
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

A Delaunay-based Coordinate-free Mechanism
for Full Coverage in Wireless Sensor Networks

Chenxi Qiu, Haiying Shen*, Senior Member, IEEE

Abstract—Recently, many schemes have been proposed for detecting and healing coverage holes to achieve full coverage in wireless
sensor networks (WSNs). However, none of these schemes aim to find the shortest node movement paths to heal the coverage holes,
which could significantly reduce energy usage for node movement. Also, current hole healing schemes require accurate knowledge
of sensor locations; obtaining this knowledge consumes high energy. In this paper, we propose a DElaunay-based Coordinate-free
Mechanism (DECM) for full coverage. Based on rigorous mathematical analysis, DECM can detect coverage holes and find the locally
shortest paths for healing holes in a distributed manner without requiring accurate node location information. Also, DECM incorporates
a cooperative movement mechanism that can prevent generating new holes during node movements in healing holes. Simulation
results and experimental results from the real-world GENI Orbit testbed show that DECM achieves superior performance in terms of
the energy-efficiency, effectiveness of hole healing, energy consumption balance and lifetime compared to previous schemes.

Index Terms—Wireless sensor networks, full coverage, energy efficiency, Delaunay triangulation.

F

1 INTRODUCTION

IN wireless sensor networks (WSNs), sensor nodes may
die due to battery drain or environmental causes. Also,

nodes may deviate from their assigned positions due to
the effects of uncontrollable factors (e.g., ocean waves).
Coverage holes hamper the ability of WSNs to detect
events and reduce network reliability. Therefore, it is
crucial to equip the sensor nodes with efficient hole
detection and healing capabilities in order to ensure full
coverage of the target field.

Numerous schemes have been proposed for hole de-
tection and hole healing. For hole detection, the current
approaches can be categorized into two types: sensing
border based schemes [1, 2] and Voronoi diagram (VOR)
based schemes [3–5]. In sensing border based schemes,
each node verifies the coverage of its vicinity by checking
if its border is completely covered by other nodes. The
target field is covered iff the sensing border of every
internal node is covered. While in VOR based schemes,
the whole target region is partitioned into Voronoi cells,
each of which has one sensor called a generating node
residing in it. All points within a Voronoi cell are closer
to their generating node in the cell than to those in other
cells. Thus, if a generating node finds some points in
a Voronoi cell that are not covered by itself, it moves
directly to the farthest point to heal the hole. Both
sensing border based schemes and (VOR) based schemes
require accurate node location information.

For hole healing, many of previous works [3, 6–15] use
sensor movement to improve network coverage. Since
mechanical movement is much more energy-expensive
than electronic communications [16], the node moving
distance should be minimized [17]. However, none of
the previous hole healing works aim to find the shortest
paths of node movement, which could greatly enhance

• * Corresponding Author. Email: shenh@clemson.edu; Phone: (864) 656
5931; Fax: (864) 656 5910.

• Chenxi Qiu and Haiying Shen are with the Department of Electrical and
Computer Engineering, Clemson University, Clemson, SC, 29634.
E-mail: {chenxiq, shenh}@clemson.edu

the energy-efficiency. Also, all of these hole healing
schemes also require accurate knowledge of node lo-
cations. However, simple localization solutions, such as
equipping each node with a GPS receiver or manual con-
figuration using coordinates [8, 18–20], are either energy-
expensive or impractical for WSNs in some cases [21].

To overcome the drawbacks, we propose a DElaunay-
based Coordinate-free Mechanism (DECM) for full cov-
erage. Here, “coordinate-free” means that each node
does not need to know the exact locations but the
distances and angles (i.e., relative locations) of all nearby
nodes. In this paper, we first present a mathematical
model that provides a sufficient and necessary condition
for the full coverage of a triangle that has no other
nodes inside its circumcircle. Accordingly, DECM first
conducts triangulation on a WSN to form such trian-
gles and then conducts node movements to meet the
condition in order to minimize the number of node
movements for full coverage. The time complexity for
building triangulation is O(bn), where b denotes the
number of sensors in the vicinity of each node and n
denotes the total number of nodes in the network. DECM
is a distributed scheme in which every node checks for
holes and makes movements to heal holes. As shown in
Fig. 1, each node first conducts Delaunay triangulation
that divides the target field into triangles that have no
other nodes inside. Then, based on the sufficient and
necessary condition, each node calculates its safe area
where the node can be located while still keeping full
coverage of its triangles. Based on the calculated safe
areas of each node, DECM can detect coverage holes and
find the shortest paths for node movement to heal the
holes. DECM utilizes the r-map coordinate system [2]
to enable nodes to know the relative locations of nearby
nodes for hole detection and healing. DECM is similar
to a VOR based method since both construct a diagram
for hole healing. However, VOR may generate numerous
iterations of node movements because (1) node move-
ment to cover one point rather than the cell area may
generate holes in other points in the cell, and (2) only
one node is in charge of the coverage of a cell. Unlike
in VOR, a node in DECM moves to a point in order

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

Fig. 1: Delaunay triangulation.

to cover the entire area of a Delaunay cell. Also, three
nodes are in charge of the coverage of a cell. Thus,
DECM achieves full coverage more quickly and energy-
efficiently. Our experiment results show that to heal the
coverage holes of a target region, compared to previous
methods, DECM saves at least 26% total moving distance
of all the nodes, at least 32% total number of moves.
Furthermore, DECM enhance the lifetime of the network
at least 2.5 times.

This paper is organized as follows. Section 4 presents a
review of related works on movement-assisted schemes
for full WSN coverage deployment. Section 2 introduces
mathematical models for analyzing WSN coverage prob-
lems and presents the DECM movement-assisted scheme
for detecting and healing coverage holes based on this
model. Then, Section 3 presents a performance evalu-
ation of DECM in comparison with several previous
schemes. The final section concludes with a summary of
contributions and a discussion on further research work.

2 THE DESIGN OF DECM
We consider a WSN comprised of a set of nodes S =
{s1, s2, s3, ..., sn} that are uniformly distributed over a
large target field and are designed to detect specified
events. Each node, say si, can sense specified events
in its sensing range, denoted by Rs. We use P =
{P1, P2, P3, ..., Pn} to represent the locations of all the
nodes in S. Like many previous works in [8, 9, 11, 17],
we model the sensing range of each node as a disk. Ex-
tending DECM to complex sensing range models leaves
as our future work [22, 23]. In addition, we consider a
time slotted system where each node can successfully
receive a packet within a time slot [24, 25].

We first find the condition for full coverage of a trian-
gle formed by three sensors with no other nodes inside
the triangle’s circumcircle (Section 2.1). Since a Delaunay
triangle has no other nodes inside the triangle’s circum-
circle, nodes conduct Delaunay triangulation [26] to di-
vide the field into Delaunay triangles (Section 2.2). Then,
each node uses our observed full coverage condition to
find a safe area where it can be located while still keeping
full coverage of its triangles (Section 2.3). Finally, each
node can detect holes and discover the shortest path for
its movement to heal holes (Section 2.4). Nodes in DECM
periodically conduct Delaunay triangulation, hole detec-
tion and node movement, and are synchronized by the
diffusion-based synchronization algorithm in [27], which
is a distributed method. DECM is proposed for WSNs
where the node density is high enough for Delaunay
triangulation and that the number of node movement
iterations for hole healing is limited.

2.1 Condition for A Triangle’s Full Coverage
Consider three nodes in a plane that construct a triangle.
The sufficient and necessary condition for the triangle’s
full coverage is described in Theorem 2.1.

Fig. 2: Illegal edge and edge flip.
Theorem 2.1: Consider a triangle formed by three

nodes si, sj and sk ∈ S (si, sj and sk are located at point
Pi, Pj and Pk respectively) with no other nodes placed
inside the triangle’s circumcircle. Using dij to denote
the Euclidean distance between si and sj , and with the
same convention for the other distances, we derive: 1)
when the triangle is an acute triangle, the triangle is fully
covered iff the following condition is satisfied:

Rs ≥ dijdjkdik√(
d2ij + d2ik + d2jk

)2
− 2

(
d4ij + d4ik + d4jk

) (1)

2) when the triangle is an obtuse triangle, the triangle is
fully covered iff the following condition is satisfied:

Rs ≥ max

{
d2ijdjk

d2ij + d2jk − d2ik
,

d2ikdjk
d2ik + d2jk − d2ij

}
(2)

The proof of Theorem 2.1 is provided in the
supplemental file (Section 6.1). Based on Theorem 2.1,
two objectives should be achieved for the full coverage
of a WSN’s target area while minimizing the number of
node movements: (1) the area is partitioned into triangles
with no other nodes inside each triangle’s circumcircle,
and (2) each triangle meets the condition in Theorem 2.1
by node movements. Note that objective (1) is only used
to minimize the number of node movements for full cov-
erage. For the triangles having other nodes inside their
circumcircles, the condition in Theorem 2.1 is sufficient
for their full coverage and the other nodes may already
cover the triangle. For objective (1), we can leverage the
Delaunay triangulation [26], which is widely used in
mathematics and computational geometry.

2.2 Coordinate-free Delaunay Triangulation
The Delaunay triangulation [26] is used in mathematics
and computational geometry.
Definition 1 (Delaunay triangulation) [26] A triangulation
for a set P of points in a plane is a Delaunay triangu-
lation if no point in P is inside the circumcircle of any
triangle.

Based on Theorem 2.1, we first conduct Delaunay
triangulation so that there are no other nodes placed
inside each triangle’s circumcircle. Before we present
how to conduct Delaunay triangulation on a WSN, we
first introduce some definitions and theorems [26].
Definition 2 (edge flip) [26]: As Fig. 2 shows, consider an
edge eij = PiPj of a triangulation. If eij is not an edge
of the unbounded face, it is incident to two triangles
4PiPjPk and 4PiPjPl. If the two triangles form a con-
vex quadrilateral, we can obtain a new triangulation T ′

by removing eij and inserting ekl (PkPl) in triangulation
T . We call this operation an edge flip.
Definition 3 (illegal edge) [26]: As Fig. 2 shows, after an
edge flip, the only difference between T and T ′ is that
the six angles α1, ..., α6 are replaced by α′

1, ..., α
′
6. We call

the edge eij an illegal edge if

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Fig. 3: Cooperative move-
ment.

Fig. 4: An example of prevent-
ing new holes.

min(αi) < min(α′
i) (1 ≤ i ≤ 6) (3)

Definition 4 (legal triangulation/triangle) [26]: A triangu-
lation/triangle without any illegal edge.

Theorem 2.2: A triangulation for a set P of points in
a plane is a legal triangulation iff the triangulation is a
Delaunay triangulation [26].

The Delaunay triangulation and hole healing require
each node to obtain the distances and directions of
nearby nodes. For this purpose, DECM uses the r-map
system, in which each node measures the locations of
its neighbors using its own arbitrary polar-axis.
Definition 5 (r-map [2]): The r-map of node si is a
variant of polar coordinates that specifies the relative
location of its r-vicinity, denoted by Nsi(r). The location
of any node Pj ∈ Nsi(r) is presented as (dij , θij), where
dij is the radial coordinate that indicates the Euclidian
distance between nodes si and sj , and θij is the angular
coordinate of node sj that denotes the direction of sj
relative to an arbitrary polar-axis of si.
Pj = (dij , θij) in node si’s r-map is called the relative

location of sj to si. For example, in Fig. 3, the relative
locations of s2, s3, and s4 to s1 are (d12, θ12), (d13, θ13)
and (d14, θ14). The concept of coordinate-free r-map was
firstly introduced in [2]. All a node needs to know are its
distances among its nearby nodes (e.g., through signal
strengths), from which it can calculate the angles using
cosine/sine law. Building r-map is much less expensive
than obtaining accurate node locations that needs GPS
receivers or a manual configuration of each node with
its coordinates.

Each node periodically exchanges its measured r-map
with their neighbors by broadcasting a packet to their
neighbors. Each packet will be retransmitted if it cannot
be correctly received by its receiver. When si receives
sj ’s r-map containing the location of sk measured by sj ,
si can transform sk’s location to the location measured
by si’s polar-axis using the methods in [2, 28]. By multi-
hop transmission nodes around a hole can get the r-map
information from the remote nodes which are on “the
other side” of the hole.
Definition 6 (shared nodes): Shared nodes of si and sj
are the nodes of which locations exist in both si’s r-map
and sj ’s r-map.
Definition 7 (potential edge): A potential edge is an edge
that has at least one side with no constructed triangle
and with at least one shared node.

We consider a Delaunay triangulation as a time-slotted
process where time spot t = 1, 2, 3, We use sseed to
denote the seed node. When a Delaunay triangulation
starts at t = 1, DECM broadcasts a triangulation starting
notification to all nodes and randomly selects a node as
sseed. The sseed finds the nearest node in its r-map, say sj ,
and builds an edge called potential edge to sj , denoted

by eij . si stores eij into its Delaunay triangulation table
(DT-table, denoted by DTi) and also asks sj to store
eij into sj ’s DT-table, denoted by DTj . Then, the two
nodes si and sj (we call the two nodes edged nodes)
choose a nearby node, say sk, to form a triangle so that
the triangles circumcircle is minimized in both sides.
We call sk the nearest triangle neighbor (NTN) of the
edged nodes or the edge. As shown in Fig. 2, an edge
eij = sisj can be used for building one triangle on each
of its two sides. Suppose the formed triangle with the
minimum circumcircle is 4sisjsk (4PiPjPk). After two
nodes are connected by a new edge (e.g., sisk and sjsk),
they check if the new edge is a potential edge. If so, the
edged nodes conduct the same operation by choosing
their NTN to construct a new triangle with the minimum
circumcircle. This process continues until a newly added
edge intersects with an existing edge, which means the
triangulation is completed, or t reaches TTL1 (Time To
Live), which is an appropriate time period set by DECM
for each node to conduct the triangulation process. The
requirement of the minimum circumcircles for construct-
ed triangles aims to build triangles with no other nodes
in their circumcircles.

To find the NTN on one side of edge eij , two edged
nodes, si and sj , communicate with each other to
determine their shared nodes’ location, denoted by
Nsj(r)∩Nsi(r). Suppose Pk1 , Pk2 , ..., Pkm ∈ Nsj(r)∩Nsi(r).
As shown in Fig. 4, for one side of eij , all nodes
sk1 , sk2 , ..., skm are connected with si (or sj), thus
generating edges ek1i, ek2i, ..., ekmi (or ek1j , ek2j , ..., ekmj).
These edges’ perpendicular bisectors intersect
with the perpendicular bisector of eij at point
Ok1,ij , Ok2,ij , ..., Okm,ij , respectively. We use variable
hk,ij to denote the distance between Ok,ij and eij , i.e.,
hk,ij = |MijOk,ij |, where Mij is the middle point of
eij . If Ok,ij and sk (Pk) are located at the same side of
eij , then hk,ij > 0; and if Ok,ij and sk (Pk) are located
at different sides, then hk,ij < 0. Suppose hkn,ij has
the smallest value among hk,ij ; then skn is the NTN of
eij . Algorithm 1 in the supplementary file (in Section
7) shows the pseudo code for searching NTN, where
InterOfBisector(eij , eikl

) returns the intersection of eij
and eikl

’s perpendicular bisectors.
As shown in Fig. 2, an edge eij = PiPj can be used for

building one triangle on each of its two sides. Suppose
the formed triangle is 4PiPjPk. When two nodes are
connected by a new edge (e.g., eik and ejk), if the new
edge is a potential edge, the edged nodes conduct the
same operation by choosing their NTN to construct a
new triangle with the minimum circumcircle.

Each node si stores the triangles it belongs to in its De-
launay triangulation table (DT-table), denoted as DTi. This
process continues until a newly added edge intersects
with an existing edge, which means the triangulation is
completed. However, it is difficult to globally notify all
nodes of completion. Also, a node isolated from the oth-
ers may keep looking for nodes to build triangle edges.
Thus, DECM sets an appropriate time period TTL1 for
each node to conduct the triangulation process. After
TTL1, each node checks to see if an illegal edge exists in
the triangles in its DT-table, and conducts an edge flip if
an illegal edge exists. This step is to ensure that Delaunay
triangulation is formed according to Theorem 2.2. There
should not be many illegal edges because:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Theorem 2.3: When two edged nodes connect to their
NTN to construct a triangle, there are no other nodes
inside the triangle’s circumcircle on the same side as the
NTN.
The proof of Theorem 2.3 is provided in the supplemen-
tal file (section 6.2). Then, after conducting triangulation
for the specified time period, each node checks if an
illegal edge exists in the triangles in its DT-table, and
conducts an edge flip if an illegal edge exists. This
step aims to realize Delaunay triangulation according
to Theorem 2.3. Note that two edged nodes are not
necessarily neighbors. Nodes can communicate with
each other by multi-hop routing [5]. Though two edged
nodes calculate their NTN individually, they will find the
same NTN result when their r-maps include their nearby
nodes. Also, because only one NTN exists on one side
of a potential edge of two edged nodes, it is impossible
that a new edge will intersect with an existing edge of
the two nodes. Note that given a potential edge, there
may exist “multiple” NTNs, which are all on the same
circle with the two vertices of the potential edge. In this
case, we only select one node as the NTN from this node,
as shown in Algorithm 1.

The Delaunay triangulation can take O
(
n2
)

edge flips
even if all node locations are globally known [26]. A
local edge flip might generate new illegal triangles,
and then the computation might be endless, though
the probability of such an event is low according to
Theorem 2.3. To avoid endless edge flipping, we set
TTL2 for each sensor node. Once the TTL2 expires, a
node stops flipping edges even though it finds illegal
triangles. The TTL2 strategy does not prevent DECM
from achieving full coverage but might generate un-
necessary node movements. The strategy might reduce
the accuracy of Delaunay triangulation since there could
exist some illegal triangles. That is, some other node
besides the triangle’s three nodes could cover the circum-
circle’s center. Then, the coverage holes that the three
sensor nodes have detected might be covered by some
other nodes, leading to unnecessary node movements.
Let b denote the number of sensors in the vicinity for
each node, let T denote the length of TTL2. Because
each potential edge needs to find its NTN, which use
O(b) time, and there are totally O(n) potential edges,
the complexity of triangulation is O(nb). In the process
of edge flips, each node checks whether the triangles it
forms are illegal in each time slot. There are totally O(n)
triangles and t time slots, hence the complexity of edge
flips is O(nT). Because we always set T as a constant,
the complexity of our distributed algorithm is O(nb).
Specifically, in conducting Delaunay triangulation on a
WSN, each node si executes Algorithm 2 in the sup-
plementary file (in Section 7). The details of EdgeFlip
operation is introduced in [26].

2.3 Safe Area Detection
Definition 8 (safe area): Suppose edge eij is an edge in
sk’s DT-table, the safe area of sk for eij , denoted by Ak

ij ,
is defined as the area where sk can be located without
breaking the full coverage of4PiPjPk (4sisjsk). The safe
area of sk, denoted by Ak, is defined as the intersection
of the safe areas of si for ∀eij ∈ DTk:

Ak =
⋂

∀eij∈DTk

Ak
ij (4)

(a) (b)

Fig. 5: Examples of a safe area.

(a) case I (b) case II (dij ≥ 2Rs)

(c) case II (dij < 2Rs) (d) case III

Fig. 6: Node sk’s safe area for eij .

Fig. 5 gives an example for the definition of a safe area.
In Fig. 5 (a), the shadow area is the safe area of sl to eij ,
within which sl stays to ensure the coverage of 4sisjsl.
In Fig 5 (b), the shadow area in the middle is the safe
area of s4, which is the intersection of the safe areas of
s4 to e12, e23, e13. If s4 is out of this area, there will be
a coverage hole in 4s1s2s4, 4s2s3s4, or 4s1s3s4. Note
that the safe area of a node may be an empty set, which
implies that there must be a hole unable to be fixed no
matter how this node moves. In this case, the node uses
cooperative movement mechanism, in which it requests
its nearby nodes to move to fix the holes. The details of
this mechanism will be presented in Section 2.5.

In the following, we first calculate Ak
ij , and then calcu-

late Ak by Equ. (4). We assume that si’s r-map contains
sj and sk and use si’s r-map for the calculation. Using
the r-maps of sj or sk can retrieve the same results. First,
we assume that θik ∈ [θij , θij + π). We will discuss the
situation when θik ∈ [0, θij)∪[θij+π, 2π) later on. There
are three different kinds of triangle shapes for 4sisjsk:
Case I: an acute triangle (Fig. 6 (a));
Case II: an obtuse triangle with dij > max{dik, djk}
(Fig. 6 (b) and (c));
Case III: an obtuse triangle with dij < max{dik, djk}
(Fig. 6 (d)).

Case I When 4sisjsk is an acute triangle: As Fig. 6
(a) shows, dij , djk, and dik must satisfy d2ij + d2ik > d2jk,
d2ij+d

2
jk > d2ik, and d2ik+d

2
jk > d2ij , which can be induced

to:
dij − dik cos (θik − θij) > 0 and θij < θik < θij +

π

2
(5)

To guarantee the full coverage of the triangle, Equ. (1) in
Theorem 2.1 must be satisfied, which can be simplified
to:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

(
dik cos θ

′
ik (dij − dik cos θ

′
ik)

dik sin θ′ik
− dik sin θ

′
ik

)2

+ d2ij ≤ 4R2
s

where θ′ik = θik−θij . From Equ. (6), we can derive dij <
2Rs and(

dik cos θ
′
ik − dij

2

)2

+

dik sin θ′ik +

√
4R2

s − d2ij

2

2

≥ R2
s

(6)(
dik cos θ

′
ik − dij

2

)2

+

dik sin θ′ik −

√
4R2

s − d2ij

2

2

≤ R2
s

(7)where θ′ik = θik − θij . Therefore,
Lemma 2.1: dij < 2Rs is a necessary condition for

the full coverage of an acute triangle (Case I). The area
formed by Equ. (5), Equ. (6), and Equ. (7) is the safe area
of sk for eij , which is the gray area in Fig. 6 (a).

Case II When 4sisjsk is an obtuse triangle with dij >
max{dik, djk}: As Fig. 6 (b) shows, dij , djk, and dik must
satisfy d2ij ≥ d2jk + d2ik, which can be simplified to:

dik ≤ dij cos (θik − θij) (8)
To guarantee full coverage of the triangle, Equ. (2) in
Theorem 2.1 must be satisfied. We discuss the problem
in two cases:

Case II.1 When dik ≥ djk, Equ. (2) can be induced to:
dik

cos (θik − θij)
≤ 2Rs. (9)

The area formed by Eqs. (8) and (9) is the safe area of sk for
eij , which is the gray area in Fig. 6 (b).

We notice that when dij < 2Rs, if Equ. (8) is satisfied,
Equ. (9) is automatically satisfied, indicating that the
triangle is fully covered. This is because:

dik
cos (θik − θij)

≤ dij < 2Rs →
dik

cos (θik − θij)
≤ 2Rs

(10)
Case II.2 When dik < djk, Equ. (2) can be reduced to:

d2ik − 2dikdij cos (θik − θij) + d2ij
dij − dik cos (θik − θij)

≤ 2Rs (11)

Similarly, we notice that when dij < 2Rs, if Equ. (8) is
satisfied, Equ. (11) is automatically satisfied, indicating
that the triangle is fully covered. This is because Equ. (8)
can be reduced to

d2ik − 2dik cos θ
′
ikdij + d2ij ≤ d2ij − dik cos θ′ikdij , (12)

where θ′ik=θik−θij . Because dij−dik cos (θik − θij) > 0 in
Equ. (8), Equ. (12) can be reduced to

d2ik − 2dik cos (θik − θij)dij + d2ij
dij − dik cos (θik − θij)

< dij < 2Rs (13)

Thus, Equ. (11) is satisfied. Accordingly,
Lemma 2.2: For an obtuse triangle with dij >

max{dik, djk} (Case II), when dij < 2Rs, Equ. (8) is a
sufficient condition for the full coverage of the triangle,
and the area formed by Equ. (8) is the safe area of sk for
eij , which is the gray area in Fig. 6 (c); when dij ≥ 2Rs,
the area formed by Equ. (8), Equ. (9), and Equ. (11) is the
safe area of sk for eij , which is the gray area in Fig. 6 (b).

Case III When 4sisjsk is an obtuse triangle with
dij < max{dik, djk}: This case is further discussed in
the following two cases:

Case III.1 When dik > max{dij , djk}: As Fig. 6 (d)
shows, dij , djk, and dik must satisfy d2ik > d2ij + d2jk,
which can be reduced to:

dik cos (θik − θij) > dij (14)
where cos (θik − θij) > 0 because dik > djk. To guarantee
full coverage of the triangle, Equ. (2) in Theorem 2.1

(a) when dij < 2Rs (b) when dij ≥ 2Rs

Fig. 7: Shortest path in node movement for hole healing.

should be satisfied. We discuss the problem in two cases:
dij

2 cos (θik − θij)
≤ Rs and

dik
2 cos (θik − θij)

< dij (15)

From Eqs. (14) and (15), we can infer that:
dij
2Rs

≤ cos (θik − θij) < 1→ dij < 2Rs (16)

Case III.1.2 When dik > djk > dij : From Equ. (2), the
safe area of sk for eij can be calculated as:

d2ik − 2dikdij cos (θik − θij) + d2ij
2(dik − dij cos (θik − θij))

≤ Rs (17)

dik
2 cos (θik − θij)

> dij (18)

Recall that dij < 2Rs when dij > djk. Similarly, we can
derive that djk < 2Rs when djk > dij . Then,

dij < djk < 2Rs → dij < 2Rs (19)
From Eqs. (16) and (19), we know that

Lemma 2.3: dij < 2Rs is a necessary condition for
the full coverage of an obtuse triangle with dik >
max{dij , djk} (Case III). The area formed by Equ. (14),
Equ. (15), and Equ. (17) is the safe area of sk for eij , which
is the gray area in Fig. 6 (c).

Case III.2 When djk ≥ max{dij , dik): If we use sj ’s
r-map to calculate sk’s safe area for eij in the obtuse
triangle, because this is symmetrical to Case III.1, the
calculated sk’s safe area for eij is similar to that of
case III.1 shown in the slashed area of Fig. 6 (d). In
other cases, using sj ’s r-map to calculate sk’s safe area
for eij leads to exactly the same result. When θik ∈
[0, θij) ∪ [θij + π, 2π), it only results in a safe area that
is symmetrical to the area when θik ∈ [θij , θij + π) as
shown in the dotted and gray areas in Fig. 6 (a)-(d).

From Lemmas 2.1, 2.2, and 2.3, we know that when si
looks for the safe area of sk for eij for full coverage of
4sisjsk, given dij , if dij ≥ 2Rs, sk’s safe area for eij is
only Fig. 6 (b) in Case II, which is re-drawn in Fig. 7 (b).
If dij < 2Rs, sk’s safe area for eiij can be Fig. 6 (a), (c),
and (d) in Case I, II, and III, the combination of which
is shown in Fig. 7 (b).

Theorem 2.4: When si checks the full coverage of
4PiPjPk, given dij when dij ≥ 2Rs, the gray area in
Fig. 7 (b) is the safe area of sk for eij ; otherwise, the
gray area in Fig. 7 (a) is the safe area of sk for eij .

If every node only has the relative location information
of other nodes, it would be difficult for the system to
detect holes on the edge of the target region [2]. There are
several ways to solve this problem, such as configuring
nodes before placing them. In our system, we deploy a
small number of static nodes on the edge of the region
as anchor nodes to help detect holes.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Fig. 8: A farther target area means a larger hole.

2.4 Shortest-path Movement

The hole coverage in DECM is composed of three steps:
1) each node detects coverage holes and notifies the
nodes who are responsible for healing the holes; 2) each
node selects a target area (i.e., safe area) it needs to
move to when receiving multiple notifications; 3) each
notification receiver identifies the shortest path to its
selected target area. In the following, we describe each
step with the focus on the third step.

Step 1. Recall that after the Delaunay triangulation,
each node stores the nodes that are in the same triangle
as itself in its DT-table. We call these nodes triangle
neighbors (TN) of the node. Each node calculates the
safe areas of its triangle neighbors, checks to see if they
are in their own safe areas using its r-map based on
Theorem 2.4, and then notifies those not in their own
safe areas.

Step 2. After hole detection, a node may receive multi-
ple notifications, which provide different target areas for
this node to move to. As indicated in [3], a hole father
(with a longer distance) to the node means a larger hole
around the node. The “distance” here means the shortest
path a node needs to move to reach the target area of the
hole. As shown in Fig. 8, si has two target areas I and II
and area I is farther to si than area II. We see si can fix
a larger hole if it moves to area I. Therefore, as VOR [3],
, DECM also let each node move to the farthest target
area in order to achieve full coverage more rapidly.

Step 3. Suppose that sk receives the notification from
si along with dij and sk’s safe area for eij . sk then
calculates its shortest path to the target area (i.e., safe area)
for eij . Similar to hole detection, sk needs to consider two
cases according to dij .

Case I When dij < 2Rs: As Fig. 7 (a) shows, the safe
area for sk is composed of two parts: area I and area II.
From Equ. (7) we can get the polar coordinates of C1’s
center O1 and C2’s center O2: (Rs, arccos

(
sij
2Rs

)
+ θij)

and (Rs, 2π−arccos
(

sij
2Rs

)
−θij). sk has two choices: (1)

constructing an acute triangle (moving towards area I),
and (2) constructing an obtuse triangle (moving towards
area II). We only let nodes contruct acute triangles be-
cause this makes the node positions more similar to the
vertices of the static hexagon based permutation, which
is considered the best for node distribution [29]. To find
the shortest path to region I, using itself as the circle
center, sk draws a circle C ′, which generates a point
of tangent between C ′ and region I, denoted T ; then
skT is the shortest path. T is on the line of skO1 if
θik ∈ [θij , θij + π) and is on the line of skO2 if θik ∈
[0, θij)∪ [θij +π, 2π). Thus, to cover the hole, sk moves
towards point O1 or O2, whichever is nearer, and stops
once it enters its safe area. As a result, it moves along
the shortest path, the length of which is:

skT =

√√√√√(xik − dij
2

)2

+

yik −

√
4R2

s − d2ij

2

2

−Rs

where xik =dik cos (θik − θij), yik= dik sin (θik − θij).
Node sk can independently calculate the coordinates

of O1 and O2 in its own r-map. We notice that the polar
coordinates of point O1 and O2 must be positioned at si
and sj ’s perpendicular bisector and that O1si = O2si =
Rs. Accordingly, the coordinates of O1 in sk’s r-map,
(dkO1

, θkO1
), can be calculated by:

dkO1 =

√
(A+B)2 + (C +D)2 (20)

θkO1 =

arctan
(

C+D
A+B

)
if C +D ≥ 0

arctan
(

C+D
A+B

)
+ π if C +D < 0

(21)

The coordinates of O2 in sk’s r-map, (dkO2
, θkO2

), can be
calculated by:

dkO2 =

√
(A−B)2 + (C −D)2 (22)

θkO1
=

{
arctan

(
C−D
A−B

)
if C −D ≥ 0

arctan
(

C−D
A−B

)
+ π if C −D < 0

(23)

where

A =
dki cos θki + dkj cos θkj

2
, C =

dki sin θki + dkj sin θkj
2

B =

√
R2

s −
(
d
2

)2
(dkj sin θkj − dki sin θki)

d

D =

√
R2

s −
(
d
2

)2
(dki cos θki − dkj cos θkj)

d

and d =
√
d2ki − 2 cos (θki − θkj)dkidkj + d2kj

Based on the coordinates of O1 and O2, sk chooses the
one closer to itself as the target point, which leads to the
shortest moving path.

Case II When dij ≥ 2Rs: As Fig. 7 (b) shows, the
polar coordinate of O1 and O2 in sk’s r-map are (Rs, θij)
and (dij −Rs, θij), respectively. sk also has two choices:
(1) moving towards region I, and (2) moving towards
region II. Node sk chooses the option that leads to the
shorter moving path. Specifically, sk produces the circle
C ′

1, which has sk as its center and has a tangent with
region I at point T1. sk also produces the circle C ′

2, which
has sk as its center and has a tangent with region II at
point T2.

If T1sk < T2sk, the direction of sk’s movement is
towards O1 and the length of the shortest path T1sk is:

T1sk =

√
d2ik − dikdij cos l (θik − θij) +

d2ij
4

−Rs (24)

If T1sk ≥ T2sk, the direction of sk’s movement is
towards O2 and the length of the shortest path T2sk is:

T2sk =

√
d2ik − 2dik cos θ′ik

(
Rs −

dij
2

)
+

(
Rs −

dij
2

)2

−Rs

(25)
where θ′ik = θik − θij . Similar to Case I, in Case II sk can
figure out the coordinates of O1 and O2 through its own
r-map’s information. Both O1 and O2 are located at sisj ,
and O1si = O2sj = Rs. The coordinates of O1 in sk’s
r-map, (dkO1

, θkO1
), can be calculated by:

dkO1 =
√
A2 +B2 (26)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

Fig. 9: An example of pre-
venting new holes.

Fig. 10: Cooperative move-
ment.

θkO1
=

{
arctan

(
B
A

)
if B ≥ 0

arctan
(
B
A

)
+ π if B < 0

(27)

The coordinate of O2 in si’s r-map, (dkO2
, θkO2

), can be
calculated by:

dkO2 =
√
C2 +D2 (28)

θkO2 =

{
arctan

(
D
C

)
if D ≥ 0

arctan
(
D
C

)
+ π if D < 0

(29)

where
A = dki cos θki +

Rs (dkj cos θkj − dki cos θki)
d

B = dki sin θki +
Rs (dkj sin θkj − dki sin θki)

d

C = dkj cos θkj −
Rs (dkj cos θkj − dkj cos θkj)

d

D = dkj sin θkj −
Rs (dkj sin θkj − dki sin θki)

d
where d =

√
d2ki − 2 cos (θki − θkj)dkidkj + d2kj .

Based on the coordinates of O1 and O2, sk moves
towards the point closest to it, which leads to the shortest
moving path.

2.5 Cooperative Movement
Though the above scheme can find the shortest path for
a node to heal a hole, it would generate new holes if the
node moves out of its safe area. To handle this problem,
we propose a cooperative movement mechanism that
can prevent generating new holes during node move-
ments in healing holes. Basically, a node sk does not
move out of its safe area when moving to its destina-
tion and asks its triangle neighbors for cooperation by
moving to cover sk’s uncovered area to heal the hole.
We introduce the details of this mechanism as follows.

For example, in Fig. 9, node s5’s destination point P
is outside of its safe area A5; the intersection of A5

12,
A5

23, A5
34 and A5

41. Node s5’s new destination is the
closest point to P in A5 on the line P5P (s5 is located
at P5), which is the intersection point between A5 and
line P5P . We represent the new destination by Pnew =
intersection(Ak, P5P). From the figure, we can see that
H5

12 is the new destination for s5.
After node sk moves to its newly calculated destina-

tion, it randomly chooses one from its triangle neighbors,
calculates the destination of the neighbor and asks it
to move in order to cover the hole. As Fig. 10 shows,
s5, s6 and s7 construct a triangle. Initially, s5 receives a
notification from s6 (or s7) to move to the destination
point P . However, due to the constraint of its safe area,
s5 can only move to the point H . In order to cover its
uncovered area in the hole, for each edge in its DT-table,
s5 randomly selects one from the two triangle neighbors
of the edge. Assume s6 is selected. s5 then calculates
the cooperation destination point (Pcor) for s6 and sends
a notification to s6. s6 checks whether this destination

290 300 310 320 330 340
0

0.5

1

1.5

2

2.5
x 10

4

Number of nodesT
ot

al
 m

ov
in

g
di

st
an

ce
 (

m
)

DECM
VOR
SSC
SMART

(a) Total moving distance (b) Total number of moves

Fig. 11: Energy-efficiency of different schemes with different
number of nodes (simulation).

290 300 310 320 330 340
0

0.5

1

1.5

2

2.5
x 10

4

Number of nodesT
ot

al
 m

ov
in

g
di

st
an

ce
 (

m
)

DECM
VOR
SSC
SMART

(a) Total moving distance

290 300 310 320 330 340
100

200

300

400

500

600

700

Number of nodes

N
um

be
r

of
 m

ov
es

DECM
VOR
SSC
SMART

(b) Total number of moves

Fig. 12: Energy-efficiency of different schemes with different
number of nodes (Orbit Testbed).
is inside its safe area. If yes, it directly moves to the
destination; otherwise, it recalculates its new destination
by calculating intersection(Ak, PkP), moves to the new
destination, calculates s7’s destination, and asks s7 for
cooperation. s7 repeats s6’s operation steps, and asks s5
for cooperation if it cannot move to its destination due to
its own safe area. When s5 receives moving notification
for healing the same hole for the second time, it means
that all three nodes cannot move enough distances to
recover the hole. In this case, s5 is forced to move out of
its safe area to its destination, and stays at the point for
a period of time that is predetermined. During this time
period, other nodes nearby move to the newly generated
holes. This process will continue until no new hole is
generated. Because each node stays for a period when it
moves out of its safe area, movement oscillation (nodes
move back and forth) is prevented. Algorithm 3 in the
supplementary file (in Section 7) describes the detailed
progress of hole healing conducted by si, where TTL3

is a predefined time period for each node to move to
heal holes. Consider that when node sk moves towards
one hole, the area size of this hole is decreased; whereas
if sk stays in the united safe area it originally is located
in, no new hole is generated. Thus, the coverage rate is
increased monotonically with node movements with the
DECM’s hole healing algorithm.

DECM significantly enhances the previous movement-
based hole healing methods. Previous methods only let
nodes move to cover a hold regardless if a new hole
will be generated by the movement, thus leading to
movement oscillation. With the cooperative movement
scheme, DECM prevents generating new holes during
node movements. Even if a node has to generate a
new hole in order to recover another hole, after the
movement, this node does not move for a period of time
for other nodes to move to heal this new hole in order
to prevent movement oscillation.

3 PERFORMANCE EVALUATION
In this section, we present the experimental results from
the simulation and the experiments on GENI Orbit

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

55.5 56 56.5 57 57.5 58 58.5 59
0

0.5

1

1.5

2

2.5
x 10

4

Radius (m)T
ot

al
 m

ov
in

g
di

st
an

ce
 (

m
)

DECM
VOR
SSC
SMART

(a) Total moving distance

55.5 56 56.5 57 57.5 58 58.5 59
100

200

300

400

500

600

700

Radius (m)

N
um

be
r

of
 m

ov
es

DECM
VOR
SSC
SMART

(b) Total number of moves

Fig. 13: Energy-efficiency of different schemes with different
radii (simulation).

290 300 310 320 330 340
0

0.5

1

1.5

2

2.5
x 10

4

Radius (m)T
ot

al
 m

ov
in

g
di

st
an

ce
 (

m
)

DECM
VOR
SSC
SMART

(a) Total moving distance

55.5 56 56.5 57 57.5 58 58.5 59
100

200

300

400

500

600

700

Radius (m)

N
um

be
r

of
 m

ov
es

DECM
VOR
SSC
SMART

(b) Total number of moves

Fig. 14: Energy-efficiency of different schemes with different
radii (Orbit Testbed).

testbed [30]. The testbed uses a large two-dimensional
grid of 400 802.11 radio nodes, which can be dynamically
interconnected into specified topologies. We compared
DECM with other three movement schemes for WSN full
coverage: VORonoi-based algorithm (VOR) [3], Scan-
based Movement-Assisted Sensor Deployment (SMART)
[9] and Sea Surface Coverage (SSC) [17]. In SSC, nearby
nodes can only move in four directions to inherit others’
lost “interest points”. Since the target region is not fully
covered at the beginning in our simulation environment,
we assume that every “interest point” in SSC is assigned
to its nearest node. We compare DECM with DECM-S,
in which each node selects the nearest target area, and
DECM-R, in which each node always randomly selects a
target area. We simulated the node movement by letting
nodes exchange the information of their virtual locations.

The target field is a 1200m× 1200m area. The number
of sensors was varied from 290 to 340. The radius of
the sensing range was varied from 55.2m to 59.2m and
the transmission range was set to 120m. Initially, we
randomly distributed all sensors in the target field. Then
we used a scheme to heal the holes until the coverage
reaches 99.9%. We measured the following metrics.
(1) Total moving distance. This is the sum of the moving
distances of all nodes for hole healing. It reflects the
delay and energy cost of node movement in hole healing.
(2) Total number of moves. This is the sum of the number
of moves of all nodes for hole healing. Since node
moving startup consumes more energy than moving,
this metric also reflects the energy consumption.
(3) Coverage. We distribute 10,000 points uniformly
throughout the entire field. The coverage equals the
percent points covered. This metric represents the
effectiveness of full coverage schemes.
(4) Standard deviation of energy consumption (standard
deviation for simplicity). We record the energy
consumption of each node and calculate the standard
deviation of these consumptions. This metric reflects
the energy consumption balance of the network.
(5) Number of nodes alive. When parts of nodes in a WSN
exhaust, the network cannot continue to work due to

(a) The number of nodes is 300 (b) The number of nodes is 330

Fig. 15: Efficiency of healing holes in different schemes (sim-
ulation).

(a) The number of nodes is 300 (b) The number of nodes is 330

Fig. 16: Efficiency of healing holes in different schemes (Orbit
Testbed).
disconnections. This metric reflects the lifetime of a
WSN with a hole healing scheme.
3.1 Energy Cost of Healing Holes
Fig. 11 and Fig. 12 show the total moving distance and total
number of moves versus the number of nodes in different
schemes in simulation and Orbit testbed, respectively.
From these figures, we find that DECM has the best
performance in total moving distance. The total moving
distance follows SMART� SSC > VOR > DECM, and
the total number of moves follows SSC> VOR > DECM
� SMART in both simulation and Orbit. Both SSC and
VOR have higher costs in both metrics than DECM
because they cannot find the shortest paths for node
movement to heal the holes. Long moving paths may
produce new holes because a node may not be able to
cover its original area after moving, thus resulting in
more movements. In DECM, each triangle is managed
by three nodes. A node’s movement aims to fully cover
its triangle. Even when a node selects its farthest target
area when receiving multiple notifications, a potential
new hole in the triangle can be healed by the other two
sensor nodes. Furthermore, DECM uses the cooperative
mechanism which can prevent new holes generated dur-
ing the nodes’ movement. In VOR, each Voronoi cell is
managed by only one node. A node’s movement aims to
cover one point in its cell, which makes it very likely to
generate new holes within its Voronoi cell that cannot be
managed by any other nodes. As a result, this node may
move back, or other nodes may need to move to cover
the hole, resulting in more iterations of node movement.
Thus, VOR produces a longer total moving distance and
a greater total number of moves than DECM. In addition,
SMART generates a significantly higher total moving
distance than the others while producing the lowest total
number of moves. Recall that the main task of SMART
is to balance the distribution of sensor nodes throughout
the entire target region in order to achieve full coverage.

Fig. 13 and Fig. 14 show the total moving distance and
total number of moves versus the node sensing radius
in different schemes in simulation and Orbit testbed,
respectively. We see that the total moving distance follows

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

SMART � VOR ≈ SSC > DECM, and the total number
of moves follows VOR ≈ SSC>DECM�SMART in both
simulation and Orbit. This is for the same reasons as in
Fig. 13. We also observe that for DECM, VOR, and SSC,
the two metric results decrease as the radius of sensing
range increases. This is because a larger sensing range
can reduce the number and size of coverage holes.

3.2 Effectiveness of Healing Holes
Fig. 15 and Fig. 16 show that the coverage versus the
total moving distance in different schemes in simulation
and Orbit testbed, respectively. Fig. 15 (a) and Fig. 16
(a) show that to achieve 99.9% coverage, the total mov-
ing distance is 5600m in DECM, but is over 8000m in
other schemes. Fig. 15 (b) and Fig. 16 (b) show that
to achieve 99.9% coverage, the total moving distance is
4000m in DECM, is 5600m in VOR, and is over 8000m
in SSC and SMART. DECM always finds the shortest
paths for healing holes. A shorter movement distance
has a lower probability of generating new holes. Also,
three nodes managing a triangle area rather than one
node makes it easier to heal newly generated holes
caused by a node’s movement. More importantly, a
node’s movement covers the entire triangle rather than
a point. Thus, DECM avoids excessive iterations of node
movement and achieves full coverage more rapidly than
other schemes. The figures show that SMART achieves
full coverage very slowly. This is because the objective
of SMART is to balance the node distribution and thus
hole sizes are not decreased rapidly.
3.3 Summary
From the experimental results, we find that there is no
big difference between the simulation results and Orbit
real-world testbed results. It is because in the Orbit
testbed, we used virtual location exchanges between
static nodes to simulate node movement and there is no
packet loss during the testing process. These assump-
tions make the experiment of real testbed almost same
as the simulation. So the results of both experiments look
similar. The experimental results verify that selecting
the farthest target area when finding several uncovered
triangles is the optimal method in healing holes. In
summary, the simulation and real testbed results show:
1) DECM is more energy-efficient for full coverage than
other schemes, even when some sensor nodes die. 2)
DECM can heal coverage holes more quickly than oth-
er schemes. 3) Selecting the farthest target area when
finding several triangles that are not fully covered is an
optimal method in DECM. 4) DECM achieves a balanced
energy consumption balance among nodes in a WSN. 5)
The lifetime of a WSN with DECM is longer than those
with other schemes.

4 RELATED WORK
Hole detection: Sensor coverage problem has received
significant attention over the last few years [31, 32], and
Voronoi diagram has been [3] a particularly important
mechanism used for coverage hole detection. A Voronoi
diagram is composed of numerous Voronoi cells, each of
which has one sensor called generating node residing in
it. A Voronoi cell is fully covered if a generating node
covers all of its Voronoi cells’ vertices. Thus, based on
Voronoi diagram, each node only needs to detect the
vertices of the Voronoi cells that are associated with
itself. However, directly building a Voronoi diagram in

a centralized manner requires many computations and
transmissions. Some previous works have introduced
distributed algorithms for the construction of Voronoi
diagram in WSNs [4, 5]. Sharifzadeh and Shahabi [4]
proposed a method, in which a node uses its collected
location information of some nodes to build a 1-order
Voronoi diagram. Since a node may not collect some n-
odes’ location information that is important for diagram
construction, it cannot guarantee the high accuracy of
a Voronoi diagram. Bash and Desnoyers [5] proposed
a method to improve the accuracy. This method begins
with an initial approximation of Voronoi cell at each
node based on its neighboring nodes and then lever-
ages geographic routing primitives (e.g., GPSR [33]) to
systematically refine the Voronoi cell and verify its cor-
rectness. To judge whether its constructed Voronoi cell is
accurate, a node only needs to check whether there is a
node unknown by itself that is closer to any of the cell’s
vertices than itself. However, none of previous works
proposes an algorithm for building Voronoi diagram
without location information. Simple localization solu-
tions, such as equipping each node with a GPS receiver
or manual configuration using coordinates [8, 18–20], are
either energy-expensive or impractical for WSNs in some
cases [21]. Previous works [22, 34] also used Delaunay
triangulation, the dual graph of Voronoi diagram, to
handle the sensor coverage problem in WSNs. Based on
Delaunay triangulation, Wu et al. [22] proposed using
a contour-based deployment to eliminate the coverage
holes near the boundary of a sensing area with obstacles,
and placing a new sensor to the position with the most
coverage gains. Vu and Li [34] considered an area cover-
age problem for a variable sensing radii WSN. However,
both works use a centralized algorithm for the Delaunay
triangulation. Compared to these previous hole detection
schemes, DECM does not need the specific location in-
formation of each node. Each node only requires relative
location information of its nearby nodes.

Movement for full coverage: Node movement strate-
gies for full area coverage have gained considerable
attention during recent years. In virtual force method-
s [10–13], sensors are likened to electromagnetic parti-
cles and have repulsive and attractive forces between
them. When the distance between two sensors is too
great, the attractive force makes them pull each other
closer; when the distance is too small, the repulsive
force makes them push each other further away. Conse-
quently, sensor nodes are exploded from dense regions
to sparse regions or holes. However, these methods
require sensors to move over a series of iterations to
balance “virtual forces” between themselves, which may
take a long time to converge and is not practical for
real applications due to the high energy cost of node
movement. Wang et al. [3] used the Voronoi diagram
for healing coverage holes. As explained in the previous
section, in these methods, a node’s movement cannot
completely heal the coverage holes in its Voronoi cell
because one hole healing may produce other holes in
its Voronoi cell, subsequently generating many iterative
node movements. Many grid quorum-based movement
schemes [6–9] view the movement-assisted network re-
deployment problem as a load balancing problem under
the virtual grid model [35]. These schemes partition an
entire target region into small grid cells, and consider

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

the number of nodes in each cell as the cell’s load.
The schemes schedule sensor movement in order to
achieve a balanced load distribution among the grid
cells. A node within a grid cell can directly commu-
nicate with other nodes in its four adjacent cells and
makes movement decisions according to information
from adjacent cells. Some of these schemes also try to
minimize the sensor movement distances. For example,
SMART [9] arranges communication between cell heads
to identify overloaded and underloaded cells and direct
nodes from overloaded cells to move to underloaded
cells. Knowing the loads of other cells, each cell tries to
avoid any unnecessary movement; thus, both the total
moving distance and the total number of moves can be
minimized. However, since the target a node moves to
is a cell rather than a specific point, the schemes still
cannot find the shortest moving paths.

5 CONCLUSION
In this paper, we propose a DELaunay-based
Coordinate-free Mechanism for full coverage (DECM) in
WSNs. The scheme conducts Delaunay triangulation to
divide a target field into triangles. Based on a rigorous
mathematical model, nodes find the areas they can
be located in while still keeping full coverage of their
triangles, and discover the shortest paths to move
when holes are detected. The scheme is advantageous
over previous schemes in three aspects: (1) it builds
a mathematical model for detecting and healing
coverage holes; (2) it finds the shortest path for node
movements to heal coverage holes, which reduces the
number of movement iterations; (3) it detects coverage
holes without the requirement of accurate location
information; (4) it prevents new holes generated during
the movement of nodes. As a result, our scheme has
superior performance over previous schemes in terms
of energy-efficiency, effectiveness in achieving full
coverage, load balancing and lifetime. In the future,
we will study the following problems. First, as the
locally shortest path for node movements may not be
the optimal globally shortest path, we will attempt to
find the optimal globally shortest path. Second, we will
extend DECM to more complex sensing range models.
Third, we will extend DECM to achieve full coverage
in a target region with obstacles. Fourth, we will use
Delaunay triangulation to solve the k-coverage problem,
where every point in the target region is covered by at
least k sensor nodes.

ACKNOWLEDGEMENTS
This research was supported in part by U.S. NSF
grants CNS-1254006, CNS-1249603, OCI-1064230, CNS-
1049947, CNS-1156875, CNS-0917056 and CNS-1057530,
CNS-1025652, CNS-0938189, CSR-2008826, CSR-2008827,
Microsoft Research Faculty Fellowship 8300751, and U.S.
Department of Energy’s Oak Ridge National Laboratory
including the Extreme Scale Systems Center located at
ORNL and DoD 4000111689. An early version of this
work was presented in the Proceedings of ICPP’ 12 [36].

REFERENCES
[1] C. Huang and Y. Tseng. The coverage problem in a wireless sensor

network. In Proc. of WSNA, 2003.
[2] Y. Bejerano. Simple and efficient k-coverage verification without

location information. In Proc. of INFOCOM, 2008.
[3] G. Wang, G. Cao, and T. F. La Porta. Movement-assisted sensor

deployment. In Proc. of INFOCOM, 2004.

[4] M. Sharifzadeh and C. Shahabi. Supporting spatial aggregation
in sensor network databases. In International Symposium of ACM
GIS, 2004.

[5] B. A Bash and P. J Desnoyers. Exact distributed voronoi cell
computation in sensor networks. In SIAM Journal on Computing,
2007.

[6] S. Chellappan, W. Gu, X. Bai, D. Xuan, and K. Zhang. Deploying
wireless sensor networks under limited mobility constraints. In
IEEE TMC, 2007.

[7] S. Chellappan, X. Bai, B. Ma, D. Xuan, and C. Xu. Mobility limited
flip-based sensor networks deployment. In IEEE TPDS, 2007.

[8] G. Wang, G. Cao, T. Porta, and W. Zhang. Sensor relocation in
mobile sensor networks. In Proc. of INFOCOM, 2005.

[9] S. Yang, M. Li, and J. Wu. Scan-based movement-assisted sensor
deployment methods in wireless sensor networks. In IEEE TPDS,
2007.

[10] Y. Zou and K. Chakrabarty. Energy-aware target localization in
wireless sensor networks. In Proc. of PerCom, 2003.

[11] Y. Zou and K. Chakrabarty. Sensor deployment and target
localization based on virtual forces. In Proc. of INFOCOM, 2003.

[12] K. Akkaya and S. Janapala. Maximizing connected coverage via
controlled actor relocation in wireless sensor and actor networks.
In Computer Networks, 2008.

[13] N. Heo and P.K. Varshney. Energy-efficient deployment of intel-
ligent mobile sensor networks. In ITSMC, 2005.

[14] Z. Butler and D. Rus. Event-based motion control for mobile
sensor networks. In Pervasive Computing, 2003.

[15] N. Heo and P. K. Varshney. An intelligent deployment and
clustering algorithm for a distributed mobile sensor network. In
ITSMC, 2003.

[16] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. En-
ergyefficient communication protocol for wireless microsensor
networks. In Proc. of HICSS, 2000.

[17] J. Luo, D. Wang, and Q. Zhang. Double mobility: Coverage of the
sea surface with mobile sensor networks. In Proc. of INFOCOM,
2009.

[18] L. Xu and D. Evans. Localization for mobile sensor networks. In
Proc. of MobiCom, 2004.

[19] D. Rus D. Moore, J. Leonard and S. Tell. Robust distributed
network localization with nosiy range measurements. In Proc.
of SenSys, 2004.

[20] S. Lee, Z. Zhang, S. Sahu, and D. Saha. On suitability of euclidean
embedding of internet hosts. In SIGMETRICS, 2006.

[21] D. Niculescu. Positioning in ad hoc sensor networks. In IEEE
Network Volume, 2004.

[22] C. Wu, K. Lee, and Y. Chung. A delaunay triangulation based
method for wireless sensor network deployment. In Proc. of
ICPADS, 2006.

[23] X. Cao, E. Lloyd, and C. Shen. Deploying directional sensor
networks with guaranteed connectivity and coverage. In Proc.
of SECON, 2008.

[24] C. Qiu, H. Shen, S. Soltani, K. Sapra, H. Jiang, and J. Hallstrom.
CEDAR: An optimal and distributed strategy for packet recovery
in wireless network. In Proc. of INFOCOM, 2013.

[25] H. S. Lichte, H. Frey, and H. Karl. Fading-resistant low-latency
broadcasts in wireless multihop networks: The probabilistic co-
operation diversity approach. In Proc. of MobiHoc, 2010.

[26] M. d. Berg, O. Cheong, M. V. Kreveld, and M. Overmars. Com-
putational geometry: Algorithm and applications. Springer, 2008.

[27] Q. Li and D. Rus. Global clock synchronization in sensor net-
works. In Proc. of INFOCOM, 2004.

[28] G. S. Kasbekar, Y. Bejerano, and S. Sarkar. Lifetime and coverage
guarantees through distributed coordinate-free sensor activation.
In Proc. of MobiCom, 2009.

[29] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy
conservation for ad hoc routing. In Proc. of MobiCom, 2001.

[30] Orbit. http://www.orbit-lab.org/.
[31] J. Carle, D. Simplot-Ryl, and I. Stojmenovic. Localized sensor area

coverage with low communication overhead. 2008.
[32] A. Gallais, J. Carle, D. Simplot-Ryl, and I. Stojmenovic. Ensuring

k-coverage in wireless sensor networks under realistic physical
layer assumptions. In Proc. of 5th IEEE International Conference on
Sensors, 2009.

[33] B. Kar and H. T. Kung. Gpsr: Greedy perimeter stateless routing
for wireless networks. In Proc. of MobiCom, 2000.

[34] C. T. Vu and Y. Li. Delaunay-triangulation based complete
coverage in wireless sensor networks. In Proc. of PerCom, 2009.

[35] Y. Xu, J. Heidemann, and D. Estrin. Geographyinformed energy
conservation for ad hoc routing. In Proc. of MobiCom, 2001.

[36] C. Qiu and H. Shen. A delaunay-based coordinate-free mechanis-
m for full coverage in wireless sensor networks. In Proc. of ICPP,
2012.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Chenxi Qiu Chenxi Qiu received the BS degree
in Telecommunication Engineering from Xidian
University, China, in 2009. He currently is a
Ph.D student in the Department of Electrical and
Computer Engineering at Clemson University,
SC, United States. His research interests include
sensor networks and wireless networks.

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineering
from Wayne State University in 2004 and 2006,
respectively. She is currently an Assistant Pro-
fessor in the Department of Electrical and Com-
puter Engineering at Clemson University. Her
research interests include distributed computer
systems and computer networks, with an em-
phasis on P2P and content delivery networks,
mobile computing, wireless sensor networks,

and grid and cloud computing. She was the Program Co-Chair for
a number of international conferences and member of the Program
Committees of many leading conferences. She is a Microsoft Faculty
Fellow of 2010 and a member of the IEEE and ACM.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

(a) Acute triangle (b) Obtuse triangle

Fig. 17: The condition of a triangle’s full coverage.

(a) Acute triangle (b) Obtuse triangle

Fig. 18: Proof of Theorem 2.3.

6 PROOFS

6.1 Proof of Theorem 2.1

Proof: Fig. 17 (a) shows an acute triangle formed
by three sensor nodes. Point O is the circumcen-
ter of 4PiPjPk and r is the radius of the triangle
(r = OPi = OPj = OPk). Obviously, if Rs < r, where

r =
dijdjkdik√(

d2ij + d2ik + d2jk

)2
− 2

(
d4ij + d4ik + d4jk

) , (30)

point O cannot be covered by any sensor node; other-
wise, every point within 4PiPjPk can be covered by at
least one of the three nodes.

Fig. 17 (b) shows an obtuse triangle formed by three
sensor nodes. Because the circumcenter of the obtuse
triangle is outside of the triangle, Rs ≥ r is not the
necessary condition for triangle’s full coverage. In the
figure, DH , FI , and EO are the perpendicular bisectors
of PiPj , PiPk and PjPk. If Rs > HPi = HPj , then
4DHPi and 4DHPj are fully covered. Similarly, if
Rs > IPi = IPk, then 4IFPi and 4IFPk are fully
covered. In 4HIPi, either H or I must be the farthest
point from Pi. Therefore, 4DHPi, 4DHPj , 4IFPi,
4IFPk and 4HIPi are fully covered iff

Rs ≥ max {HPi, IPi}

= max

{
d2ijdjk

d2ij + d2jk − d2ik
,

d2ikdjk
d2ik + d2jk − d2ij

}
.

6.2 Proof of Theorem 2.3

Proof: As Fig. 18 (a) and (b) show, sk is the NTN of
eij , and si, sj , and sk construct a triangle (either acute or
obtuse), in which Ok,ij is the circumcenter of the triangle.
Suppose there is one sensor node sk′ located inside the
triangle on the same side of eij as sk (i.e., Pk′Ok,ij <
PjOk′,ij). The perpendicular bisector of PiPk′ definitely
intersects PiOk,ij and MijOk,ij at point Ok′,ij . Therefore,
hk′,ij = hk,ij − Ok,ijOk′,ij , which indicates that hk,ij ≤
hk′,ij . This contradicts the definition of the NTN.

7 PSEUDOCODE OF THREE ALGORITHMS

Algorithm 1 Finding the NTN of eij .

1: flagDistance←∞, flagIndex← 0;
2: for l← 1 to m do
3: Okl,ij = InterOfBisector(eij , eikl

);
4: hkl,ij = |MijOkl,ij |;
5: if hkl,ij < flagDistance then
6: flagDistance← hkl,ij ;
7: flagIndex← kl;
8: end if
9: end for

10: return flagIndex

Algorithm 2 Finding the NTN of eij .

1: if receive a triangulation notification then
2: t← 1, DTi ← φ;
3: flagDistance←∞, flagEdge← φ;
4: while t ≤ TTL1 + TTL2 do
5: if t = 1 and si = sseed then
6: for each sj ∈ Nsi (r) do
7: if dij < flagDistance then
8: flagDistance← dij ;
9: flagEdge← eij ;

10: end if
11: end for
12: DTi ← DTi ∪ flagEdge;
13: Notify sj to conduct DTj ← DTj ∪ flagEdge;
14: else
15: if 1 < t ≤ TTL1 then
16: if DTi 6= φ then
17: for each eij ∈ DTi and eij is potential edge do
18: sk ← FindNTN(eij);
19: Notify sk to conduct DTk ← eik ∪ eij ∪DTk ;
20: end for
21: end if
22: end if
23: end if
24: if TTL1 < t ≤ TTL1 + TTL2 then
25: DTi ← EdgeFlip(DTi);
26: end if
27: t← t+ 1;
28: end while
29: end if

Algorithm 3 Hole healing conducted by node si.

1: flagDistance←∞, flagIndex← 0;
2: while t < TTL3 do
3: Listening;
4: if Receive a notification to move to P (or Pcor) from node sj

then
5: if P (or Pcor)/∈ Ai then
6: Pnew = intersection(Ak , PkP (orPcor));
7: Move to Pnew;
8: for each ejk ∈ DTi do
9: Randomly choose one node from sj and sk (assume sk

is selected);
10: Pcor ← DestinationPoint(sk);
11: si notifies sk to move to Pcor;
12: end for
13: else
14: Move to P (or Pcor);
15: end if
16: end if
17: end while
18: t ← t+ 1

8 ADDITIONAL EXPERIMENTAL RESULTS
8.1 Different Target Area Selections
Fig. 19 and Fig. 20 show the total moving distance and
total number of moves of DECM, DECM-R and DECM-
S in different schemes in simulation and Orbit testbed,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

(a) Total moving distance (b) Total number of moves

Fig. 19: Energy-efficiency of DECM with different target area
selections (simulation).

(a) Total moving distance (b) Total number of moves

Fig. 20: Energy-efficiency of DECM with different target area
selections (Orbit Testbed).

respectively. We see that DECM generates significantly
lower results in both metrics than DECM-R and DECM-
S. The overall moving distances of DECM-R and DECM-
S are respectively 3.5 times and 4.9 times as long as
that of DECM on average. The total number of moves
of DECM-R and DECM-S are respectively 4.5 and 7.3
times as large as that of DECM on average. The results
verify the effectiveness of DECM in choosing the farthest
target area. It can quickly reduce the sizes of large holes,
and hence reduce the number of moves. Also, moving
towards large holes can balance the distribution of nodes
over the entire target region more quickly. From our
observations, when nodes move to heal small-size holes,
new holes may arise in the original position. Then, the
node will move back to heal the newly generated small
holes, leading to more iterations.

Fig. 21 and Fig. 22 show the coverage versus the total
moving distance in DECM, DECM-R, and DECM-S when
the number of sensors is set to 300 and 330, in simulation
and Orbit testbed, respectively. In both figures, DECM
achieves full coverage more rapidly than DECM-R and
DECM-S. In Fig. 21 (a) and Fig. 22 (a), when the total mov-
ing distance reaches 5600m, DECM achieves 99.9% cov-
erage, while DECM-R and DECM-S achieve 98.12% and
96.01% coverage, respectively. In Fig. 21 (b) and Fig. 22
(b), when the total moving distance reaches 4800m, DECM
achieves 99.9% coverage, while DECM-R and DECM-S
only achieve 98.27% and 96.89% coverage, respectively.
Because DECM always fixes the largest hole first since it
selects the farthest target area, it reduces the size of holes
more and achieves the full coverage faster than DECM-
R and DECM-S. From the experimental results, we find
that there is no big difference between the simulation
results and Orbit real-world testbed results. It is because
in the Orbit testbed, we used virtual location exchanges
between static nodes to simulate node movement and
there is no packet loss during the testing process. The
experimental results verify that selecting the farthest
target area when finding several uncovered triangles is
the optimal method in healing holes.

(a) The number of nodes is 300 (b) The number of nodes is 330

Fig. 21: Effectiveness of healing holes in DECM with different
target area selections (simulation).

(a) The number of nodes is 300 (b) The number of nodes is 330

Fig. 22: Effectiveness of healing holes in DECM with different
target area selections (Orbit Testbed).

8.2 Energy Consumption Balance Among Nodes
Fig. 23 and Fig. 24 show the energy consumption balance
of DECM, VOR, SSC and SSC in simulation and Orbit
testbed, respectively. Specifically, Fig. 23 (a) and Fig. 24
(a) show the standard deviation of energy consumption
versus the radius of sensing range, and Fig. 23 (b)
and Fig. 24 (b) show the standard deviation of energy
consumption versus the number of nodes.

All these four figures demonstrate that the standard
deviation of energy consumption follows SMART �
VOR ≈ SSC ≈ DECM. Recall that SMART has longer
total moving distance but smaller number of moves
compared to the other three schemes, which indicates
that each movement in SMART is longer and some nodes
do not need to move. Thus, SMART is more likely to
make some nodes move very long distances while make
other nodes just move zero or a little distance, leading
to unbalanced energy consumption among nodes. We
also observe that the standard deviation of energy con-
sumption of DECM is slightly lower than that of VOR
and SSC. This is because DECM prevents movement
oscillation, thus avoiding making some nodes move
for a total long distance due to the oscillation move-
ments. Also, DECM’s cooperative movement mechanism
distributes the movement task originally for one node
among multiple nodes. As a result, DECM achieves more
balanced energy consumption among nodes.

Fig. 23 (a) and Fig. 24 (a) show that the standard
deviations of energy consumption of DECM, VOR and
SSC increase with the radius of sensing range increases,
while that of SMART maintains nearly constant. Fig. 23
(b) and Fig. 24 (b) show that the standard deviations
of energy consumption of all schemes increase as the
number of nodes increases. The target region requires
fewer moves as the radius increases or as the number
of nodes increases. Thus, some nodes do not need to
move or only move very short distances, leading to more
unbalanced energy consumption. SMART is not affected
significantly by the change of sensing radius because it
aims to balance the sensor distribution in the target area

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

55.5 56 56.5 57 57.5 58 58.5 59

10
1

10
2

Radius (m)S
ta

nd
ar

d
de

vi
at

io
n

of

en
er

gy
 c

on
su

m
pt

io
n

DECM
VOR
SSC
SMART

(a) Different radii

290 300 310 320 330 340
0

20

40

60

80

100

120

Number of nodesS
ta

nd
ar

d
de

vi
at

io
n

of

en
er

gy
 c

on
su

m
pt

io
n

DECM
VOR
SSC
SMART

(b) Different number of nodes

Fig. 23: Energy consumption balance in different schemes
(simulation).

55.5 56 56.5 57 57.5 58 58.5 59

10
1

10
2

Radius (m)S
ta

nd
ar

d
de

vi
at

io
n

of

en
er

gy
 c

on
su

m
pt

io
n

DECM
VOR
SSC
SMART

(a) Different radii

290 300 310 320 330 340
0

20

40

60

80

100

120

Number of nodesS
ta

nd
ar

d
de

vi
at

io
n

of

en
er

gy
 c

on
su

m
pt

io
n

DECM
VOR
SSC
SMART

(b) Different number of nodes

Fig. 24: Energy consumption balance in different schemes
(Orbit Testbed).

regardless of the sensing radius.

8.3 Healing Holes Due to Dead Nodes
In this experiment, 50 nodes died immediately after all
holes were healed from the initial deployment. Fig. 25
(a) and (b), and Fig. 26 (a) and (b) show the total moving
distance and number of moves of the schemes in healing the
holes caused by the dead nodes in simulation and Orbit
testbed, respectively. We see that the total moving distance
follows SMART�SSC>VOR>DECM, and that the total
number of moves follows SSC>VOR>DECM>SMART in
both simulation and Orbit. This is for the same reasons
as in Fig. 11. The results show that DECM still exhibits
superior performance over others even with dead nodes.

8.4 Lifetime of WSNs
We use round to denote the sequence of each time
period in which the destinations of moving nodes are
calculated. Fig. 27 and Fig. 28 show the number of nodes
alive over rounds of DECM, VOR, SSC and SMART in
simulation and Orbit testbed, respectively. From all these
four figures, we see that the lifetime follows DECM >
VOR ≈ SSC > SMART. Compared to DECM, VOR and
SSC, the number of nodes alive decreases rapidly in
SMART because (1) its average energy consumption is
much higher than the other three schemes (according to
Fig. 11 - Fig. 14); (2) the standard deviation of energy
consumption for all the nodes in SMART is higher
(according to Fig. 23 and Fig. 24), which indicates that
the energy stored in some nodes in SMART decreases
more rapidly, leading to short WSN lifetime. We define
the lifetime of a WSN as the time period in rounds the
WSN lasts when 10% of nodes in the WSN exhaust.
DECM has the longest lifetime (about 3.5 times as long
as VOR and SSC and about 9.1 times as long as SMART)
due to its better performance in total moving distance and
energy consumption standard deviation (according to Fig. 11
- Fig. 14, Fig. 23 and Fig. 24). DECM can locally find

(a) Total moving distance (b) Total number of moves

Fig. 25: Energy-efficiency of different schemes in handling
dead nodes (simulation).

(a) Total moving distance (b) Total number of moves

Fig. 26: Energy-efficiency of different schemes in handling
dead nodes (Orbit Testbed).

the shortest path for hole healing. Also, it has the coop-
erative mechanism that prevents generating new holes
during node movements. Since the nodes in DECM have
less energy consumption and the energy consumption
among nodes is well balanced, DECM always has the
longest lifetime comparing to other schemes.

8.5 Effect of TTL1 and TTL2

Recall that TTL1 and TTL2 are the time constraint
for triangulation and edge flip, respectively. Fig. 29 (a)
and Fig. 29 (b) show how TTL1 and TTL2 affect the
coverage performance of DECM in the simulation and
Orbit testbed. Fig. 29 (a) shows that the coverage of
DECM increases from about 84% to 100% when TTL1

changes from 1 to 8. Because of the transmission delay
among nodes, a smaller TTL1 produces more nodes that
are not included in the triangulation, and hence more
undetected coverage holes. Fig. 29 (b) shows that the
coverage of DECM increases from about 99% to 100%
when TTL2 changes from 1 to 4. Due to transmission
delay, a smaller TTL2 leads to more illegal triangulation-
s, and hence more unnecessary long movements, which
generate more new holes.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

50 100 150 200 250 300
0

50

100

150

200

250

300

RoundN
u

m
b

er
 o

f
n

o
d

es
 a

li
v

e

DECM
VOR
SSC
SMART

(a) The number of nodes is 300

50 100 150 200 250 300
0

50

100

150

200

250

300

RoundN
u
m

b
er

 o
f

n
o
d
es

 a
li

v
e

DECM
VOR
SSC
SMART

(b) The number of nodes is 330

Fig. 27: Lifetime of WSNs with different schemes (Simulation).

50 100 150 200 250 300
0

50

100

150

200

250

300

RoundN
u
m

b
er

 o
f

n
o
d
es

 a
li

v
e

DECM
VOR
SSC
SMART

(a) The number of nodes is 300

50 100 150 200 250 300
0

50

100

150

200

250

300

RoundN
u

m
b

er
 o

f
n

o
d

es
 a

li
v

e

DECM
VOR
SSC
SMART

(b) The number of nodes is 330

Fig. 28: Lifetime of WSNs with different schemes (Orbit
Testbed).

1 2 3 4 5 6 7 8 9 10
84

86

88

90

92

94

96

98

100

TTL
1
 (slot)

C
ov

er
ag

e
(%

)

Simulation
Orbit Testbed

(a) Effect of TTL1 (TTL2 = 5)

1 1.5 2 2.5 3 3.5 4 4.5 5
90

92

94

96

98

100

TTL
2
 (slot)

C
ov

er
ag

e
(%

)

Simulation
Orbit Testbed

(b) Effect of TTL2 (TTL1 = 10)

Fig. 29: How TTL1 and TTL2 affect the coverage of DECM.

