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Abstract

Locality Sensitive Hashing (LSH) is a method of
performing probabilitic dimension reduction of high-
dimensional data. It can be used for approxi-
mate nearest neighbor search on a high-dimensional
dataset. We first present a LSH-based similarity
searching method. However, it needs large memory
space and long processing time in a massive dataset.
In addition, it is not effective on locating similar data
in a very high-dimensional dataset. Further, it can-
not easily adapt to data insertion and deletion. To
address the problems, we then propose a new LSH-
based similarity searching scheme that intelligently
combines SHA-1 consistent hash function and Min-
wise independent permutation into LSH (SMLSH).
SMLSH effectively classifies information according to
the similarity with reduced memory space require-
ment and in a very efficient manner. It can quickly
locate similar data in a massive dataset. Experimen-
tal results show that SMLSH is both time and space
efficient in comparison with LSH. It yields significant
improvements on the effectiveness of similar search-
ing over LSH in a massive dataset.

Keywords: Locality sensitive hashing, High-
dimensional dataset, Similarity searching, Min-Wise
permutations, Consistent hashing

1 Introduction

Driven by the tremendous growth of information in
a massive dataset, there is an increasing need for
an efficient similarity searching method that can lo-
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Figure 1: An example of finding nearest neighbor of
a query point.

cate desired information rapidly with low cost. An
ideal similarity searching scheme should work well in
a high-dimensional database. Specifically, it should
locate nearly all the similar records of a query with a
short query time and small memory requirement. In
addition, it should also deal with data insertion and
deletion. Many approaches have been proposed for
similarity searching in high-dimensional databases.
The approaches treat the records in a database as
points in a high-dimensional space and each record is
represented by a high-dimensional vector. Figure 1
gives an example of finding the nearest neighbor of
a query point. There is a set of points in a two-
dimensional space. Point ¢ is a query point. From
the figure, we can see point p is the closest point to
q.

Distance measurement (i.e., Euclidean distance)
can be used to decide the closeness of two records.
Figure 2 shows an example of three records and their
representation in Euclidean space. We see that record
1 and record 3 have three common keywords, while
record 1 and record 2 have two common keywords.



Record ID Record Representation in Euclidean Space
1 Tom Smith 30 Male <1,1,1,1,0,0, 0>
2 John White 30 Male <0,0,1,1,1,1,0>
3 Tom Smith 22 Male <1,1,0,1,0,0, I>

Figure 2: An example of data records and their rep-
resentation in Euclidean space.

By measuring the Euclidean distance between the
records, we can find that record 1 is closer to record
3 than to record 2, i.e., record 3 is more similar to
record 1 than record 2.

When querying in a massive dataset, many search-
ing methods generate a high-dimensional vector for
each object and then conduct the k-nearest neigh-
bors searching [11]. However, such a method is not
efficient when the dataset size is very large and the
dimension is very high. Other methods relying on a
tree structure (such as kd-trees, BDD-trees and vp-
trees) require substantial memory space and time [1].
Sometimes, they are even less efficient than the linear
search approach that compares a query record with
each record in the dataset one at a time. Moreover,
all these methods compare a query with records dur-
ing the searching process to locate similar records,
degrading the searching performance.

Locality sensitive hashing (LSH) is a well-known
method that works faster than the linear search
for finding nearest neighbors for high-dimensional
datasets. LSH hashes high-dimensional vectors to
one-dimensional integers, and uses the difference be-
tween the integers to measure the similarity between
records. Indyk et al. [9] designed a LSH scheme based
on p-Stable distributions, which can find the exact
near neighbor in O(logn) time latency, and the data
structure is up to 40 times faster than kd-tree [9].

In this entry, we first present an LSH-based similar-
ity searching for a dataset. However, the LSH scheme
is not effective on locating similar data in a massive
dataset with a very high dimension space. In addi-
tion, it has low efficiency in terms of memory space
and searching speed. An experimental study shows
that the LSH scheme requires many hash tables in or-
der to locate most nearest neighbors, and sometimes
the LSH may require over a hundred hash tables to

achieve reasonable accurate approximations [8]. Fur-
ther, the LSH-based method requires all data records
to have vectors with the same dimension, as it regards
records as points in a multi-dimensional space. This
makes it unable to easily adapt to data insertion and
deletion. The data insertion and deletion may lead
to keyword addition and deletion in the system, ne-
cessitating the re-generation of the high-dimensional
vectors of all records, a very costly process.

To deal with the problems, we then present a SHA-
1 consistent hash function and Min-wise independent
permutation based LSH searching scheme (SMLSH)
to achieve highly efficient similarity search in a mas-
sive dataset. By intelligently integrating SHA-1
and min-wise independent permutations into LSH,
SMLSH assigns identifiers to each record and clus-
ters similar records based on the identifiers. Rather
than comparing a query with records in a dataset, it
facilitates direct and fast mapping between a query
and a group of records. The main difference with
SMLSH and LSH is that SMLSH does not require
that all records have the same dimension. Thus,
SMLSH overcomes the aforementioned problems of
LSH. False positive results are the records located
as similar records but actually are not. LSH needs
distance calculation to prune the false positive re-
sults, while SMLSH does not necessarily to have this
refinement step since it incurs much less false pos-
itive results. We investigate the operation of LSH
and SMLSH, and compare their performance by ex-
periments. Experimental results show that SMLSH
enhances LSH’s searching efficiency dramatically.

The rest of this entry is structured as follows. Sec-
tion 2 presents a brief review of related work. Sec-
tion 3 introduces a LSH based similarity searching
scheme, and Section 4 introduces min-wise indepen-
dent permutations. Section 5 describes and analyzes
the SMLSH searching scheme. Section 6 shows the
performance of SMLSH in comparison with LSH. Sec-
tion 7 concludes this entry with remarks on possible
future work.



2 Approaches for similarity

searching

The similarity searching problem is closely related to
the nearest neighbor search problem, which has been
studied by many researchers. Various indexing data
structures have been proposed for nearest neighbor
searching.

2.1 Tree structures

Some of the similarity searching methods rely on
tree structures, such as R-tree, SS-tree and SR-
tree. These data structures partition the data ob-
jects based on their similarity. Therefore, during a
query, only a part of the data records have to be com-
pared with the query record, which is more efficient
than the linear search that compares a query with ev-
ery data record in the database. Though these data
structures can support nearest neighbor searching,
they are not efficient in a large and high-dimensional
database (i.e., the dimensionality is more than 20).
The M-tree [4] was proposed to organize and search
large datasets from a generic metric space, i.e., where
object proximity is only defined by a distance func-
tion satisfying the positivity, symmetry, and trian-
gle inequality postulates. The M-tree partitions ob-
jects on the basis of their relative distances measured
by a specific distance function, and stores these ob-
jects into nodes that correspond to constrained re-
gions of the metric space [4]. All data objects are
stored in the leaf nodes of M-tree. The non-leaf
nodes contain “routing objects” which describe the
objects contained in the branches. For each routing
object, there is a so-called covering radius of all its en-
closing objects, and the distances to each child node
are pre-computed. When a range querying is com-
pleted, sub-trees are pruned if the distance between
the query object and the routing object is larger than
the routing object’s covering radius plus the query ra-
dius. Because a lot of the distances are pre-computed,
the query speed is dramatically increased. The main
problem is the overlap between different routing ob-
jects in the same level.

2.2 Vector approximation file

Another kind of similarity searching method is the
vector approximation file (VA-file) [17], which can
reduce the amount of data that must be read dur-
ing similarity searches. It divides the data space into
grids and creates an approximation for each data ob-
ject that fall into a grid. When searching for the near
neighbors, the VA-file sequentially scans the file con-
taining these approximations, which is smaller than
the size of the original data file. This allows most
of the VA-file’s disk accesses to be sequential, which
are much less costly than random disk accesses [6].
One drawback of this approach is that the VA-file re-
quires a refinement step, where the original data file
is accessed using random disk accesses [6].

2.3 Approximation tree

Approximation tree (A-tree) [11] has better perfor-
mance than VA-file and SR-tree for high dimensional
data searching. The A-tree is an index structure for
similarity search of high-dimensional data. A-tree
stores virtual bounding rectangles (VBRs), which
contain and approximate minimum bounding rect-
angles (MBR) and data objects, respectively. MBR
is a bounding box to bind data object. iDistance [19]
partitions the data into different regions and defines
a reference point for each partition. The data in each
region is transformed into a single dimensional space
based on their similarity with the reference point in
the region. Finally, these points are indexed using a
B+-tree structure and similarity search is performed
in the one-dimensional space. As reported in [19],
iDistance outperforms the M-tree and linear search.

2.4 Hashing

Hashing is a common approach to facilitate similar-
ity search in high dimension databases, and spectral
hashing [18] is one state-of-the-art work for data-
aware hashing. Spectral hashing applies the machine
learning techniques to minimize the semantic loss of
hashed data resulting from embedding. However, the
drawback of Spectral hashing lies in its limited ap-
plicability. As spectral hashing relies on Euclidean



distance to measure the similarity between two data
records, and it requires that data points are from a
Fuclidean space and are uniformly distributed.

Most recently, much research also has been con-
ducted on locality-sensitive hashing. Dasgupta et
al. [5] proposed a new and simple method to speed
up the widely-used Euclidean realization of LSH. At
the heart of the method is a fast way to estimate
the Euclidean distance between two d-dimensional
vectors; this is achieved by the use of randomized
Hadamard transforms in a non-linear setting. Tra-
ditionally, several LSH functions are concatenated to
form a “static” compound hash function for building
a hash table. Gan et al. [7] proposed to use a base of
m single LSH functions to construct “dynamic” com-
pound hash functions, and defined a new LSH scheme
called Collision Counting LSH (C2LSH). In C2LSH,
if the number of LSH functions under which a data
object o collides with a query object ¢ is greater than
a pre-specified collision threshold, then o can be re-
garded as a good candidate of c-approximate nearest
neighbors of ¢q. Slaney and Casey [16] described an
LSH technique that allows one to quickly find simi-
lar entries in large databases. This approach belongs
to a novel and interesting class of algorithms that
are known as randomized algorithms, which do not
guarantee an exact answer but instead provide a high
probability guarantee of returning correct answer or
one close to it.

Recent work has also explored ways to embed high-
dimensional features or complex distance functions
into a low-dimensional Hamming space where items
can be efficiently searched. However, existing meth-
ods do not apply for high-dimensional kernelized data
when the underlying feature embedding for the kernel
is unknown. Kulis and Grauman [10] showed how to
generalize locality-sensitive hashing to accommodate
arbitrary kernel functions, making it possible to pre-
serve the algorithm’s sub-linear time similarity search
guarantees for a wide class of useful similarity func-
tions. Semantic hashing [12] seeks compact binary
codes of data-points so that the Hamming distance
between codewords correlates with semantic similar-
ity. Weiss et al. [18] showed that the problem of find-
ing a best code for a given dataset is closely related to
the problem of graph partitioning and can be shown

to be NP hard. By relaxing the original problem,
they obtained a spectral method whose solutions are
simply a subset of thresholded eigenvectors of the
graph Laplacian. Satuluri and Parthasarathy [13]
proposed BayesLLSH, a principled Bayesian algorithm
for performing candidate pruning and similarity es-
timation using LSH. They also presented a simpler
variant, BayesLSH-Lite, which calculates similarities
exactly. BayesLSH can quickly prune away a large
majority of the false positive candidate pairs. The
quality of BayesLSH’s output can be easily tuned and
does not require any manual setting of the number of
hashes to use for similarity estimation.

3 Locality Sensitive Hashing

In this section, we introduce LSH, LSH-based simi-
larity searching method, and min-wise independent
permutations.

LSH is an algorithm used for solving the approxi-
mate and exact near neighbor search in high dimen-
sional spaces [9]. The main idea of the LSH is to
use a special family of hash functions, called LSH
functions, to hash points into buckets, such that the
probability of collision is much higher for the ob-
jects which are close to each other in their high-
dimensional space than for those which are far apart.
A collision occurs when two points are in the same
bucket. Then, query points can identify their near
neighbors by using the hashed query points to re-
trieve the elements stored in the same buckets.

For a domain S of a set of points and distance mea-
sure D, the LSH family is defined as:

DEFINITION 1. A family H ={h: S — U} is
called (r1,79, p1, p2) sensitive for D if for any point v,
q belongs to S

e If v € B(q,r), then Pry[h(q) = h(v)] > p1,
o If v ¢ B(g,r2), then Prylfh(q) = h(v)] < po,

where 71,79, p1, p2 satisfy p1 < ps and r; < ro.

LSH is a dimension reduction technique that
projects objects in a high-dimensional space to a
lower-dimensional space while still preserving the rel-
ative distances among objects. Different LSH families
can be used for different distance functions.
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Figure 3: The process of LSH.

Based on LSH on p-stable distribution [9], we de-
velop a similarity searching method. Figure 3 shows
the process of LSH. The hash function family of LSH
has L groups of function functions, and each group
has k£ hash functions. Given a data record, LSH ap-
plies the hash functions to the record to generate L
buckets, and each bucket has k£ hash values. LSH
uses hash function H; on the k hash values of each
bucket to generate the location index of the record
in the final hash table, and uses hash function Hs
on the k hash values of each bucket to generate the
value of the record to store in the location. Finally,
the record has L values stored in the final hash table.
Given a query, LSH uses the same process to produce
the L indices and values of the query, and finds sim-
ilar records based on the indices, and identifies final
similar records based on the stored values. Let us
take an example to explain how the LSH-based simi-
larity searching works. Assume that the records in a
dataset are as follows:

Ann Johnson | 16 | Female | 248 Dickson Street
Ann Johnson | 20 | Female | 168 Garland

Mike Smith 16 | Male 1301 Hwy

John White 24 | Male Fayetteville 72701

First, LSH constructs a keyword list which consists
of all unique keywords in all records, with each key-
word functioning as a dimension. The scheme then
transforms these records into binary data based on
the keyword list. Specifically, if a record contains the
keyword, the dimension representing the keyword has
the value 1, otherwise, it has the value 0. Figure 4
shows the process to determine the vector of each

1301
Dickson
Street
Garland

Hwy
Fayetteville
72701

Vi V2 V3 Va q

Ann 1 1 0 0 1
Mike 0 0 1 0 0
John 0 0 0 1 0
Johnson 1 1 0 0 1
Smith 0 0 1 0 0
White 0 0 0 1 0
16 1 0 1 0 0
20 0 1 0 0 1
24 0 0 0 1 0
Female 1 1 0 0 1
Male 0 0 1 1 0
Ann248 1 0 0 0 0
168 0 1 0 0 1
0 0 1 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

Figure 4: Multi-dimensional keyword space.

record. The number of dimensions of a record is the
total length of the keyword list. Finally, the records
are transformed to multi-dimensional vector:

v1: 10010010010100110000
12: 10010001010010001000
v3:01001010001001000100

v4:00100100101000000011
As shown in Figure 3, LSH then produces the hash
buckets g;(v) (1 < ¢ < L) for every record. There-
after, LSH computes the hash value for every bucket.
Finally, record v’s hashed value by Hs hash func-
tion, H,, is stored in final hash tables pointed by the
hashed value by H;. Figure 5 shows the process of
searching similar records of a query. If a query record
q is:

Ann Johnson | 20 | Female | 168 Garland

Using the same procedure, ¢ will be transformed
to

¢:10010001010010001000

Then, the index of ¢ will be stored in the final hash
tables through the same procedure. Consequently,
the records that are in the same rows with ¢ in hash
table 1 to hash table L are similar records. In the
example, vo and vz are in the similar record set. Fi-
nally, the Euclidean Space Distance between each lo-
cated record and the query is computed to prune the
results. A record will be removed from the located
record set if its distance to the query is larger than
R, which is a pre-defined threshold of distance.

The following formular is used to compute the Eu-
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Figure 5: An example of LSH similarity searching.
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This distance calculation refinement phase is to
prune false positive results that are located as similar
records but actually are not.

From this example, we can see that LSH does not
need to search the query in the entire dataset scope.
It shrinks the searching scope to a group of records
similar to the query, and conducts refinement. Given
n records in a dataset, traditional methods based on
tree structures need O(logn) time for a query, and
linear searching methods need O(n) time for query.
LSH can locate the similar records in O(L) time,
where L is a constant. It means that LSH is more
efficient in a massive dataset that has a large number
of dimensions and records.

The drawback of LSH is large memory consump-
tion. Because LSH needs to require a large number of
hash tables to cover most near neighbors. For exam-
ple, over 100 hash tables are needed in [8], and 583
hash tables are used in [3]. Because each hash table
has as many entries as the number of data records in
the database, the size of each hash table is decided
by the size of the database. When the space require-
ment for the hash tables exceeds the main memory
size, a disk I/O may be required for searching more
hash tables, which causes query delay.

4 Min-Wise Independent Per-
mutations

In this section, we introduce min-wise independent
permutations. Broder et al. [2] defined that F C S,
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Figure 6: Memory consumption of LSH.

is min-wise independent if for any set X C [n] and
z € X, when 7 is chosen at random in F,

1

Pr(min{n(X)} =n(x)) = m,

where Pr is the probability. All the elements of any
fixed set X have an equal chance to become the min-
imum element of the image of X under 7 .

In [2], a family of hash functions F is said to be a
LSH function family corresponding to similarity func-
tion sim(A, B) if for all h € F operating on two sets
A and B, we have:

Prier[h(A) = h(B)] = sim(A, B),

where sim(A,B) € [0,1] is a similarity function.
Min-wise independent permutations provide Jaccard
index to measure the similarity

_|ANB|
|AUB|

For example, U = {a,b,c,d,e,f}, S = {a,b,c},
S"'={b,c,d},and S C U and S’ C U. A random per-
mutation 7 of the universe U is m =< d, f,b,e,a,c >.
Because b contained in S is the first element that
appears in 7, b represents the smallest image of S
under 7, denoted by b = min{n(S)}. Because d
contained in S’ is the first element that appears in
m, so d represents the smallest image of S’ under ,
denoted by d = min{n(S")}. SNS = {b,c} and
SuS = {a,b,c,d}. For a random permutation of
the universe

sim(A, B)

U: 7T(U) = {eap17p27f7p37p4}7



where p1,po2,ps and py can be a, b, ¢ and d in
any order, if py is from {b,c}, then min{=(S)} =
min{m(S")}, and S and S’ are similar. From
_1SnsS|
CSus |

[ {b,c} |
| {a,b,c,d} |’

we can compute the similarity between S and S’.

Pr(min{n(S)} = min{mr(S")})

5 SMLSH Searching Scheme

A massive dataset has a tremendous number of key-
words, and a record may contain only a few keywords.
As a result, in LSH, the identifier of a record may
have a lot of 0s, and only a few 1s. This identifier
sparsity leads to low effectiveness of Euclidean Space
Distance measurement to quantify the closeness of
two records. This is confirmed by our simulations re-
sults that the LSH returns many records that are not
similar to the query even though all expected records
are returned. We also observe that the memory re-
quired for the LSH scheme is mainly used to store the
identifiers of records and the hash tables. Figure 6
shows the memory used for different objects in LSH.

5.1 Record Vector Construction

SMLSH reduces the false positive results and mean-
while reduces the memory for records and hash ta-
bles. It does not require all records have the same
dimension. That is, it does not need to derive a vec-
tor for each record from a unified multi-dimensional
space consisting of keywords.

The records in databases are usually described in
string format. Therefore, the original data record
cannot be used to do the computation. SMLSH first
uses SHA-1 consistent hash function to generate an
identifier for each keyword in a record. SHA stands
for Secure Hash Algorithm, which includes five cryp-
tographic hash functions. The hash algorithms can
compute a fixed-length digital representation of an
input data sequence of any length. SHA-1 hash func-
tion, which is one of the five cryptographic hash func-
tions, has been employed in several widely used secu-

rity applications and protocols, such as TLS (Trans-
port Layer Security), SSL (Secure Sockets Layer) and
IPsec (Internet Protocol Security). SHA-1 hash
function is supposed to be collision-resistant, so it
can be used to hash keywords into integers. Since
SHA-1 distinguishes uppercase and lowercase key-
words. SMLSH firstly changes all keywords to up-
percase. As shown in the following, after changing all
the keywords of a record into capital letters, SMLSH
uses SHA-1 to hash all the capital-letter keywords to
a set of integers:
Original record:
Ann | EDNA | Shelby | NC | 0541
Uppercase record:
ANN | EDNA | SHELBY | NC | 0541
Hashed record:
1945773335 | 628111516
2015065058 ‘ 125729831
LSH requires that all record vectors have the same
dimension to construct buckets with universal hash
function. In LSH, the length of each record vector
equals to the length of the keyword list consisting of
all keywords in the dataset. In contrast, SMLSH does
not require that all records have the same dimension.
In SMLSH, the length of a record vector only equals
to the number of keywords in itself. Thus, SMLSH
reduces the memory of LSH for vectors. In SMLSH,
the min-wise independent permutations are defined
as:

2140641940

(1)

where a and b are random integers, 0 < a < prime
and 0 < b < prime.

7m(x) = (ax + b) mod prime,

Figure 7 shows an example of building buckets for
a record. First, the keywords of the original record
are represented as integer numbers by SHA-1 hash
function. Second, for a pair of a and b values in
Function (1), we get different 7(x) values for different
keywords. The minimum number of 7(z), denoted by
min{m(x)}, is chosen. We then use the keyword cor-
responding to min{m(x)} as the value of an element
in the buckets. We then continue to generate a new
pair of a and b values, another min{m(x)}s can be
computed. This process will not stop until n x m
man{m(x)} values are calculated. Therefore, n buck-
ets are built for a record, and each bucket has m



Original Record

ANN EDNA SHELBY NC 0541

l

Hashed Record

hashKey
1945773335
EDNA 628111516
SHELBY | 2140641940
NC 2015065058
0541 125729831

oriKey
ANN

—p min{n(hashKey,), n(hashKey,), n(hashKeys), n(hashKeys), n(hashKeys)}

Buckets

hashKey; | hashKey, | ...| hashKey,

A { hashKey; | hashKeys | ...| hashKey,

hashKey, | hashKey; | ...| hashKey,
%f—/

m

Figure 7: An example of building buckets for a
record.

values. Algorithm 1 shows the procedure of bucket
construction in SMLSH.

Algorithm 1. Bucket construction in SMLSH.

(1) determine n x m values of a and b
(2) for each k[i] do //kfi] is one of the keywords of
//a record

(3)  Use SHA-1 to hash k[i] into hashK][i]

(4)  for each pair of a[p][q] and b[p][q] do

5)  glplld = (G[P(]i[CJ] + hashK[i] + blpl[q])
mod prime

(6) if i == 0 then

() minfpla)=glplla]

(8) else if g[p][g] < min[p][¢] then

(9) min(pl[q] = g[p][q]

(10) endif

(11) endif

(12) endfor

(13) endfor

5.2 Record Clustering

SMLSH makes n groups of m min-wise independent
permutations. Applying the m x n hash values to
a record, SMLSH constructs n buckets with each
bucket having m hashed values. SMLSH then hashes
each bucket to a hash value with similarity preser-
vation and clusters the data records based on their

Buckets of a Record Hash Tables
hashKey; | hashKey; hashKey, % hashID; —» Hash Table 1
hashKey; | hashKey; hashKey, {+ hashiD, —»| Hash Table2
> >
hashKey; | hashKey; hashKeyy Ls hashiD, —»| Hash Table n
Figure 8: The process of finding locations for a
record.

similarity. Specifically, SMLSH uses XOR operation
on the elements of each bucket to get a final hash
value. Consequently, each record has n final hashed
values, denoted by hashlID;.

hashID; = (min{m1(S")} XOR min{mm(S’)}) mod tableSize,

(2
where S’ is a SHA-1 hased integer set, 1 < i < n.
Algorithm 2 shows the pseudo-code for the procedure
of records clustering in SMLSH.

Algorithm 2. Record clustering in SMILSH.

for each hashID[j] do
hashID[j]=0
for each min[j][t] do
hashID[j]" =min][j][t]
endfor
hashID[j]=hashID[jjmod tableSize
Insert the index of the record into the hash
table
(8) endfor

(1)
(2)
(3)
(4)
(5)
(6)
(7)

Figure 8 presents the process of finding locations of
a record. There are n buckets for each record. Each
row of hashKeys in a bucket is used to calculate a
final hash value for the bucket. Therefore, n bucket
hash values are produced (i.e., hashID1, , hashID,,).
n hash tables are needed for saving all the buckets of
the records in a database. Each hashID of a record
representing the location of the record is stored in the
corresponding hash table.



5.3 SMLSH Searching Process

When searching a record’s similar records, SMLSH
uses SHA-1 to hash the query record to integer rep-
resentation. Then, SMLSH builds buckets for the
query record. Base on the clustering algorithm men-
tioned above, SMLSH gets the n hashIDs for the
query record. It then searches every location based
on hashID in every hash table, exports all the records
with the same hashID as the candidates of similar
records of the query record. In order not to miss
other similar records (i.e., reduce false negatives),
at the same time, SMLSH continues to build new
n buckets from each located record for further sim-
ilar record search. Specifically, SMLSH generates n
buckets from a located record using the method intro-
duced previously. To generate the i** bucket, it ran-
domly chooses elements in the i*" bucket of the query
record and in the i*" bucket of the located record. It
then calculates the hashID of each newly constructed
bucket and searches similar records using the above
introduced method. As the new buckets are gener-
ated from the buckets of the query record and its
similar record, the located records based on the new
buckets may have a certain similarity with the query
record.

Figure 9 shows the SMLSH similarity searching
process. Let us say after computing the buckets of
the query record, we get the first hashID equals 1.
Therefore, SMLSH checks the records which hashID
equals to 1 in the first hash table (i.e., HashTablel).
As the figure shows, the hashID of record v equals
to 1 in HashTablel. We generate n buckets from wv.
Then, we use the i** bucket of records ¢ and v to
generate the i*" new bucket in the new group of n
buckets. The elements in the i** new bucket are ran-
domly picked from the i*" bucket of record ¢ and from
the i*" bucket of record v. XOR operation is used to
compute the hashIDs of the new buckets. According
to the hashIDs of the new buckets, SMLSH searches
the HashTablel again to collect all the records having
the same hashIDs and considers them as the candi-
dates of the similar records of query record ¢. After
finishing searching the first hash table for hashID1,
SMLSH continues searching the hash tables for other
hashIDs until finishing searching the n'" hash table

HashTable,

Y

Buckets of Query Record: ¢
OhashKey; OhashKey,

hashID =1 —| hashID=1:v

OhashKey; OhashKey,

Buckets of Query Record: v New Buckets

l VhashKey; l I VhashKey; VhashKey; VhashKey;

hashIDs

VhashKey; VhashKey;

Figure 9: The process of similarity search.

for hashID,,.

Algorithm 3. Searching process in SMLSH.

(1) Calculate n hashIDs of the query record
(2) for each hashID[j] of the query record do
(3)  Get the records v with hashID[j] in the j-th
hash table
(4) for each record v[k] do
5 Insert record v[k| into the similar record list
6 Collect all the elements in j-th bucket of
query record and record v[k]
Randomly pick elements from the collection
to build n new buckets
Compute new hashIDs for the new buckets
Retrieve the records with new hashIDs in
the j-th hash table
(10)  Insert the retrieved records into the similar
record list
(11) endfor
(12) endfor
(13) Compute the similarity of the records in the
similar record list
(14) Output the similar records with similarity
greater than a threshold r

AA
N2 g

Algorithm 3 shows the pseudo-code of the search-
ing process in SMLSH. For a record searching,
SMLSH gets the hashIDs for the query record based
on the algorithm. It then searches the hash table,
exports all the records with the same hashID as the
similar records of the query record. A range also can



Source records Final hash table

THE HASH VALUES AND HASH IDS OF RECORDS

Record SHA-1 Hash Values hashID

v 895479561 | 1630694977 | 612003623 | 1870446154 | 669783043 | 537429199 132419788

1416462664

mingrr(v))

Id1
range Similar
981 [1d2| v1 ‘q‘ Vn | [Records

. |mingm(v)}y

l

min{rr(v)} .| mingmv)}

Idn] v1 |

pueen g} | efews4 | 0z | uosuyor uuy

hashID

198115 UOSYOI] 8YT

Query record:

Ann Johnson | 20 | Female | 168 Garland

Figure 10: Similarity searching process of SMLSH.
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Figure 11: A high-level view of similarity searching
process in SMLSH.

be set to enlarge the searching scope. With the range,
the records with hashIDJj] that satisfy condition:

| hashID[j] — RhashID |< range

are also checked, where RhashID is the hashID of
a query record. This method enlarges the searching
scope of similar records, and increase the searching
accuracy. Using the dataset example in Section 3 and
assuming range = 1, Figure 10 shows the searching
process of SMLSH.

5.4 Example of Similarity Searching
in SMLSH

Figure 10 and Figure 11 present the similarity search-
ing process in SMLSH. Source records are hashed to
n hash tables based on their buckets. When search-
ing the similar records of a query record, the query
record needs to generate n buckets first. According
to the hash values from the buckets, n hash tables are
searched. During searching in the hash tables, new
buckets are built and further searching in the hash
tables is conducted.

v 786139273 | 1186247512 | 114561690 | 1658656342 | 288242920 0

0

V3 370869835 | 1937983344 | 114561690 | 1870446154 | 323411961 | 2010266570 | | 1687479347

1226489228 0

vy 1002692496 | 1630694977 | 586341023 | 1870446154 | 847272969 | 458697817 | | 179605007

300130902 275941014

q 1945773335 | 1937983344 | 114561690 | 1658656342 | 323411961 | 537429199 | | 1687479347

1226489228 1906035119

Figure 12: The hash values and hash IDs of records.

Let us use an example to explain the similarity
search in SMLSH. Given a database contains four
records:

v1: Tom White | 16 | Male 248 Main

va: Lucy Oliver | 20 | Female | AR

v3: Mike Smith | 20 | Male 123 AR St.

v4: John White | 24 | Male Little Rock | 7201

A query record q is:

¢: Ann Smith | 20 | Female | 123 AR St.

First, SMLSH transfers all the keywords to integers
using SHA-1 hash function. Second, SMLSH builds
two buckets for the records with each bucket having
four hash values. Finally, Function (2) is used to
hash the source records to two hash tables. When
searching the similar records of query ¢, for each
located record, SMLSH makes new buckets and
computes hashIDs to continue searching similar
records of query q. Table 12 shows the hash values
and hash IDs of source records and query record.

Figure 13 presents the hashing results of Hash Ta-
ble 1 and Hash Table 2. According to the hashIDs
of query ¢, record vs is found in Hash Table 1 and
records vy and v3 are found in Hash Table 2. New
buckets are generated by using the elements in the
buckets of g, vo and vs. Searching Hash Table 1 again
based on the hashIDs of the new buckets, record vy
is found. In Hash Table 2, record v; is found by us-
ing new buckets. Therefore, SMLSH combines the
searching results from Hash Table 1 and Hash Table
2, and returns records vy, vo and v as candidates of
the similar records.

To enhance the accuracy of returned similar
records, refining can be conducted based on similar-
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Figure 13: An example of SMLSH similarity search-
ing.

ity. That is, the similarity between each returned
record and the query record is calculated, the records
whose similarities are less than a pre-defined thresh-
old are removed from the list. Given two records A
and B, the similarity of B to A is calculated as fol-
lows:

AUB
similarity = [AVB| (3)
| A
For example,
A: Ann | Johnson | 16 | Female
B: Ann | Johnson | 20 | Female

To A, the similarity of B is % = 0.75.

Then, in the example, the refinement phase filters
the dissimilar records. The similarity between query
g and record v is 2/7, and the similarity between
query ¢ and record vs is 5/7. Records vo and v are
finally identified as similar records with query gq.

6 Performance Evaluation

We implemented the SMLSH searching system on
E2LSH 0.1 of MIT [20]. E2LSH 0.1 is a simulator
for the high-dimensional near neighbor search based
on LSH in the Euclidean space. Our testing sample
dataset is obtained from Acxiom Corporation. Af-
ter each record is transformed to 0/1 binary vector,
the dimension of the record is 20,591. The number
of source records was 10,000. We selected 97 query
records randomly from the source records. We use
target records to denote the records in the dataset
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that are similar to the query record. In the hash
function hgp(v) = [“2EL | of LSH, w was set to 4 as
an optimized value [20]. The distance threshold of R
was set to 3 in all experiments. In SMLSH, m was
set to 4 and n was set to 20.

We compared the performance of SMLSH with
LSH in terms of accuracy, query time, percentage of
dissimilar records, scope of retrieved similar records
and effectiveness in locating similar records

e Accuracy. This is the rate between the num-
ber of located target records and the number of
target records. High accuracy means that a sim-
ilarity searching method can locate more similar

records of query records.

Query time. This is the time period from the
time when queries are initiated to the time when
similar records are returned. It shows the effi-
ciency of a similarity searching method in terms
of searching latency.

Percentage of dissimilar records. This is the per-
centage of false positives in the located records.
This metric shows the effectiveness of a sim-
ilarity searching method in identifying similar
records.

The scope of retrieved similar records. This
shows whether a similarity searching method can
locate the similar record with different similarity
as the query record.

Effectiveness. This represents the rate between
the number of located target records and the
number of located records before the refinement
phase. High effectiveness means that a similar-
ity searching method can locate target records
more accurately.

Figure 14 shows the query time of searching meth-
ods based on the linear method, kd-tree and LSH
respectively. In the linear method, the query is com-
pared with each record in the dataset in data search.
As expected, the query time of the linear search
method is the highest, and LSH leads to faster similar
records location than kd-tree method.
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Figure 15: Total query time with refinement.

We also compared the performance of SMLSH with
LSH in terms of query time, memory cost and effec-
tiveness in locating the similar records. Range is the
searching scope based on hash values. For a hash
value h, the locations in [h-range, h+range] in the
hash tables are checked, and records in these loca-
tions are candidates of similar records. We conducted
experiments for the following methods:

(1) LSH;

(2) SMLSH with range = 0, denoted as SMLSH-0;

(3) SMLSH with range = 8, denoted as SMLSH-1;

(4) SMLSH with range = 16, denoted as SMLSH-
2; Unless otherwise specified, all these methods don’t
have refinement phase, and the construction of new
buckets during searching process is not used.

6.1 Query Time

We conducted an experiment for SMLSH with refine-
ment of similarity calculations. We set the similarity
threshold for SMLSH as 0.5. That is, SMLSH will re-
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Figure 16: Memory cost for source records and hash
tables.

turn the records whose similarity to the query record
are no less than 0.5. Figure 15 shows the total query
time of different methods with the refinement phase.
We can see that SMLSH has much faster query speed
than LSH. This is due to two reasons. First, LSH
needs to conduct more hash value calculations than
SMLSH. In LSH, there are 2,346 groups of buckets,
and 69 hash functions in each group. In SMLSH,
there are 20 groups of buckets, and 4 hash functions
in each group. Therefore, LSH needs to do much
more hash value calculations than SMLSH. Second,
LSH conducts Euclidean Space Distance computa-
tion, which includes multiple operations: addition,
subtraction and square calculation to remove its false
positive results.

The query time of SMLSH-2 is longer than
SMLSH-1, and the query time of SMLSH-1 is longer
than that of SMLSH-0. This is in expectation since
larger range means more hash values needed to be
checked, and more similarity calculations need to be
conducted in the refinement phase.

6.2 Memory Cost

Recall that LSH transforms source records to vec-
tors based on a global keyword list, and SMLSH uses
SHA-1 to get record vectors. Both of them need
memory space for record vectors and hash tables.
Figure 16 shows the memory size for storing trans-
formed source records and hash tables of LSH and
differnt SMLSHs. It demonstrates that the mem-
ory consumption for both transformed source records



2500

2000

1500

1000

Number of Hash Tables

500

SMLSH with Refinement

LSH

Figure 17: The number of hash tables.

and hash tables in SMLSH is much smaller than in
LSH. This is due to the reason that SMLSH has much
shorter record vectors and hence less storage memory.
The vector dimension of LSH is 20,591, while the av-
erage dimension of SMLSH is 11. Therefore, SMLSH
needs less memory for storing the transformed source
records than LSH. There are 2,346 groups of buckets
in LSH for each record, so there are 2,346 hashed
values needed to be saved in the hash table for each
record. For 10,000 source records, the hash table
should save 23,460,000 hashed values totally. SMLSH
only has 20 groups of buckets for each record, and the
total number of hashed values contained in hash ta-
bles is 200,000. Consequently, LSH’s hash table size
is about 117 times more than SMLSH’s hash table
size. These results verify that SMLSH can signifi-
cantly reduce the memory consumption of LSH.

Figure 17 presents the number of hash tables used
in LSH and SMLSH with refinement. From the
figure, we can notice that LSH needs one hundred
times more hash tables than SMLSH for locating the
similar records. As mentioned previously, the LSH
algorithm generates 2,346 buckets for each record,
while SMLSH only has 20 groups of buckets for each
record. There is a hash table responds for each
bucket. Therefore, 2,346 hash tables are needed for
saving the records clustering results based on the
buckets of the records in LSH, while 20 hash tables
are needed in SMLSH.
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6.3 Effectiveness

In addition to the efficiency in terms of memory con-
sumption and query time, another important metric
for searching methods is how many target records are
missed in the returned record set. This metric repre-
sents the effectiveness of a searching method to locate
target results.

Figure 18 shows the accuracy for each method. We
observe that LSH and SMLSH-2 have higher accuracy
than others, and they can find nearly all of the tar-
get records. However, the accuracy of SMLSH-0 and
SMLSH-1 is lower than LSH and SMLSH-2. Since
SMLSH-0 and SMLSH-1 have smaller range scope of
the query record to check the similar records, they
may miss some similar records that have less simi-
larities to the query record. Therefore, with an ap-
propriate value of range, SMLSH can achieve com-
parable effectiveness performance to LSH, but at a
dramatically higher efficiency.

More hash tables provide more clustering results,
which leads to high probability for locating more sim-
ilar records of queries. Therefore, by combining the
results of Figure 18 and Figure 17, we can observe
that the number of hash tables can affect the accu-
racy of similarity searching. However, with the in-
crease of the number of hash tables, more memory
is required for storing the hash tables. When the
space requirement for the hash tables exceeds the
main memory size, looking up a hash bucket may re-
quire a disk I/O, which can cause delay in the query
process. Therefore, an efficient similarity searching
method can locate as many as similar records with
low space requirement. From Figure 18 and Fig-
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ure 17, we can see that SMLSH can locate more than
90% of target records with small numbers of hash
tables.

In order to see the similarity degree of located
records to the query record of SMLSH, we conducted
experiments on SMLSH-0, SMLSH-1 and SMLSH-
2. We randomly chose one record, and changed one
keyword to make a new record as query record every
time. Our purpose is to see if SMLSH can find the
original record with the decreasing degree of similar-
ity to the query record. Table 1 shows whether the
method can find the original record when it has dif-
ferent similarities to the query record. “Y” means
the method can find the original record and “N”
means it cannot. The figure illustrates that SMLSH-
2 can locate the original record in all similarity levels,
and SMLSH-0 and SMLSH-1 can return the records
whose similarity are greater than 0.6 to the query
record. The reason that SMLSH-2 can locate records
with small similarity is because it has a larger scope of
records to check. The results imply that in SMLSH,
records having higher similarity to the query record
have higher probability to be located than records
having lower similarity.

Figure 19 depicts the percentage of similar records
returned in different similarity in SMLSH. From the
figure, we can observe that 100% of the similar
records with similarity to the query records greater
than 70% can be located in SMLSH. The percent-
age of returned similar records decreases as the sim-
ilarity between source records and query records de-
creases. However, SMLSH still can locate more than
90% of similar records when the similarity of source
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Figure 19: Percentage of similar records returned in
different similarity.

records and query records are between 60% and 70%.
Few similar records can be located with low similarity
(less than 60%). Therefore, the source records with
high similarity have higher probability to be found
than the source records with low similarity.

7 Conclusions

Traditional information searching methods rely on
linear searching or a tree structure. Both approaches
search similar records to a query in the entire scope
of a dataset, and compare a query with the records
in the dataset in the searching process, leading to
low efficiency. This entry first presents a Locality
Sensitive Hashing (LSH) based similarity searching,
which is more efficient than linear searching and tree
structure based searching in a massive dataset. How-
ever, LSH still needs a large memory space for storing
source record vectors and hash tables, and leads to
long searching latency. In addition, it is not effec-
tive in a very high-dimensional dataset and is not
adaptive to data insertion and deletion. This en-
try then presents an improved LSH based searching
scheme (SMLSH) that can efficiently and successfully
conduct similarity searching in a massive dataset.
SMLSH integrates SHA-1 consistent hashing function
and min-wise independent permutations into LSH.
It avoids sequential comparison by clustering similar
records and mapping a query to a group of records di-
rectly. Moreover, compared to LSH, it cuts down the
space requirement for storing source record vectors



and hash tables, and accelerates the query process
dramatically. Further, it is not affected by data in-
sertion and deletion. Simulation results demonstrate
the efficiency and effectiveness of SMLSH in similar-
ity searching in comparison with LSH. SMLSH dra-
matically improves the efficiency over LSH in terms
of memory consumption and searching time. In addi-
tion, it can successfully locate queried records. Our
future work will be focused on further improving the
accuracy of SMLSH.
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