness and (dis)interests of individuals for
more accurate spam detection.

SOAP in each node leverages social networks to com-
bine four components into the basic Bayesian filter [6].
(1) Social closeness-based spam filtering. It calculates the
node closeness based on social relationships. Since nodes
with higher closeness have a lower probability of sending
spam emails to each other, emails from nodes with lower
closeness are checked more strictly and vice versa. This
component makes SOAP resilient to poison attacks.
(2) Social interest-based spam filtering. It infers nodes’
(dis)interests based on social profiles. The inferred infor-
mation helps the filter enhance the accuracy of spam de-
tection by considering individual preferences. This com-
ponent contributes to the personalized feature of SOAP.
(3) Adaptive trust management. In order to tackle
impersonation attacks, SOAP relies on the additive-
increase/multiplicative-decrease algorithm (AIMD) [30]
to adjust the trust values of nodes. The trust value is used
to tune closeness values in order to block emails from low-
trust nodes or normal nodes impersonated by spammers.
(4) Friend notification. In order to strengthen SOAP’s
capability to combat impersonation attacks, a node
quickly notifies its friends and FoF about a detected
suspicious compromised node.

SOAP can rapidly determine spam and adapt to new
spam keywords. It achieves high spam detection accuracy

due to its personalized and attack-resilient features. In
addition, it is user-friendly, since it does not need much
user effort to identify spam and legitimate emails. Mean-
while, its highly accurate and automatic spam detection
reduces the training time of the basic Bayesian filter.
Further, SOAP can collect the information in a decentral-
ized manner, reducing the burden caused by information
querying on the centralized server as in [24]. SOAP can
greatly reduce the false positive spam detection rate. The
lower bound performance of SOAP is the performance
of the Bayesian spam filter. Unlike current online social
networks that use centralized servers to manage user ac-
counts, in SOAP, a user’s social account is independently
managed by the user’s SOAP email client in the dis-
tributed network. We implemented SOAP email client in
simulation and real-world prototype experiments. Exper-
imental results show the superior performance of SOAP
in comparison with other methods.

2 RELATED WORK
The vast quantity of spam emails distributed blindly
in bulk has stimulated many spam filtering approaches.
These approaches can be mainly categorized into two
classes: content-based and identity-based.
Content-based Approaches. The basic approach of
content-based spam filtering is the static keyword list [31],
which however makes it easy for a spammer to evade
filtering by tweaking the message. The second category
of content-based approaches includes machine learning-
based approaches such as Bayesian filters [6], decision
trees [8], [9], Support Vector Machines [10], [11], Bayes
Classifiers [12], [13] and combinations of these tech-
niques [14]. In this approach, a learning algorithm is used
to find the characteristics of the spam and of legitimate
emails. Then, future messages can be automatically cat-
egorized as highly likely to be spam, highly likely to be
legitimate emails, or somewhere in between.

The third category of content-based approaches is col-
laborative spam filtering. Once a spam email is detected
by one user, other users in the community can avoid the
spam later on by querying others to see if their received
emails are spam or not. SpamNet [18] uses a central
server to connect all participants of the collaborative spam
filter. SpamWatch [17] is a distributed spam filter based
on the Tapestry Distributed Hash Table system. Kong et
al. [16] proposed a distributed spam filter to increase the
scalability of centralized collaborative spam filters.
Identity-based Approaches. The simplest identity-based
spam filtering approaches are blacklist and whitelist [19]–
[22], which check the email senders for spam detection.
Whitelists and blacklists both maintain a list of addresses
of people whose emails should not and should be blocked
by the spam filter, respectively. One server-side solu-
tion [22] records the number and frequency of the same
email sent to multiple destinations from specific IP ad-
dresses. If the number and frequency exceed thresholds,
the node with the specific IP address is blocked.

Boykin et al. [23], [26] constructed a graph in which ver-
tices represent email addresses and direct edges represent
email interactions. Emails are identified as spam, valid,
or unknown based on the local clustering coefficient of
the graph subcomponent. This is based on the rationale
that the social communication network of a normal node
has a higher clustering coefficient than that of a spam
node. RE [24] is a whitelist spam filtering system based
on social links. It is based on the assumption that all
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friends and FoF are trustable. Hameed [25] proposed
LENS, which extends the FoF network by adding trusted
users from outside of the FoF networks to mitigate spam
beyond social circles. Only emails to a recipient that have
been vouched by the trusted nodes can be sent into the
network. DeBarr et al. [32] evaluated the use of social
network analysis measures to improve the performance
of a content filtering model. They tried to detect spam
by measuring the degree centrality of message relay
agents and the average path length between senders and
receivers. They claimed that the messages from a promis-
cuous mail relay or messages with unusual path lengths
that deviate from the average are more likely to be spam.
Lam et al [33] proposed a learning approach for spam
sender detection based on user interaction features (e.g.,
indegree/outdegree and interaction frequency) extracted
from social networks constructed from email exchange
logs. Legitimacy scores are assigned to senders based
on their likelihood of being a legitimate sender. Tran et
al [34] implemented an email client called SocialEmail,
which provides social context to messages using a so-
cial network’s underlying social graph. This not only
gives each email recipient control over who can mes-
sage him/her, but also provides the recipient with an
understanding of where the message socially originated
from. However, if a spammer compromises a legitimate
user’s computer, the spammer can easily attack the user’s
friends in the social network, which is characterized by
high clustering and short paths [28]. Also, such social
interaction-based methods are not sufficiently effective
in dealing with legitimate emails from senders outside
of the social network of the receiver. Golbeck et al. [27]
proposed an email scoring mechanism based on an email
network augmented with reputation ratings. An email
is considered spam if the reputation score of the email
sender is very low. Different from these social network
based methods, SOAP focuses on personal interests in
conjunction with social relationship closeness for spam
detection. There are other approaches not belonging to
the above two classes [35]–[41]. Due to space limit, we do
not present the details of these methods.
3 SOAP: SOCIAL NETWORK BASED
BAYESIAN SPAM FILTER
3.1 Overview of the Basic Bayesian Spam Filter
A Bayesian filter has a list of keywords along with their
probabilities to identify an email as a spam email or a
legitimate email. The list is built by training the filter. Dur-
ing training, a user is given a pool of emails, and s/he will
manually indicate whether each email is spam or not. We
use P (S) and P (L) to denote the probability that an email
is a spam email and a legitimate email, respectively. The
filter parses each email for spam keywords. It calculates
the probabilities that a word w appears in a spam email
and in a legitimate email, denoted by P (w|S) and P (w|L)
respectively. After training, the calculated probabilities are
used to compute the probability that an email with a
particular set of keywords in it belongs to either category.
The probability that an email including a word w is spam
is:

P (S|w) =
P (S,w)

P (w)
=

P (w|S)P (S)

P (w)
(1)

=
P (w|S)P (S)

P (w|S)P (S) + P (w|L)P (L)
. (2)

Then, the probability that an email including a set of
keywords W is spam is:

P (S|W ) =
P (S,W )

P (W )
=

∏
i P (wi|S)P (S)∏

i P (wi|S)P (S) +
∏

i P (wi|L)P (L)
. (3)

The Bayesian filter sets a threshold, denoted by T . If an
email’s parsed keywords are W and P (S|W ) ≥ T , then
it is spam. Otherwise, it is considered as legitimate.

3.2 Overview of SOAP
SOAP is a social network based personalized, attack-
resilient, and user-friendly Bayesian spam filter. In the
email network, each node uses SOAP to filter spam
in a distributed manner. Unlike current social network
based filters that focus on email interaction networks [16],
[24], [25], [27], SOAP further leverages social information
including personal (dis)interests and social relationships.
SOAP encourages users to indicate their (dis)interests and
social relationships with their email correspondents in
order to receive less spam and lose less legitimate emails.
Using this information, nodes form a distributed overlay
by connecting to their friends; that is, nodes use social
network links directly as overlay links.

Fig. 1 shows the structure of SOAP in each node. SOAP
integrates four new components into the Bayesian filter:
(1) social closeness-based spam filtering, (2) social interest-
based spam filtering, (3) adaptive trust management, and
(4) friend notification. Based on the collected social infor-
mation, SOAP infers node closeness and email preference
for individuals. The Bayesian filter keeps a list of spam
keywords and their corresponding weights showing the
probability that the email containing the keyword is spam.
Based on the three social-based components, after parsing
the keywords of an email, SOAP adjusts the weights of
the keywords. Then, SOAP resorts to the Bayesian filter
for spam evaluation. The weights are therefore adjusted
based on the closeness between the receiver and the
sender, the receiver’s (dis)interests, the receiver’s trust of
the sender, and the received spammer notification from
friends. If the closeness is high, the likelihood that they
send spam to each other is low, so the weight is decreased,
and vice versa. However, it is possible that close nodes are
compromised. This problem is resolved by the trust man-
agement and friend notification components. For those
nodes with low closeness, the emails are evaluated based
on the user’s (dis)interests.

As mentioned, content-based spam filters focus on
email content and can prevent impersonation attacks.
Identity-based spam filters focus on the communication
relationship between correspondents and hence are re-
silient to poison attacks. SOAP combines the advantages
of both types of spam filters. The accurate results from
SOAP become training data to automatically train the
Bayesian filer, thus making the filter user-friendly and
personalized, which also reduces the training time. In the
section below, the following issues will be addressed.
•How is the closeness of individuals calculated in a
distributed manner and how is consideration of closeness
integrated into the Bayesian filter? (Section 3.3)
•How are the (dis)interests of individuals inferred and
integrated the email preference consideration into the
Bayesian filter? (Section 3.4)
•How are trust values adjusted to avoid impersonation
attacks? (Section 3.5)
•How does a node notify friends when it detects a com-
promised node? (Section 3.6)
•How do the different components in SOAP cooperate for
spam detection? (Section 3.7)
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Fig. 1: The structure and workflow of SOAP.

3.3 Social Closeness-based Spam Filtering

When a person receives an email from another socially
close person, the email has a low probability of being
spam unless the email sender’s machine is under an
impersonation attack. Thus, the social closeness between
individuals can be utilized to improve the accuracy of
spam detection. Note that, in a social network, people
treat others differently based on their social closeness.
People impose different levels of interest, trust, or
tolerance to the emails from others with different social
closeness. People with close social relationship are willing
to receive emails from each other. On the other hand,
receivers may have less interest in or tolerance for emails
containing spam keywords from senders that are socially
far away. We regard spam as emails that receivers are not
interested in. Therefore, we need to differentiate emails
from persons with different social closeness. SOAP
loosely checks emails between individuals with high
closeness and strictly checks emails between individuals
with low closeness.

In this section, we propose an algorithm that is used in
spam detection to numerically measure social closeness
between two persons. SOAP relies on nodes’ social rela-
tionships, such as kinship and friendship, to determine
node closeness values. SOAP sets different weights for
different social relationships to measure node closeness.
For example, the closeness of a kinship relationship usu-
ally weights more than a business relationship. We use
c(u, v) to denote the weight of a relationship between
node u and v. Below, we introduce how to calculate the
closeness of adjacent nodes and non-adjacent nodes in a
social network.

3.3.1 Node Closeness
In a social network, more relationships between two
adjacent nodes make them closer. Thus,

C(u, v) =
n∑

i=1

ci(u, v), (4)

where n is the number of relationships between u and v,
ci(u, v) is the relationship weight of the ith relationship.

Based on the closeness value between any two adjacent
nodes, the closeness of non-adjacent nodes can be calcu-
lated with the aid of relationship transitivity, in which
relationship closeness can be passed along the nodes. For
example, if node A is D’s father and E is D’s best friend,
A is unlikely to send spam to E. The closeness transitivity
should capture three properties in order to correctly reflect
the social relationship.

Property 3.1: Closeness propagation property. The close-
ness between node u and node ki exponentially decreases
as their distance increases. As shown in Fig. 2, it can be
illustrated by C(u, ki) = C(u, k1) · εi−1, where ε < 1 is not
necessarily a constant.

Thus, the more hops that exist between node u and
node ki, the less closeness between them. The closeness
value is decreased to an extremely small value when
the distance exceeds 3 hops. This relationship has been
confirmed by other studies. Binzel et al. [5] discovered that
a reduction in social distance between two persons signif-
icantly increases the trust between them. Swamynathan et
al. [42] found that people normally do e-commerce with
people within 2-3 hops in their social networks.

Property 3.2: Weakest link property. The weakest link in
a social path (not necessarily a disjoint path) is the direct
link between adjacent nodes that has the minimum close-
ness, denoted by min

1≤i≤n
C(ki, ki+1). The closeness between

two non-adjacent nodes u and v is upper bounded by the
closeness of the weakest link between u and v. That is, for
a social network path from node u to node v with n nodes
in between, C(u, v) < min

1≤i≤n
C(ki, ki+1), where node ki is

in the path between u and v.
Fig. 3 shows the weakest link property. The intuition

behind this property is that the closeness value between
any pair of non-adjacent nodes u and v is less than the
closeness value between u and k, and k and v, where k is a
node in the social path between u and v [43]. Suppose the
link between adjacent nodes ki and ki+1 in the path from
u to v that has the smallest closeness value C(ki, ki+1).
Then, C(u, v) < C(u, ki) < C(ki, ki+1). That is, C(u, v) <
min

1≤i≤n
C(ki, ki+1).

Property 3.3: Closeness accumulation property. The more
social paths that exist between node u and node v, the
higher closeness they have. Specifically, if node u and
node v have p social paths between them, their closeness
through p paths denoted by C(u, v, p) is

C(u, v, p) =

p∑
j=1

Cj(u, v). (5)

Fig. 4 shows the closeness accumulation property. The
closeness value between node u and node v is the sum of
the closeness values of individual paths between node u
and node v. The underlying idea is that if person u has
more ways to get in touch with person v, u has higher
closeness with v. We call this the closeness accumulation
property. We then design a closeness calculation formula
that can meet the above three properties:

C(u, ki+1, p) =

p∑
j=1

(
Cj(u, ki) · (Cj(ki, ki+1)/ϕ)

i

)
(6)

where ϕ is a scale parameter to control the closeness scale
rate in each hop in closeness propagation, and

ϕ > max
1<x<i

(
C(kx−1, kx) ∪ C(u, k1)). (7)

Equ. (7) indicates that ϕ is larger than any closeness
value between two adjacent nodes in the path from u
to v, which ensures that Cj(ki, ki+1)/ϕ < 1 in Equ. (6).
Therefore, for each social path j from node u, the social
closeness value C(u, ki+1) decreases exponentially based
on i, which meets Property 3.1.

For each social path j, we have:
C(u, ki+1) = C(u, ki) · (C(ki, ki+1)/ϕ)

i. (8)
Since C(u, v) = C(u, kn−1) · (C(kn−1, kn)/ϕ)

n−1, we can
recursively get:

C(u, v) = C(u, kx+1) ·
( ∏
x+1≤i≤n−1

(C(ki, ki+1)/ϕ)
i
)

< C(u, kx+1). (9)

Suppose C(kx, kx+1) = min
1≤i≤n

C(ki, ki+1). (10)

From Equ. (6), we can get:
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Fig. 5: Closeness propagation.
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Fig. 6: Weakest link.

C(u, kx+1) = C(u, kx) · (C(kx, kx+1)/ϕ)
x

< C(u, kx) · (C(kx, kx+1)/ϕ)

= (C(u, kx)/ϕ) · C(kx, kx+1). (11)

As C(u, kx) < C(u, k1) < ϕ, (C(u, kx)/ϕ) < 1. Thus,
from Formula (11), we get:

C(u, kx+1) < C(kx, kx+1). (12)
From Formulas (9) and (12), we can get C(u, v) <
C(kx, kx+1). That is, C(u, v) < min

1≤i≤n
C(ki, ki+1) for path j

based on Formula (10), which meets Property 3.2.
By summing up all C(u, ki+1, pj) for different p different

paths, Equ. (6) satisfies Property 3.3. In order to verify that
the closeness provided by Equ. (6) meets the expected
properties, we calculate the closeness with different pa-
rameter values and show the results in Figures 5 and 6.
The closeness of the link of each pair of adjacent nodes
was set to 1 unless otherwise specified in the figure.
“All=0.9” means the closeness of each link of adjacent
nodes was set to 0.9. Fig. 5 shows that the closeness be-
tween nodes and the source node decreases exponentially
as the distance to the source increases, which verifies
Property 3.1. “All=1.0” leads to higher closeness values
than “All=0.9” because the closeness value of adjacent
nodes in “All=1.0” is higher. “C(u,k1)=0.1” generates
much lower closeness values than “All=0.9”, which con-
firms that the closeness of a node to the source highly de-
pends on the closeness of its previous nodes to the source.

Fig. 6 shows how the weakest link affects the close-
ness between nodes in a path. The figures show that
the closeness between a node and the source decreases
sharply at the weakest link. For example, in both figures,
the closeness in lines “C(k2, k3)=0.1” and “C(k1, k2)=0.5”
drops sharply at nodes k2 and k1. Also, the closeness
between the source and a node succeeding the weakest
link is always less than the link’s closeness value. For
example, in line “C(k1, k2)=0.1”, the closeness of the node
is two hops away from the source, C(u, k2) < 0.1. In
line “C(k2, k3)=0.5”, C(u, k2) < 0.5. The results verify
Property 3.2.

By comparing Fig. 5(a) with Fig. 5(b) and Fig. 6(a) with
Fig. 6(b), we can find that a larger ϕ leads to a faster
decrease in the closeness value. This implies that we can
adjust ϕ to model different kinds of social relationships
such as kinship, friendship, familiar stranger, etc.

3.3.2 Distributed Closeness Calculation Algorithm
In a social network, each person has a friend list. Based
on the social relationship of his/her friends, the close-

ness values with adjacent friends can be calculated. Most
current social networks have a central server to store all
individuals’ information in the social network. However,
such a centralized method may generate a single point of
failure, and hence is not scalable. We propose a distributed
algorithm as an alternative for the closeness calculation.
In the algorithm, a source node sends a query message
with a specified TTL along the FoF links. Upon receiving
the message, an intermediate node decreases the TTL by
1, inserts its closeness values with its neighbors into the
message, then forwards it to all its neighbors. The process
continues until the TTL becomes 0. Then, the destination
nodes directly sends the message back to the source node.
Subsequently, the source node retrieves all closeness val-
ues of the nodes in the path to the destination; it can then
calculate its closeness with each of node using Equ. (6).
Algorithm 1 Distributed closeness calculation algorithm.
1: Send a query message with TTL
2: if Receive a response from destinations then
3: Calculate its closeness with each node using Equ. (6)
4: end if
5:
6: if Receive a query initiated by node i then
7: Insert its closeness with node i to the message
8: TTL=TTL-1
9: if TTL¿0 then

10: Forward the message to its neighbors
11: else
12: Send the message to node i
13: end if
14: end if

It was shown that the average number of hops between
any two persons is less than or equal to 6 [44]. Therefore,
when a node receives an email, the social distance of the
sender to the receiver is less than or equal to 6 on average.
A node needs the closeness information of the sender for
spam detection. Thus, each node should collect the close-
ness information of the nodes within a certain distance
from itself. Hence, we can set TTL=3 for two reasons:
(1) Sending the message along more hops produces high
overhead, and (2) Property 3.1 indicates that closeness
decreases exponentially. The closeness value is decreased
to an extremely small value when the distance exceeds 3
hops [5], [42]. Therefore, the source has very low closeness
to the nodes far away from itself, and the emails from
these nodes should be strictly checked. Algorithm 1 shows
the pseudocode of this distributed closeness calculation
algorithm. The number of message transmission hops in
information collection from one node is O(n3), where n
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denotes the number of neighbors of a node.

3.3.3 Integration with Bayesian Filter
In the Bayesian filter, each of an email’s keywords is
weighted to show the probability that an email containing
the keyword is spam. SOAP adjusts the keyword weights
based on the closeness between the email receiver
and sender in determining spam. Specifically, high
closeness reduces weights and low closeness increases
weights. Thus, emails from people with high closeness
are regarded as legitimate emails with high probability,
while emails from strangers or people with low closeness
are strictly checked. The keywords tuning function is:
P (S|w) :=

{
P (S|w)e−ϕf ·(C(u,v)−ϕt) if C(u, v) ≥ ϕt;
P (S|w)ξ (ξ ≥ 1) if C(u, v) < ϕt.

(13)

where P (S|w) is the weight of a keyword, ϕf is a scale
parameter to adjust the decreasing rate of P (S|w), and
ϕt is a location parameter to determine the origin for
exponential decreasing [45]. If C(u, v) = ϕt, then the
weight is not changed. If C(u, v) > ϕt, then P (S|w) is
decreased by a factor eϕf ·(C(u,v)−ϕt). If C(u, v) < ϕt,
then P (S|w) is increased by a factor ξ (ξ ≥ 1). ξ can be
adjusted by users with different accuracy requirements.
Higher ξ requires the email to have a higher probability
to be regarded as spam. ξ normally is set to be 1 in order
to reduce false positives.

3.4 Social Interest-based Spam Filtering
The social interest-based spam filtering component aims
to make SOAP personalized in order to increase the spam
detection accuracy. It is actually a content-based spam
detection method. By matching the keywords in an email
with the email receiver’s social interests and disinterests,
SOAP increases and decreases the probability of these
keywords to be spam, respectively.

3.4.1 Node (Dis)interest Inference
SOAP relies on a rule-based inference system [46] to
infer each user’s (dis)interests. The inference system has
three components: profiles, inference rules, and inference
engines. The profile component is a database containing
all useful facts parsed from the user’ profile in the social
network including interests, occupations, and affiliations.
The inference rules component contains all the rules that
are used for the inference of (dis)interests. Such rules can
be rational reasoning based on non-monotonic logic or
common sense such as “Most of the birds can fly”. The
inference engine component determines the applicability
of the rules in the context of the current profile, and
selects the most appropriate rules for the inference. Fig. 7
shows an example of the rule-based inference method.
All the facts are built into a fact database. Numerous
rules are made for the inference engine based on the non-
monotonic logic.

Since SOAP derives user (dis)interests from user pro-
files in the social network, SOAP’s spam filtering accuracy
based on user interests could be affected if some users
do not provide detailed, accurate, or complete profiles.
When users register for SOAP, they will be informed that
the accuracy of the information in their profiles affects
the accuracy of spam detection. Users usually will not
enter false information to their profiles since they hope to
deter their received spam more accurately. In Section 4, we
present how profile completeness affects the false negative
rate and false positive rate in spam filtering (Fig. 10
and Fig. 13), respectively. The experimental results show
that the more information a user provides, the less false

Interest Inference
1  ;; Facts collected from social network
2   { Deffacts people‐profile

(Hobby: Travel Shopping Movie)
(Status: Graduate Student)
(Program: Electrical Engineering)

3   }
4  ;; Inferred interests by the inference engine
5  { Defrule Prefer‐travel
6 (Hobby: Travel)(Status: Graduate Student) 
7 =>     assert (Interest keyword: Travel)
8   }
9   { Defrule Prefer‐deal
10 (Hobby: Shopping)(Status: Graduate Student) 
11 =>     assert (Interest keyword: Deal)
12 }

Fig. 7: An example of email preference inference.

positive rate and false negative rate his/her SOAP filter
can provide. Therefore, if users want to gain high spam
filtering accuracy rate, they would provide more detailed
profile information for SOAP. Also, even some users do
not provide much profile information, as our experimen-
tal results (Fig. 15) show, the spam filtering accuracy will
be increased finally after the users use SOAP for a long
time (i.e., SOAP is trained with more training samples).

3.4.2 Integration with Bayesian Filter
SOAP is a personalized spam filter since it considers
individual (dis)interests in spam detection. The basic
Bayesian filter calculates the weight (i.e., probability) that
an email containing a keyword is spam. Recall that SOAP
adjusts the weights of keywords in an email according to
social closeness between the email receiver and sender.
After that, SOAP further adjusts the weights according to
the email receiver’s social (dis)interests. If an email key-
word is within the receiver’s interests, SOAP decreases
the spam weight of the keyword in order to increase
the probability that the email is regarded as legitimate.
On the other hand, if an email keyword is within the
receiver’s disinterests, SOAP increases the spam weight
of the keyword in order to increase the probability that
the email is regarded as spam. Then, SOAP relies on the
basic Bayesian filter (Section 3.1) for spam detection.

For a spam keyword within the email receiver’s inter-
ests, its weight is tuned by:

P (S|winterest) := P (S|winterest) · e−ρI (14)
where winterest is the spam keyword in interests and ρI is
a scale parameter. As ρI increases, P (winterest) decreases.
Therefore, the probability that the email is considered to
be spam decreases. As a result, emails within a receiver’s
interests usually will not be regarded as spam. Therefore,
SOAP can reduce false positives in traditional spam filters
that lack the personalized feature.

If a spam keyword matches the disinterests of the
email receiver, the weight of the keyword is adjusted by

P (S|wdisinterest) := P (S|wdisinterest) · eρD (15)
where wdisinterest is the spam keyword in the email
receiver’s disinterests. As the scale parameter ρD
increases, the weight of the spam keyword is increased.
Thus, even if a spammer has added many legitimate
words into an email in order to disguise spam keywords,
as long as the email has keywords in the email receiver’s
disinterests, it has a high probability of being regarded
as spam. The more disinterest keywords an email has,
the higher the probability that the email will be rejected.
Meanwhile, since the (dis)interests of different persons
are different, it is very difficult for a spammer to modify
the keywords in a spam email to match the interests and
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avoid the disinterests of a person. In this way, SOAP
resists spam poison attacks. Note that the inference
results may not match the actual interests of a person.
This problem can be resolved in the training step (step (4)
in Fig. 1). SOAP not only can learn the spam keywords,
it also learns the interests and disinterests of the users.
If a legitimate email is falsely regarded as spam, the
disinterest keywords in the legitimate email are deleted
from the disinterest keyword list. Similarly, if a spam
is falsely regarded as legitimate email, the interest
keywords are also deleted from the interest keyword list.

3.5 Adaptive Trust Management
Recall that in impersonation attacks, a spammer imper-
sonates the identities of benign computers by forging
their IDs or compromising them to send spam or report
fake relationships with neighbors to the source node
during the social closeness calculation process. Due to
the power-law and small-world characteristics of social
networks, in which nodes are highly clustered, imper-
sonation can spread spam extremely fast. In order to
combat impersonation attacks, SOAP integrates an adap-
tive trust management component. Specifically, a node
tracks rapid behavior changes of close-relationship nodes.
It uses the additive-increase/multiplicative-decrease algo-
rithm (AIMD) [30] to adjust node trust. Node trust is then
used to update node closeness for the detection of false
negatives due to impersonation attacks.

AIMD is a feedback control algorithm used in TCP
congestion avoidance. It combines linear growth of the
congestion window with an exponential reduction during
congestion. AIMD aims for a balance between responsive-
ness to congestion and utilization of available capacity.
Similarly, SOAP aims for a balance between responsive-
ness to false negatives and acceptance of trustable emails.
In SOAP, node i initially assumes node j with high
closeness is trustworthy until it receives a spam email (i.e.,
false negative) from node j.

We use t(i,j) to denote the trust value of node j regarded
by node i. The maximum trust value tmax = 1 and t ≤
tmax. t is initially set to tmax. When node i receives a spam
email from sender j, node i changes the trust value of j by

t(i,j) := a · t(i,j) (0 < a < 1). (16)
When node i receives a legitimate email from sender j,
then t(i,j) := t(i,j) + b (0 < b < 1). (17)
In this way, SOAP can sensitively adjust node trust value
to quickly react to zombies, thus reducing false negatives.

It is important to determine appropriate values for a
and b. A smaller a (i.e., a faster trust decrease) and b (i.e.,
a slower trust increase) lead to fewer false negatives, but
more false positives. On the other hand, a larger a and b
result in fewer false positives, but more false negatives.
In order to maximally reduce false negatives without
concurrently generating more false positives, SOAP com-
plements AIMD with a new strategy. That is, when a
user notices a legitimate email in the junk box (i.e., false
positive), it increases the node trust by

t(i,j) := t(i,j) + α · b (α > 1). (18)
In order to reach the optimal point between the false
negatives and false positives, parameters a and b are
functions of the number of false negatives and false posi-
tives respectively, denoted by nfn and nfp. Specifically,
a = F(nfn) is a decreasing function and b = F(nfp)
is an increasing function. The two functions are for-
mally presented in math below, when nfn1 < nfn2, then

F(nfn1) > F(nfn2) (i.e., a1 > a2); if nfp1 < nfp2, then
F(nfp1) < F(nfp2) (i.e., b1 < b2) [47]. Briefly, a larger nfn
leads to a smaller a, and a larger nfp leads to a larger
b. The functions are designed in this way so that when
there are a large number of false negatives, a decreases
in order to quickly reduce the node trust value to reduce
false negatives. On the other hand, when there are a large
number of false positives, b increases in order to quickly
increase the trust value to reduce false positives.

After the trust value is updated, the closeness value
between node i and node j is updated by:

C(i, j) := t(i,j) · C(i, j). (19)
The closeness value C(i, j) is then used to adjust the

weights of keywords in the social closeness-based spam
filtering component.
3.6 Friend Notification Scheme
Due to high clustering in social networks, once a spammer
compromises a node in the social network in an imperson-
ation attack, the spammer can quickly send spam to the
close friends of the compromised node in its social net-
work. As the spam receivers are socially close to the com-
promised node, their filters will loosely check the spam
emails from the compromised node and receive the spam.

Since a compromising spammer always sends spam
to the compromised node’s socially close friends, SOAP
takes advantage of the power of a collective of socially
close nodes to combat spam in impersonation attacks,
in addition to letting nodes individually fight against
spam with the adaptive trust adjustment. That is, a node
notifies its friends when it identifies a compromised
node. This can help its friends to avoid spam more
quickly. Thus, we propose a friend notification scheme
to enhance the effectiveness of SOAP in avoiding spam
in impersonation attacks.

Recall that in the adaptive trust management, when a
node receives a spam email, the trust value of the email
receiver on the email sender, t(i,j), is reduced. Thus, when
node i finds that it keeps on receiving spam from a certain
node j, t(i,j) is continuously reduced. When the trust
value is less than a threshold value Tt, node i regards
node j as a spammer and broadcasts a warning message
containing the ID of suspicious node j to all its friends in
its social network. As the nodes in a social network are
highly clustered [48], the friends of node j are very likely
to be the friends of node i. According to Equ. (6), the
social closeness value between two nodes with a distance
beyond 2 hops is very small. Therefore, there is no need
to notify friends 2 hops away in the social network as
they already strictly check the emails from the senders
who are two hops away in the social network according
to Equ. (13). Therefore, in order to reduce the notification
overhead, we confine the number of broadcasting hops
to 2. The nodes that receive more than m notification
messages about node j from different reporters add
the ID of node j into their blacklists. The value m is
called blacklist threshold. Otherwise, the notification
receiver ignores the notification. A large m can prevent
compromised users conduct sybil attack to mis-accuse a
legitimate user as a spammer. Also, since the notifications
are sent between friends in the social network, node j
is very also likely to receive the notification messages
accusing itself. If node j is not a spammer, it checks if
itself has been compromised. In addition, as user j and the
reporters are socially close, user j contacts the reporters
offline (e.g., through telephone) to inform them to check
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if their computers are compromised. The user j report to
the administrator about the accuse. If a node receives an
email from node j in its blacklist, rather than adjusting
the weights of keywords in the email based on closeness,
the node increases the weights of these keywords:

P (S|w) = P (S|w)ξ (ξ ≥ 1). (20)
A spammer may use a Sybil attack to mislabel a legitimate
user as a spammer. The Sybil attack problem has been
addressed in many works [49] and it is out of the scope
of this paper. Also, we can use the methods in the previ-
ous identity-based spam filtering approaches [19]–[22] to
decide when the nodes in the blacklist get out of the black-
list. This problem is also out of the scope of this paper.

3.7 The Integration of Components in SOAP
SOAP is a user-oriented spam filter. Each user will
run SOAP independently to detect spam. Fig. 1 shows
how the different components in SOAP cooperate with
each other for spam examination of an incoming email.
Algorithm 2 shows the pseudocode of the workflow
process. Using the social closeness-based spam filtering
algorithm, a node calculates the closeness between other
nodes and itself, and keeps a list of the closeness values.
In phase (1) in Fig. 1, when a node receives an email,
SOAP parses out the keywords in the email (Line 2).

For each keyword, the basic Bayesian filter keeps the
weight (i.e., probability) that an email containing the
keyword is spam. In phase (2), the different components
adjust the probability in order to increase the accuracy of
spam detection. First, if the sender is not in the blacklist,
based on the closeness between the email sender and
receiver, the probability of each keyword is adjusted based
on Equ. (13). Otherwise, the probability of each keyword
is adjusted based on Equ. (20) (Lines 4-12). Then, the
social interest-based spam filtering algorithm is used.
If the keywords match the interests of the receiver, it
means the email is useful to the receiver. Subsequently, the
probabilities of these keywords are decreased based on
Equ. (14) (Lines 15-17). On the other hand, if the keywords
are in the disinterest list of the receiver, it means the email
is useless to the receiver. Then, the probabilities of these
keywords are increased based on Equ. (15) (Lines 18-20).
Finally, according to the probabilities of the keywords,
the Bayesian filter determines whether the email is spam.
In phase (3), the email is forwarded to the Inbox or
the Junk box correspondingly. The results are used for
spam detection training in phase (4) (Lines 21-22). The
Bayesian training enables SOAP to automatically deter-
mine whether an email is spam later on. A user usually re-
covers legitimate emails in the junk box by using the “not
spam” function, and deletes spam emails directly without
reading them. Based on these false negatives and false
positives, the adaptive trust management in SOAP adjusts
node trust and node closeness accordingly (Equ. (19))
(Lines 23-24). If the trust value is lower than a threshold
Tt, the friend notification mechanism is used (Lines 25-
28). The goal of trust management and friend notification
is to counter impersonation attacks, i.e., reducing false
negatives while restricting false positives.

The social information about an individual is dynamic.
For instance, the friends and dis(interest) of a user may
change overtime. This is a problem for all social network
based spam filters [24], [25]. SOAP can periodically up-
date the social information for spam detection. Untimely
update would affect the accuracy of spam detection.
Therefore, the time period for the update should be

appropriately determined by the dynamic degree. The
performance of the Bayesian spam filter is still SOAP’s
lower bound.
Algorithm 2 The process of the spam detection in SOAP.
1: for each incoming email e do
2: K= parsed keywords in the email
3: Retrieve the weights of these keywords in Bayesian filter
4: //closeness-based weight adjustment when the email sender is not in

the blacklist of the email receiver
5: if e.sender is not in the blacklist of e.receiver then
6: //calculate the social closeness between sender and receiver and

update the weight of the keywords
7: Calculate C(e.sender,e.receiver) based on Equ. (6)
8: Adjust every keyword’s weight based on Equ. (13)
9: else

10: //weight adjustment when the sender is in the blacklist of the email
receiver

11: Increase every keyword’s weight based on Equ. (20)
12: end if
13: //execution of interest-based weight adjustment
14: for each keyword k in K do
15: if k matches the interests of e.receiver then
16: Decrease k’s weight according to Equ. (14)
17: end if
18: if k matches the disinterests of e.receiver then
19: Increase k’s weight according to Equ. (15)
20: end if
21: Calculate the weight of e according to Equ. (3)
22: Email classification
23: //update trust value of the email receiver to the email sender based

on the classification result
24: Update trust value on e.sender according to Equ. (19).
25: if trust value of e.receiver on e.sender is less than Tt then
26: //send a notification message to inform friends within 2 hops in

e.receiver’s social network
27: Send friend notification message with TTL=2
28: end if
29: end for
30: end for

4 PERFORMANCE EVALUATION
We evaluated the performance of SOAP compared to

the Bayesian filter [6] (Bayesian in short) and the RE
interaction-based spam filter [24] through simulations.
The false negative (FN) rate is the number of false nega-
tives divided by the total number of emails, and the false
positive (FP) rate is the number of false positives divided
by the total number of emails.

We built a social network based on data crawled from
Facebook. We selected two users with no social relation-
ship in Clemson University as seed nodes and built a
friend graph using the breadth first search through each
node’s friend list. We skipped the users whose personal
information cannot be accessed. Finally, a connected social
network with 32344 users was established for SOAP. The
average number of friends per node is 32.51 and the aver-
age path length of the graph is 3.78. Personal information
such as religion and interests of each node was parsed and
stored in the node. We merged sub-category interests into
a higher level category. For example, Mozart is classified
as classical music and the book Gone with the Wind is
classified as literature. The average number of interests
per person after merging is 6.64. The links between per-
sons are weighted based on their relationship indicated
in their profiles in Facebook. The average completeness
of a personal profile is about 50%.

We collected 9500 emails including 2000 spam emails
and 7500 legitimate emails from the spam-assassin
project [50], and 500 commercial emails from the email
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Fig. 8: FN rate.
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Fig. 11: FP rate.

TABLE 2: A list of SOAP parameters.
Parameter Value
Closeness value Kinship=InRelationship=2;

Colleague=Classmate=1.5;
Familiar=1;

Closeness scale rate ϕ= 1.3
Scale parameter of closeness ϕf = 1
Location parameter of closeness ϕt=1
Scale parameter ρI and ρD ρI = 3, ρD = 3
AIMD parameters a=0.5, b=0.1
Notification parameter m=1

boxes of five members in our lab. The size of the training
sample for Bayesian and SOAP was 6000 emails randomly
chosen from the total emails. The parameters used in the
simulation are shown in Table 2. We determined the close-
ness values of different social relationships based on the
intuition on the roles and strength of social relationships.
A higher closeness value of a relationship indicates that
this relationship is more trustable. Based on Equ. 13, we
set ϕt = 1 in order to set the “familiar” relationship
with C(u, v) = 1 as the boundary relationship to decrease
or increase the keyword weights P (S|w). Based on our
experiments, we found that ϕf = 1, ϕ = 1.3, ρI = 3 and
ρD = 3 can provide a moderate sensitivity to the increase
or decrease of the (dis)interest keyword weights, and a=1
and b=0.5 can provide a moderate sensitivity to adjust
the social closeness between two users. Thus, we set the
parameters to these values. As we focus on spam filtering
rather than malicious attack prevention, the parameter m
in the friend notification scheme is set to 1 by default.

We continuously chose 4 random pairs of nodes at a
time and let them send an email to each other until 40000
pairs were chosen. The email sent out was randomly
selected from the repository of the collected emails. We
assume persons with closeness > 2 do not send spam to
each other except in the case of impersonation attacks.
We manually judged whether an email is a spam email
based on the social relationship between the sender and
the receiver and on the (dis)interests of the receiver. The
accuracy of a spam filter is determined by comparing the
spam filter’s results with the manually judged results. In
the experiments, unless otherwise indicated, we excluded
the friend notification component from SOAP in order to
test its performance with other components.
4.1 False Negative Rate
Fig. 8 shows the average FN rate in Bayesian and SOAP
with different ρI and ρD. We use SOAP-x(I)-y(D) to denote
SOAP with interest scale parameter ρI=x and ρD=y. The
figure shows that the FN rate of Bayesian is higher than
that of SOAP with different ρI and ρD. The improved
performance of SOAP is attributed to its interest-based
spam filtering component. The reduced FN emails are
the emails that match the receivers’ disinterests, which
are generally regarded as legitimate emails by others.
We see that SOAP-1(I)-5(D) has the lowest FN. This is
because by giving higher weight to disinterest keywords
than interest keywords, SOAP strictly checks emails by

disinterests. In contrast, SOAP-5(I)-1(D) gives higher
weight to interest keywords, so if an email matches the
user’s interests SOAP regards the email as legitimate,
even if it contains more disinterest keywords than interest
keywords. Because SOAP-3(I)-3(D) has the same weights
for disinterests and interests, and SOAP-5(I)-5(D) also
has the same weights for disinterests and interests, they
generate much lower FN rates than SOAP-5(I)-1(D).
Recall that a higher keyword weight means a higher
probability that an email is considered spam. Since
the keyword weight in SOAP-1(I)-1(D) is smaller than
SOAP-3(I)-3(D) and SOAP-5(I)-5(D), its FN rate is higher
than theirs according to Equations (14) and (15).

The personalization of SOAP is demonstrated in Fig. 9,
which plots the FN rate versus the training sample size.
We still see that SOAP outperforms Bayesian. The FN
rate of Bayesian decreases as the sample size grows since
more samples enable Bayesian to learn more about the
users’ personal preferences. In SOAP, some emails that
disinterest a receiver can be determined directly from
the personal profile without training; thus, its FN rate
does not greatly vary as the sample size increases. The
figure also shows that as the sample size increases, the FN
rate of SOAP-5(I)-1(D) approaches that of SOAP-1(I)-1(D),
and the FN rates of SOAP-3(I)-3(D) and SOAP-5(I)-5(D)
approach that of SOAP-1(I)-5(D). This is because a well
trained Bayesian component can learn those (dis)interest
keywords, which enable SOAP to detect the spam that
cannot be identified by the (dis)interest keywords checked
by the poorly trained Bayesian component.

Fig. 10 shows the FN rate versus the completeness of
social information. We can observe that the FN rates of
SOAP and Bayesian are the same when the completeness
equals to 0, and the rate of SOAP drops sharply as
the completeness increases. The results imply that more
social information helps the interest-based spam filtering
component to infer more personal preferences for spam
detection. Bayesian has a higher FN rate than SOAP when
the completeness is greater than 0, and the completeness
does not have any effect on Bayesian, since it does not
consider social factors in spam detection. We can also
observe that the relationship between the FN rates of
SOAP with different ρI and ρD remain the same as
the completeness increases. This is because the social
information completeness does not affect the weights of
interest and disinterest keywords in detecting spam.

4.2 False Positive Rate
Fig. 11 shows the average FP rate in Bayesian and
SOAP. The figure shows that the FP rate of Bayesian
is higher than SOAP with various ρI and ρD. The
improved performance of SOAP results from the social
closeness-based spam filtering component and the social
(dis)interest-based filtering component. These FP emails
are legitimate emails that are from close friends or
that match the receivers’ personal interests. Because
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these emails contain general spam keywords, they are
regarded as spam by Bayesian, but are correctly classified
by SOAP’s personalized spam filter. Note that SOAP
also mistakenly regards some legitimate emails as spam.
This is due to insufficient social information. The figure
also shows that SOAP-1(I)-5(D) generates the highest
FP rate and SOAP-5(I)-1(D) generates the lowest FP
rate among SOAP methods. Although SOAP-1(I)-5(D)
has a low FN rate as shown in Fig. 8, since it highly
biases on the disinterest keywords, it may mistakenly
consider legitimate emails as spam, which leads to high
FP rate. Similarly, though SOAP-5(I)-1(D) produces a
high FN rate as shown in Fig. 8 by biasing on interest
keywords, since it considers an email as legitimate if the
email’s keywords match a user’s interests, it reduces the
probability that a legitimate email is detected as spam.

The personalization of SOAP is also illustrated in
Fig. 12, which demonstrates the FP rates of SOAP and
Bayesian with different sample sizes. The figure shows
that SOAP with different ρI and ρD generates lower FP
rates than Bayesian. Also, as the sample size increases,
the rate of Bayesian decreases while the rate of SOAP
does not greatly change due to the same reason as
observed in Fig. 9.

Fig. 13 shows the relationship between the FP rate and
the completeness of social information. The figure shows
that higher completeness of a person’s profile leads to a
lower FP rate in SOAP with different ρI and ρD. This
result is consistent with that in Fig. 10. It confirms that
social information can help to increase spam detection
accuracy but does not affect the relative performance
relationship between the FN rates of SOAP with different
ρI and ρD. Thus, SOAP’s social interest-based filtering
component is effective in reducing the FP rate, while
Bayesian still generates a higher FP rate because of the
lack of social network consideration.

4.3 Detection Accuracy
We define the accuracy rate as the ratio between the
number of successfully classified emails and the number
of all received emails. Fig. 14 shows the average accuracy
rate of Bayesian, SOAP without the interest-based
spam filtering component, SOAP without the social
closeness-based spam filtering component, and SOAP
with all components with different ρI and ρD. The
experimental results show that Bayesian has lower
accuracy than all other methods. Without the interest-
based component or the closeness-based component,
SOAP still achieves higher accuracy than Bayesian. SOAP
with all components achieves the highest accuracy. We can
also see that SOAP-3(I)-3(D) and SOAP-5(I)-5(D) produce
the highest accuracy. When ρI=ρD, SOAP does not bias
either interest or disinterest keywords, leading to low FP
and FN rates. Since the keyword weights generated by
ρI=ρD= 3 and ρI=ρD=5 based on Equations (14) and (15)
are very close, SOAP-3(I)-3(D) and SOAP-5(I)-5(D) have

close accuracy rates. Although ρI and ρD are also equal
in SOAP-1(I)-1(D), the keyword weights generated are
extremely small, so the (dis)interest filtering in SOAP is
not demonstrated. Therefore, its accuracy is much lower
than SOAP-3(I)-3(D) and SOAP-5(I)-5(D). As SOAP-1(I)-
5(D) and SOAP-5(I)-1(D) have either a high FP rate or a
high FN rate, their spam detection accuracies are low.

The results imply that the different components in
SOAP play important roles in spam detection. Their
synergistic efforts contribute to the high accuracy of
SOAP. The social closeness-based spam filtering compo-
nent checks emails based on the closeness between the
receiver and the sender. A smaller closeness value leads
to stricter checking, while a larger closeness value leads
to looser checking. Since an email from a person who
is socially close social is less likely to be spam, both FP
and FN emails can be reduced. The interest-based spam
filtering component increases the spam detection accuracy
by filtering out the emails in the receiver’s disinterests and
accepting the emails that match the receiver’s interests.
The experimental results imply that the values of ρI and
ρD in the interest-based spam filtering component need
to be equal and large.

Fig. 15 shows the accuracy rate of SOAP and Bayesian
with different training sample sizes. It shows that SOAP
always produces a higher accuracy rate than Bayesian,
and that the accuracy rate of Bayesian increases as the
sample size grows. SOAP has less dependency on data
training because the social profile provides personal infor-
mation for accurate spam detection. In contrast, Bayesian
completely relies on data training and needs a significant
amount of data and time to learn a new spam keyword.
Large training samples help to enhance its accuracy.

4.4 Training Time
In this section, we further compare the training time
needed for SOAP and Bayesian to achieve the same
accuracy. We define a training cycle as the time period
of training that enables a node to learn a new type of
spam. Since Fig. 9, Fig. 12 and Fig. 15 can already show
the relationship between FN rate, FP rate and Accuracy
rate versus sample training, in this section, we focus on
accuracy rate which is the most direct measurement of the
performance of spam filters. Fig. 16 shows the accuracy
rate versus the number of training cycles. We observed
that the accuracy of both SOAP and Bayesian increases as
the training cycle increases. Unlike SOAP, which exhibits
only a slight increase because its accuracy is already very
high, the accuracy of Bayesian grows rapidly. Moreover,
Bayesian needs about 60 cycles to learn a certain category
of keywords to reach the same accuracy rate as SOAP,
while SOAP already achieves high accuracy with one
training cycle. This is because the social interest-based
spam filtering component infers the (dis)interests of users
from their social profiles. Instead of requiring much user
effort to manually train the Bayesian filter, SOAP uses
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social information to assist spam detection with less
learning. Thus, SOAP need less training time to achieve
a high spam detection accuracy rate.
4.5 Resilience to Incompleteness of Social Network
In order to test the scalability of SOAP, we gradually
increased the network size from 5000 to 30000 with a 5000
increase in each step. The nodes were randomly selected
from the social network node pool in the trace. In the
experiment, each of the 10 randomly selected nodes in
the network sends an email to another randomly selected
node until 5000 emails were sent out. Note that a smaller
number of nodes from the Facebook social network less
completely reflect the real Facebook social network and
make it more likely to generate a disjointed simulated
social network, leading to less accurate closeness mea-
surement. Network size here can be considered as the
completeness of the constructed social network.

Fig. 17 shows the FN rate versus the network size. As
the number of nodes in the network increases, the FN
rate of Bayesian stays the same and remains the highest.
This is because Bayesian focuses on the spam keywords
received by each individual user, so the increased number
of total users in the network does not affect its FN rate.
We also see that the FN rate of SOAP is initially larger
than RE but decreases as the number of users in the
network increases. Social closeness between nodes is an
important factor for SOAP to calculate the weight of spam
keywords. As we directly use the nodes in the Facebook
social network in the simulation, the more nodes we put
into the simulated social network, the more complete the
social network of a certain user is. Then, the calculated
closeness is more accurate, resulting in lower FN rate.
The reason that the FN rate of RE increases slightly as
the network size grows is that as more nodes come into
the system, the links of nodes in the real social network
are more completely reflected. Therefore, a node can send
a spam message to more friends in its social network as
the nodes in RE within the same social network are likely
to trust each other when the spammer sends the spam
into the social network.

Fig. 18 shows the FP rate versus the network size. As
the figure illustrates, Bayesian still produces the highest
FP rate, which remains constant due to the same reason
as in Fig. 17. This is because Bayesian fails to consider the
social closeness between persons in spam filtering. We
also see that the FP rate of SOAP is initially larger than RE
and deceases as the network size increases. This is because
more nodes in the system leads to a social network with
more complete social relationships. Therefore, social
closeness between two nodes can be more accurately
captured, leading to a reduced FP rate in SOAP. Although
RE also tries to consider social relationships between
users in spam filtering, it cannot efficiently detect spam
when the spam is sent between socially close nodes, as RE
trusts all emails sent from the email receiver’s friends and

FoF. As there are more nodes in the system, the real social
network is more completely reflected. As the real social
network has a high clustering coefficient, a node can
send spam to more nodes in its connected social network.

Fig. 19 shows the accuracy rate versus the network
size. The figure shows that when the number of nodes
in the system is small, the accuracy rate of SOAP is less
than RE. This is because when the number of nodes
in the system is small, the simulated social network
cannot completely reflect a node’s connections in the
real social network. As SOAP filters the spam based
on the calculated social closeness, the inaccurate social
closeness between nodes may mislead the spam filtering,
resulting in a low accuracy rate. In RE, the emails from
the senders can only travel through the connected social
network. Fewer nodes in the network increases the
probability of a disconnected network. Therefore, the
spam is less likely to be spread in the social network.
Therefore, the accuracy rate of SOAP is comparatively
smaller than that of RE. As the number of nodes in the
system increases, the accuracy rate of SOAP increases
while the accuracy rate of RE decreases. This is because
SOAP can retrieve more accurate social information and
hence more accurate closeness for combating spam. In
RE, the spam can easily be spread to more nodes in the
social network. When the number of nodes in the system
is more than 20000, the accuracy rate of SOAP is larger
than RE for the same reason as in Fig. 17 and Fig. 18.

4.6 Resilience to Impersonation Attacks
In this experiment, we tested the effectiveness of the
adaptive trust management component of SOAP in com-
bating impersonation attacks. Recall that in this compo-
nent, a node decreases another node’s trust value if it
receives spam from that node. To mimic the behavior
of impersonation attacks, we randomly selected 4 nodes
to continuously send 10 spam emails to 4 nodes whose
closeness values are > 2. The simulation finished after
250 pairs of nodes were selected. We compared SOAP to
a completely trained Bayesian filter with a sample size of
6000 to test how fast SOAP can adjust trust values to filter
spam from an impersonated node.

Fig. 20 shows the different spam filtering rate versus
nodes with different social closeness. The figure illustrate
that the accuracy rate of nodes with different social
closeness are almost the same. This is because the nodes
can automatically adjust their trust value to reach a high
spam detection accuracy. The figure also shows that the
FN rate increases and the FP rate decreases as the social
closeness between nodes increases. This is because the
nodes with high closeness loosely check the emails sent
between them, which lead to a higher FN rate. In contrast,
nodes with low closeness will strictly check the email
sent between them, leading to a higher FP rate. Since
the relationship between the FN rate, the FP rate and the
accuracy rate versus closeness have been shown in Fig. 20,
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in the experiments below, we focus on accuracy rate and
shed the lights on how other system parameters affect the
system performance.

Fig. 21 shows the average accuracy rate versus the
average number of spam emails sent between two pairs
of nodes. The figure shows that initially when a receiver
receives a spam email from a highly-trustworthy sender,
the spam detection accuracy is low. This is because SOAP
trusts emails from close people initially, and its closeness-
based filtering component reduces the weight of spam
keywords in emails sent from close people. Once the
receiver detects the spam, it immediately reduces the
trust value of the sender and hence the closeness value.
Subsequently, it checks the emails from the sender more
strictly. This process is demonstrated in Fig. 21. As more
spam emails are received, SOAP’s accuracy rate grows
rapidly. For SOAP with a < 0.5, its spam filtering accuracy
rate is higher than Bayesian after receiving only one spam
email. This is because using AIMD for trust adjustment,
the accuracy rate of SOAP increases exponentially. A
small a leads to a high trust value decreasing rate. Because
Bayesian has been already well-trained, its accuracy rate
remains high. We notice that the accuracy rate of RE
remains 0 because RE always regards email senders in the
whitelist as trustable. Therefore, if spammers impersonate
the identities of persons in the whitelist, their spam will
be accepted by all nodes in the impersonated persons’ FoF
social network, leading to a low accuracy rate.

Next, we let nodes send both spam emails and legiti-
mate emails to their randomly selected nodes in the social
network within two hops. Bayesian is only trained with
partial spam keywords. Fig. 22 shows the accuracy rate
versus the training cycle of Bayesian, SOAP, and RE. The
figure shows that it takes 20-30 training cycles for SOAP
to adjust the trust to an appropriate value that reaches
the maximum spam detection performance. It also shows
that Bayesian takes 50-60 cycles to learn the new spam
keywords. This result matches the observation in Fig. 16
that Bayesian needs more training time without using a
social network, while SOAP needs less cycles by relying
on a social network. The result verifies the effectiveness
of the adaptive trust management component in SOAP.
RE exhibits poor performance with an accuracy rate of
less than 20% for the same reasons as in Fig. 21.

4.7 Effectiveness of Friend Notification
In this experiment, we include the friend notification
scheme in SOAP to see how this scheme increases the ef-
fectiveness of SOAP in combating impersonation attacks.
We use SOAP-w/o-F to denote SOAP without the scheme
and use SOAP-w/-F to denote SOAP with the scheme.
This experiment was run 50 times, and the average value
of the accuracy rates of all nodes is shown in the figures.
We randomly selected a node to be a compromised node,
which randomly selects 10% of nodes in the social net-
work to send spam.

Fig. 23 shows the average accuracy rate versus the total
number of spam messages sent out from the compromised
node. We see that the average accuracy rate of Bayesian
is constantly high. This is because Bayesian is resilient
to the impersonation attack. We also see that the average
accuracy rate of RE constantly remains the lowest. This
is because when a node in the social network is compro-
mised, the spam can quickly be sent to the node’s friends
and FoF in the social network, who will always regard
those emails as legitimate in RE. The figure also shows
that the accuracy rate is the same for SOAP-w/o-F and
SOAP-w/-F before the compromised node sends more
than two spam emails into the system. After the number
of received spam emails become greater than 2, some
of the spam receivers’ trust values for the spam sender
becomes lower than the threshold Tt = 0.15. Then, these
receivers send out friend notification messages to their
friends within two hops in the social network. Later on,
as the notified receivers strictly check the emails from the
compromised node, the average accuracy rate of SOAP-
w/-F is increased and is higher than SOAP-w/o-F.

Fig. 24 shows the accuracy rate of SOAP-w/-F with
different number of spam nodes versus different blacklist
threshold. We use SOAP-w/F (SN=x) to represent SOAP-
w/F system with x spammers. The figure shows that with
different blacklist threshold and number of spam nodes
in the system, the accuracy rate of SOAP-w/F remains the
same. The reason is that since a spammer sends a spam
to a large number of users in the system, by using notifi-
cation messages, the spammer report message about the
spammer in each node will be increased quickly to exceed
the blacklist threshold. Therefore, SOAP-w/-F can quickly
detect the spammer regardless of the blacklist size.

We also test how SOAP prevents malicious users from
taking advantage of the notification messages to mis-
accuse legitimate users. In the evaluation, a malicious
user mis-accuses 10% of randomly chosen users in the
system. Fig. 25 shows the percent of nodes being blocked
because of the mis-accuse versus blacklist threshold. We
use SOAP-w/-F (MN=x) to represent SOAP-w/-F system
with x malicious nodes. We can see that as the blacklist
threshold increases, the percent of nodes being blocked
decreases. This is because to block a node with a large
blacklist threshold, it need a large number of nodes to
report it as a spammer. Since a spammer normally broad-
casts a number of emails to a large number of users in the
system, the spammer is very easily to be detected based
on the notification mechanism. However, for a legitimate
user, it is unlikely that a large number of users report it as
spammer if it does not send spam to others. We can see
that for the system with 128 malicious nodes, when the
blacklist threshold is set to 20, the percent of nodes being
blocked is reduced to 0. As the user being accused can
also contact email administrators and accuser to release
the accuse, the blocking rate can be further reduced in
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the real environment.
Next, we varied the percentage of nodes in the social

network to which the compromised node sends spam.
The compromised node sends three spam emails into
the networks. Fig. 26 shows the average accuracy rate
versus the percent of receivers in the compromised node’s
social network. We see that as the percent of receivers
increases, the average accuracy rates of both SOAP-w/o-
F and SOAP-w/-F increase. This is because after a node
receives a spam email, the adaptive trust management
component adjusts the trust value of the compromised
node and strictly checks any received emails from the
compromised node. As the percentage of spam receivers
increases, the probability of a node receiving more than 2
spam emails increases. Therefore, the average accuracy of
the spam filtering increases. We also see that SOAP-w/-F
has a much higher increase rate than SOAP-w/o-F. This
is because the first node that notices the compromised
node will notify its friends about the compromised node.
The notification receivers then strictly check the emails
from the compromised node even though they have never
previously received spam from the compromised node.
We further observe that the average accuracy rate of
Bayesian is constantly high and the average accuracy rate
of RE is constantly small. The reason remains the same as
that for Fig. 23.

4.8 Resilience to Poison Attacks
In this experiment, we tested the performance of Bayesian
and SOAP under poison attacks. In this attack, extra
legitimate words are added into spam to avoid being
detected. Fig. 27 shows the decreased accuracy versus
the number of legitimate keywords added to each email.
As expected, the accuracy of both SOAP and Bayesian
decreases. The detection accuracy of Bayesian decreases
much faster than SOAP. This is because SOAP’s interest-
based spam filtering component only focuses on the
receivers’ (dis)interest words in the emails regardless of
other legitimate words. Because spam is always sent out
by broadcasting, it is unlikely that a spammer would
search for the interests of an individual receiver to poison
his/her individual spam filter. SOAP’s personalization
enables it to avoid poison attacks to a certain degree. In
contrast, Bayesian is not personalized and is vulnerable
to poison attacks. For emails that do not contain the
(dis)interest keywords of the receiver, SOAP resorts to
its basic Bayesian function for spam detection. Thus, its
detection accuracy also decreases. Since RE is an identity-
based spam filter, its accuracy is not affected by the con-
tent of the email. Thus, its performance does not change
as more legitimate keywords are added into spam emails.

5 PROTOTYPE EXPERIMENTS
To further investigate the performance of SOAP in a real-
world application, we have implemented prototypes for
the Bayesian filter and SOAP in the email client using C#.

We invited nine students in the ECE department at Clem-
son University to use the prototype by connecting their
prototype clients to their Gmail accounts and connected
them into a social network. The email client periodically
fetches new emails from their own Gmail accounts, which
are checked by the Bayesian filter and SOAP in the email
client. The Bayesian filter and SOAP are trained by the
10000 emails as we used in the simulation in the client
installation step.
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At first, each user sent 20 emails that (s)he thought
were legitimate to any other 8 users. Then, all users
reported the FN rate, FP rate and accuracy rate in their
spam filter based on their own judgement. Fig. 28 shows
the FN rate, FP rate and accuracy rate over all users.
We see that SOAP has higher accuracy rate, lower FN
rate and lower FP rate than the Bayesian filter. The FP
emails in our test are emails about the Black Friday
Deals. These emails and the recommendation deals from a
sender who believes that the receiver would be interested
in the deals are regarded as spam by the Bayesian filter
at the receiver. Based on the social relationship between
users, SOAP loosely checks the emails between friends.
Therefore, such FP emails are avoided. On the other hand,
some emails that are interested by the senders but are not
interested by the receivers are regarded as FN emails by
the receivers. SOAP outperforms Bayesian by checking
the email containing disinterest keywords strictly.

We then let each user send 20 emails they thought are
spam to any other 8 users. Then, all users report the
FN rate, FP rate and accuracy rate in their spam filters
based on their own judgement. Fig. 29 shows the FN
rate, FP rate and accuracy rate over all users. We see that
SOAP generates higher accuracy rate, lower FN and lower
FP rate than the Bayesian filter in spam detection. Some
spam emails were not regarded as spam (e.g., Deals) by
the receivers as these emails match their interests. SOAP
outperforms Bayesian filter by loosely checking the emails
that match the interests of the receivers, resulting in lower
FP rate. SOAP detects spam not only by spam keyword as
the Bayasian filter, but also based on disinterests of users,
leading to lower FP than the Bayesian filter.

6 CONCLUSION
A personalized, attack-resilient, and user-friendly spam

filter is needed to effectively combat spammers. However,
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most current spam filters cannot meet these requirements.
In this paper, a SOcial network Aided Personalized and
effective spam filter (SOAP) is proposed to meet these
requirements. In SOAP, nodes form a distributed overlay
by connecting to their social friends. Each node uses
SOAP to prevent spam autonomously. SOAP integrates
four new components into the Bayesian filter. The social
closeness-based spam component prevents spam poison
attacks, the social interest-based spam component helps
to realize personalized spam filtering, the adaptive trust
management component prevents impersonation attacks,
and the friend notification scheme leverages the power
of a collective of socially close nodes to reinforce SOAP’s
ability to counter impersonation attacks. Accurate spam
filtering results function as input for Bayesian automatic
training with reduced user effort to distinguish spam
emails. We have also implemented a prototype for SOAP.
The results of trace driven and prototype based experi-
ments show that SOAP improves on the performance of
the basic Bayesian filter in term of spam detection accu-
racy and training time. In the future, we will analyze the
complexity of the process of the spam detection in SOAP.

ACKNOWLEDGMENT
This research was supported in part by U.S. NSF grants
CNS-1254006, CNS-1249603, CNS-1049947, CNS-1156875,
CNS-0917056 and CNS-1057530, CNS-1025652, Microsoft
Research Faculty Fellowship 8300751. An early version
of this work was presented in the Proceedings of Info-
com’11 [51]

REFERENCES
[1] Happy spamiversary! http://www.newscientist.com/.
[2] Tracking the high cost of spam. http://www.redcondor.com/.
[3] P. O. Boykin and V. Roychowdhury. Personal Email Networks: An

Effective Anti-Spam Tool. IEEE Computer, 2004.
[4] Zombie. http://en.wikipedia.org/wiki/Zombie computer.
[5] C. Binzel and D. Fehr. How Social Distance Affects Trust and

Cooperation: Experimental Evidence from A Slum. In Proc. of ERF,
2009.

[6] M. Uemura and T. Tabata. Design and Evaluation of a Bayesian-
filter-based Image Spam Filtering Method. In Proc. of ISA, 2008.

[7] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A Bayesian
Approach to Filtering Junk E-mail. In Proc. of AAAI-98 Workshop
on Learning for Text Categorization, 1998.

[8] X. Carreras, L. Mrquez, and J. Salgado. Boosting Trees for Anti-
Spam Email Filtering. In Proc. of RANLP, 2001.

[9] P. Haider, U. Brefeld, and T. Scheffer. Supervised Clustering of
Streaming Data for Email Batch Detection. In Proc. of ICML, 2007.

[10] J. A. K. Suykens and J. Vandewalle. Least Squares Support Vector
Machine Classifiers. Neural processing letters, 1999.

[11] S. Bickel and T. Scheffer. Dirichlet-enhanced Spam Filtering based
on Biased Samples. In Proc. of NIPS, 2007.

[12] S. J. Delany and P. Cunningham. An Assessment of Case-based
Reasoning for Spam Filtering. Artifical intelligent review, 2005.

[13] F. Fdez-Riverola, E. Iglesias, F. Diaz, J. R. Mendez, and J. M.
Corchado. SpamHunting: An Instance-based Reasoning System for
Spam Labeling and Filtering. Decision Support System, 2007.

[14] W. Zhao and Z. Zhang. Email Classification Model based on Rough
Set Theory. In Proc. of AMT, 2005.

[15] L. Cranor and B. LaMacchia. Spams. ACM Communications, 1998.
[16] J. S. Kong, P. O. Boykin, B. A. Rezaei, N. Sarshar, and V. P.

Roychowdhury. Let Your CyberAlter Ego Share Information and
Manage Spam. IEEE Computer, 2006.

[17] F. Zhou, L. ZHuang, B. Y. Zhao, L. Huang, A. D. Joseph, and J. D.
Kubiatowicz. Approximate Object Location and Spam Filtering on
Peer-to-Peer Systems. In Proc. of Middleware, 2003.

[18] SPAMNET. http://www.cloudmark.com.
[19] DNS Real-time Black List. http://www.dnsrbl.com/index.html.
[20] Spamhaus, http://www.spamhaus.org/sbl/index.lasso.
[21] blars.org, http://www.blars.org/.
[22] SpamCop Blocking List, http://spamcop.net/bl.shtml.
[23] O. Boykin and V. Roychowdhury. Personal Email Networks: An

Effective Anti-spam Tool. IEEE Computer, 2004.

[24] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp, D. Mazieres, and
H. Yu. Re: Reliable Email. In Proc. of NSDL, 2006.

[25] S. Hameed, X. Fu, P. Hui, and N. Sastry. LENS: Leveraging social
networking and trust to prevent spam transmission. In Proc. of
FIST, 2011.

[26] P. Oscar Boykin and Vwani P. Roychowdhury. Leveraging Social
Networks to Fight Spam. IEEE Computer, 2005.

[27] J. James and J. Hendler. Reputation Network Analysis for Email
Filtering. In Proc. of CEAS, 2004.

[28] C. Wilson, B. Boe, A. Sala, K. Puttasway, and B. Zhao. User
Interactions in Social Networks and Implications. In Proc. of
EuroSys, 2009.

[29] F. Heider. Attitudes and Cognitive Organization. J. of Psychology,
1946.

[30] J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down
Approach. ISBN-10: 0136079679, 2009.

[31] GFI Software. Why Bayesian Filtering is the Most Effective
Antispam Technology. http://www.gfi.com/whitepapers/why-
bayesian-filtering.pdf.

[32] D. DeBarr and H. Wechsler. Using Social Network Analysis for
Spam Detection. In Proc. of SBP, 2010.

[33] H. Lam and D. Yeung. A Learning Approach to Spam Detection
based on Social Networks. In Proc. of CEAS, 2007.

[34] T. Tran, J. Rowe, and S. F. Wu. Social Email: A Framework and
Application for More Socially-Aware Communications. In Proc. of
SocInfo, 2010.

[35] Spam Arrest, http://www.spamarrest.com/.
[36] Mailblocks, http://www.mail-block.com/.
[37] T. Loder, M. V. Alstyne, and R. Wash. An Economic Answer to

Unsolicited Communication. In Proc. of EC, 2004.
[38] M. Walfish, J. D. Zamfirescu, H. Balakrishnan, D. Karger, and

S. Shenker. Distributed Quota Enforcement for Spam Control. In
Proc. of NSDI, 2006.

[39] G. Brown, T. Howe, M. Ihbe, A. Prakash, and Kevin Borders. Social
Networks and Context-Aware Spam. In Proc. of CSCW, 2008.

[40] Y. Niu, Y. M. Wang, H. Chen, M. Ma, and F. Hsu. A Quantitative
Study of Forum Spamming Using Context-based Analysis. In Proc.
NDSS, 2007.

[41] G. Stringhini, C. Kruegel, and G. Vigna. Detecting Spammers on
Social Networks. In Proc. of ACSAC, 2010.

[42] G. Swamynathan, C. Wilson, B. Boe, K. C. Almeroth, and B. Y.
Zhao. Can Social Networks Improve e-Commerce: a Study on
Social Marketplaces. In Proc. of WOSN, 2008.

[43] M. O. Jackson and J. Wolinsky. A Strategic Model of Social and
Economic Networks. Journal of Economic Theory, 1996.

[44] S. MILGRAM. The Small World Problem. Psychology today, 1967.
[45] L. B. Koralov and Y. G. Sinai. Theory of Probability and Random

Processes. Berlin New York Springer, 2007.
[46] R. Brachman and H. Levesque. Knowledge Representation and

Reasoning. Morgan Kaufmann, 2004.
[47] Increasing and decreasing functions.

http://www.mathsisfun.com/sets/functions-increasing.html.
[48] O. Boykin and V. Roychowdhury. Personal Email Networks: An

Effective Anti-Spam Tool. Arxiv Archive, 2004.
[49] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. SybilGuard:

Defending against sybil attacks via social networks. In Proc. of
SIGCOMM, 2006.

[50] Spam Assassin, http://spamassassin.apache.org/.
[51] Z. Li and H. Shen. SOAP: A Social Network Aided Personalized

and Effective Spam Filter to Clean Your E-mail Box. In Proc. of
Infocom, 2011.

 
 
Haiying Shen received the BS degree in Computer Science and Engineering from Tongji 
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from 
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant 
Professor in the Holcombe Department of Electrical and Computer Engineering at 
Clemson University. Her research interests include distributed and parallel computer 
systems and computer networks, with an emphasis on peer-to-peer and content delivery 
networks, mobile computing, wireless sensor networks, and grid and cloud computing. 
She was the Program Co-Chair for a number of international conferences and member of 
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow 
of 2010 and a member of the IEEE and ACM. 
 
 

 
Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and 
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong 
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer 
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in 
Open Source Computing and Applications. His research interests are mainly in 
distributed and parallel systems, particularly in scalable and secure Internet services, 
autonomic cloud management, energy-aware task scheduling in wireless embedded 
systems, and high performance cluster and grid computing. He has published more than 
160 articles in peer-reviewed journals and conferences in these areas. He is the author of 
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press, 
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice 

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineering
from Wayne State University in 2004 and 2006,
respectively. She is currently an Assistant Profes-
sor in the Department of Electrical and Computer
Engineering at Clemson University. Her research
interests include distributed computer systems
and computer networks, with an emphasis on P2P
and content delivery networks, mobile computing,
wireless sensor networks, and cloud computing.

She is a Microsoft Faculty Fellow of 2010 and a member of the IEEE and
ACM.

15

[7] Y. Yao, X. Tang, and E. Lim, “In-network processing of nearest
neighbor queries for wireless sensor networks,” in Proc. of DAS-
FAA06, 2006.

[8] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons
from a Sensor Network Expedition,” in Proc. of EWSN, 2004.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffu-
sion: A Scalable and Robust Communication Paradigm for Sensor
Networks,” in Proc. of Mobicom, 2000.

[10] W. Zhang, G. Cao, and T. L. Porta, “Data Dissemination with
Ring-Based Index for Wireless Sensor Networks,” in Proc. of ICNP,
2003, pp. 305–314.

[11] S. Madden, M. J. Franklin, and J. M. H. W. Hong, “TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor Networks,” in Proc. of
OSDI, 2002.

[12] F. Ye and G. Zhong, “GRAdient Broadcast: A Robust Data Deliv-
ery Protocol for Large Scale Sensor Networks,” WINET, 2005.

[13] H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang, “Ttdd: Two-tier data
dissemination in large-scale sensor networks,” Wireless Networks,
vol. 11, pp. 161–175, 2002.

[14] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Grovindan,
L. Yin, and F. Yu, “Data-centric storage in sensornet with ght: A
geographic hash table,” in Proc. of MONET, 2003.

[15] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, and L. Yin, “Data-
centric storage in sensornets with GHT, a geographic hash table,”
MONET, vol. 8, pp. 427–442, 2003.

[16] X. Li, Y. J. Kim, and W. Hong, “Multi-dimensional range queries
in sensor networks,” in Proc. of SenSys, 2003.

[17] D. Ganesan, “DIMENSIONS: Why do we need a new data
handling architecture for sensor networks,” in Proc. of the ACM
HotNets, 2002, pp. 143–148.

[18] D. Ganesan, A. Cerpa, Y. Yu, D. Estrin, W. Ye, and J. Zhao,
“Networking issues in wireless sensor networks,” JPDC, 2004.

[19] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and
S. Shenker, “Difs: A distributed index for features in sensor net-
works,” in Proc. of SNPA, 2003.

[20] J. Li, J. Jannotti, D. S. J. De, C. David, R. Karger, and R. Morris, “A
scalable location service for geographic ad hoc routing,” in Proc. of
MobiCom, 2000.

[21] J. Newsome and D. Song, “GEM: Graph EMbedding for routing
and data-centric storage in sensor networks without geographic
information,” in Proc. of SenSys, 2003.

[22] A. Caruso, S. Chessa, S. De, and R. Urpi, “GPS free coordinate
assignment and routing in wireless sensor networks,” in Proc. of
IEEE INFOCOM, 2005, pp. 150–160.

[23] P. Desnoyers, D. Ganesan, and P. Shenoy, “Tsar: A two tier
sensor storage architecture using interval skip graphs,” in Proc.
of SenSys05. ACM Press, 2005, pp. 39–50.

[24] C. T. Ee and S. Ratnasamy, “Practical data-centric storage,” in Proc.
of NSDI, 2006.

[25] M. Aly, K. Pruhs, and P. K. Chrysanthis, “KDDCS: A load-
balanced in-network data-centric storage scheme in sensor net-
work,” in Proc. of CIKM, 2006, pp. 317–326.

[26] F. Bian, X. Li, R. Govindan, and S. Schenker, “Using hierarchical
location names for scalable routing and rendezvous in wireless
sensor networks,” in Proc. of SenSys, 2004, pp. 305–306.

[27] J. Xu, X. Tang, and W. chien Lee, “A new storage scheme for
approximate location queries in object tracking sensor networks,”
IEEE TPDS, vol. 19, pp. 262–275, 2008.

[28] M. Li and Y. Liu, “Rendered path: range-free localization in
anisotropic sensor networks with holes,” in Proc. of MobiCom, 2007.

[29] H. Shen, T. Li, and T. Schweiger, “An Efficient Similarity Searching
Scheme Based on Locality Sensitive Hashing,” in Proc. of ICDT,
2008.

[30] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy, “Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide
Web,” in Proc. of STOC, 1997, pp. 654–663.

[31] W. Nejdl, W. Siberski, M. Wolpers, and C. Schmnitz, “Routing
and clustering in schema-based super peer networks,” in Proc. of
IPTPS, 2003.

[32] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos,
L. Serafini, and I. Zaihrayeu, “Data management for peer-to-peer
computing: A vision,” in Proc. of WebDB, 2002.

[33] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov, “Piazza: Data
management infrastructure for semantic web applications,” in Proc.
of WWW, 2003.

[34] “In how many ways can m balls be distributed into n boxes?”
http://www.fen.bilkent.edu.tr/ otekman/disc/usef.pdf.

[35] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation
in mobile sensor networks,” in Proc. of IEEE INFOCOM, 2005.

[36] L. Hu and D. Evans, “Localization for mobile sensor networks,”
in Proc. of MobiCom, 2004.

[37] F. Liu, X. Cheng, D. Hua, and D. Chen, “Location discovery for
sensor networks with short range beacons,” IJAHUC, 2009.

[38] R. Fonseca, S. Ratnasamy, J. Zhao, and C. T. Ee, “Beacon vector
routing: scalable point-to-point routing in wireless sensornets,” in
Proc. of NSDI, 2005.

[39] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-Less Low-Cost
Outdoor Localization For Very Small Devices,” IEEE Personal Com-
munications Magazine, vol. 7, no. 5, pp. 28–34, 2000.

[40] “The one simulator. http://www.netlab.tkk.fi/.”
[41] H. Shen, T. Li, L. Zhao, and Z. Li, “SDS: Distributed Spatial-

Temporal Similarity Data Storage in Wireless Sensor Networks,”
in Proc. of ICCCN, 2009.

Haiying Shen received the BS degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Assistant Professor in the
Department of Electrical and Computer Engi-
neering, and the Director of the Pervasive Com-
munications Laboratory of Clemson University.
Her research interests include distributed com-
puter systems and computer networks, with an

emphasis on peer-to-peer and content delivery networks, mobile com-
puting, wireless sensor networks, and grid computing. Her research
work has been published in top journals and conferences in these
areas. She was the Program Co-Chair for a number of international
conferences and member of the Program Committees of many leading
conferences. She is a member of the IEEE and ACM. She is Microsoft
Research Faculty Fellow of 2010.

Lianyu Zhao received the BS and MS degrees
in Computer Science from Jilin University, China.
He is currently a Ph.D. student in the Depart-
ment of Electrical and Computer Engineering
of Clemson University. His research interests
include wireless sensor network, routing proto-
cols, applications and security issues in P2P
networks.

Ze Li received the BS degree in Electronics and
Information Engineering from Huazhong Univer-
sity of Science and Technology, China, in 2007.
He is currently a Ph.D. student in the Depart-
ment of Electrical and Computer Engineering
of Clemson University. His research interests
include distributed networks, with an emphasis
on peer-to-peer and content delivery networks,
wireless multi-hop cellular networks, game the-
ory and data mining. He is a student member of
IEEE.

Ze Li Ze Li received the BS degree in Electronics
and Information Engineering from Huazhong Uni-
versity of Science and Technology, China in 2007,
and the Ph.D. degree in Computer Engineering
from Clemson University. His research interests
include distributed networks, with an emphasis on
peer-to-peer and content delivery networks. He
is currently a data scientist in the MicroStrategy
Incorporation.


