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Abstract—Previous delay-tolerant network (DTN) routing al-
gorithms exploit either past encounter records or social network
properties to derive a node’s probability of delivering packets to
their destinations. However, they only have a local view of the
network, which limits the routing efficiency. Also, when two nodes
meet, they have to exchange the delivery abilities to the destina-
tions of all packets in the two nodes, which incurs high resource
consumption. In this paper, we propose SMART, which utilizes a
distributed social map for lightweight routing in delay-tolerant
networks. In SMART, each node builds its own social map con-
sisting of nodes it has met and their frequently encountered nodes
in a distributed manner. Based on both encountering frequency
and social closeness of the two linked nodes in the social map, we
decide the weight of each link to reflect the packet delivery ability
between the two nodes. The social map enables more accurate
forwarder selection through a broader view. Moreover, nodes
exchange much less information for social map update, which
reduces resource consumption. Trace-driven experiments and
tests on the GENI ORBIT testbed demonstrate the high efficiency
of SMART in comparison to previous algorithms.

Index Terms—Delay-tolerant networks, routing, social map.

I. INTRODUCTION

N RECENT years, the development of wireless networks

has stimulated significant research on delay-tolerant net-
works (DTNs) [1]. Among many types of DTNs, we are partic-
ularly interested in those consisting of nodes carried by human
beings (human-based DTNs) in a specific area (e.g., rural vil-
lage, campus, and local community) due to their ability to sup-
port various applications. For example, messages can be re-
layed by devices carried by humans to realize data communi-
cation in rural areas with no or limited infrastructures. The data
can further be gathered to a location with access points to en-
able intermittent network connection in the whole area [2]. In
pocket switch networks (PSNs) [3], digital devices carried by
people are dynamically networked, and the encountering-based
message forwarding can help discover geo/social relationships
among people and provide applications such as friend recom-
mendation, distributed file sharing, or Question&Answer sys-
tems in a local community [4]. Though infrastructures exist in
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some scenarios, like PSNs, we focus on the distributed encoun-
tering-based packet routing in DTNs, which is the key function
supporting the DTN applications. However, this is a nontrivial
task since mobile nodes meet intermittently and have limited
communication ranges and resources.

Epidemic routing [5] is a simple way to realize effective
routing in DTNs. In this algorithm, when two nodes meet,
they exchange the information about all packets and replicate
packets that are not on its memory from the other node. As a
result, it requires high storage and transmission resources and
thus is not practical in DTNs. Other previous routing algorithms
in DTNs can be classified into two categories: probabilistic
routing [6]-[9] and social-network-based routing [10]-[14].

Probabilistic routing algorithms predict a node’s probability
of delivering the packet to its destination (i.e., delivery ability)
based on its past encountering records. Packets are always for-
warded to nodes with higher delivery ability. Though these algo-
rithms avoid the flooding in epidemic routing, they suffer from
two problems. First, the delivery ability is decided by either di-
rect encounter probability or 2-hop accumulated relay proba-
bility. Such limited local view in forwarder selection may miss
better forwarding opportunities with longer paths. We elabo-
rate the reasons for this drawback in Section III-A. Second, two
encountered nodes need to exchange their delivery abilities to
the destination nodes of all packets they carry to decide which
packets should be forwarded, which is a nontrivial burden for
resource-limited DTNS.

Since mobile device carriers (i.e., human beings) usu-
ally are connected with certain social relationships, social
network-based routing algorithms have been proposed re-
cently. They group nodes with frequent contact into com-
munities [10], [11], [13] and/or choose a node with high
centrality (i.e., more contacts) or similarity (interest/con-
text/common friends) with the destination node as the packet
forwarder [12]-[14]. Essentially, these methods are similar to
the probabilistic routing except that they further consider social
factors in delivery ability calculation. Two nodes still exchange
information on delivery abilities for different destinations.
Therefore, they suffer from the same problems: limited view
and high communication overhead on information exchange.

In order to overcome these shortcomings, we propose
SMART, which utilizes a distributed social map for lightweight
routing in delay-tolerant networks. In SMART, each node
builds a social map to record its surrounding social network in
DTNs. The social map is constructed by learning each encoun-
tered node’s most frequently met nodes (i.e., stable friends).
Each link in the social map is associated with a weight based
on the encountering frequency and social closeness of the two
connected nodes. The weight is used to deduce the delivery
abilities among nodes. Fig. 1 shows an example of the social
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Fig. 1. Social map of Bob.

map of Bob. The social map is not limited to 1 or 2 hops and
reflects possible long relay paths to provide better forwarder
selection. When two nodes meet, they only need to exchange
the information of their most frequently encountered nodes
for social map update. For example, when Bob meets Allen,
without querying Allen’s probabilities to meet other nodes, he
would know that packets for Emma, Frank, or Glair should
be forwarded to Allen. Also, the stability of most frequently
encountered nodes means no frequent social map update is
needed, which reduces resource consumption.

The design of SMART is inspired by a social network prop-
erty that the people a person frequently meets are usually stable,
which makes them play an important role in forwarding packets
for the person [15]. For example, we often meet the same col-
leagues, friends, and family members daily. Our analysis on
trace data from the MIT Reality project [16] and the Haggle
project [17] also confirms this property. Consequently, SMART
applies to scenarios in which node carriers belong to certain so-
cial structures and present the above social properties. SMART
does not require social maps to be identical in all nodes or to
be complete (i.e,, including all nodes), which makes the social
map construction simple and suitable for distributed DTNs. In
summary, our contributions are threefold.

 First, we propose a lightweight distributed social map con-
struction algorithm to enable each node to discover its sur-
rounding social network. To the best of our knowledge, this
work is the first to build social maps on individual nodes
for DTN routing.

* Second, we propose a new DTN routing algorithm based
on the social maps with low cost and high efficiency.

* Third, extensive trace-driven experiments and tests on the
GENI ORBIT testbed show the efficiency and effective-
ness of SMART in comparison to previous algorithms.

The remainder of this paper is arranged as follows. Related
work is introduced in Section II. Section III presents the detailed
design of SMART. In Sections IV and V, the performance of
SMART is evaluated through trace-driven experiments and real
testbed tests. Section VI concludes this paper with remarks on
future work.

II. RELATED WORK

In epidemic routing [5], each of the two encountering nodes
replicates all packets it has not seen from the other node. Due to
its flooding nature, this method generates a high efficiency but
also a high communication and storage resource consumption.
Therefore, it is not suitable for resource-limited DTN .

Probabilistic routing algorithms [6]-[9] exploit nodes’
past encounter records to predict future delivery ability. In
PROPHET [6], the delivery ability considers both direct en-
countering probability and indirect relay through another node
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and is updated upon each encounter and aged over time. A
packet is always forwarded to the node with higher delivery
ability. MaxProp [7], RAPID [8], and MaxContribution [9]
are similar to PROPHET, but further specify the forwarding or
storage priorities of different packets based on their delivery
abilities. RAPID and MaxContribution propose different pri-
ority calculation methods for different goals such as minimal
delay and maximal hit rate.

Social-network-based DTN routing algorithms [10]-[14]
exploit social network properties in DTNs to make forwarding
decisions. MOPS [10] builds a publish—subscribe system that
groups frequently encountered nodes to facilitate intracom-
munity communication and selects nodes that visit foreign
communities frequently for intercommunity communication.
BUBBLE [11] assigns each node two ranks: global and local.
The global rank guides a packet to the community that contains
its destination, and the local rank helps to route the packet
to its destination within the community. The work in [12]
ranks the suitability of a node for carrying a packet based on
its centrality and similarity to the packet’s destination node.
The publish—subscribe system in [13] forwards messages to
nodes with high utility value, which is calculated based on a
node’s frequency of encountering subscribers to the interest
category of the message and its connectivity with other nodes.
HiBop [14] labels each node with various contexts such as
personal information, residence, work, and so on. It decides
packet forwarder according to nodes’ historical encounter
records with the context of the packet destinations.

We see that all the above methods only differ on ways to
deduce a node’s delivery ability to a destination. Therefore,
they both suffer the issue of local view and high cost. SMART
provides each node a broader view of surrounding nodes’ fre-
quently met nodes, hence helping to find a more suitable packet
forwarder. It also saves the resource consumption by reducing
the amount of exchanged information upon node encountering
and the frequency of social map update.

III. ALGORITHM DESIGN

A. Benefits of Social Map on Routing Efficiency

We first discuss the benefits of a social map from the per-
spective of routing efficiency with a simple scenario, shown in
Fig. 2(a). We denote the meeting probability and delivery ability
between two nodes as P;; and Dy; (i,5 € {a,b,e,de, f1),
respectively. The former is the probability of delivering a mes-
sage to another node directly upon their encountering. The latter
refers to the probability of delivering a message to another node
through either direct forwarding or indirect relay. We assume d
is the destination node.

1) Drawback of Previous Methods: In routing algorithms
that use delivery ability, when a meets b, it updates its de-
livery ability to d (D,q) by considering the relay through b. In
PROPHET [6], Da,d = Dad + (1 — Dad) * Pa,b k Pbd * ﬂ, in
which @ € [0, 1] is a scaling constant. Such updates only con-
sider 2-hop relay delivery ability (i.e., « — b — d), which has
limited view on forwarder selection and may miss a forwarder
on a faster but longer path.

One may claim that using transitive probability calcu-
lation can provide a much wider view. That is, using
b’s delivery ability to d (Dpq) to update D.g: Dey =
Dyoa+ (1= Dya)* Py« Dy 5. Since Dy, is already calculated
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(b)

Fig.2. Network scenario to show the benefits of social map. (a) Small network.
(b) Example on route selection.

TABLE I
CHARACTERISTICS OF MOBILITY TRACES

MIT Reality Haggle
# Nodes 94 98
Location Campus Conference
Duration 30 days 4 days
# Encountering 137936 74224
# Encountering per day 4597 18556

based on all routes from b to d (e.g., b — ¢ — d), the updated
D, canreflect routes more than 2 hops (e.g.,a — b — ¢ — d).
However, this may lead to delivery ability calculated for a
routing path with loops (e.g., ¢ — b — a — e — ¢ — d). We
see from the equation that 1,4 is updated by Dpy. However,
similarly, D4 may be updated by D, previously, which means
Dyg has already considered relaying through a. Therefore, by
updating with Dy, D,y integrates the relay though itself. In
other words, Dy and D,; may boost each other repeatedly,
leading to inaccurate delivery ability.

We confirm this problem with real traces from the MIT Re-
ality project [16] and the Haggle project [17]. The former was
obtained from students and staffs on the MIT campus, while
the latter was collected from 98 scholars attending the IEEE
INFOCOM 2006. Both traces include encountering records
among people. Table I shows the summary of the two traces.

We set 0 to 0.5 and measured the delivery abilities of all
nodes to a randomly selected node using P,y and Dy, respec-
tively. The average delivery abilities of all nodes are 0.43 and
0.70 in the MIT Reality trace, respectively, and are 0.2 and 0.42
in the Haggle trace, respectively. We see that by replacing Pyq
with Dyy, the delivery ability is exaggerated greatly, thereby
it cannot provide accurate forwarder selection guidance. Thus,
it is not feasible to use the transitive probability to enlarge the
view during forwarder selection. We then propose a social map
for this purpose with a controllable cost.

2) Benefits of Social Map: The social map on a node provides
a much broader view naturally. A node can discover routes to
the destination with any lengths, thus providing more accurate
forwarder selection. Fig. 2(b) gives a simple example, in which
the number on each link represents the meeting probability be-
tween the two connected nodes. Suppose each node has learned
their meeting probabilities. Node & needs to select a node from
a and e as the next hop for a packet toward node d. Without
a social map, PROPHET cannot consider relay routes that are
more than 2 hops. Then, since D4 is 0.3+ 0.6%0.2 = 0.42 and
D.;1s0.34 0.6 % 0.4 = 0.54, node ¢ is a better forwarder than
node a. With a social map, we can consider longer routes (i.e.,
a—b— ¢— d)for D,q4:0.340.6x0.240.6%0.8%0.7 = 0.756,

which is larger than D.4. Then, node % can select the correct for-
warder (i.e., a). There are already several ways to compute the
weight between two nodes in a graph when the weight of each
edge is known [18]-[20]. These methods require the weight
of every edge in the network and much calculation for each
source—destination pair, which cannot be satisfied in DTN, i.e.,
a node cannot know all link weights and the routing process
needs to calculate the weights between many pairs of nodes.
Therefore, we adopt a different way to calculate the delivery
ability between two nodes on the social map, as explained in
Section III-C.1.

The social map provides benefits on routing, which are ac-
tually resulted from the cost of maintaining more information
(i.e., top L friends) on each node. The social map only contains
a node’s major relationship, which is stable and requires less
frequent updates. Therefore, it actually provides an acceptable
balance on cost and routing performance.

B. Social Map Construction

Ideally, the social map should include all nodes in the system.
However, this would consume extensive resources for informa-
tion exchange and storage. Also, the social map structure should
be stable to reduce the necessity of timely update, which is hard
to realize in DTNs. Moreover, the social link weight should
be able to reflect the delivery possibility between connected
nodes for efficient routing. These problems pose two challenges:
1) how to build stable social maps with a low maintenance cost;
2) how to define the link weight that can accurately reflect de-
livery ability. We introduce our solutions to these challenges in
the following.

1) Lightweight Social Map Construction: In a social net-
work, a person usually meets his/her major social relations
frequently, who play a more important role in his message
forwarding [15]. For example, we meet the same colleagues,
friends, and family members daily. Inspired by this, we only
keep the nodes a node has met and their top L most frequently
encountered nodes (called fop L friends) in the node’s social
map. L. can be a fixed value or the number of encountered
nodes whose meeting frequencies with the node are higher
than a predefined threshold. Due to the stability of a node’s top
L friends, the social map requires low cost for the structure
maintenance and update. Below, we first show the stability of
top L friends and then introduce the social map construction
process, the coverage of the resulted social map, the ways to
determine the value of L, and the resulted cost saving.

a) Stability of Top L Friends: In order to verify the sta-
bility of a node’s top L friends and the frequencies of meeting
them, we analyzed the MIT Reality project [16] trace and the
Haggle project [17] trace. We see from the summary in Table I
that nodes move actively in the two traces.

We set 10 observation time points evenly in the two traces.
At each observation point, we generated the top /. friend lists
of each node and calculated the ratio of the same top L friends
as |F; N Fi41]/|Fi|, in which F; and F;y; denote the set of
top L friends at observation point 7 and ¢ + 1, respectively. In
order to get F;, SMART counts the encounters from the start
time to observation point ¢. We measured the ratio when L equal
to 2, 4, 6, and 8. The average ratios of all nodes are shown in
Fig. 3(a). We can see that after the initial two observation points,
the average ratio remains very high (around 90%). Note that
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Fig. 3. Evolution on the change of friend list and meeting frequency. (a) Evo-
lution of top L friends. (b) Evolution of the change of meeting frequency with
top L (4) friends.

the length between two observation points is quite long in the
experiment. This result confirms that a node’s most frequently
met nodes are very stable.

We further measured the variance of each node’s meeting fre-
quencies with its top L friends over time. We first ran the trace
and selected the top L most frequently met nodes as the top L
friends in this measurement. The frequency change of a node
to its friend is measured by | f;+1 — fi|/fi, in which f;y; and
fi denote the meeting frequency with the friend at observation
point ¢ and ¢ 4 1, respectively. Fig. 3(b) shows the average of
all nodes’ frequency changes when L equals 4. We see that in
both traces, the frequency change is large only at the beginning
and decreases to less than 20% after the first two observation
points and finally reaches about 10%. This result verifies that a
node’s meeting frequencies with its top L friends are also rela-
tively stable.

Though the above results are obtained from only two traces
with around 100 nodes, they can represent human-based DTNs
to a certain extent. First, the two traces represent two typical
human-based DTN scenarios (campus and conference site).
Second, such results match our daily experiences that we often
meet the same group of people regularly, e.g., colleagues,
family members, and friends.

b) Social Map Construction Process: We first introduce
a concept of friendship rank. We divide high meeting frequen-
cies in the system to a number of ranges and assign a rank to
each top I friend based on meeting frequencies. Each node
then matches its meeting frequencies with other nodes to these
ranges to determine its friendship ranks with other nodes. The
ranges can be determined using both centralized and distributed
methods. In the centralized method, the system administrator
predetermines the ranges based on the application scenario. To
obtain the meeting frequencies among nodes in the system, a
collector can be placed in a popular place to collect the meeting
frequencies from nodes. In the distributed method, nodes ex-
change their meeting frequencies in a gossip manner. Then,
when the designated node has collected the meeting frequencies
of most nodes in the system, it decides the meeting frequency
ranges and informs all other nodes through broadcasting. There-
fore, this method has a high overhead. The system owner can
select a suitable method based on the application requirement.
As observed from Fig. 3(b), a node’s meeting frequencies with
its top L friends are relatively stable. Therefore, the ranks of
a node’s top L friends are relatively stable. The reason we use
the rank instead of meeting frequency is that it can reduce the
cost in social map updates caused by the fluctuation of meeting
frequencies.

IEEE/ACM TRANSACTIONS ON NETWORKING
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Fig. 4. Social map update process. (a) Initial social map of node a. (b) After
node ¢ meets b and k.

TABLE II
SocCIAL TABLE

Node | Top L friends | Friendship ranks
a f,e,d, g 1,2,3,4
g d,a,c,h 3,4.,4,5
b h,ca,j 2,2,3,5
k i, 0,m, n 1,1,3,4

We define each node’s top L friends and their friendship ranks
as its friend map. When two nodes meet, they exchange and
update their friend maps. Each node maintains a social table
that records friend maps of all nodes it has met, as shown in
Table II. A node’s social map is constructed by connecting all
nodes in its social table, and each node only appears once in the
map. A directional link from node ¢ to node j means node j is
in the top L friend list of node 7. Fig. 4(a) shows an example of
the social map of node ¢ with I. = 4.

The social map on a node, say node «, is updated after each
encountering with another node rather than at a specific time
spot. Specifically, when node a meets node b and receives its
friend map, if b is already in a’s social map, node « updates
b’s L connected nodes in the social map accordingly. Other-
wise, node ¢ integrates b’s friend map into its social map. Fig. 4
demonstrates the update process of node a’s social map after it
meets node b and £. When a meets b, it learns b’s top L friends
(¢, h, i, and 7). As h and ¢ are already in the map, node o only
adds b, ¢, and 7 to its social map. There is no partition in the
network. Later, node a meets node &, whose friend map con-
tains /, m, n, and o. Since none of them are in «’s social map, a
partition is created after they are added into a’s social map, as
shown in Fig. 4(b). In this case, we still regard it as part of the
social map because: 1) the partition still shows some informa-
tion of the network (i.e., 0, I, m, n are good relays for node k);
and 2) nodes that can connect partitions may be encountered
and inserted into the social map later. Note that though the so-
cial map on each node is updated upon each encountering, this
process does not consume significant resources since a node’s
top L friends usually are stable, as shown in Fig. 3(a).

The above algorithm finally generates social maps that are
not identical in all nodes and may not include all nodes. This
is similar to our daily lives that each person has his/her own
knowledge of the social structure. We will see that the routing
efficiency can still be ensured later in Section IV.

¢) Social map coverage: We define the coverage of the
social map as the number of nodes in the map divided by the
total number of nodes in the system. We then measured the av-
erage coverage of the social map on each node at 10 evenly dis-
tributed observation points with different L values. The results
with the Haggle trace and the MIT Reality trace are shown in
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Fig. 5. Social map coverage with different L’s. (a) Haggle trace. (b) MIT re-
ality trace.

Fig. 5(a) and (b), respectively. We see that even when L = 2,
after a short period of time, the social map on each node can
cover over 80% of nodes in the Haggle trace and 60% of nodes
in the MIT trace. When . = 8, the social map coverage in
the two traces increase to 90% and 80%, respectively. Such re-
sults demonstrate the feasibility of using social map to provide
routing guidance.

d) Determining the Value of L: Clearly, the value of L
affects the social map on each node. When L increases, the
social map contains more information and can provide better
routing guidance. However, larger L also consumes more com-
munication and storage resources. Therefore, we need to bal-
ance the value of L and the cost. As aforementioned, the goal of
the social map is to reflect stable social relationships. Then, we
can determine L based on the number of stable friends of each
node. The stable friend list of a node contains the frequently
met nodes whose meeting frequencies with the node are larger
than half of that of the most frequently met node. For example,
suppose node j is the most frequently met node of node ¢, and
the meeting frequency between them is f;;. Then, nodes whose
meeting frequencies with node ¢ are larger than f;; /2 are stable
friends of node . The determination of L can be realized in both
a centralized and distributed manner.

In the centralized method, we first let the node run for a period
of time so that all nodes can collect enough amount of encoun-
tering records. Then, we periodically calculate L as the average
number of stable friends each node has. The updated L is sent
to each node whenever its connection to the central server is es-
tablished. In the distributed method, considering different nodes
have different social relationships and, consequently, different
numbers of stable friends, we do not require the L to be identical
among all nodes. Each node directly uses the size of its stable
friend list as L.

Both the two methods have advantages and disadvantages.
In the centralized method, with the determined L., mobile nodes
can save the cost on exchanging L value. However, it suffers
from the problem that it cannot adjust L timely and needs
a central/super node to collect necessary information. In the
distributed method, the social maps get updated timely when
the stable friends of a node change, providing more accurate
routing information for packets. However, the drawback of the
distributed method is that it is hard to control the size of social
map since individual nodes decide their own Ls.

Some may question that the social map constructed with lim-
ited L may fail to reflect some forwarding opportunities, espe-
cially for active nodes, since each node can only have most L
friends in the social map. We argue that it does not sacrifice the
routing performance because: 1) the top L friends reflect the
major social relationships of each node, which usually take the

average value of L on each node is & no matter if different
nodes have the same L or different Ls. Then, on average, two
encountered nodes only exchange their top K friends and as-
sociated friendship ranks for social map construction. Suppose
the size of the information of one friend is T bytes, and the
total amount of data exchanged is about 27 K bytes. In previous
methods, two encountered nodes exchange their delivery abili-
ties to the destinations of all packets to make a forwarding deci-
sion. The size of each delivery ability can be regarded as 7" bytes
too since it also represents the information of a node. We assume
packets on each node have N different destinations in average.
Then, the total amount of data exchange is about 27'N bytes.
As aresult, the total cost saving is 2T(N — K )M, where M is
the total number of encounters. Recall that [V is bounded by the
total number of nodes in the system. Also, the higher the packet
generation rate is, the larger N tends to be (suppose packet des-
tinations are evenly distributed). On the other hand, K usually
is small (K < 10). Therefore, the social map can reduce the
information exchange cost in most cases (i.e., when the packet
generation rate ensures N > K'). Furthermore, the cost saving
is more valuable when the packet generation rate is high because
more packets require more storage/forwarding resources in the
resource-limited DTNs.

2) Social Link Weight Calculation: We assign a weight to the
link connecting two nodes, say nodes ¢ and 7, in a social map to
represent how fast a packet can be forwarded between them. We
consider two factors in this process: the meeting frequency and
the social closeness between the two nodes, which are reflected
by shared top L friends [12], respectively. We consider social
closeness for weight calculation because people with close re-
lationship are likely to share the same group of friends [12].
A shared top I. friend of two nodes is a good relay to forward
messages between them since both of them meet the friend fre-
quently. Then, the resultant link weight can more accurately re-
flect the message delivery ability between the two connected
nodes.

We call the link path directly connecting two nodes as a 1-hop
route and the link path connecting two nodes through one shared
top L friend as a 2-hop route. The weight of an {-hop (I = 1 or
2) route between nodes @ and b, denoted by w,;,, is defined as 1
over the sum of the friendship rank of each link in the route

1
-1

2Tk
k=0

)

Wah =

where 7 denotes the rank of the kth link. For two nodes, the
weight of 1-hop route reflects their meeting frequency while the
2-hop routes show the social closeness.
Then, the weight for a link in the social map connecting nodes
a and b, denoted W,;, integrates all 1-hop and 2-hop routes
between them
1

m—1

> Wap,

s=0

W = 2
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Fig. 6. Part of node h’s social map.

where m is the total number of routes and w,;_ is the weight
of the sth route. With this design, the smaller W, the higher
forwarding probability the two nodes have.

Fig. 6 shows an example of part of the social map created
on node £, in which I equals 4. We briefly introduce how to
calculate the link weight W, and W, ;. There are three routes
between a and b: one 1-hop route (b — @) and two 2-hop routes
through shared top L friend d and ¢ (¢ — ¢ — b and a — d — b).
Based on (1), these routes’ weights are 1/3, 1/3, 1/6, respec-
tively. Based on (2), Wy, = 1/((1/3) + (1/3) + (1/6)) = 1.2.
As for e and f, they have only one route: ¢ — f. Routee — g — f
is not a 2-hop route since ¢ is not a shared top L friend, as it only
exists in the top L friend list of e. Therefore, W.; = 1/(1/2) =
2.

3) Understanding the Social Link Weight: The friendship
rank can represent the expected intermeeting time between the
two connected nodes, i.e., the expected delay for a packet to be
relayed between the two nodes, as explained in the definition of
friendship rank. As a result, the sum of each link’s friendship
rank in a route [i.e., Z;;:lo r, in (1)] represents the expected
delay of replaying a packet through the route. Then, the weight
of a route, calculated in (1), actually represents the “normalized
throughput” of the route. Note in the above discussion that we
say “normalized throughput” because we assume each node’s
memory can only hold one packet. This can be adapted to prac-
tical scenarios by deciding the average amount of memory on
each node.

The overall “normalized throughput” between two nodes, say
a and b, is the sum of each route’s “normalized throughput”:
S " wap, . Then, the weight of the social link connecting two
nodes, which is calculated as 1 over the “overall throughput”
[(2)], represents the expected delay to relay a packet from one
node to the other node through the possible routes considered in
our design.

C. Social-Map-Based Routing Algorithm

In this section, we first introduce how we utilize the social
link weight and then present the detailed routing process.

1) Deciding Delivery Ability: In DTN routing, a packet is
always forwarded to the candidate forwarder that has the highest
ability to deliver it to its destination. Then, how do we decide
the delivery ability with the social link weight?

For two nodes in the social map, there are multiple paths con-
necting them. We define the weight of a path on the social map
as the sum of the weights of its social links. Since the weight
of a social link denotes the expected delay to forward a packet
between the two connected nodes, the weight of a path repre-
sents the expected delay to pass a packet through the path. Then,
the weight of the minimal weight path from the holder to the
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destination of a packet represents the minimal expected time
needed to deliver the packet. Since delay is the crucial factor
in DTN routing, we take the weight of the minimal weight path
to represent the delivery ability between the two nodes. This
also matches the general DTN routing process, which forwards
packets hop by hop and aims to maximally reduce the expected
delay in each forwarding hop.

2) Routing Process: With above analysis, the guideline of
our routing algorithm is to always forward a packet to a node
whose minimal-weight path to the destination node has smaller
weight, i.e., gradually and maximally reducing the minimal ex-
pected delay. In detail, suppose node a needs to decide whether
node b is a better forwarder for one of its packets. Node « first
checks whether both @ and b are disconnected to the destination
node in the social map. If yes, we use a backup metric to decide
the forwarder, as introduced later. Otherwise, node ¢ uses the
Dijkstra [21] algorithm to find the minimal-weight paths from
the destination node to @ and b. Note if ¢ or b is disconnected
to the destination node, the weight of its minimal-weight path
to the destination node is the maximal value. If node #’s min-
imal-weight path has smaller weight than that of node a, node a
would forward the packet to node b.

Moreover, there are some issues that need to be addressed,
such as incomplete social map, loop prevention, and packet re-
placement strategy. We first discuss approaches to solve these
problems and then summarize the routing algorithm.

a) Incomplete Social Map: As stated previously, the social
map on each node may only cover part of the entire network.
Though we find in Section I1I-B.1.c that the social map has high
coverage, it is possible that when a node meets another node,
the destination node of a packet is disconnected from the two
nodes in the social map (i.e., no path can be found for both
nodes). In this case, we rank a node’s suitability of forwarding a
packet by its active degree, which is measured by the number of
links associated with the node in the social map. The more links
connecting to a node, the more active it is. Then, the packet is
forwarded to the node with higher active degree. This is inspired
by the social network property that an active person can meet
more people and thus has a higher probability of meeting the
destination [15].

b) Loop Prevention: Since each node maintains its social
map independently, forwarding loops may happen in the system.
For example, two nodes may believe that the other side is a
better forwarder for a packet and forward the packet back and
forth repeatedly. To prevent such a loop, we require each packet
to record the IDs of all nodes that it has been forwarded to. Then,
the loop can be avoided by simply forbidding a node to forward
a packet to a node that it has visited before.

¢) Packet Replacement: 1t is possible that a node’s storage
is full when a packet arrives. In this case, SMART simply drops
the packet that has lived for the longest period of time.

We then summarize the routing algorithm in SMART as
below, with its pseudocode shown in Algorithm 1.

1) When two nodes meet with each other, they first exchange
their friend maps, which are then used to update their so-
cial maps (lines 2—4). After this, each node processes its
packets sequentially (line 7).

2) For the current packet, the node first checks if it has been
forwarded to the other node before. If not, it proceeds to
step 3. Otherwise, it goes to step 5 (line 9).
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Algorithm 1: Pseudocode of the SMART routing algorithm
executed by ¢ upon meeting node b.

1: procedure EXCHANGETOPFRIENDSWITH(h)
2:  n.sendTopFriendsTo(b)
3:  n.recciveTopFriendsFrom(b)
4:  n.pdateSocialMap()
5: end procedure
6: procedure SELECTFORWARDER(D)
7: for each packet p in node a do
8: bForward « false
9: if p.hasBeenOn(b) = false then
10: if a.connect(p.des) || b.connect(p.des) then
11: if b.getW(p.des) < a.getW(p.des) then
12: bForward « true
13: end if
14: else
15: if b.getDegree( ) > a.getDegree( ) then
16: bForward «— true
17: end if
18: end if
19: if bForward = true then
20: a.forwardPacketTo(p, b)
21: end if
22: end if
23:  end for

24: end procedure

25: procedure RECEIVEPACKETSFROM (p, b)
26:  while Memory.Full() = true do

27: dropOldestPacket()

28: end while

29:  if p.NotDropped() = true then

30: p.InsertID(a)
31: StorePacket(p)
32: end if

33: end procedure

3) If the destination node connects to at least one of the two
nodes in the social map, the node checks whether the other
node’s minimal-weight path to the destination node has
lower weight with the Dijkstra algorithm. Otherwise, the
node checks whether the other node has higher active de-
gree. The processing proceeds to step 4 if yes to either of
above check, and step 5 otherwise (lines 10-21).

4) The node forwards the packet to the other node. When the
other node receives the packet, if the storage is full, the
oldest packet is dropped until the memory is not full. Then,
if the new packet is not dropped, the node inserts its ID into
the packet and stores the packet (lines 25-33).

5) The process of the current packet stops. If there are unpro-
cessed packets, the checking process repeats from step 2
for the next packet (line 7).

In summary, two encountering nodes in SMART only
exchange a small amount of information for social map con-
struction and forwarder selection. Also, the delivery ability
in SMART naturally considers the multihop relay through
the top L friends. This global view-based forwarder selection
can enable more efficient routing. SMART can also support
different routing metrics such as minimal average/maximal

Existing link
Added link

""" 09/ \06

0.2 11

O—0--0—0 O—0 o0
(@) (b)

Fig. 7. Improvement on social map when L increases. (a) Connecting discon-
nected nodes. (b) Improve existing path (e to ¢).

delay and minimal missed deadlines by setting different packet
forwarding priorities when two nodes meet [8]. SMART uses
first-come—first-out forwarding sequence in this paper.

3) Effect of Top L Friends: Recall that SMART only allows
each node to keep a node’s top L friends in the social map.
We now analyze how L affects the routing efficiency and fur-
ther check the correctness of our design (i.e., only store top L
friends) based on the routing procedure.

As aforementioned, the key step in the routing procedure is
to find the minimal weight path from the candidate forwarders
to the destination in the social map. The precision of discovered
minimal weight path decides the effectiveness of the forwarder
selection and consequently, the routing efficiency. We discuss
the scenario when we gradually increase L from 1. When L
increases, each node can initiate more links in the social map.
The added links can help find a better minimal weight path (i.e.,
with a smaller weight) by two ways.

+ [t connects two previously disconnected nodes and enables

a new minimal weight path, as shown in Fig. 7(a).
« It improves an existing minimal weight path by lowering
its weight, as shown in Fig. 7(b).
Clearly, when L is small, the two cases happen easily if L in-
creases, thereby improving the accuracy of discovered minimal
weight path. However, when L is large, we argue that both cases
are not easy to happen.

First, when L is large enough, the graph is almost connected.
The first case then can hardly happen. Second, for the second
case, by examining Fig. 7(b), we find that it happens when the
weight of the added link (1.1) is smaller than the sum of the
weights of the two previous links connecting the two nodes
(0.9 + 0.6). Then, since the links are added incrementally, i.e.,
the newly added link for a node is its (L + 1)th friend when
increases to L.+ 1; when L is large, the weights of the new links
are large, thereby it can hardly satisfy the requirement for the
second case.

In conclusion, when L increases from a small value, the
two cases happen easily and improve the routing efficiency.
However, when L is larger enough, increasing it can hardly
trigger the two cases to improve the routing efficiency. Such a
result demonstrates the correctness of only storing top L friends
(with a proper L). Such a finding matches our discussion in
Section III-B.1 that people forward messages mainly through
major social relationships.

4) Advanced Extension of Packet Routing: We further
present two extensions of SMART that improve its efficiency.

a) Alleviating Load on Overloaded Nodes: In the routing
protocol, active nodes that are a top L friend of more nodes
have more chances to be selected as the packet forwarder, and
hence can easily become overloaded. To avoid overloading such
nodes, we introduce an overload bit in the beacon messages.
When a node is about to be overloaded, it sets the overload bit
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TABLE III
BFT IN NODE a

Destination | Better forwarder (path weight)
b k(1.8),e(1.7),h(0.4),0(0.9)
c b(2.2),¢(1.2),4(1.4), f(0.8)
f k(0.8),m(0.9),d(1.3)

in its beacon messages. Then, its neighbors will not select it as
a packet forwarder candidate. The overload bit is reset when the
load on the node recovers to a normal level.

b) Reducing Computation Cost: Recall that when ¢ needs
to decide whether the newly met node b is a better forwarder for
one of its packet, the Dijkstra algorithm regards the destination
as the root node and iteratively selects the node that has the
minimal path weight to the destination. The selection process
ends when either @ or b is picked up, and the first picked node
in ¢ and b is a better carrier for the packet. The complexity of
this process is O(n?) [22], where n is the number of nodes in
the social map. This process is executed for the destination of
each packet in node «. Therefore, the computation load is very
high without further optimization.

In order to reduce the computation load, we propose to proac-
tively cache better forwarders for each destination node. Specif-
ically, for each destination, node a runs the Dijkstra algorithm
until a is picked or all nodes are picked. Then, the nodes that
are selected prior to ¢ and their path weights to the destination
are stored in a Better Forwarder Table (BFT). Thus, the BFT
records the nodes that have higher delivery ability to the desti-
nation node than node a. Table I1I shows an example of a BFT in
node a. Later on, when node a encounters these recorded nodes,
it forwards the packets for corresponding destination to them di-
rectly without running the Dijkstra algorithm. If multiple nodes
in BFT for the same destination are met at the same time, the
one with the minimal path weight is selected as the forwarder.

The BFT should be updated timely to reflect the changes on
the social map due to meeting frequency change in DTNS. It is
updated when either the destination of a packet is absent from
the table or the number of changed social links constitutes more
than T'H % of all social links in the social map. Note each node
records the number of added or removed social links in its so-
cial map to track the second case. When the former happens, the
Dijkstra algorithm is launched to make the forwarding decision
for the destination and meanwhile update the corresponded row
in the BFT. When the latter happens, all entries in the BFT be-
come invalid and are removed, after which the BFT is updated
following the first scenario.

We then discuss the maintenance and storage cost of the BFT.
First, the BFT table updates frequently at the beginning when
the social map has less information. However, as mentioned in
Section I1I-B.1, a node’s most frequently met nodes are very
stable. Thus, after the initial stage, the social map on a node
would become stable. Then, we can set a relatively large T H..,
which would lead to a low update overhead for BFT. The BFT
in a node only stores the IDs of better forwarders and their asso-
ciated path weights for each destination. Since a pair of ID and
weight only occupies several bytes, the size of a BFT would not
be a burden to modern mobile devices which usually have giga-
byte-level memory (i.e., 8 GB).
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Algorithm 2: Pseudocode of the SMART BFT-based routing
algorithm executed by a upon meeting node b.

1: procedure SELECTFORWARDER(b)

2 for each packet p in node ¢ do

3: d < destination of packet p

4 if both ¢ and b are disconnected from d then

5 Forwarder(p) < the node in {a, b} with higher
active degree

6 else
7: if there is an entry for d in BFT then
8: if b is in the entry then
9: Forwarder(p) « b
10: end if
11: else
12: LaunchDijkstraAlgFor(p)
13: end if
14: end if
15:  end for

16: end procedure

Algorithm 2 shows the process for node @ to decide the for-
warder for its packets when it meets node b. For each of its
packets, node « first checks if both @ and b are disconnected to
the packet’s destination in the social map. If so, the forwarder
should be the one with the higher active degree. Otherwise,
node @ checks whether the entry for the destination node ex-
ists in its BFT and node b exists in the entry. If so, it forwards
the packet to node b directly. If not, node @ uses the Dijkstra
algorithm to decide the forwarder as previously described in
Section I1I-C.2 and meanwhile updates its BFT.

D. Discussion on Scalability and Security

We further briefly discuss the scalability and security issues
of SMART.

1) Scalability of SMART: Although each node in SMART
needs to store many friend maps, SMART is scalable on storage
in a large-scale network with 10 000 nodes due to two reasons.
First, one friend map only contains L IDs and L friendship
ranks, which occupy about 8 L bytes. Then, 10 000 friend maps
require about 80L kB memory, which is not a big burden for
most mobile devices nowadays. Second, a node only stores the
friend maps of nodes it has met, which are very limited in a
large network since it mostly only meets nodes in the local com-
munity. Therefore, even when the network size is very large,
the storage consumption in SMART is limited. As mentioned
in Section I, SMART is designed mainly for applications in a
certain local community, which means the network size usually
is not very big. In our experiment, both traces contain less than
100 nodes. Then, if . = 8, the social map on a node needs at
most 6.4 kB. Thus, the memory can be satisfied easily in poten-
tial scenarios.

With BFT, the Dijkstra algorithm runs only when necessary.
The complexity to determine packet forwarder by checking the
better forwarder table is O(n). Recall that without BFT, the
complexity to determine packet forwarder using the Dijkstra
algorithm is O(n?). Therefore, the computation complexity
is greatly reduced with BFTs. Our experimental results in
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Section IV-D show that the BFT greatly reduces the computa-
tion cost without greatly compromising the routing efficiency.

SMART is also scalable regarding routing path lengths. Large
social networks have a 6-hop property, in which two unknown
persons can be connected by 6 hops of transits on average [23].
This implies that through top L friends, SMART may not need
a large number of hops to deliver a packet to its destination even
when the network is very large. Note that SMART is designed
for social networks in local communities where the connections
between people usually are tight. Thus, in SMART, a node needs
fewer hops to reach an unknown person. Our experimental re-
sults also show that the average number of forwarding hops for
a successfully delivered packet is about 5 in tests with both real
traces.

2) Security in SMART: In DTNs, nodes may belong to
different entities or organizations. Therefore, some nodes may
not follow the SMART routing algorithm or even behave
maliciously for individual interests. In this paper, we briefly
discuss the blackhole attack in SMART and leave other security
problems to our future work.

In a blackhole attack, malicious node @ claims that node b is
its friend and falsely reports a very high friendship rank with &
in order to attract packets destined to b and drop these packets.
We propose to use friendship verification to detect and prevent
it. Specifically, when node ¢ wants to take node b as its top L
friend, node ¢ must send the friendship rank to node b asking for
an approval. Node b then verifies the correctness of the friend-
ship rank and signs the friendship rank with its private key if it
is correct. The friendship rank can be updated and signed timely
since they meet frequently (i.e., b is a top L friend of «). Later,
when a claims b as its top L friends, other nodes can verify the
friendship rank with the public key of node b. As a result, nodes
that have forged the friendship rank can be identified, thereby
preventing the blackhole attack.

An advantage of the above method is that a node would not
collude with another node to fake the friendship ranks since
this would reduce its opportunity to receive packets destined
for it. However, a node may attract and drop packets by its real
friendship ranks. The detection of such behaviors is nontrivial
in DTNs and is out of the scope of the paper.

IV. TRACE-DRIVEN PERFORMANCE EVALUATION

We conducted event-driven experiments using real traces
from the MIT Reality project [16] and the Haggle project [17].
In this paper, we first focus on the test with fixed L to show
how different L affects the routing performance. Then, we
examine the performance of SMART under different L’s. We
also examined the performances of the method to decide L
distributively and the BFT. We compared SMART with the
following representative DTN routing algorithms.

1) PROPHET: PROPHET is a probabilistic routing al-
gorithm. It calculates delivery ability based on past
encountering records and forwards packets to nodes with
higher delivery ability to destinations.

2) SimBet: SimBet is a social network-based algorithm. It
calculates the suitability of a node for carrying a packet
by the node’s centrality value and its similarity with
the destination node (the number of shared encountered
nodes). Packets are always forwarded to nodes with better
suitability.

3) StaticWait: In StaticWait, a source node carries its packet
until meeting the packet’s destination. We use this algo-
rithm as a baseline method to show the routing efficiency
when no active forwarding strategy is adopted.

In the experiment, the first 1/3 of both traces were used as
the initialization period to collect enough encountering records.
After this, packets were generated at the rate of R,, per 300 s
and per 40 s in the MIT trace and the Haggle trace, respec-
tively. In the test, at most 10 % T; packets can be exchanged
when two nodes meet, where 7; is the length of the encoun-
tering session in seconds. The size of a packet was set to 1 kB.
The source and destination of a packet were randomly selected
from all nodes in the system. In SMART, L was set to 4 by de-
fault. In PROPHET and SimBet, the parameters used to calcu-
late the delivery ability and utility were configured the same as
in their papers. We used the same packet replacement algorithm
as in SMART for PROPHET and SimBet.

We tested the performance of SMART with different packet
rates, different memory sizes on each node, and different values
of L. In the test with different packet rates, the total number of
packets was varied from 5000 to 25000 (i.e., I?,, was varied
from 1 to 5). The memory size on each node was set to 100 kB.
In the test with different memory sizes, the memory on each
node was varied from 60 to 140 kB with an increase of 20 kB in
each step, and the packet rate (R?,,) was set to a medium value
of 3. In the test with different values of L, we varied the value
of L from 2 to 8, and set the packet rate to 3 and memory size
on a node to 100 kB.

We measured the following metrics during the test, and the
confidence interval was set to 95%.

* Hit rate: the percentage of requests that are successfully

delivered to their destinations in the experiment.

* Normalized average delay: the average delay of all
packets. We regard the delay of an unsuccessful packet
as the trace length, which is 340 k and 2560 k s for the
Haggle trace and MIT Reality trace, respectively.

* Normalized forwarding hops: the total number of packet
forwarding hops divided by the number of successfully de-
livered packets.

* Routing cost: the number of information units exchanged
between encountered nodes in the experiment.

A. Performance With Different Packet Generating Rates

1) Hit Rate: Figs. 8(a) and 9(a) demonstrate the hit rates
of the four methods with the Haggle trace and the MIT Re-
ality trace, respectively. From the two figures, we see that the
hit rates of the four methods follow SMART > SimBet >
PROPHET > StaticWait.

StaticWait shows the lowest hit rate because packets only stat-
ically wait in their generators to reach destinations. SMART de-
duces nodes’ delivery abilities to destinations based on the rel-
atively stable social map. It can choose an optimal forwarder in
a long path to the destination with a broad view, thereby gener-
ating the highest hit rate. PROPHET and SimBet can only eval-
uate the delivery ability within 1 or 2 hops, which cannot con-
sider long routing paths, leading to a lower hit rate than SMART.

We observe that as the total number of packets increases,
the hit rates of the four methods decrease. This is because the
forwarding opportunities and memory available for packet for-
warding are limited. Then, when more packets are generated,
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more packets are dropped by nodes, leading to a decreased hit
rate. It is interesting to see that the hit rates of the three methods
with active forwarding decrease more quickly than that of Stat-
icWait. This is because we configure fixed memory in the test.
Then, when the number of packets increases, more packets are
converged to certain important nodes, which have fixed storage,
resulting in more dropped packets. We can adopt load balance
techniques in Section III-C.4 to alleviate this problem. In Stat-
icWait, packets are evenly distributed among nodes, thereby
better utilizing the memory on all nodes and leading to fewer
dropped packets.

With the above results, we conclude that SMART can achieve
efficient routing in the DTN environment with the proposed so-
cial map. These results also justify the correctness of the de-
sign of the link weight calculation method that considers both
meeting frequency and social closeness.

2) Normalized Average Delay: Figs. 8(b) and 9(b) show the
normalized average delays of the four methods in the tests with
the Haggle trace and the MIT Reality trace, respectively. From
the two figures, we find that the normalized average delays of
the four methods follow SMART < SimBet < PROPHET <
StaticWait. SMART has the lowest normalized average delay
because it considers multihop forwarding opportunities when
making forwarding decisions with a broader view from the so-
cial map, which enables a packet to travel through a fast route to
its destination. Both PROPHET and SimBet fail to consider long
routing paths that may generate shorter delay. Therefore, they
produce higher average delay than SMART. StaticWait has the
highest average delay since packets only wait in their initiators
for destinations without being forwarded. Such results further
demonstrate the high efficiency of SMART in terms of routing
delay.

We also find that the normalized average delays of the four
methods increase as the packet generating rate increases. This
is because we regard the delay of dropped packets as the length
of the test trace, which is much longer than the delay of a suc-
cessful packet. Then, when the packet generating rate increases,
there are more dropped packets (the hit rate decreases), as shown

in Figs. 8(a) and 9(a), leading to increased normalized average
delay.

3) Normalized Forwarding Hops: Figs. 8(c) and 9(c) show
the normalized forwarding hops of the four methods with the
Haggle trace and the MIT Reality trace, respectively. We ob-
serve that StaticWait has very low forwarding hops and the other
three methods have high forwarding hops. In StaticWait, each
packet waits in its initiator for the destination. Therefore, each
successful packet is forwarded only once. The active forwarding
in SMART, SimBet, and PROPHET leads to much more for-
warding for each successful packet. We see that the normalized
forwarding of SMART is on the same level with SimBet and
PROPHET, but SMART has higher hit rate and lower average
delay. This further demonstrates that the active forwarding in
SMART is more effective.

4) Routing Cost: Figs. 8(d) and 9(d) plot the routing costs
of the four methods with the Haggle trace and the MIT Reality
trace, respectively. We see that StaticWait has no routing cost
since no information exchange is needed. SMART incurs a sig-
nificantly lower routing cost than PROPHET and SimBet. This
is because two encountered nodes only need to exchange their
friend maps with I (usually a small value) entries in SMART,
while nodes need to exchange the information regarding the
destination nodes of all packets in PROPHET and SimBet.
SimBet has a slightly higher routing cost than PROPHET since
in addition to the similarity information, a node has to send
its centrality information to the newly met node. In a nutshell,
StaticWait incurs the least total costs but has a low efficiency,
SMART consumes low total transmission and storage costs,
and PROPHET and SimBet generate very high total transmis-
sion and storage cost. This result confirms SMART’s low cost
on information exchange.

B. Performance With Different Memory Sizes on Each Node

1) Hit Rate: Figs. 10(a) and 11(a) demonstrate the hit rates
of the four methods with the Haggle trace and the MIT Reality
trace when the memory size varies, respectively. We see that
the hit rates of the four methods follow the same as in Figs. 8(a)
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and 9(a) due to the same reasons. We also find that when the
memory size on a node increases, the hit rates of all methods
also increase. This is because with larger memory size, each
node can carry and forward more packets to their destinations,
leading to a higher hit rate.

2) Normalized Average Delay. Figs. 10(b) and 11(b) show
the average delay of the four methods with the Haggle trace
and the MIT Reality trace when the memory size on each
node varies, respectively. We find that the relationship of the
four methods on average delay is the same as in Figs. 8(b)
and 9(b) for the same reasons. It is interesting to see that
when the memory size on a node increases, the normalized
average delays decreases. This is because when the memory
size increases, there are fewer dropped packets, whose delay is
very large (i.e., trace length), leading to decreased normalized
average delay.

3) Normalized Forwarding Hops. Figs. 10(c) and 11(c) show
the number of forwarding hops of the four methods with the
Haggle trace and the MIT Reality trace when the memory size
on each node varies, respectively. We find that the normalized
forwarding hops follow the same trend as in Figs. 8(c) and 9(c)
due to the same reasons.

4) Routing Cost: Figs. 10(d) and 11(d) demonstrate the
routing costs of the four methods with the Haggle trace and
the MIT Reality trace when the memory size on each node
varies, respectively. We find that the routing costs are the same
as in Figs. 8(d) and 9(d) for the same reasons. This is because
the routing cost is irrelevant to the number of packets on each
node, but is only related to the L. for SMART and the number
of nodes in the system for other three methods. Combining
all the above results, we conclude that SMART has superior
performance than other methods in DTN routing with different
memory sizes on each node.

C. Effect of the Value of L

In this section, we varied the value of L used in SMART
from 2 to 8 to evaluate its effect on the routing performance

TABLE IV
ROUTING PERFORMANCE WITH THE HAGGLE TRACE

L | Hit Rate | N. Ave. Delay (s) | N. Fwd. Hops | Routing Cost
2 | 0.541425 172,614.8 4.992 277,704

3 | 0.551023 169,006.2 4.932 416,556

4 | 0.551156 168,715.7 5.050 555,408

5 | 0.560021 165,903.7 4.945 833,112

6 0.56822 163,745.5 4.860 833,112

7 | 0.572219 162,426.5 4.825 971,964

8 | 0.576218 161,251.9 4.775 1,110,816

TABLE V
ROUTING PERFORMANCE WITH THE MIT REALITY TRACE

L | Hit Rate | N. Ave. Delay (s) | N. Fwd. Hops | Routing Cost
2 | 0.431467 1,575,819.5 4.028 546,892

3 | 0.459933 1,509,557.2 4.776 820,338

4 | 0.481467 1,459,355.8 4.858 1,093,784
5 | 0.502867 1,413,748.9 4.884 1,367,230
6 | 0.502533 1,410,643.2 5.027 1,640,676
7 | 0.515667 1,384,143.6 4.994 1,914,122
8 | 0.515933 1,385,610.1 4.955 2,187,568

and verify that large L values (i.e., greater than a threshold)
would not significantly enhance the routing performance. The
total number of packets was set to a medium value of 15 000.
The results are shown in Tables IV and V.

1) Hit Rate: We see that the hit rate of SMART increases
steadily when L increases from 2 to 8. This is because the cal-
culation of link weight depends on the number of shared top
L friends. Therefore, when I increases, the calculated weight
can reflect the delivery ability of the two connected nodes more
precisely. Consequently, a node can more correctly decide if a
newly met node is a better carrier for its packets, leading to im-
proved routing efficiency. This result confirms the feasibility of
constructing a social map by exchanging only the top I friends
in DTNs and implies that /. can be adjusted to achieve a tradeoff
between cost and routing efficiency.
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We also see that the increase of hit rate with the MIT Reality
trace is much larger than that with the Haggle trace when L in-
creases. This is because the two traces were obtained in different
environments. The Haggle trace was conducted in a crowded
conference scenario, in which each node can meet many nodes
frequently; thus, a small L can still approximately represent
the social structure and will not decrease the hit rate signifi-
cantly. However, the MIT Reality trace was obtained in a sparse
campus environment. In this case, a small L. would lose some
important friends, thereby providing fewer forwarding opportu-
nities and leading to a low hit rate.

2) Normalized Average Delay: We find that the normalized
average delay of SMART decreases when L increases at the
beginning and remains at the same level when L is larger
than a medium value (i.e., 5). When the L increases from a
small value, the social map constructed on each node becomes
more complete, resulting in better forwarder selection and
decreased average delay. The increased hit rate also leads
to fewer dropped packets, which have high delay (i.e., trace
length). Consequently, the normalized average delay decreases.
After L reaches the medium value, which enables social maps
to show almost all most frequently met nodes, the enhancement
in the routing efficiency is not significant if I further increases,
as shown in the first column of the two tables. Therefore, the
normalized average delays remain on the same level.

3) Normalized Forwarding Hops: We see that when L in-
creases from 2 to 8, the normalized forwarding hops of SMART
remains stable when the Haggle trace is used and increases in the
test with the MIT Reality trace. This is caused by the different
environments of the two traces. In the Haggle project, nodes
are more crowded, so it is easy to find a next-hop node even
when L is small. Therefore, the normalized forwarding hops re-
main stable with different L. However, in the MIT Reality trace,
nodes are sparser, so a small L cannot reflect the social struc-
ture well, leading to fewer forwarding opportunities and a low
normalized forwarding hops.

4) Routing Cost: We find that the routing cost increases
in proportion to the value of L when it increases from 2 to 8
with both traces. This is because the routing cost is actually the
number of encounters multiplied by 2L. We see that the routing
cost is still quite small when L is 8 compared to that of SimBet
and PROPHET shown in Figs. 8(d) and 9(d). This result shows
the efficiency of SMART in reducing information transmission
and also implies that it is important to find an optimal L value
that generates low routing cost while achieving high routing
efficiency.

5) Summary: The above experimental results indicate that
SMART still works efficiently when L is set to a small value.
For example, even when L. = 2, SMART still generates close
performance on hit rate, average delay, and cost with other
compared methods in Figs. 8 and 9. Also, the performance
of SMART is improved when L increases and remains stable
when L is larger than 5. Such a result matches our analysis
in Section III-C.3 and justifies the idea that top L friends can
provide enough critical information to guide packet forwarding.
SMART achieves an optimal balance between efficiency and
cost when L is set to a medium value such as 4 or 5 for the two
traces. This value may change in different scenarios. However,
since the increase in the routing cost is linear when L increases,

IEEE/ACM TRANSACTIONS ON NETWORKING

we conclude that SMART is energy-efficient and suitable for
DTNs.

D. Effect of Dynamic L and BFT-Based Routing

In Section I1I-B.1.d, we proposed two methods to determine
L: centralized method and distributed method. In the former,
L is predetermined based on network statistics, and all nodes
have the same L. In the latter, L is dynamically decided on each
node. In Section IV-C, we already presented the performance
of SMART with different L values in the centralized method.
In this section, we present the performance of SMART with
dynamically determined L values in the distributed method,
denoted by SMART-DL. In SMART-DL, L is determined
so that the Lth most frequently met node has half of the
meeting frequency of the most frequently met node. We also
present the performance of the BFT-based routing introduced
in Section III-C.4.b, denoted by SMART-BFT. In the test, we
set the memory on each node to a medium value of 100 kB, L
to a medium value of 4 in SMART and SMART-BFT, and the
threshold of the percentage of changed links in a social map for
BFT update in SMART-BFT to 20%.

1) Hit Rate: Figs. 12(a) and 13(a) show the hit rates of
SMART, SMART-DL, and SMART-BFT with the Haggle
trace and the MIT Reality trace, respectively. We see that in
both traces, SMART-DL achieves higher hit rate than SMART.
This is because in SMART-DL, dynamically determined L’s
can reflect the major social relationships with all nodes in the
social map, leading to a higher hit rate. We found that the
average value of L equals around 5-6 in SMART-DL, which is
larger than L. = 4 in SMART. We also see that SMART-BFT
has a slightly lower hit rate than SMART-BFT. The BFT in
SMART-BFT is updated only when the percentage of the
changed links in a social map is larger than a threshold (i.e.,
20%), leading to insufficiently accurate routing guidance for
some packets and hence slightly degraded hit rate. However,
the hit rate decrease is very minor while SMART-BFT signifi-
cantly reduces the computation cost in forwarder determination
in the routing process, as shown below.

2) Normalized Average Delay: Figs. 12(b) and 13(b) show
the normalized average delays of SMART, SMART-DL, and
SMART-BFT with the Haggle trace and the MIT Reality trace,
respectively. We find that SMART has larger average delay than
SMART-DL in the tests with both the traces. This is because
the social maps in SMART-DL can reflect more social rela-
tionships. Therefore, it can guide the packet forwarding more
accurately, leading to lower average delay. We also see that
SMART-BFT has slightly larger average delay than SMART.
For SMART-BFT, it cannot reflect the changes on social maps
timely, which lowers the accuracy of forwarder selection, re-
sulting in higher average delay than SMART.

3) Normalized Forwarding Hops: Figs. 12(c) and
13(c) show normalized forwarding hops of SMART,
SMART-DL, and SMART-BFT with the Haggle trace
and the MIT Reality trace, respectively. We see that
in both traces, the normalized forwarding hops follow
SMART — DL > SMART > SMART — BFT. With the
dynamic L value determination, the social maps in SMART-DL
can reflect more close social relationships, leading to more
packet forwarding opportunities and consequently more packet
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forwarding. On the contrary, the untimely updated better for-
warder table in SMART-BFT reduces the number of packet
forwarding opportunities, leading to less packet forwarding
than SMART. These results match those in Figs. 12(a) and
13(a) since higher hit rate (i.e., successful deliveries) comes at
more forwarding hops.

4) Routing Cost: Figs. 12(d) and 13(d) show the routing
costs of SMART, SMART-DL, and SMART-BFT with the
Haggle trace and the MIT Reality trace, respectively. We find
that SMART-BFT and SMART generate the same routing
cost and SMART-DL produces higher routing cost. Both
SMART-BFT and SMART have fixed L = 4, leading to the
same routing cost. Nodes in SMART-DL dynamically adjust
L. We found that the average values of L. in SMART-DL are
around 5-6, leading to more information exchange among top
L friends.

Fig. 14(a) shows the average values of L at 10 observation
points, which are evenly distributed in each trace. We find that
after half of each trace, the average values of L are about 6 and
5 in the Haggle and MIT Reality traces, respectively. This re-
sult shows the average number of stable friends of each node in
the two traces. Comparing the results in Figs. 12(a) and 13(a)
and those in Tables IV and V, we further find that SMART-DL
achieves higher hit rate than SMART with fixed L = 6 and
L = 5. This result demonstrates that the proposed method to
determine L dynamically can effectively find the important so-
cial relationships in the network.

5) Computation Cost Reduction in SMART-BFT: We fur-
ther evaluate the effect of SMART-BFT on reducing the com-
putation cost with different packet generating rate. Since the
Dijkstra algorithm used in the routing has the most computa-
tion cost, we measure the computation cost as the number of
Dijkstra algorithm launched in the experiment. The test results
are shown in Fig. 14(b), in which the name after a method de-
notes the trace used in the experiment. We find that the BFT
can save up to 65% of computation cost in the tests with both
traces. Combining the results in Figs. 12 and 13, we conclude
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Fig. 14. Experiment results on average value of L and computation cost.
(a) Average value of L. (b) Computation cost.

TABLE VI
EFFICIENCY AND COST IN THE GENI TEST

Method Hit Rate [ N. Ave. Delay (s) | N. Fwd. Hops | Routing Cost
SMART 0.511 1,380,588.7 5.47 1,103,472
SimBet 0.496 1,423,667.5 4.35 14,173,600
PROPHET | 0.501 1,413,484.8 3.24 12,315,306
StaticWait | 0.31 1,861,894.3 1.04 0

that the BFT-based routing can significantly reduce the compu-
tation cost of SMART without greatly compromising the routing
efficiency.

V. GENI EXPERIMENT

We further evaluated the performance of the four methods
on the real-world GENI ORBIT testbed [24], [25]. In ORBIT,
nodes communicate with nodes within communication range
through the wireless interface. Since all nodes are fixed in
ORBIT, we again used the MIT Reality trace to drive node
encountering. The total number of packets was set to 15 000,
and the memory on each node was set to 100 kB.

The test results are shown in Table VI. We see that SMART
produces the highest hit rate, the lowest normalized average
delay, and the second lowest cost compared to other methods
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for the same reasons described previously. Such results further
prove the high efficiency of SMART in the real-world testbed.

VI. CONCLUSION

In this paper, we propose SMART, which is a lightweight
routing algorithm in delay-tolerant networks that utilizes dis-
tributed social maps on mobile nodes. By exploiting the social
network property that a person’s most frequently encountered
friends often remain stable, SMART enables each node to build
a social map to record its knowledge of surrounding social struc-
ture. Specifically, nodes exchange the top L most frequently en-
countered nodes when they meet for social map construction. In
the social map, the delivery ability between two nodes is eval-
uated by considering both meeting frequency and social close-
ness. Then, packets are forwarded to nodes with higher delivery
ability to their destinations. SMART is more efficient than pre-
vious probabilistic routing algorithms because the social map
offers a broader view for forwarder selection. Moreover, two
encountering nodes only need to exchange the information of
their top L friends, which is relatively stable, leading to a low in-
formation exchange and update overhead. Extensive real-trace
driven experiments and testbed tests demonstrate the effective-
ness of SMART in comparison to previous algorithms.

Currently, the routing performance of SMART is limited by
the intermittent connections in DTNs. Therefore, SMART is
only suitable for delay-tolerant applications such as distributed
friend or community recommendation based on encountering
records, distributed Question&Answer systems, and the sharing
of files that are tolerant to delay. In the future, we plan to further
improve the routing performance of SMART for delay-sensi-
tive applications and explore other interesting and novel appli-
cations in human-based DTNs.
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