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Abstract—Video sharing has been an increasingly popular application in online social networks (OSNs). However, its sustainable
development is severely hindered by the intrinsic limit of the client/server architecture deployed in current OSN video systems, which is
not only costly in terms of server bandwidth and storage but also not scalable with the soaring amount of users and video content. The
peer-assisted Video-on-Demand (VoD) technique, in which participating peers assist the server in delivering video content has been
proposed recently. Unfortunately, videos can only be disseminated through friends in OSNs. Therefore, current VoD works that explore
clustering nodes with similar interests or close location for high performance are suboptimal, if not entirely inapplicable, in OSNs. Based
on our long-term real-world measurement of over 1,000,000 users and 2,500 videos on Facebook, we propose SocialTube, a novel
peer-assisted video sharing system that explores social relationship, interest similarity, and physical location between peers in OSNs.
Specifically, SocialTube incorporates four algorithms: a social network (SN)-based P2P overlay construction algorithm, a SN-based
chunk prefetching algorithm, chunk delivery and scheduling algorithm, and a buffer management algorithm. Experimental results from
a prototype on PlanetLab and an event-driven simulator show that SocialTube can improve the quality of user experience and system
scalability over current P2P VoD techniques.

Index Terms—Video-on-demand (VoD), On-line social networks, Peer-to-peer networks, Peer-to-peer assisted VoD.

F

1 INTRODUCTION
Online social networks (OSNs) (e.g., Facebook, Twitter)
are now among the most popular sites on the Web.
An OSN provides a powerful means of establishing
social connections and sharing, organizing, and finding
content. For example, Facebook presently has over 500
million users. Unlike current file or video sharing sys-
tems (e.g., BitTorrent and YouTube), which are mainly
organized around content, OSNs are organized around
users. OSN users establish friendship relations with real-
world friends or virtual friends, and post their profiles
and content such as photos, videos, and notes to their
personal pages.

Video sharing has been an increasingly popular ap-
plication in OSNs, enabling users to share their per-
sonal videos or interesting videos they found with their
friends. Indeed, according to comScore Releases in Au-
gust 2010, Facebook is now the second-largest online
video viewing platform. The total time spent on video
viewing on Facebook increased 1,840% year-over-year,
from 34.9 million minutes in October 2008 to 677.0
million minutes in October 2009. During the same time
period, the number of unique video viewer increased by
548% and total number of streams grew by 987% [1].

The recent rapid development of OSN video shar-
ing applications illustrates the evolution of OSNs from
simply communication focused tools to a media portal.
OSNs are transforming from a platform for catching up
with friends to a venue for personal expression and for
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sharing a full variety of content and information. How-
ever, OSN’s further advancement is severely hindered
by the intrinsic limits of the conventional client/server
architecture of its video sharing system, which is not
only costly in terms of server storage and bandwidth
but also not scalable with the soaring amount of users
and video content in OSNs. For example, the world’s
largest video sharing website, YouTube, spends roughly
$1,000,000/day for its server bandwidth [2]. This high
and ever rising expense was one of the major reasons
that YouTube was sold to Google. OSNs are now facing
the same formidable challenge as YouTube, as more and
more users rely on Facebook for video sharing. Though
OSNs can depend on content delivery networks (CDNs)
for video content delivery (e.g., Facebook depends on
Akamai for video delivery), the CDN service is costly.

In recent years, much effort has been devoted to im-
proving the client/server architecture for video sharing,
with the peer-to-peer (P2P) architecture being the most
promising. P2P-based video sharing has been used in on-
demand video streaming (e.g., GridCast and Vanderbilt
VoD). With each peer contributing its bandwidth to serv-
ing others, the P2P architecture provides high scalability
for large user bases. Previous P2P VoD systems either
randomly cluster peers for video inquiry [3]–[18] or form
certain peers into a distributed hash table (DHT) for
chunk indexing [19]–[21]. In order to reduce the video
transmission and/or prefetching delay, some works clus-
ter nodes with close physical proximity [7], [8], [19] or
similar interests [9], [21]. However, those mechanisms
are suboptimal, if not entirely inapplicable, in OSNs.
Unlike VoD systems that provide system-wide video
searching and sharing, where a peer can access any
other peer’s content, OSNs do not provide video search
functionality. In an OSN, videos are visited and spread
by the users’ friends through the Friend-of-Friend (FOF)
relationship. Specifically, a friend of user X, say user
Y, receives notification when user X uploads a video,
and user Y’s friend Z is informed about the video only
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Fig. 1: Number of videos up-
loaded.
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length.
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Fig. 3: Estimated total size.
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Fig. 4: Time spent on Facebook.

when user Y “shares” the video, and so on. Facebook
has options to share videos only between friends, FOFs
(default), or everyone. Therefore, users in an OSN watch
videos driven much more by the friendship relation than
video content.

In order to investigate the video watching behaviors
of users in OSNs, we queried more than 1,000,000 users
and retrieved about 2,500 public visible videos metadata
on Facebook. Our measurement reveals that (1) most of
the viewers of a user’s videos are the user’s close friends,
(2) most video views are driven by social relationships,
and the rest are driven by interests, and (3) viewers
of the same video tend to reside in the same location.
Based on our observations, we propose SocialTube, a
system that explores the social relationship, interest
similarity and location to enhance the performance of
video sharing in OSNs. Specifically, an OSN has a social
network (SN)-based P2P overlay construction algorithm
that clusters peers based on their social relationships
and interests. Within each cluster, nodes are connected
by virtue of their physical location in order to reduce
video transmission latency. SocialTube also incorporates
an SN-based chunk prefetching algorithm to minimize
video playback startup delay. We have conducted ex-
tensive experiments in an event-driven simulator and
implemented a prototype on PlanetLab to evaluate the
performance of SocialTube. Performance results show
that SocialTube greatly reduces the workload of the
server, improves the quality of playback, and scales
well to a large client population. In the supplemental
material, we present a chunk delivery and scheduling
algorithm and a buffer management algorithm to further
enhance the performance of SocialTube.

To our knowledge, this work is the first that studies
the distinct characteristics of OSN video sharing that
vary from other content-based system-wide video shar-
ing, and builds a P2P-based video sharing system in
an OSN by leveraging those characteristics for higher
performance. Our previous conference version of this
article [22] introduces the basic trace data analysis and
design of SocialTube. This article presents more trace
data analytical results. It also presents new SocialTube
mechanisms including locality-aware video prefetching
mechanism, two policies to increase the chunk delivery
abilities, and buffer management algorithm. This article
further presents more simulation results and the exper-
imental results for the SocialTube prototype on the real-
world PlanetLab testbed.

The rest of the paper is organized as follows. Sec-
tion 2 and Section 3 present the Facebook trace data
analysis and the design of SocialTube. Section 4 and
Section 5 present the trace-driven simulation results and

experimental results on PlanetLab. We conclude this
paper with remarks on future work in Section 6. The
supplemental material presents two enhanced methods
including chunk delivery and scheduling and buffer
management algorithm. It also presents additional ex-
perimental results and an overview of related work.

2 FACEBOOK MEASUREMENT AND ANALYSIS

In this section, we present our Facebook trace measure-
ment results and give an in-depth perspective of Face-
book video viewing patterns, that shows the necessity
of peer assistance in OSN video sharing and provides a
direction for the design of a P2P video sharing system
in OSNs.

We used breadth-first-search [23] to query over
1,000,000 users seeded by 5 users in the USA. In order
to avoid overloading the Facebook, we sent a query to
Facebook every 5s. We can only see the video activities
of the users who are friends or FOFs of the crawler and
the users that chose “everyone” as their video access
option. Because of this access limit, we only found about
2,500 videos and 12,000 users who watched these videos
during the time period from Jul. 2007 to Aug. 2010,
which is used as a sample for the video sharing and
watching activities. The collected dataset includes the
information about user friendship relations, interests,
locations, and videos uploaded and shared by users.
For each video, we retrieved the video metadata such as
its title, length, and viewers when available. To respect
the privacy of the users, we anonymize the user names
before storing the data in our database. We only crawled
the video metadata of these users, with other personal
information untouched.

2.1 Popularity of Videos on Facebook
First, we investigate the popularity of videos on
Facebook over the years. Figure 1 plots the number of
videos corresponding to the time they are uploaded in
our collected video pool. It shows that the number of
videos uploaded to Facebook increases sharply along
with time. Since Facebook launched its video service
in 2007, the increasing trend of video uploading has
never slowed down, making it one of most popular
applications on Facebook. Figure 2 shows the video
length distribution in our collected video pool. From
the figure, we can see that about 70% of the videos
are less than 100 seconds. Videos longer than 200
seconds account for less than 10% of all videos. It may
be because users generally share short user-generated
videos of their lives with their friends in OSNs. Based
on the measured results, we make an observation (O):
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Fig. 8: Social distance between
non-follower and video owners.

O1: Video sharing in Facebook is becoming increasingly
popular, and most are very short.

Typical Facebook videos have a bitrate of [300, 600]
kbps. Based on the statistics from [1], the total number of
videos on Facebook was 41,537,000 in April, 2009. Using
the increasing trend derived from Figure 1, we calculated
the approximate number of videos on Facebook at dif-
ferent times. Using the average video length calculated
from Figure 2, we obtain an estimate of the server
storage cost for videos as shown in Figure 3. The figure
indicates that the storage cost of videos has increased
100 times from 10 Terabytes to 1,000 Terabytes, which
is a great burden for the server considering the high
bandwidth cost caused by uploading and downloading
videos.
O2: The bandwidth and storage burden on video servers for
providing video services is high and has been increasing at a
rapid rate.

According to the comScore [1] study, users on
average spent 9.9% of their total online time on
Facebook. Figure 4 shows the total time users spent
on Facebook over years according to the comScore
statistics. We see that the total time users spent on
Facebook has been increasing quickly. It was reported
that web users spend more time on Facebook than
Google sites. On average, more than 8 billion minutes
are spent on Facebook every day. As long as a user
is online, his/her cached videos can be fetched for
P2P video sharing. This makes a P2P video sharing
system very suitable for Facebook since a fundamental
prerequisite of P2P video sharing systems is that there
are enough peers online to participate in video sharing.
O3: Facebook users normally spend long time periods online,
which makes P2P video sharing in Facebook feasible.

2.2 Effect of Social Distance on Video Viewing Pat-
terns

Social distance between two users in the social network
graph represents the closeness of their relationship. If
two users are directly connected in the social network,
their social distance is 1; if one user is a friend of another
user’s friend, then the social distance between them is
2, and so on. Next, we investigate the impact of social
distance on user video viewing patterns.

Among 52,500 video watching activities involving
12,000 users, we measured the social distance of a video
viewer from the video owner, and show the distribution
in Figure 5. We find that most of the viewers (around
70%) are 1-hop friends of the video owner, 2-hop
viewers account for a portion of about 20%, and the
remaining 10% of viewers watched videos of video
owners are more than 2 hops away.

O4: In Facebook, more than 90% of the viewers of a video
are within 2 hops in the video owner’s social network.
We define a video viewer group as all users who have
watched the video owner’s videos. From O4, we obtain
the inference (I):
I1: A video viewer group of a video owner in Facebook is
mostly within the 2-hop friend circle of the owner.

Note that a user may own more than one video.
To further identify the impact of social relationships
on video viewing patterns, we selected the users who
have multiple videos from our dataset and inspected
the viewer group of each video owner. We classified
the viewers of a video owner based on the percentage
of the owner’s videos they watched and calculated
the distribution of different viewer classes in a viewer
group. Figure 6 shows the average values of the percent
versus the ratio of videos watched from the video
owners. We observe that:
O5: On average, in a user’s viewer group, 25% of viewers
watched all, 33% of viewers watched 80%, and all viewers
watched 20% of the user’s videos.

We call the viewers who have watched almost all
videos of a user the user’s followers, and call other
viewers non-followers. We use a threshold Th for the
percent of all the videos of a user that a viewer watches
in order to become a follower, and set Th=80% in this
analysis. Figure 7 and Figure 8 show the distribution
of followers and non-followers in terms of the social
distance with the video owner. We can see from the
figures that :
O6: Viewers that watch almost all of a user’s videos (i.e.,
followers) usually are 1-hop friends of the user, while most of
other viewers (i.e., non-followers) are 1-hop or 2-hop friends
of the user.
2.3 Effect of Interest on Video Viewing Pattern
Next, we explore the correlation between user interests
and video viewing patterns. We selected a sample of
118 distinct users that watched more than one video
from our dataset and manually classified the videos they
watched into 19 interest groups based on video content.
The 19 interest groups were determined based on the
video categories in YouTube such as gaming, rock music
and action movie. For each user, we calculated the per-
centage of viewed videos of each interest group. Then,
we ranked these 19 interest groups in descending order
of the percentage values. We calculated the average
percentage value of the 118 users for each interest group
rank and show the result in Figure 9. We observe that,
on average, 46% of videos a user watched are on his/her
top 2 interests topics, 79% of videos a user watched
are on his/her top 3 interests topics, and 94% are on
his/her top 4 interests topics. The result implies that
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the videos each user watches are generally orientated
towards his/her few primary interests.
O7: Users tend to watch the videos of their interests and each
user generally has ≤ 4 video interests.

A user can post on Facebook either self-uploaded
videos or external video links from a third party video
service provider such as YouTube. The video linking in
Facebook is called “share”, by which users can share
links to videos they find interesting with their friends.
Figure 10 shows the different sources of videos in our
collected dataset. We see that the self-uploaded videos
in Facebook account for about 14% of all videos. Others
are external video links. YouTube, as the largest video
site in the world, accounts for over 80% of all external
links. Many other video sources such as TED and Hulu
account for the remaining percentage.

For videos uploaded to Facebook, social relationships
are the primary consideration when viewers decide
whether to watch a video. For external videos, interest
gains more weight in influencing the watching proba-
bility. However, no matter if it is a video uploaded to
Facebook or an external link, we assume that the video
owner, the video uploader, or the one who shared the
external video link would have the video in his/her
local cache. This assumption is reasonable because in
the case of uploaded videos, the uploaders have the
original videos, while in the case of external links, a
user usually shares a video after (s)he has watched the
video (or at least part of it) and hence has the video in
cache. Therefore, both types of videos are applicable in
P2P video sharing, in which videos are prefetched from
users’ local cache instead of the video server.
O8: A large percentage of videos in Facebook are from
YouTube, where the user video viewing patterns are driven
by interests.

Combining O4-O8, we can find that different watching
incentives can be applied to different types of viewers.
The followers of a user watch most of the user’s videos
regardless of the video content because of their close
social relationship (e.g., close friends and fervent ad-
mirers). For the viewers that watch only a few of the
user’s videos, interest in the video content is a more
important incentive. Additionally, some show a mixed
video watching incentive. Thus, we infer
I2: Followers are primarily driven by social relationship to
watch videos, while non-followers are driven mainly by inter-
est.
2.4 Effect of Physical Location on Video Viewing
Patterns
We also analyze the geographical locations of users who
view the same videos in order to see whether location
can also be leveraged for video sharing in OSNs. In Face-
book, some users input their current resident city in their

profiles. The location is in the format of “city, state” (e.g.,
Los Angeles, CA). For international users, the location
is in the format of “city, country” (e.g., Tokyo, Japan).
We denote two users located in the same city, state, or
country as 1, 2 and 3, respectively, and two users located
in different countries as 4. To investigate the location
distribution of viewers, we calculated the percentage of
viewers in each viewer group corresponding to different
location distances between the viewer and video owner.
We plot the average value of all viewer groups in
Figure 11. From the figure, we can see that most users
watching the same video are physically close to each
other. Because many friend relationships in Facebook
are connected by offline relationship, such as classmates
or colleagues, this produces a strong location clustering
effect. This result conforms to the observation in [24] that
most of the wall posts are sent within local physical re-
gion. This effect could make P2P video sharing systems
in OSNs more efficient by enabling geographically close
nodes to share videos between each other.
O9: Most users watching the same video are physically close,
and on average about 40% of users watching the same video
are in the same city.

2.5 Active Life Period of Videos
We measured the percentage of views of a video in
each month after the video is uploaded out of all views.
Figure 12 shows the average of these values. We found
that videos in Facebook have an active life period of
about one month. Views in this period account for more
than 90 percent of all views. After one month, there are
only occasional views. The small figure inside Figure 12
more clearly shows the decreasing active life over days
in the first month. We find that it follows a power-law
distribution.
O10: The videos in Facebook have an active life period of about
one month on average. The decrease in the number of views
of a video follows an exponential distribution.

3 THE DESIGN OF SOCIALTUBE
The Facebook measurement in Section 2 shows that
video sharing in Facebook is increasingly popular (O1)
and may generate a heavy burden on the video server
(O2). Fortunately, the length of time that the users stay
online in Facebook is rapidly increasing (O3), enabling
the possibility for P2P video sharing among the online
users themselves. Therefore, P2P-assisted video sharing
is a promising strategy in OSNs. Based on observations
O4 - O10 on the characteristics of video viewer behavior
in Facebook, we propose SocialTube, a P2P video sharing
system for OSNs.

We first introduce the basic concepts and strategies
used in SocialTube. In Facebook, each node can upload
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a video to the Facebook video server or an external link
to a video from an external server. In this paper, we use
server to represent all video source servers, including
both Facebook and external video servers. Similar to
current peer-assisted content delivery mechanisms, the
peers in SocialTube store videos they have watched pre-
viously for video re-distribution. In SocialTube, a video
is divided into small chunks with a fixed size. Thus, a
video viewer only needs to download the corresponding
chunks of the video segment (s)he wants to watch.

3.1 Social Network based P2P Overlay Construction
Algorithm
To identify followers and non-followers of a source node
for structure construction, SocialTube pre-defines two
thresholds, Th and Tl, for the percent of videos in the
source node that a viewer has watched during a time
unit, say one week. If the percent value of a viewer
is ≥ Th, the viewer is a follower. If the percent is
Tl < x ≤ Th, the viewer is a non-follower.

Video sharing in Facebook distinguishes itself from
other video sharing websites (e.g., YouTube) in two
aspects: video sharing scope and video watching incen-
tives. First, other websites provide system-wide video
sharing where a user can watch any video, while in
Facebook, videos are usually shared in a 2-hop small
circle of friends (I1). Second, users in other video shar-
ing websites are driven to watch videos by interests,
while in Facebook, the followers of a source node (i.e.,
video owner) are driven to watch almost all of the
source’s videos primarily by social relationship, and
non-followers watch a certain amount of videos mainly
driven by interest (I2). According to these differentiating
aspects, we design the P2P overlay structure, which is
shown in Figure 13.

Based on I1, SocialTube establishes a per-node (in con-
trast to per-video in YouTube) P2P overlay for each source
node. It consists of peers within 2 hops to the source
that watch at least a certain percentage (> Tl) of the
source’s videos. Other peers can still fetch videos from
the server. As shown in the figure, such peers of a source
node S in the social network constitute a P2P overlay for
the source node. We aim to achieve an optimal tradeoff
between P2P overlay maintenance costs and video shar-
ing efficiency. Some nodes within 2 hops may watch
only a few videos in a source. Including these nodes
and users beyond 2-hops into the overlay generates a
greater structure maintenance cost than video sharing
benefits. Based on I2, we build a hierarchical structure
that connects a source node with its socially-close follow-
ers, and connects the followers with other non-followers.
Thus, the followers can quickly receive chunks from the
source node, and also function as a pseudo-source to
distribute chunks to other friends. The source pushes the
first chunk of its new video to its followers. The chunk
is cached in each follower and has high probability of
being used since followers watch almost all videos of the
source. Further, non-followers sharing the same interest
are grouped into an interest cluster for video sharing.
We call peers in an interest cluster interest-cluster-peers.
A node that has multiple interests is in multiple interest
clusters of the source node.

Because the source node and followers are involved in
every interest cluster for providing video content, we call

Follower

SourceFollower

Interest 1

Interest 1

Interest 2

Interest 2
Interest 2

Server

Interest 1

Social 
Relationship

Video streaming 
connection for interest 1 

Video streaming 
connection for interest 2 

Fig. 13: Structure of SocialTube.

the group formed by the source, followers, and interest-
cluster-peers in an interest cluster swarm, and call all
nodes in a swarm swarm-peers. As I1 indicates, the cluster
size of each interest cluster should be small. O9 indicates
that many viewers of a video are physically close peers.
Therefore, in order to reduce delay, physically close
interest-cluster-peers are randomly connected with each
other. The peers find their physically close peers based
on their ISP, subnet information [25]. To preserve the
privacy protection on OSN, we can add a constraint in
which peer A can connect to peer B only when peer A
is peer B’s friend or can access peer B’s shared videos.
In Figure 13, the viewers of S form into two swarms.
Because the nodes in each swarm have a high prob-
ability of owning chunks of the same video, they can
retrieve chunks from their swarm-peers without relying
on querying the server or large scale query flooding.

In current video sharing in Facebook, a node always
requests the server for videos uploaded by source nodes.
We let the server keep track of the video watching
activities of viewers of a specific source node in order
to identify and update its followers and non-followers
based on SocialTube’s pre-defined thresholds of Tl and
Th. This duty can be assigned to the source node itself
if it has sufficient capacity. The nodes in the system
will periodically report their video providing activities
to the server. When the server determines that a peer is
a follower of the source node, it notifies the source node,
which notifies all nodes in its swarms about the follower.
Consequently, the follower becomes a member of each of
the swarms, and all swarm-peers in each of the swarms
connect to it. When the server determines that a peer is
a non-follower of the source node, the server determines
its interests based on the contents of videos the peer vis-
ited, and notifies the source node about the non-follower
along with its interests. The source node then notifies
the peers in the clusters of the interests of that non-
follower, and notifies the non-follower about the clusters.
The non-follower connects to all followers and the source
and to a few physically close nodes in each cluster.
Consequently, the non-follower becomes a member of
the swarm of each of the interest clusters. The server
also periodically updates the roles of the followers and
non-followers. If a node becomes neither follower nor
non-follower, the server removes it by notifying others
to disconnect from the node. If a follower becomes a non-
follower, its connections are also updated accordingly. In
an OSN, after a node logs out (i.e., leaves) the system,
it will always logs in (i.e., joins in), so the SocialTube
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overlay does not update due to node departures. Only
when the server notices that a node did not join in after a
very long time departure, the node is removed from the
overlay. Neighbors in the overlay periodically exchange
messages. When a node notices that its neighbor is
offline, it marks the connection and will unmark it when
the neighbor is online. A node does not request videos
from neighbors with marked connections. The nodes in a
P2P structure, including the source, followers and non-
followers, remember their roles and connections. Next
time when a node goes online, it automatically connects
to its previous neighbors and function based on its role.

As indicated in Figure 13, the source node has two
followers, and its videos can be divided into two interest
categories based on video content. The 1-hop and 2-hop
friends of the source node with interest 1 and interest
2 form into two clusters, respectively. The source node
and the followers are in each interest cluster, all of which
form a swarm.

3.2 Social Network based Prefetching Algorithm
To reduce the video startup latency, we propose a push-
based video prefetching mechanism in SocialTube. In
SocialTube, when a source node uploads a new video
to the server, it also pushes the prefix (i.e. first chunk)
of the video to its followers and to the interest-cluster-
peers in the interest clusters matching the content of
the video. The prefix receivers store the prefix in their
cache. Those interest-cluster-peers and followers who
are not online when the source node pushes the prefix
will automatically receive it from the source node or
the server once they come online. After the source node
leaves, the responsibility to push the prefix falls to the
server. Since these followers and interest-cluster-peers
are very likely to watch the video, the cached prefixes
have a high probability of being used.

Once the nodes request the videos, the locally stored
prefix can be played immediately without delay. Mean-
while, the node tries to retrieve the remaining video
chunks from its swarm-peers. Similar to BitTorrent, So-
cialTube allows a requester to request 4 online nodes at
the same time to provide the video content in order to
guarantee provider availability and achieve low delay
by retrieving chunks in parallel. It first contacts interest-
cluster-peers, then followers, then the source node. If the
requester still cannot find 4 providers after the source
node is contacted, it resorts to the server as the only
provider. Considering the high capacity of the server,
the requester does not need to have 4 providers if it
has the server as a provider. This querying order can
distribute the load of chunk delivery among the swarm-
peers while providing high chunk availability. The algo-
rithm takes advantage of all resources for efficient video
sharing without overloading specific nodes. The server
can guarantee the availability of the video, even if the
number of online users in a swarm is small.

4 PERFORMANCE EVALUATION

We evaluate the performance of SocialTube through both
simulations on the event-driven simulator PeerSim [26]
and PlanetLab [27] prototype implementation. We run
each experiment for 10 times and report results within
95% confidential intervals.

TABLE 1: Bandwidth capacity and distribution of users
Groups Downloading

bandwidth
Uploading band-
width

Percentage of
nodes

1. 768k/s 128k/s 21.4%
2. 1536k/s 384k/s 23.3%
3. 3072k/s 768k/s 55.3%

4.1 Experiment Settings
Our simulation setup is based on a part of our crawled
dataset, which contains approximately 2,000 distinct
videos. We selected 5,000 nodes from the trace data. The
link delay for nodes with location distance x as defined
in Figure 11 was set to x seconds. The connectivity de-
gree of these selected nodes follows power-law distribu-
tion with skew factor equals to 0.5 [28]. We assigned each
of the 2,000 videos to a randomly chosen node in the
system. To simulate the real Internet environment, where
peers have heterogenous bandwidth, we used the statis-
tics in Table 1 used in [9]. To simulate the geographic
locations of nodes, each node has a location ID in [1-10].
The nodes with numerically closer ID are geographically
closer nodes. We used the distribution of friendship in
spatial proximity from [29] in our experiments.

Table 2 shows the default parameters unless otherwise
specified. The video bitrate was set to 330 kbps. Based on
empirical observations, we assume that whenever a node
cannot receive a chunk in time for viewing, it pauses for
3 seconds and then resumes playback. The file size of a
video was randomly chosen from [20-30] MB, which is
a normal size for a video with a length of 2-3 minutes.

Since every person spends about 420 minutes on Face-
book per month [30] on average, we can infer that every
person spends about 14 minutes and hence watches at
most 4 videos per day on average. We used simulation
cycle to simulate one day. In each simulation cycle, the
number of videos a peer watched was randomly chosen
from [1-4]. one simulation lasted for 100 simulation
cycles. Based on O7, each node in the system randomly
selected [2-4] interest categories as its interests.

Based on O6, every source node randomly selected
20% of its friends as its followers. As the practical user
video viewing behaviors in Facebook, every node can
see the names of the videos owned or shared by its
friends. Based on O6 and O7, unless otherwise indicated,
from these videos, a node randomly selected videos in
its interests or its followees to view. Recall that a node
can access videos either owned or shared by its friends
in Facebook. In practice, after a node watches a video,
it may or may not share the video. To simulate this
behavior, each node first randomly selected a number
x ∈ [1, 40] and shared its watched xth video, and
repeated this process until the simulation completed.

We compare the performance of SocialTube with other
representative works in peer-assisted video streaming,
PA-VoD [8], NetTube [9] and Random (as a baseline).
In PA-VoD, physically close peers with the same loca-
tion ID are clustered for video sharing between each
other. In NetTube, peers that have similar interests are
clustered together for video sharing. The details of PA-
VoD and NetTube are presented in Section 9. Random
clusters peers randomly into 10 groups regardless of
their friendships, locations and interests. Nodes in a
cluster connect with each other randomly, and use flood-
ing for video search. In each simulation cycle, a source
node pushes one video prefix to its followers and the
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interest-cluster-peers in the interest cluster matching the
video in SocialTube; the server pushes the prefix of one
video to the nodes in the interest cluster of the video in
NetTube, and to the nodes in the cluster of the video’s
uploader in PA-VoD and Random. After a node selects a
video to view, it searches its interest cluster in NetTube,
and searches its own cluster and a neighboring cluster
in PA-VoD and Random. It finds one video provider
to fetch video chunks; if it cannot find or access the
requested video, it resorts to the server. To make the
methods comparable, SocialTube does not include its
chunk delivery and scheduling algorithm and buffer
management unless otherwise indicated.

TABLE 2: Experiment default parameters.
Parameter Default value
Number of clients 5,000
Number of videos 2,000
Number of interest categories 19
Number of interests per client 2-4
Trace duration 40 days
Chunk size 3 MBytes
Prefix length 3 MBytes
Server uploading bandwidth 20Mbps
Video size Distribution of YouTube videos
Cache size 300MBytes

We used the following metrics in the experiments:
• Prefetching accuracy. This is the probability that a user
requests a video whose prefix is in its cache and it
can access the prefix’s video. This metric shows the
effectiveness of the prefetching and enhancing the video
playback continuousness.
•Chunk transmission delay. This is the chunk transmission
time between two peers. This metric shows the delay
in retrieving video chunks.
• The number of searched clients for a video. This is the num-
ber of unique nodes that are queried before a node finds
a video provider or fails to find a video from clients. This
metric shows the efficiency in video provider searching.
• Percent of server contribution. This is the ratio of
server bandwidth consumed in a system over the total
bandwidth consumed in the client/server system. The
bandwidth is measured by the total size of served
videos. This metric shows the effectiveness of reducing
the bandwidth burden of the server.
• Playback continuousness probability. This is the percent
of nodes that have not experienced freezing caused by
waiting for a missing chunk in video playback due to
a user’s forward skipping when watching video.
• Startup delay. This is the time elapsed after a node se-
lects a video and before the video starts to play. This met-
ric reflects the effectiveness of a prefetching mechanism.
• Buffering delay. This is the total time for a user to
receive a certain number of chunks after sending out a
video request.
•Average overlay maintenance cost. This is the number of
communication messages between neighboring nodes
for overlay maintenance.

4.2 Effectiveness of the Prefetching Algorithm
In this experiment, we let each node randomly request
videos whose prefixes are in its cache. A node cannot
access a video not owned or shared by its friends. We
varied the number of nodes in the system from 1,000
to 5,000 with 500 increase in each step. Figure 14 shows
the average prefetching accuracy versus client (i.e., node)

population. We see that the prefetching accuracy of
SocialTube remains higher than 0.9, those of PA-VoD
and Random remain at 0.03 and nearly 0, respectively,
and that of NetTube lies in the middle. Also, as the
client population increases, unlike other methods, the
prefetching accuracy of NetTube decreases significantly.
SocialTube explores the social relationship and clusters
the follower and similar-interest peers within 2-hops
from a source together. A source node pushes its video
prefixes to its followers and the cluster nodes of the
video’s interest. In a source’s per-node overlay, nodes
2 hops away from the source cannot access its videos
unless the videos are shared by their friends, and 1-
hop friends of the source can always access the videos.
Thus, SocialTube achieves high prefetching accuracy but
it is not 100%. As the client population increases, the
size of interest cluster increases. Then, more cluster-
peers within 2-hops of the source can visit shared videos
from their friends, thus the video prefetching accuracy
remains nearly constant. NetTube only clusters peers
with similar interests without considering the social
relationship. When a video prefix is pushed to the cluster
of the video’s interest, some nodes are unable to access
the video since they are not the friends of the source
or the video sharers. Given a certain number of videos
in the system, as the client population increases, the
number of videos in a node decreases and then the
number of accessible videos from friends of a node de-
creases, leading to a decreasing prefetching accuracy. PA-
VoD clusters physically close nodes without considering
interests or social relationship. A node may not be in the
same cluster with its friends or the video sharers, leading
to low prefetching accuracy. In Random, nodes are
randomly clustered. Thus, nodes in a cluster receiving
a prefix of a video are unlikely to be the friends of the
source node or the video sharers the video, leading to
very low prefetching accuracy.

In this experiment, we assigned 6 videos to each
source node. We randomly selected 5 per-node over-
lays and chose a client in each overlay. We recorded
each node’s prefetching accuracy when it has x (x =
1, 2 · · · , 5) video prefixes from the source node. Fig-
ure 15 shows the average prefetching accuracy of the
5 nodes versus the number of prefetched videos of each
node. As the number of prefetched videos increases, the
prefetching accuracy of SocialTube, NetTube and PA-
VoD increases. This is because as a peer receives more
video prefixes, when it chooses a video to view, it has a
higher probability to have the prefix of the chosen video
in its cache. We also see that NetTube leads to lower
prefetching accuracy than SocialTube. Also, PA-VoD and
Random lead to extremely low prefetching accuracy. In
SocialTube, a source pushes its video prefix to its follow-
ers and the interest-cluster of the video’s interests in its
per-node overlay. In NetTube, a video prefix is pushed
to all nodes that share the same interest of the video’s
interest. Thus, when a follower chooses a video in its
followee to view, the prefix of this video is in its cache
in SocialTube but may not be in its cache in NetTbe. In
PA-VoD, a video prefix is pushed to the physically close
nodes of the video uploader, which have low probability
to be the source’s friends or the video sharers, thus
generating very low prefetching accuracy. We also find
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Fig. 14: Prefetching accuracy vs.
node population.
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of prefetched videos.
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of watched videos.
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Fig. 17: # of searched clients vs.
client population.
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Fig. 18: Percent of server contri-
bution vs. client population.
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Fig. 19: Chunk transmission delay
vs. client population.

that the prefetching accuracy in Random maintains at
around 0 due to the same reason explained previously.

In this experiment, we randomly selected 5 per-node
overlays and chose a client in each overlay. We let each
source node have 30 videos in 5 interests. A client ini-
tially has [2-4] interests. In every simulation cycle, each
client receives a prefix from its source node and chooses
[1-4] videos to watch. If the client chooses a video not in
its current interests, the video’s interest is added to the
client’s interest list and it joins in the interest-cluster of
this interest and receives the pushed prefix of videos
in this interest in SocialTube and NetTube. Figure 16
shows the average value of the prefetching accuracies
of the 5 clients versus the number of watched videos
of a client over time. The figure illustrates that as the
number of watched videos increases, the prefetching
accuracy of SocialTube and NetTube increases. This is
because in SocialTube and NetTube, as a client watches
more videos, it joins in more interest-clusters and re-
ceives more prefixes, and thus its prefetching accuracy
increases. Again, NetTube generates lower prefetching
accuracy than SocialTube due to the same reason as
in Figure 15. The prefetching accuracy of PA-VoD and
Random is not affected by the number of watched videos
as they do not have interest clusters. Also, they produce
low prefetching accuracy due to the same reasons as
explained before.

4.3 Scalability Performance
Figure 17 shows the average number of searched clients
for a video provider versus the client population. We see
that Random and PA-VoD need to search significantly
more clients than NetTube and SocialTube. In Random,
as the cluster nodes are unlikely to have the same
interests or friend relationship, the viewers need to
search much more nodes for the requested videos. In
PA-VoD, cluster nodes are physically close nodes that
may have friendship, thus it has fewer searched clients
for a video than Random. In contrast, in SocialTube and
NetTube, the nodes that are likely to watch the same
video are clustered. Therefore, they have high proba-
bility to find the requested video in their cluster. We

also find that NetTube generates more searched clients
than SocialTube. This is because in NetTube, nodes in
one interest cluster may not have the permission to
access videos in some of the nodes in the cluster due
to the constraint in OSNs. Also, when a node visits its
followee’s video, the followee may not be in the interest
cluster of the video. In SocialTube, the common-interest
nodes within two hops of a source node and its followers
are clustered. Thus, a node has a high probability to find
and access the requested video from a cluster node. The
figure also shows that as the client population increases,
the video search overhead increases more rapidly in
Random and PA-VoD than in NetTube and SocialTube.
A larger client population increases the cluster size, so
a node needs to search more cluster nodes in Random
and PA-VoD. We notice a slight increase in the search
overhead in NetTube, because when more nodes are
included in a cluster in NetTube, the probability that a
node can find a friend decreases. In SocialTube, as only
the common-interest nodes within 2-hops and followers
of a source node are clustered, the client population
increase does not greatly increase a cluster size, so
both the video access probability and provider location
probability remain approximately the same.

In the following experiments in this section, we let
each requester find four video providers to fetch video
chunks at the same time. Figure 18 illustrates the per-
cent of server contribution versus client population.
It shows that as the client population increases, the
percent of server contribution in all systems decreases.
Higher client population increases the number of friends
of a node that can provide services. It also causes
more clients viewing videos, leading to faster video
dissemination to a wider friend circle around a video
owner. Then nodes have higher probability of finding
videos from peers, thus reducing the bandwidth con-
sumption of the server. We also see that the percent
of server contribution follows SocialTube<NetTube<PA-
VoD<Random. This is because the nodes in SocialTube
can locate the video chunks from other peers more
efficiently, since it considers both social relationship and
interest. Common-interest nodes are more likely to be
friends than physically close nodes, so NetTube can
locate video providers more efficiently than PA-VoD.
Randomly clustered nodes in Random are unlikely to be
friends, so Random produces the lowest video provider
location efficiency.

Figure 19 plots the average chunk transmission de-
lay versus client population. We did not consider the
transmission from the central server in calculating this
metric. We see that SocialTube and PA-VoD have almost
the same chunk transmission delay, which is dramat-
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ing delay.

ically lower than those of NetTube and Random. In
SocialTube and PA-VoD, the nodes contact the physically
close nodes for the video chunks. NetTube and Random
do not consider the physical locations of nodes. We
also see that as the client population grows, the chunk
transmission delay of SocialTube and PA-VoD decreases
slightly, while that of NetTube and Random exhibit
a marginal increase. As client population increases, a
video requester has a higher probability to find phys-
ically nearby video holder in SocialTube and PA-VoD,
while the average distance between video requester and
video provider increases in NetTube and Random.

5 EXPERIMENTAL RESULTS ON PLANETLAB
We implemented SocialTube based on the Facebook
video trace on the PlanetLab real-world testbed [27]. We
randomly chose 268 online nodes in the PlanetLab and
installed the server at 128.112.139.26 located in Princeton
University. We used a smaller set of 50 distinct videos
from our dataset for testing.

Figure 20 shows the CDF of the average startup delay.
It shows that about 80% of the nodes in SocialTube
and 65% of the nodes in NetTube have a startup delay
of less than 2s, but the startup delay of all nodes in
PA-VoD and Random is larger than 2s and the startup
delay of 20% of their nodes is even larger than 10s.
This is mainly due to the high effectiveness of the pre-
fix prefetching mechanism in SocialTube and NetTube
and its low effectiveness in PA-VoD and Random as
explained previously.

Figure 21 shows the CDF of the average chunk trans-
mission delay between nodes. We find that NetTube and
Random generate much higher delay than SocialTube
and PA-VoD. Since NetTube and Random do not con-
sider the node geographic locations, a node may contact
geographically distant nodes for video chunks, which
increases the chunk transmission delay. Both SocialTube
and PA-VoD try to fetch chunks from geographically
close nodes, thus their chunk delivery delays remain low
and are almost the same.

Figure 22 shows the CDF of the percent of server
contribution for video transmission. We see that about
90% of the nodes in SocialTube and 80% of the nodes
in NetTube have no more than 0.6 server contribution.
Around 60% of the nodes have more than 0.7 and 0.78
server contribution in PA-VoD and Random, respec-
tively. Since SocialTube considers social relationship and
interests in node clustering, the probability that nodes
find video providers is high. Therefore, SocialTube has
much less bandwidth demand from server than other
methods. NetTube clusters the nodes with the same
interests. As followers may not find requested videos of

their followees in their interest clusters in NetTube, so
it produces higher server contribution than SocialTube.
PA-VoD clusters the physically close nodes that may
not be friends, leading to lower probability of finding
video providers hence higher server contribution than
NetTube. Random only randomly clusters nodes, so it
incurs the highest server bandwidth contribution. The
result shows that SocialTube is most effective in reducing
the bandwidth burden on the central video server.

Figure 23 shows the CDF of the accumulated freez-
ing delay, which is defined as the total freezing delay
when a video is playing. We see that the percentage
of the users that did not experience any freezing delay
in SocialTube, PA-VoD, Random and NetTube is 42%,
30%, 28% and 15%, respectively. Also, 80% of the users
experienced accumulated freezing delay less than 5s,
7s, 9s and 12s in SocialTube, PA-VoD, Random and
NetTube, respectively. That is, the users experience more
video freezing delay in NetTube than in PA-VoD and
Random, and experience the smallest freezing delay in
SocialTube. In SocialTube, the video chunks can be more
accurately prefetched since nodes push video chunks to
their friends that are very likely to watch the videos.
The interest-based prefetch mechanism in NetTube and
locality-based prefetch mechanism in PA-VoD are not as
accurate as SocialTube. In addition, in SocialTube, when
a user watches the first chunk of the video, the other
video chunks are transmitted from other users that are
physically close to the user. Therefore, the nodes are
unlikely to experience playback freezing. In PA-VoD,
nodes receive chunks from either physically close nodes
or the server, both of which provide quick transmis-
sion. Therefore, PA-VoD produces the second smallest
freezing time. In Random, nodes receive chunks mainly
from the server, so chunk transmission delay is relatively
low. As NetTube can locate video providers with high
probability but video providers are not physically close
to video requesters, the users in NetTube experience the
longest freezing delay.
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Fig. 24: CDF of the percent of server
contribution in SocialTube.

Figure 24 shows the
CDF of the percent of
server contribution of
each node with different
client population in
SocialTube. It shows
that in the system with
268 nodes, 80% of the
nodes require no more
than 40% of the traffic
from the server, and in
the system with 200 and
100 nodes respectively, 80% of the nodes require no
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more than 50% and 56% of the traffic from the server,
respectively. As the system has more nodes, more nodes
can share videos after they watch the videos. Then,
the total uploading capacity of the P2P transmission
increases, which reduces the burden on the server.
This result implies that P2P structure is an optimal
architecture for a large-scale video sharing system.

6 CONCLUSION
Video sharing is an increasingly popular application in
OSNs. However, the client/server architecture deployed
by current video sharing systems in OSNs costs a large
amount of resources (i.e. money, server storage) for
the service provider and lacks scalability. Meanwhile,
because of the privacy constraints in OSNs, the current
peer-assisted Video-on-Demand (VoD) techniques are
suboptimal if not entirely applicable to the video sharing
in OSNs. In this paper, we crawled video watching trace
data in one of the largest online social network websites
Facebook, from Jul. 2007 to Aug. 2010 and explored
the users’ video viewing patterns. We found that in a
user’s viewer group, 25% viewers watched all videos of
the user driven by social relationship, and the viewing
pattern of the remaining nodes is driven by interest.
Based on the observed social and interest relationship in
video watching activities, we propose SocialTube, which
provides efficient P2P-assisted video sharing services.
Extensive simulation results show that SocialTube can
provide a low video startup delay and low server traffic
demand. We also implemented a prototype in PlanetLab
to evaluate the performance of SocialTube. The experi-
mental results from the prototype further confirm the
efficiency of SocialTube.
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7 ENHANCED METHODS

7.1 Chunk Delivery and Scheduling
After discovering 4 providers, the requester downloads
chunks from them until all chunks of the requested video
are downloaded. Figure 25 shows the chunk delivery
algorithm in SocialTube. At first, the node sends requests
to providers to check whether they have the chunks
it needs. All providers that have the required chunks
send back their current available uploading bandwidth
and chunk bitmap to the requesting node. Then, the re-
quester can know how many chunks and which chunks
each uploading node can provide. In order to guaran-
tee a low streaming delay, we propose a policy for a
downloading node to determine the number of chunks
it should request from each uploading node.

Policy 1: The number of chunks a node can request
from each provider, denoted by mi, is determined based
on the available uploading bandwidth of each provider.
That is,

mi =
wi∑nr

i=0 wi
·m, (1)

where m is the total number of missing chunks of the
requester, wi is the uploading bandwidth of provider
i, and nr is the number of responding providers. The
exact number of chunks required from a provider also
depends on useful chunks the provider can provide.
Because a requester can receive chunks from several
providers simultaneously, the transmission delay of
video streaming is reduced. Since the number of chunks
assigned to providers is proportional to their available
uploading bandwidth, and the node with higher up-
loading bandwidth should deliver more chunks, the
uploading bandwidth is efficiently used to minimize
the transmission delay. Once a video requester finds a
chunk provider, it continuously downloads chunks from
the provider until all requested chunks are retrieved or
they are disconnected. In the latter case, the requester
continues to find another provider.

Downloading node 

Uploading nodes

1.  Send  a request for 
required chunks  

3. Determine the # of 
chunks of each provider. 
Send its chunk bitmap 
to the responders

2. If having the required 
chunks,  reply with its bitmap 
and uploading bandwidth

4.  Send the missing 
chunks back

5.  Receive the 
missing chunks 

t

t

Fig. 25: Chunk delivery algorithm.
A chunk provider may receive a number of chunk

requests from different requesters. Thus, another ques-
tion is how can a provider determine the priority to
serve those requesters so that every requester’s playback
continuousness is guaranteed.

In SocialTube, each node uses a chunk window to
measure how many chunks it has prefetched after the
timestamp of current playback time. As shown in Fig-
ure 26, we use tp to denote the current playback time of
the video and tf to denote the timestamp of the longest
continuous chunk series. Then, the chunk window size
is calculated by W = tf−tp. Because the tf and tp values
of different requesters of one video provider are different
respectively, their window sizes are different. The chunk

window size represents the urgency of playback needs.
In order to guarantee the continuousness of playback
of all nodes, we propose another policy for uploading
nodes to decide the priority of serving requesters.

Policy 2: For a number of chunk requests from dif-
ferent downloading nodes, the uploading node gives
higher priority to the requester that has smallest chunk
window size.

Figure 26 gives an explanation of Policy 2. After
uploading peer C receives requests from peer A and
peer B, it compares their chunk window sizes. Since
the chunk size of peer A is larger than peer B, peer C
uploads the chunks to peer B first, so that B will not
experience a freeze due to the lack of prefetched chunks.

C14 C15 C16 C17

0:00 0:10 2:100:20 2:20 2:402:30 2:50

C18

C1 C2 …

0:00
A

B

tp tf

C7 C8 C9 C10

0:10 2:100:20 2:20 2:402:30 2:50

C1 C2 …

WA =tf - tp

C10

tp tf
Node C

Node A

CNode B

WA  > WB

WB =tf - tp

Chunk played Chunk not played tp tfChunk 
playback time

Chunk 
prefetching time

Fig. 26: Chunk scheduling algorithm.

7.2 Buffer Management Algorithm
As O10 shows, the frequency that a video is watched
decreases over time. After a video has been published
for one month, it is seldom watched by users. Therefore,
nodes in SocialTube do not need to have a large cache to
store all the videos that were watched before. According
to O10, the decreasing number of views of a video
can be modeled with a exponential distribution as
V = Vmax · a−t (a > 1), where Vmax is the maximum
number of views of the video, and t is the current life
time of the video. Meanwhile, as videos have different
popularities, videos with lower popularities should be
replaced first, since these videos are less likely to be
requested by other nodes. To calculate the popularity
of a video, each node ranks the videos it holds based
on the number of times the video has been viewed
during a time unit. The video with rank 1 has a higher
viewing frequency than the video with rank 2. Then, the
probability that a video with rank i is queried by other
nodes equals the percent of its views in the total views;
that is, p = 1

i /
∑n

i=1
1
i = 1/(i ·

∑n
i=1

1
i ), where n is the

number of videos in the node’s cache and the videos
are ranked from 1 through n [9]. Therefore, considering
a video’s active life time in Facebook and its popularity,
we define the buffer replacement metric as

B = V · p =
Vmax · a−t

i
∑n

i=1 1/i
. (2)

The videos with large B have a higher probability to
be watched, and the video with a small B should be
replaced first.

8 EXPERIMENTAL RESULTS
8.1 Effectiveness of the Chunk Delivery and
Scheduling Algorithm
We then evaluate the two policies introduced in Sec-
tion 7.1 that improve SocialTube. We use SocialTube-
1-2 to denote SocialTube with both Policy 1 and Pol-
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icy 2, use SocialTube-N-1 and SocialTube-N-2 to de-
note SocialTube-1-2 without Policy 1 and Policy 2, re-
spectively. In SocialTube-N-1, the chunk transmission
loads are equally assigned to the uploading neighbors,
and in SocialTube-N-2, a video provider sends video
chunks to requesters based on the policy of “first come
first serve”. We use SocialTube to denote SocialTube
without either policy 1 or policy 2. Figure 27 shows
the average buffering delay versus the playback length
of a video in minutes. We see that the buffering de-
lay follows SocialTube>SocialTube-N-1>SocialTube-N-
2>SocialTube-1-2. Based on Policy 1, SocialTube-1-2 can
adaptively assign more chunk loads to the nodes with
higher uploading bandwidths to reduce the video buffer-
ing delay. Therefore, SocialTube-1-2 generates much less
video buffering delay than SocialTube-N-1. Based on
Policy 2, SocialTube-1-2 gives higher priority to the
users that have smaller playback window sizes when
sending chunks to video receivers, thus preventing
users from suffering from video playback freezes. There-
fore, SocialTube-1-2 produces less buffering delay than
SocialTube-N-2. As the delay due to the imbalanced
chunk transmission load is larger than the delay due to
chunk freezing when the nodes cannot receive chunks in
time, the buffering delay in SocialTube-N-1 is larger than
that in SocialTube-N-2. Without any enhanced policy,
SocialTube produces the longest buffering delay. As the
playback length of a video increases, the buffering delay
of all methods increases since more chunks need more
time to transmit.

In this experiment, each video viewer had a for-
warding skipping when the playback length of a video
equals x minutes, which was varied from 5 to 25 with 5
increase in each step. The skipping time was set to 10s,
which approximately is the latency for transmitting one
chunk. Figure 28 shows the playback continuousness
probability. We see that for all these four methods, the
playback continuousness probability increases as the
playback length of a video increases. During the video
playback time, the remaining chunks of the video are
also fetched simultaneously. The longer a video plays,
the more chunks that can be fetched, leading to higher
playback continuousness probability. We also see that the
playback continuousness probability follows SocialTube-
1-2>SocialTube-N-1≈SocialTube-N-2>SocialTube. Recall
that Policy 1 can reduce the average transmission delay
between the nodes in the system. Therefore, the chunks
can be fetched to the client’s local buffer quickly. Policy
2 can reduce the probability of playback freeze. There-
fore, the playback continuousness probability is high
in SocialTube-1-2. Since the nodes do not use policy
1 in SocialTube-N-1, then the bandwidth utilization of

some peers is low, which increases the average chunk
fetching delay in the system. Since the nodes do not
use Policy 2 in SocialTube-N-2, some nodes may quickly
fetch many chunks while others may always experience
playback freeze, leading to low playback continuousness
probability. Therefore, only when both of two policies
are concurrently used as in SocialTube-1-2, the playback
continuousness of the nodes can be optimized. These
results confirm the effectiveness of the two policies in
improving the performance of SocialTube.

8.2 Effectiveness of the Buffer Management Algo-
rithm
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tion vs. cache size.

In this experiment, we
let each node generate
one video per simula-
tion cycle. A node does
not request videos gen-
erated 30 simulation cy-
cles ago since the pop-
ularity of a video is
about one month (O10).
A node deletes its old
videos based on our pro-
posed buffer management algorithm if its cache is
full. We varied the cache size of each node from
50M to 400M with an increase step of 50M. Fig-
ure 29 shows the average percent of server contribution
of all video requests versus the cache size of each
node. We see that the percent of server contribution
follows SocialTube<NetTube<PA-VoD<Random due to
the same reason as in Figure 18. We also see that the per-
cent of server contribution of all three methods decreases
as the cache size increases till 300M. A larger cache
size increases the availability of the videos in clients,
which reduces the traffic demand on the server. We also
observe that when the cache size is larger than 300M, the
percent of server contribution in NetTube and SocialTube
remains nearly constant while that in Random and PA-
VOD decreases. Since the popularity of a video is about
one month, each peer watches [1-4] videos per day and
the video size is [20-30]M, 300M is approximately a
sufficient size for a peer to keep watched videos for
others’ visits in NetTube and SocialTube as they can
quickly identify peer servers by querying fewer nodes.
Though old videos and unpopular videos are replaced
by the new videos when the cache size is full, since
they are unlikely to be watched, hence a larger cache
size does not decrease the percent of server contribution.
redIn Random and PA-VOD, a node needs to visit many
peers to find a video peer server. Thus, when nodes
can cache more videos, they have higher probability to
find peer servers, which reduces the percent of server
contribution. These results confirm the effectiveness of
the buffer management algorithm in keeping videos that
are most likely to be visited.

8.3 The Effect of the Scope of Per-node Overlays
In this experiment, we built the per-node overlay for
each source node formed by peers within x (x = 1, 2, 3)
social hops and tested the effect of x on video provider
search efficiency and overlay maintenance cost. The
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Fig. 31: Average number of
searched clients for a video vs. #
of social hops.
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Fig. 32: Percent of server contribu-
tion vs. # of social hops.
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Fig. 33: Average chunk transmis-
sion delay vs. # of social hops.

overlay maintenance period was set to one simula-
tion cycle, in which neighboring nodes exchange one
message. We used a method similar as the optimistic
unchoking in BitTorrent. In this method, while a node
maintains 4 connections, it randomly probes a node
in its swarm in every simulation cycle to search for
other requested video holders that have higher upload-
ing bandwidth, and replaces the node with the lowest
uploading bandwidth in its current 4 video providers
with the detected node.

Figure 30 shows the average overlay maintenance
overhead of each per-node overlay of a source node
when x=1, 2, 3, respectively. We see that as x increases,
the average overlay maintenance overhead increases
greatly, especially when x=3. As the number of hops
from the source node increases (x), more nodes are in-
cluded in the overlay, which generates more exchanged
messages for maintenance overhead.

Figure 31 shows the average number of searched
clients per video when x = 1, 2, 3, respectively. We see
that as x increases, more clients are searched for each
video. This is because when a source node’s per-node
overlay includes nodes within a longer social distance,
more nodes need to be searched in the overlay.

Figure 32 shows the percentage of server contribution
when x = 1, 2, 3, respectively. We see that the server
contribution of x = 3 is not significantly lower than that
of x = 2, which is greatly lower than that of x = 1.
This is because most of the requested video holders are
within 2 hops from the requesters as shown Figure 5.
Including nodes in 3-hops from the source node does
not contribute significantly in providing videos, hence
the server contribution when x = 3 is only slightly lower
than that of x = 2.

Figure 33 shows the average chunk transmission de-
lay when x = 1, 2, 3, respectively. We see as x in-
creases, the average chunk transmission delay decreases.
The node tries to retrieve the remaining video chunks
from its swarm-peers. More peers in the cluster lead
to more choices of the swarm-peers, which provides
more node options with high uploading bandwidth.
Therefore, chunk transmission delay is reduced. We see
that the transmission delay of x = 3 is slightly lower
than that of x = 2. This is still because most of the nodes
holding the videos are within 2 hops as shown Figure 5.
Expanding the social hops to 3 hops will not generate
significantly more video providers.

The above experimental results show that including
the users beyond 2-hops into a source node’s per-node
overlay generates greater overlay maintenance cost than
video sharing benefit. Therefore, in SocialTube, the per-

node overlay of a source node consists of nodes within
2-hops from the source.

8.4 Overlay Maintenance Cost
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Fig. 34: Average overlay mainte-
nance cost vs. node population.

We then evaluate the
overlay maintenance of
different systems. When
a node finishes viewing
videos in a simulation
cycle, it leaves the sys-
tem, and then joins in
the system in the next
simulation cycle. When a
node joins in, it connects
to previously connected
nodes, and when a node
leaves, it notifies its neighbors to update their neigh-
bors. In order to prevent a node from connecting to an
excessive number of nodes in each overlay/cluster, we
set this upper bound to 1/50 of the client population.
Figure 34 shows the average number of messages per
node for periodical probing, departures and joins in each
simulation cycle. We see that NetTube generates much
higher overlay maintenance cost than other systems.
This is due to the fact that a node may exist in several
interest clusters, so it maintains much more neighbors.
SocialTube has much more overlays with much smaller
overlay sizes because each video source has a per-node
overlay formed by peers within 2 social hops. Due to
small overlay size, the number of neighbors of each node
is unlikely to reach the upper bound in each overlay;
however, because SocialTube has much more overlays
(approximately 3400), as the client population grows,
its overlay maintenance cost increases rapidly. Random
and PA-VoD have only 10 overlays with large overlay
sizes, since the number of neighbors of each node in
each overlay is bounded, they produce limited overlay
maintenance cost. The results show that SocialTube does
not generate high maintenance overhead compared to
other systems.

9 RELATED WORK
Significant research interest has been focused on P2P-
based video sharing in P2P-VoD systems. The P2P-based
VoD systems can be classified into unstructured P2P
based VoD [3]–[18] and structured P2P based VoD [19]–
[21]. In the unstructured P2P based VoD area, Wang et
al. [3] developed a stochastic model that studied the
essential behavior of P2P-VoD systems. Huang and
Cheng [4], [5] studied the trace data of real-world P2P-
VoD systems. Ho et al. [6] discussed how to apply a
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clustering technique to optimize the media-data replica-
tion strategies in P2P-VoD systems. Wang et al. [7] and
Huang et al. [8] studied a nine-month MSN video trace
and showed that peer-assistance can dramatically reduce
server bandwidth costs. They also explored peer locality
to reduce ISP-unfriendly traffic by restricting the P2P
traffic within the ISPs. Zhou et al. [31] studied the hetero-
geneous media service in P2P-based vehicular networks.
Cheng and Liu [9] studied trace data from YouTube
and showed through measurements that YouTube videos
form a social network with strong clustering properties
based on video interest tags. They proposed to cluster
all peers that have watched a particular video for video
sharing among cluster peers. Li et al. [10] studied major
features of the P2P VoD overlay networks and compared
them with those in P2P file sharing and live streaming
systems. Wu et al. [11] proposed an auction-based P2P
VoD streaming strategy, which maximizes the supplying
peers’ bandwidth contribution by using incentive of
increasing their budgets. In order to maximize utilization
of peers’ upload capacity, Fujimoto et al. [12] proposed a
video-popularity-based caching and reservation scheme.
Wu et al. [13] explored the impact of movies’ popularities
on the server load, and then presented both passive
replacement and active push strategies to reduce the
server load and achieve high QoS in VoD streaming.
Zhou et al. [14] developed a fair sharing with bounded
out-degree scheduling mechanism, which parameterizes
the maximum number of peers that can serve a single
request. Niu et al. [15] learned both human factors and
system dynamics from VoD systems and used a time
series techniques to predict the online population and
peer upload. Chang et al. [16] proposed different caching
strategies to achieve optimal server bandwidth con-
sumption for both standard and high-definition chan-
nels. Wang et al. [17] proposed a video prefetching strat-
egy based on user preferences to reduce video startup
delay in online social networks. GoalBit [18] deploys a
mesh structure network to decompose the video stream
into several pieces and share between different peers.

In the structured P2P based VoD area, Yiu et al. [19]
proposed VMesh to support interactive VoD service over
the Internet. The parent nodes are formed into a DHT
for chunk identification in case a peer randomly seeks
a video segment to watch. Shen et al. [20] introduced a
stable DHT ring structure embedded into a mesh-based
overlay to assist chuck provider search. MBoard [21]
studies the user video watching activities in a forum
and proposes to form comparatively stable nodes into
a stable DHT to assist multimedia sharing in forums.

In addition, a number of works utilize location infor-
mation and node interest information to enhance the
performance of P2P video sharing [32], [33]. Salvador
et al. [32] proposed using peer characteristics including
geographical location, peer availability and peer distance
for video file sharing in BitTorrent. Gopalakrishnan et
al [33] proposed to cluster the users with similar interests
through an unsupervised clustering mechanism.

Besides VoD, P2P-based video sharing can also be
found in the area of live streaming systems [34]–[36].
VUD [34] is a multi-channel live P2P video stream-
ing system with a characteristic of decoupling peer
downloading from uploading. The assignment of peer

uploading is made independently of what the peer is
viewing, so that the problems of channel churn and
channel resource imbalance can be solved. Silva et al. [35]
presented a hybrid strategy combining the traditional
P2P and client/server architectures for the live streaming
of user-generated videos. A node first requests a video
from the P2P network, and if it cannot receive the video
after a time period, it is redirected to the centralized
server. Wu et al. [36] used a seven-month trace from
UUSee to analyze server burden with the increasing
demand imposed by multiple streaming channels. They
also proposed a server capacity provisioning algorithm
to optimally utilize the available server capacities be-
tween different channels with a dynamical prediction of
each channel’s demand.

Most research on OSNs focuses on the investigation
of social network characteristics [23], [24], [28], [37]–
[41]. Some research [23], [28], [37] studied and analyzed
the social clustering and geographical distribution of
users in Facebook. Wittie et al. [24] studied the user
interactions on the posts in Facebook. They found that
users in the same geographic region are more likely
to interaction with each other. Liu et al. [38] studied
a YouTube trace and investigated the statistic features
of social networks formed by the videos. Yu et al. [39]
studied user behaviors in P2P VoD systems, which re-
vealed an inverse correlation between video watching
time and video popularity. Puwelse et al. [40] presented
Tribler, a social network based P2P file sharing system
that exploits social phenomena as a set of extensions
to BitTorrent. Kalofonos et al. [41] introduced MyNet, a
platform for secure P2P personal and social networking
services. These works leverage OSNs to improve file
sharing efficiency and enable system-wide file sharing.
In contrast, SocialTube leverages P2P’s high efficiency to
improve file sharing in OSNs and caters to the typical
file sharing patterns in OSNs. To our knowledge, this
is the first work to study video sharing pattern in OSNs
and build a P2P-based video sharing system with a
pre-fetching strategy combining friendship relations and
interests in OSNs.


