
Combining Efficiency, Fidelity, and Flexibility in
Resource Information Services

Haiying Shen, Senior Member, IEEE, Yuhua Lin, and Ting Li

Abstract—A large-scale resource sharing system (e.g., collaborative cloud computing and grid computing) creates a virtual
supercomputer by providing an infrastructure for sharing tremendous amounts of resources (e.g., computing, storage, and data)
distributed over the Internet. A resource information service, which collects resource data and provides resource search functionality for
locating desired resources, is a crucial component of the resource sharing system. In addition to resource discovery speed and cost (i.e.,
efficiency), the ability to accurately locate all satisfying resources (i.e., fidelity) is also an important metric for evaluating service quality.
Previously, a number of resource information service systems have been proposed based on Distributed Hash Tables (DHTs) that offer
scalable key-based lookup functions. However, these systemseither achieve high fidelity at low efficiency, or high efficiency at low fidelity.
Moreover, some systemshave limited flexibility by only providing exact-matching services or by describing a resource using a pre-defined
list of attributes. This paper presents a resource information service that offers high efficiency and fidelity without restricting resource
expressiveness, while also providing a similar-matching service. Extensive simulation and PlanetLab experimental results show that the
proposed service outperforms other services in terms of efficiency, fidelity, and flexibility; it dramatically reduces overhead and yields
significant enhancements in efficiency and fidelity.

Index Terms—Resource sharing systems, collaborative cloud computing (CCC), grid computing, resource information service, resource
discovery, distributed hash table (DHT)

1 INTRODUCTION

A large-scale resource sharing system (e.g., collaborative
cloud computing and grid computing) creates a virtual

supercomputer by providing an infrastructure for sharing
tremendous amounts of resources over the Internet. Grid
computing has dramatically evolved from its roots in science
and academia, and is currently at the onset of mainstream
commercial adoption. With the tremendous development of
cloud computing [1], collaborative cloud computing (CCC)
[2], [3] has been proposed to connect a large number of clouds
as an alliance that come together to share resources in order to
better respond to large-scale application requirements. CCC
canhandle the situationwhen a single cloud is not sufficient to
provide sustainable high-quality service to some applications
with demand for scalable resources orwhen researchers want
to build a virtual lab environment across geographical distri-
bution of physical hosts [2]. For example, cloud customer
Dropbox had around 100 million users in 2012, and around
50 million users in 2011, which is three times the number of
2010. As a cloud may be overloaded during peak periods and
stay idle in time periods with few service requests, it is prom-
ising to integrate many dispersed clouds from different cor-
porations and organizations to fully utilize cloud resources.

The large-scale resource sharing systemmakes possible the
sharing of a variety of resources including CPU time, storage,
memory, network bandwidth, software, data (books, music,
videos) and devices distributed over a wide area. A comput-
ing resource (e.g., virtual machine) is described by a set of
attributes such asCPUspeed,memory,OSversion anddevice
name.Adata resource also canbedescribedbya fewkeyword
attributes. For example, if a node (i.e., physical machine)
needs a resource with attributes “ ”,
“ ”, and “ ”

for a computing task, how can it quickly discover the required
resources with low overhead?

Since resource discovery is an indispensable function in
large-scale resource sharing systems, resource information
services are a crucial component, as they collect resource data
and provide resource search functionality in order to bridge
resource providers and requesters. However, an effective
resource information service must meet three challenges. The
first challenge is achieving high efficiency in an environment
characterized by large-scale, geographically scattered re-
sources and dynamics. In such an environment, millions of
heterogeneous resources are scattered across geographically
distributed nodes, resource utilization and availability are
continuously changing, and nodes enter or leave the system
unpredictably [2], [4]. The second challenge is guaranteeing
thehighfidelity of resource location. Fidelitymeans the ability
to locate all resources in the system that satisfy a resource
request. It is defined as the true positive rate of the located
resources, i.e., the total number of satisfying resources located
divided by the total number of satisfying resources in the
system.Amethodwith higher fidelitymisses fewer satisfying
resources in the system. The third challenge is achieving
flexibility. Flexibility means the ability to allow nodes to

• H. Shen and Y. Lin are with the Department of Electrical and Computer
Engineering, Clemson University, Clemson, SC 29634.
E-mail: {shenh, yuhual}@clemson.edu.

• T. Li is with Wal-mart Stores Inc., Bentonville, AR 72716.
E-mail: dragonflyting@hotmail.com.

Manuscript received 23 Apr. 2013; revised 27 Aug. 2013; accepted 04 Nov.
2013. Date of publication 19 Nov. 2013; date of current version 16 Jan. 2015.
Recommended for acceptance by T. Gonzalez.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.222

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015 353

0018-9340 © 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

specify their desired resourceswith unlimited expressiveness,
and to conduct similar-resource searching rather than exact-
matching searching. A resource information service lacks
flexibility if it predefines the attributes for use in resource
discovery. Similar resources are resources with similar
resource descriptions. Resource descriptions with more com-
mon attributes have higher similarity.

Current resource discovery approaches in clouds [5]–[8]
and traditional approaches for grids operate in a centralized
manner [9]–[12]. Resource providers report their available
resource information to a resource information server (one or
several brokers), and then resource requesters contact the
server for their desired resources. These centralized
approaches are insufficiently scalable due to bottlenecks and
single point of failure. The information server can be over-
loaded in a large-scale system, leading to service inefficiency;
in turn, the entire resource discovery mechanism will fail.

To handle the high efficiency and scalability challenge in
the large-scale resource sharing systems, distributed Hash
Tables (DHTs) [13]–[18] provide an attractive solution for
resource information serviceswith their inherent properties of
high scalability, self-organization and fault-tolerance in large-
scale distributed systems. However, most previous DHT-
based resource information service systems either achieve
high fidelity at low efficiency or achieve high efficiency at
low fidelity. Moreover, the systems have limited flexibility by
only providing exact-matching services or describing a re-
source using a pre-defined attribute list.

One group of DHT-based systems [19]–[23] separate the
attributes of a resource and map the resource into a DHT
overlay based on each attribute.We call this group of resource
information systems “direct mapping”. Since all resource
information containing a specific attribute is stored in one
node, the approaches result in load imbalance among nodes,
and lead to high costs for resource searching among a huge
volume of information. When a requester searches for a re-
source, it searches for each attribute of the resource and then
merges the results. For an -attribute resource, these ap-
proaches need pooling messages, memory for storing
pieces of information, and messages for querying the re-
source. In addition, the requester receives all resource data
pertinent to an attribute in its query, and needs to derive the
information of required resources with a merging operation,
despite the fact that the requester might be interested in only a
subset of the data. Though these approacheshavehighfidelity,
they incur ahighoverhead for resourcepooling, searching, and
merging. Also, direct mapping systems only provide an exact-
matching service, though it is oftenmore appropriate for a user
to formulate search requests in less precise terms, rather than
defining a sharp limit. A similar-matching service not only
provides thisflexibility but alsohelps to reduceoverhead, since
a requester only receives the information of similar resources.

Another group of resource information systems [24] com-
bines all attributes of a resource into a single key, and then
maps the resource to the key’s owner in a DHT overlay. We
call this system “one-point mapping”. For an -attribute
resource, this system needs one pooling message, memory
for storing one piece of information, and one message for
querying the resource. Unlike direct mapping, this system
generates much lower overhead. However, converting a
number of attributes into a single key may not accurately

preserve the similarity between the sets of attributes, espe-
cially when there are a large number of attributes in a
resource. Thus, two similar resources may create totally
different keys. As a result, many similar resources cannot be
located in response to a request. One-point mapping systems
offer high efficiency at the cost of low fidelity.

Recently,weproposedPIRD [25] resourcediscoverymech-
anism, which weaves all attributes into a set of indices using
locality sensitive hashing (LSH) [26], [27] and then maps the
indices to a DHT overlay. It reduces overhead and yields
significant improvements in the efficiency of resource dis-
covery. Both PIRD and the one-point mapping system have
limited flexibility with restricted expressiveness. They build a
multi-dimensional space with each attribute as a coordinate.
Users’ requested resource attributes are confined to prede-
fined resource attributes, impeding the flexibility of new
resource attribute creation.

This paper presents an LSH-based resource information
Service (LIS) that combines efficiency, fidelity, and flexibility.
LIS offers high efficiency and fidelity without restricting re-
source expressiveness, while providing a similar-matching
service. It aims to achievehigh efficiency,fidelity andflexibility.
We propose three algorithms to transform a resource descrip-
tion to a set of integers. We further build LSH functions by
combining the algorithms with min-wise independent permu-
tations [28]. The hash functions generate a set of IDs for a
resource that preserves the similarity of resources without
requiring a pre-defined attribute list. Based on the generated
IDs, LIS stores the resource information into a DHT overlay.
Relying on the DHT object location protocol, requested re-
source information can be efficiently discovered. LIS also offers
flexible resource expressiveness and a similar-matching service
that enables users to discover similar resources. LIS also in-
corporates a load balancing algorithm to balance the load for
storing resource information and processing resource requests.
Note that LIS can be applied to large-scale resource sharing
systems that connect large-scale distributed resources for shar-
ing resources including grids and CCC.

The rest of this paper is structured as follows. Section 2
presents a concise review of representative resource discovery
methods. Section 3 presents an introduction to DHT overlays,
LSH construction, andLIS. Section 4 shows the performance of
LIS in comparison to other systems using a variety of metrics
and analyzes the factors affecting information service quality.
Section 5 concludes this paper with remarks on future work.

2 RELATED WORK

DHT overlays [13]–[15] provide an attractive solution for
large-scale resource information services due to their scalabil-
ity, reliability, and dynamic-resilience. Many DHT-based
resource information services have been previously proposed
for grids. In DHT-based direct mapping systems, some sys-
tems adopt one DHT for each attribute, and process resource
queries at the same time in corresponding DHTs [21], [22].
Thus, if a system has resource attributes, the information
service needs DHT overlays. Depending onmultiple DHTs
for resource discovery leads to high maintenance overhead
for DHT structures. Another group of resource information
services [19]–[23], [29], [30] organizes all resource information
into one DHT overlay. In this group, attributes of a resource

354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

are separated, and the resource information of each attribute
is pooled in a DHT node. This strategy results in load imbal-
ance among nodes, and leads to high costs for searching
among a huge volume of information in a single node. In
most directmapping systems, when a requester searches for a
resource, it searches for each attribute of the resource and then
merges the results. As indicated previously, these methods
generate high costs for information storage and location and
only provide an exact-matching service. Also, they provide
high fidelity, but at the cost of low efficiency.

Schmidt and Parashar [24] proposed a dimension reducing
indexing scheme for resource discovery. They built a multi-
dimensional space with each coordinate representing a re-
source attribute. Fig. 1 shows an example of a 3-dimensional
keyword space. The resources are viewed as base- numbers,
where is the total number of attributes in the grid system. This
method projects a multi-attribute resource to a point in the
multi-dimensional space. The dimension reducing indexing
scheme then transforms the multidimensional resource attri-
bute to one dimension using a space-filling curve (SFC) [31],
while still preserving the similarity between the resources. The
system then maps the resource point to a DHT node. This
guarantees that all existing resources that match a query are
foundwith bounded costs in terms of the number of messages
and nodes involved. However, the scheme is not effective in
discovering satisfying resourceswhen there are a large number
of attributes because of the degrading performance of SFC
dimension reduction in a highdimensional space. Thismethod
offers high efficiency but at the cost of low fidelity.

Our previous work [25] proposed PIRD, a DHT-based re-
source discovery mechanism in Internet-based distributed sys-
tems. PIRD builds a multi-dimensional space as in [24]. A
resource has a vector, the size of which is the number of
dimensions. PIRD relies on an existing LSH technique in Eu-
clidean spaces [32] to create a number of IDs for a resource, and
then maps the resource to DHT nodes. In a system with a
tremendous number of resource attributes, PIRD leads to dra-
matically high memory consumption and low efficiency of
resource ID creation due to long resource vectors. Recognizing
this drawback,we further developed optimizedPIRD (OPIRD),
using the LZW dynamic compression algorithm [33] to reduce
the size of resource vectors. However, the compression comes
with extra cost for conducting the algorithm.

Since one-pointmapping [31] and PIRDbuild a pre-defined
attribute list, they are not sufficiently flexible in dealing with
new attributes. To overcome this problem, our proposed LIS
builds new LSH functions to transform resources to resource
IDs, which does not require a pre-defined attribute list. Thus,
LIS significantly reduces memory consumption and improves
the efficiency of resource ID creation. More importantly, LIS
ensures fidelity for discovering resources in an environment
with a significant number of resource attributes.

There are a few works for resource discovery in clouds.
Nordin et al. [5] used a cloud resource broker for goal-based
requests in medical applications. The resources are defined as
data storage, computer operating system, CPU speed, etc. The
brokerdiscovers satisfyingmachinesandallocates themtousers
based on their different quality of service (QoS) requirements in
order tomaximize/optimize allocationof resources to theuser’s
desired goal(s). Goscinski et al. [6] used a number of brokers to
map resource/service providers and clients. The resource pro-
viders report their dynamic attributes (i.e., current state and
characteristic of cloud services and resources) to the brokers.
Clients tell the brokers their preferences for resources/services.
The brokers then publish the information of satisfying re-
sources/services from the providers to the clients. Sun et al.
[7] proposed amodel for discovering cloud resources in amulti-
provider environment, which hides the complex implementa-
tion details from the resource providers. In this model, cloud
resources are described with different attributes such as hard-
ware specification and storage capacity, client requirements are
translated into a set of constrains, and a client request ismapped
toasetof resources.Yanetal. [8]producedadistributedcontent-
based publish/subscribe system for resource discovery in
clouds. In this system, resource providers act as publishers,
resource discovery clients act as subscribers, and brokers push
providers’ messages containing satisfying resources to the cli-
ents. These cloud resource discovery methods that rely on
broker(s) are not scalable for large-scale resource discovery due
to their centralized manner, while the distributed manner and
high-scalability of our DHT-based LIS enable it to meet the
requirements of the large-scale resource sharing environment.

3 EFFICIENT, FLEXIBLE, AND HIGH-FIDELITY
RESOURCE INFORMATION SERVICE

The goal of LIS is to provide a resource information service
with low overhead and high efficiency, fidelity, and flexibi-
lity. A critical function of the service is to translate resource
descriptions into IDs (which are numerical values) in a locality
preservingmanner. That is, the same resource descriptions are
translated to the same IDsandsimilar resourcedescriptionsare
translated to close IDs, facilitating similar resource searching. If

< , we say that is closer to
than . Unlike the previous systems, LIS does not need to
form a unified multi-dimensional space consisting of all re-
source attributes for resource translation. Thus, it avoids the
complexity of maintaining such a multi-dimensional space,
and reduces the memory for storing long resource vectors.
More importantly, it avoids the curse of dimensionality [26]
and can preserve higher locality in resource translation. Spe-
cifically, we propose three algorithms that can transform a
resource attribute to an integer in a similarity preserving (i.e.
locality preserving) manner. We then develop LSH functions
by combining the algorithms with min-wise independent
permutations. The hash functions translate a resource descrip-
tion to a set of IDs, which help to store and query the informa-
tion of the resource in a DHT overlay. The DHT overlay is
formed by all nodes in the large-scale resource sharing system.

3.1 Resource Attribute Transformation
Note that a resource description consists of a set of attributes
(including values). To transform each attribute of a resource

Fig. 1. A 3-D keyword space.

SHEN ET AL.: COMBINING EFFICIENCY, FIDELITY, AND FLEXIBILITY IN RESOURCE INFORMATION SERVICES 355

into an integer, we propose three attribute transformation
algorithms with similarity preserving features for each attri-
bute. Consistent hash functions such as SHA-1 [34] arewidely
used inDHTnetworks to generate node orfile IDs due to their
collision-resistant nature. Using this hash function, it is com-
putationally infeasible to find two different messages that
produce the samemessage digest. The first attribute transfor-
mation algorithm, denoted by SHA, applies a consistent hash
function on each attribute of a resource to change the resource
description to a resource vector. For example:

resource description : Memory 512 MB CPU 2 GHz
resource vector : 1945 6281 214 2015.
Because of the collision-resistant nature of the consistent

hash function, the same attributeswill be transformed into the
same integers. Thus, SHA preserves the similarity between
resource descriptions to a certain extent. However, the SHA
algorithm can only offer exact attribute matching service, but
cannot provide similar attribute matching service. For exam-
ple, it generates different values for ‘MEM” and “Memory”.

The second attribute transformation algorithm, denoted by
Alphanumeric, reliesonanalphanumeric list to changea resource
attribute into an integer. As shown in Fig. 2, each resource
attribute is representedby a 36-bit binarynumber. Todetermine
the integer of a resource attribute, the attribute ismapped to the
alphanumeric list. If the attribute does not contain the letter or
digit in a bit position of the list, it has 0 in this position. If the
attribute contains the letter or digit in a bit position of the list, it
has the number of occurrences in this position. For example, the
resource vector of “Memory 512 MB CPU 2 GHz” is:

000010000000201001000000100000000000
010000000000100000000000000110010000
001000000000000100001000000000000000
000000110000000000000000010010000000.
This algorithm provides a certain degree of attribute simi-

larity preserving. For example, “MEM” and “Memory” will
have similar values. However, since the alphanumeric trans-
formationworks by counting the frequency of alphabetic and
numerical characters in a resource attribute, the attributes
with similar character frequency (e.g., 112 and 211) would be
regarded as similar attributes. Note this alphanumeric trans-
formation only provides an approximation method in pre-
serving the closeness of resource descriptions. LIS has a final
filtering operation to filter out false positives in discovered
resources. Also, if the difference of integers is used to evaluate
the degree of similarity between resources, the characters in
higher significant bit positions have higher weights. We
propose the third algorithm that gives the characters in the
alphanumeric list the same importance when checking the
similarity between resources. Note that value attributes actu-
ally need to distinguish the weights of different digits. The
alphanumeric list already regards the digits as numerical
characters and fills them into the numerical character list.
Then, we also rely on the final filtering operation to filter out
false positives caused by the different weights of numerical

characters in numerical attributes. The third algorithm com-
bines the Alphanumeric algorithm with a Hilbert space-filling
curve (SFC) technique [31], denoted by Hilbert. The alphanu-
meric list can be regarded as a 36-dimension Cartesian space
with each letter or digit representing a dimension. SFC maps
points in the 36-dimensional Cartesian space into a domain of
real numbers such that the closeness relationship among the
points is preserved. This mapping can be regarded as filling a
curve within the -dimensional space until it completely fills
the space. The -dimensional space is partitioned into
grids of equal size (controls the number of grids used to
partition the -dimensional space), and each point is num-
bered according to the grid into which it falls. Briefly, Hilbert
applies theHilbert SFC hash function to the integer generated
by the Alphanumeric algorithm. For example:

resource description : Memory 512 MB CPU 2 GHz
resource vector : 19 61 24 15.
Since the same resource attributes are transformed into the

same integers, and more similarly described attributes (e.g.,
Mem and memory) are transformed to closer integers, Hilbert
provides similarity-preserving resource attribute transforma-
tion. In addition, Hilbert has better similarity preserving capa-
bility than Alphanumeric because it assigns the same weight to
all bits in the intermediate 36-bit number when generating the
final integers. The attribute transformation algorithms treat all
attributes equally, and we leave the consideration of the
different importance of attributes to our future work.

3.2 Locality-Sensitive Resource Translation
Using the introduced attribute transformation algorithms and
min-wise independent permutations [28], we develop new
LSH functions that do not need apre-defined attribute list.We
use SHA-LIS, Alpha-LIS andHilbert-LIS to represent the new
LSH functions combining SHA, Alpha and Hilbert with min-
wise independent permutations respectively.

In the following, we first introduce the definitions of locality
sensitive hash functionsandmin-wise independent permutations.We
then explain how to usemin-wise independent permutations to
constructanewLSHfunction.Finally,weexplainhowtouse the
attribute transformation algorithms introduced in Section 3.1 to
transform resource attributes to values, which then enable the
operation of the min-wise independent permutations. As a
result, the new LSH function can be directly applied to a
resource description to translate it to hash values (i.e., IDs).

Definition 1. A family of hash functions F is said to be a locality
sensitive hash function family corresponding to similarity
function if for any two sets and from the
domain of hash functions, we have:

F

where is probability and is a similarity
function [35], [36].

Definition 2. Let be a list of numbers and be the set of all
permutations of . F is min-wise independent if for any
set and ,when permutation is chosen at random
in F ,

Fig. 2. The Alphanumeric attribute transformation.

356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

where is the minimum function that selects the
minimum value in . In other words, all the elements of
any fixed set have an equal chance of becoming the
minimum element of the image of under [28].
Min-wise independent permutations provide an elegant

construction of an LSH functionwith the Jaccard set similarity
measure:

For example, the similarity between and , where
, and
, is .

By combining formulas (2) and (3), we get:

F

Based on Definition 1, is an LSH function.
As the work in [28], LIS defines the min-wise independent

permutations as:

where and are random integers, < and ,
and is a large prime number that is greater than the hash
value space of the attribute transformation algorithms.
Because the permutations can only be performed on values
rather than attributes but a resource description consists of
attributes, we combine an attribute transformation algorithm
and themin-wise independent permutations to build a locality
hash function. Given a resource description , using one of the
previously introduced attribute transformation algorithms,
LIS converts into , where
is an integer and is the number of attributes in the resource
description. An LSH function is constructed as:

Thehash result is theminimumof thepermutation results of
the elements in . Given two resource descriptions and ,
we first convert them to and . Then,
iff where represents the inverse of .

also means that . Because
is a random permutation, each element in is equally

likely to be . Then, we can get that
occurs with probability . Recall that the
attribute transformation algorithms preserve the similarity
between and after they are converted into and
respectively, then the probability

. Therefore, is an LSH
function for resource vectors since

Let’s use an example to see how transforms a resource to
a hash value. Given a resource description “Memory
512 MB CPU 2 GHz”, an attribute transformation algorithm
translates the resource description to resource vector “19, 61,
24, 15”. Then, hash function is applied to the vector. That is,

where . If ,

Algorithm 1 Pseudo-code for locality-sensitive resource
translation

n.generateID ()

//build min-wise independent permutations

Generate groups of random integers and

//transform attributes to integers

for each attribute in a resource description do

Use an attribute transformation algorithm to

transform the attribute to integer

endfor

//generate hash values for a resource using

for each and do

for each do

endfor

endfor

//generate IDs for a resource using XOR

for to do

for each do

is a XOR operation

endfor

endfor

Fig. 3 illustrates the process of the LIS operation. To build a
family of hash functions F , LIS makes groups of hash
functionswith each group having numbers of . Applying
the hash functions to a resource vector , we get
buckets with each bucket having hash values. A bucket
represents a group of hash values generated by

. LIS then executes an XOR operation on the values in
eachbucket to obtain afinal hashedvalue.Consequently, each
record has numerical hash values, denoted by IDs.

Fig. 3. Process of the LIS operation.

SHEN ET AL.: COMBINING EFFICIENCY, FIDELITY, AND FLEXIBILITY IN RESOURCE INFORMATION SERVICES 357

where and is the length of the P2P key space.
Similar groups of are transformed to close
IDs byXORing their hash values; hence, the XORoperation
preserves the similarity in this hashing step. Algorithm 1
shows the pseudo-code for the locality-sensitive resource
translation in LIS. Consequently, similar resources have close
IDs. The IDs of a resource are its final keys for storing and
searching the resource information in a DHT overlay.

In the one-point mapping and PIRD resource information
systems, the size of each resource vector equals the number of
all resource attributes in the system before hashing. It leads to
high memory consumption and inefficiency for hashing. In
contrast, LIS does not require that all resource vectors have the
same dimension, so the size of a record’s vector equals the
number of attributes in the resource description. Thus, LIS
reducesmemory consumption and enhances efficiency.On the
other hand, the direct mapping resource information systems
apply a consistent hash function to each resource attribute in
order to generate an integer in the resultant resource vector,
and then map the resource to a DHT overlay based on each
integer. Thismethod generatesmanymessages for storing and
searching resources that consist of a large number of attributes.
Also, merging many located resources for satisfying resources
generates high overhead. LIS maps a resource to nodes
regardless of the resource vector size while enabling users to
search for resources similar to the queried resource.

3.3 DHT-Based Resource Information Service
LIS is built on top of a DHT overlay formed by all nodes in the
system to achieve multi-attribute resource searching. In the
above sections, we introduced how to translate resources to
IDs. Using these resource IDs, resource providers store the
information of their available resources to the DHT, and re-
source requests will be forwarded to the DHT nodes storing the
information of the required resources. Thus, the DHT functions
as a matchmaker between resource providers and requesters.

ADHToverlay is a decentralized system in the application
level that partitions ownership of a set of objects among
participating nodes and can efficiently route messages to the
unique owner of any given object. DHTs have maintenance
mechanisms to handle node joins and voluntary departures.
However, if an owner fails withoutwarning, the objects stored
in the owner are lost. Object replication is a strategy to handle
this problem, in which an object is stored in multiple nodes to
avoid losing objects [37]–[39]. We use Chord [13] as a repre-
sentative of DHT overlays to explain the LIS resource informa-
tion service. Chord achieves a time complexity of per
lookup request by using neighbors per node, where

is the number of nodes in the overlay. Each object or node is
assigned an ID (i.e., key) that is the hashed value of the object
name or node IP address using a consistent hash function [34].
An object’s successor node is the node whose ID equals or
immediately succeeds the object’s ID. An object is assigned
to its successor node in the ID space. For example, in Fig. 3,
if two objects have IDs 90 and 100, they will be stored in node

. The overlay network provides two main functions:
Insert key object and Lookup key , to store an object to
a node responsible for the key and to retrieve the object,
respectively. The message for the two functions is forwarded
fromnode to node based on theDHT routing protocol through
the overlay network until it reaches the object’s owner.

We represent the resource predicate of a resource in the
form of < > , where denotes the resource
description vector and is the IP address of the resource
owner. By using the resource IDs as DHT keys, the resource
predicate of a resource is indexed into the DHT overlay. For
instance, using our developed LSH function, a node produces
IDs for its resource “Memory 512 MB CPU 2 GHz Band-

width 10 Mbps”, . It then uses

< >

to insert the predicate of the resource to the DHT overlay.
Consequently, the resource predicate is stored in nodes in
the DHT overlay.

Algorithm 2 Pseudo-code for storing resource predicates

n.storeResc ()

generateID();

for each do

Executes Insert < >

endfor

In LIS, each node periodically inserts the predicates of its
available resources into the DHT system. Due to the similari-
ty-preservation of our developed LSH functions, the predi-
cates of similar resources will be stored in the same or close
nodes. This facilitates similar resource searching in the re-
source information service. Algorithm 2 shows the pseudo-
code for storing resource predicates in LIS. Note that for two
resource vectors and ,

H

This resource predicate storing method can store the
predicates of similar resources in the same nodes with
probability [32]. The probability that two re-
source vectors do not have the same ID after the operation on
one bucket is . The probability that they do not have the
same ID after the operations on all buckets is . Thus,
the probability that they have at least one same ID is

.
A resource query is also represented by a resource descrip-

tion. For example, a typical query “Memory512MBCPU2GHz
Bandwidth10Mbps”specifiesacomputer resourcewith512MB
memory, 2 GHz CPU and 10 Mbps bandwidth. The expected
results of a query are the resource predicates of a complete set of
resources thatmatch theuser’s query. TheDHT lookupprotocol
guarantees that an object can be located in hops.

Algorithm3 shows the pseudocode of resource querying in
LIS. For example, let be a query’s resource vector. Resolv-
ing the query means locating the resources whose vectors are
similar to . LIS first produces IDs from using the our
LSH function. Note that the query and the vectors of similar
resources are hashed to the same IDs with high probability
(i.e., . Thus, by using these IDs as the DHT keys
in the function , the resource request-
er will receive the predicates of its desired resources from the

358 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

destination nodes. This means that a query can be answered
by only consulting a small number (i.e.,) of nodes.

Algorithm 3 Pseudo-code for resource querying

n.discoverResc ()

generateID();

for each ID[i] do

Executes lookup ID i

endfor

Receive replies from all destination nodes

Merge the predicates in all responses that satisfy the query

Request resources from resource owners

Assume and resource “Memory512MBCPU2GHz”
has IDs 10, 200, and 500 after applying our developed LSH
function. In Fig. 3, the resource predicate of the resource will
be stored in nodes , , and by Insert . When a
node needs resource “Memory 512 MB CPU 2 GHz”, it first
generates the IDs of the resource using our developed LSH
function, which are 10, 200, and 500. It then sends requests
Lookup using the IDs as targets. The three requests will be
forwarded to nodes , , and which will then
respond to the resource requester of its queried resources.

Since similar resources have close IDs, the nodes close to
the destination nodes can be searched in order to avoid
missing similar resources. Thus, a range value, , is deter-
mined and the nodes with IDs in are que-
ried during resource searching. Specifically, when a node
receives a query, it forwards the query to its successor and
predecessor, which will further forward the query to their
successor andpredecessor respectively, until the node ID is no
longer in the range . In the example, if ,
then the nodes whose IDs are in [8], [12], [198,202], and
[498,502] will be searched. After node receives the query,
it forwards the query to node and . further forwards
the query to , and further forwards the query to .
Each query receiver sends the information of resources with
IDs in to the resource requester.

After receiving responses from all destination nodes, the
requester merges the replies. In order to remove unsatisfying
resources, the requester executes a filtering operation. It
calculates the similarity between each received resource and
the queried resource. The resourceswhose similarities are less
than the threshold specified by the resource requester are
removed. Finally, the requester chooses the resources match-
ing its requirements.

LSH has two important parameters: and . represents
a tradeoff between the time spent computing hash values and
the time spentfiltering false positives in returned information.
Given , an optimal value of is found that ensures that the
number of false positives is no more than a user specified
threshold [40]. Larger values requiremorememory forhash
tables and more time for computing hash values but lead to
fewer false positives and hence shorter filtering time and vice
versa. It is desirable to set a value for that reduces memory

consumption and hash value computing time andmeanwhile
reduces the time for filtering false positives. For more details
about the tradeoff performance, please refer to [41].

We can further consider the resource cost in the resource
information service in the large-scale resource sharing sys-
tems, where a node needs to pay for the resources from
another node it consumes. We can also take into account the
resource quality and location in the resource information
service as in [42]. The quality of a resource is measured by
the reputation feedback of the consumer of this resource.
When a node reports its available resources, it adds the
resource cost and location into the resource predicate. When
a node requests for a resource, it specifies the requirements on
cost, quality and location. Then, when the destination node
receives the resource request, it only returns the resource
information matching the requester’s specified requirements.

3.4 Load Balancing
The resource predicates are distributed among nodes based
on their IDs. Each node is responsible for handling the
resource queries for the resource predicates stored in the
node. Thus, each node’s overhead for handling resource
queries is proportional to the number of resource predicates
stored in the node. Though the capacity metric of a node in
practice should be a function of the node’s storage space,
bandwidth, CPU, and so on [15], [43], as the works in [44]–
[48], we assume that there is only one bottleneck resource for
optimization and that each node devotes a certain capacity for
handling resource queries, denoted by . We use to denote
the overhead caused by received resource queries. To avoid
overloading anynode,weaim to achieve < for everynode
via a load balancing algorithm.

Normally, in a load balancing algorithm, each node peri-
odically measures its load. If it is lightly loaded (i.e., >), it
calculates its extra capacity , and if it is over-
loaded (i.e., >), it calculates its extra load .
Each node periodically reports its load status (i.e., or)
to one repository node or a number of repository nodes. The
repository node(s) match the and and notify corre-
sponding heavily loaded nodes to move the load (i.e., stored
resource predicates) to matched lightly loaded nodes.

A load balancing algorithmwith only one repository node
is a centralized algorithm. As the centralized repository node
can easily become a bottleneck, centralized algorithms are not
suitable for large-scale resource sharing systems. We thus
employ a decentralized algorithm that uses all nodes in the
system as the repository nodes for load balancing. Specifical-
ly, nodes report their load status in the bottom-up fashion of a
tree. Each information receiver (i.e., parent) conducts match-
ing between and , and reports unresolved and
remaining to its parent. As the load status information
flows upwards, the extra load from heavily loaded nodes is
moved to lightly loaded nodes. Finally, the tree root conducts
the matching and the entire system reaches load balance.

Suppose the ID space of the Chord DHT is . The tree
root is the node whose ID is closest to . Then, the ID space is
partitioned into two parts and . Each part is
partitioned into parts, and the nodes whose IDs are closest to
the middle point of each partition become the children of the
root.Thisprocess repeatsuntil eachpartitionhasnomore than

SHEN ET AL.: COMBINING EFFICIENCY, FIDELITY, AND FLEXIBILITY IN RESOURCE INFORMATION SERVICES 359

IDs. In this way, each node can calculate the ID closest to its
parent’s ID. Through theDHT lookup(ID, loadStatus) function, a
node cansend its loadstatus to itsparent.After aparent receives
the load status information, it orders the and informa-
tion in a descending order, fetches each , and finds that
is no less than . It then notifies the node of to move its
extra load to the node of . The child-parent forwarding
operations complete by steps in the tree. The load balanc-
ingoperation stopswhen the root node completes thematching
process and the algorithm is executed periodically.

After a heavily loaded node moves its extra load (i.e.,
stored resource predicates) to a lightly loaded node , node
creates an index indicating the resource predicate IDs and the
IPaddress of node .Whennode receives resource queries for
the moved resource predicates, it forwards the queries direct-
ly to node using ‘s IP address. Node then handles the
queries and responds to the resource requesters.When node
becomes heavily loaded later on, it may further move the
resource predicates from node to a lightly loaded node, say
node , in the load balancing operation. In this case, node
notifies node to update its index to point to node . Thus,
node that originally stores the moved resource predicates
always maintains an index pointing to the final location of
these resource predicates, which generates only one extra step
in the resource querying process.

4 PERFORMANCE EVALUATION

Wedesigned and implemented a simulator for the evaluation
of the LIS resource information service. We compared LIS
with a direct mapping system, a one-point mapping system,
and PIRD/OPIRD [25] in terms of overhead, efficiency, and
fidelity. We used MAAN [19] as the direct mapping system
and SFC [24] as the one-point mapping system.

The number of nodes in Chord was set to 2,048. The total
number of attributes in the system was set to 20,591, and the
total number of resources was set to 10,000. The number of
resource queries was set to 100 unless otherwise specified. We
set and in LIS unless otherwise specified. These
values achieve relatively short time for both hash value com-
puting andfiltering false positives. The number of attributes in
a resource description and a resource query was set to 9. We
include some of the experimental results in [25] for reference.

4.1 Overhead
Resource predicates stored in a node include resource vectors
and IDs. Fig. 4(a) shows the total memory consumption in
bytes for resource vectors and IDs.We see that SFC and PIRD

consume prohibitively more memory for resource vectors.
They regard each resource attribute as a dimension in amulti-
dimensional space, which makes the size of a resource vector
equal the number of total attributes in the system. OPIRD
reduces the resource vector size by using a compression
algorithm. By transforming each attribute in a resource, LIS
and MAAN generate a resource vector, the size of which
equals the number of attributes in the resource. As a result,
they consume much less memory for vectors. The figure also
shows that for resource IDs, SFC leads to the least memory
consumption andMAANleads to themost. This is because for
an -attribute resource, MAAN produces IDs and LIS pro-
duces five IDs, while SFC produces one ID. We see that the
total memory consumption follows >

> . This result confirms the drawback
of SFC and PIRD/OPIRD in building a multi-dimensional
space for resource vector, and the advantage of LIS without
building such a multi-dimensional space.

Fig. 4(b) shows the total number of resource predicates
stored in the system versus the number of resources. We see
that LIS/PIRD/OPIRD generate fewer resource predicates
than MAAN. LIS/PIRD/OPIRD change each resource to
hash values regardless of the resource vector size. Therefore,
each resource needs routingmessages for storing and search-
ing. MAAN hashes each attribute of a resource and stores the
resource predicate in a node. For an -attribute resource,
MAAN needs messages for storing and searching resource
predicates. Therefore, MAAN generates many resource pre-
dicates for a resource with many attributes. SFC and LIS/
PIRD/OPIRD weave all attributes of a resource into one and
five ID(s), respectively, and they need one and fivemessage(s)
for storing and searching a resource. Hence, SFC generates
fewer resource predicates than LIS. The experiment results
imply that LIS/PIRD/OPIRD need less node communication
than MAAN and more node communication than SFC for
resource pooling and querying. Tough SFC is cheaper in node
communication, this advantage is outweighed by its high
memory consumption and low fidelity of resource searches.

Fig. 4(c) plots the average, the 1st percentile, and the 99th
percentile of the number of resource predicates in a node. The
average is the total number of resource predicates divided by
the number of nodeswith resource predicates.We see that the
average number of resource predicates follows >

> . Due to the same reason as in Fig. 4(b), MAAN
generates more resource predicates than others. Our experi-
ment shows that SFC generates 258 different IDs, while LIS
generates 2,048 different IDs. Therefore, more balanced load
distribution among nodes makes LIS have lower average
number than SFC.We also see thatMAANexhibits the largest

Fig. 4. Overhead of different resource information services.

360 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

variance, and LIS exhibits the least variance. MAAN maps
resource predicates to a DHT overlay based on each attribute.
Some attributes appear very frequently while others are
infrequently used, leading to much more resource predicates
stored in some nodeswhile only a few stored in others. In LIS,
the widespread IDs help to distribute resource predicates
evenly. In addition, it creates much fewer predicates. There-
fore, its variance is not as significant as MAAN’s. SFC incurs
higher variance than LIS because it only relies on 258 out of
2048 nodes for all resource predicates. PIRD and OPIRD rely
on a multi-dimensional space with a large number of dimen-
sions togenerate resource IDs,whichmaydegrade the locality
preservation of hashing and generate more of the same or
similar IDs. Thus, they exhibit larger variance than LIS. We
also observe that Hilbert-LIS has slightly larger variance than
SHA-LIS and Alpha-LIS. This is because Hilbert-LIS depends
on SFC to produce resource IDs, leading to more of the same
or similar IDs. These experimental results show that LIS can
achieve a more balanced distribution of load due to resource
predicates maintenance and resource query response.

The study in [49] indicates that some attributes such asCPU
utilization and free memory change dynamically. Thus, re-
source owners need to update their resource predicates. We
tested theupdating costmeasuredby the total numberofupdate
messages when the resource attributes in the system dynami-
cally change. In this experiment, we randomly selected 5000
nodes. In each node, the number of resource attribute changes
was varied from 5 to 25 with 5 increase in each step. Fig. 4(d)
shows the updating cost in different systems versus the num-
berof resource attribute changes in eachnode.Wesee thatLIS/
PIRD/OPIRD generate lower updating cost than MAAN but
higherupdating cost thanSFC.Fig. 4(d)mirrors Fig. 4(b) due to
the same reasons. The experimental results indicate that LIS
produces acceptable updating cost for attribute dynamics.

Fig. 5 shows themedian, the 1st and 99th percentiles of the
number of resource predicates in a node with different num-
ber of nodes and resources, respectively. Fig. 5(a) shows that
the number of resource predicates in a node decreases as the
number of nodes increases. As more nodes are deployed in

Chord, the same load of storing resource predicates is distrib-
uted among more nodes, thus leading to less load on each
node. Fig. 5(b) shows that the number of resource predicates
in a node increases as the number of resources increases.More
resource predicates distributed among the same number of
nodes lead to more resource predicates in each node.

4.2 Efficiency and Fidelity
Recall that a range canbeused toquery resources fromnodes
with ID to avoid missing similar re-
sources. Fig. 6(a) plots the query processing latency of
SHA-LIS, Alpha-LIS and Hilbert-LIS when equals 0, 8, and
16 respectively. The query processing latency of a query is
measured from the timewhen the query results are receivedby
a requester to the time when the filtering completes. Query
processing latency reflects how fast requested resources can be
discovered, which affects the application performance.We see
that the latency increases as the range increases. A larger range
results in more located resources, which leads to a longer time
forfiltering unsatisfying resources.We also see that the latency
follows < < . The al-
phanumericmapping inAlpha-LIS takes a longer time than the
consistent hashing in SHA-LIS; thus,Alpha-LIS leads to longer
query latencies. Since Hilbert-LIS has one more step of Hilbert
hashing thanAlpha-LIS, it has longer latencies thanAlpha-LIS.

Fig. 6(b) depicts the query processing latency of different
services. It shows that MAAN leads to dramatically higher
queryprocessing latency thanothers. For aquery consistingof
attributes, MAAN generates queries and searches all re-
sources owning each attribute. Therefore,MAANneeds a very
long time topruneunsatisfying resources in themergingphase.
PIRD changes each resource to IDs, so it does not need a long
time to prune unsatisfying resources and generates less latency
thanMAAN. By compressing resource vectors, OPIRD greatly
reduces the latencyof PIRD. SFConlyproduces one ID for each
resource, leading to less latency than PIRD. However, SFC
needs a longer time for processing long resource vectors than
OPIRD. InLIS, the resourcevector size is equal to thenumberof
attributes in the resource description, so it produces the lowest
queryprocessing latency amongallmethods.This result shows
the benefits of avoiding building a multi-dimensional space to
produce resource IDs, and demonstrates that LIS outperforms
all others in terms of query processing latency.

Recall thatfidelity is definedas the total number of satisfying
resources located divided by the total number of satisfying
resources in the system. In the experiment, we use satisfying
resources of a resource query to represent all resources in the
system having more than 50% similarity with the query. We
canfindall satisfying resources for a query in the systemoffline

Fig. 5. Number of resource predicates.

Fig. 6. Efficiency and fidelity of different resource information services.

SHEN ET AL.: COMBINING EFFICIENCY, FIDELITY, AND FLEXIBILITY IN RESOURCE INFORMATION SERVICES 361

to calculatefidelity. Fig. 6(c) depicts thefidelity of each system.
Since the range querying results of PIRD, SFC, andMAANare
not comparable to the range querying results of LIS, we omit
these results. Additionally, PIRD exhibits higher fidelity than
OPIRD, so we omit the results of OPIRD. From the figure, we
see that MAAN produces the highest fidelity, while SFC
generates the lowest fidelity. Since MAAN finds all resources
that have each attribute in a request beforemerging, it does not
miss any satisfying resource in the system. SFC’s effectiveness
at locality preserving is degraded in a high dimensional space,
so it misses around 40% of the satisfying resources. In LIS,
similar resources are hashed to the same nodewith probability
of , so it misses about 7% of the satisfying
resources.MAANachieves high fidelity at the cost of dramati-
cally high overhead and high query latency. LIS achieves
relatively high fidelity at a significantly low overhead and
high efficiency. PIRD’s fidelity is not as high as those of
LIS and MAAN due to the curse of dimensionality. We also
observe that the fidelity follows > >

. This is due to their different algorithms to
transform resource attributes to integers. As the search range
increases, more satisfying resources are located, leading to
higher fidelity.

We then test the performance of the fivemethodswhen the
system has a large number of resources and the resource
queries contain variable number of attributes. Fig. 7(a) shows
the average query processing latency per resource query
when the number of resources was varied from 10,000 to
50,000 with 10,000 increase in each step. In this experiment,
the number of attributes in each query was randomly chosen
from the range of [5, 15] and the number of nodes was set
to 32,768. We see as the number of resources increases,
all three LIS methods and SFC produce similar query proces-
sing latency and they exhibit a small increase in query
processing latency, whileMAAN exhibits much higher query
processing latency and dramatically higher increase rate. LIS
produces five IDs and SFC produces one ID regardless of the
number of attributes in a resource query. However, more
resources in the system lead tomore returned resources for the
IDs of a query, leading to slightly longer time to prune
unsatisfying resources in the merging phase. In contrast, the
number of IDs of a query in MAAN equals the number of
attributes in the query, which is larger than those of other
methods. Also, MAAN finds all resources containing each of
the query attributes. As a result,MAANproducesmuchmore
returned resources for each query and it increases faster than
other methods as the number of resources increases.

From Fig. 7(b), we see that the fidelity of each algorithm
stays nearly constantwhen the number of resources increases.
Fig. 7(a) and (b) confirm that LIS maintains its high efficiency

and fidelity even with a large amount of resources in the
system and with a variable number of attributes in a query.

Fig. 8(a) shows the average processing latency for each
resource query when there are different number of attributes
in a query. in the figure means that the number of
attributes was randomly chosen from the range of .We
see that as thenumberof attributes in eachquery increases, the
query processing latency of MAAN increases significantly,
while those of other methods remain nearly constant. Due to
the same reasons as in Fig. 7(a), when the number of attributes
in each query increases, MAAN produces more returned
resources for each query and needs longer time to filter the
unsatisfying results, while the query latency of the other four
methods do not changes much. From Fig. 8(a) and (b), we can
see that the performance of LIS is not affected by the varying
number of attributes in each query.

We then studied the influenceof two important parameters
(and) on the performance of LIS. Fig. 9(a) and (b) show the
fidelity andquery processing latency for different values of ,
respectively.We see that a larger value requiresmore query
processing time but leads to higher fidelity. This is because
with more hash functions applied on a resource predicate,
similar resources have a higher probability to be hashed to the
same node. We also see that the increase rate of fidelity slows
down when increase, and is the optimal value that
achieves high fidelity and relatively low query processing
latency. Fig. 9(c) and (d) show the fidelity and query proces-
sing latency for different values of , respectively.We see that,
similar to the observations in Fig. 9(a) and (b), a larger value
requires more query processing time but leads to higher
fidelity. This is because a larger generates a larger number
of IDs for a resource predicate, then similar resources have a
higher probability to be hashed to the samenode. The increase
rate in fidelity slows down when increases, and is an
optimal value that achieves high fidelity with relatively low
query processing latency.

4.3 Similar Resource Searching
If a resource has more than 50% similarity with a query, we
call it satisfying resource; otherwise, false positive (i.e., unsa-
tisfying resource). Fig. 10(a) shows the number of located
satisfying resources and unsatisfying resources. We see that
PIRD locates many false positive resources. Because of long
resource vectors, PIRD may locate some resources which do
not have common attributes with the query. OPIRD reduces
its false positives to a certain extent but still generates much
more false positives than other methods. By hashing a re-
source to one ID, SFC generates much fewer false positives.
However, as a side effect, it misses more satisfying resources.

Fig. 7. Performance with a large number of resources in the system. Fig. 8. Performance with variable number of attributes in a resources
query.

362 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

SHA-LIS, Alpha-LIS, and Hilbert-LIS generate almost the
same numbers of false positives, which are slightly larger
than SFC’s and significantly less than PIRD/OPIRD’s.
Hilbert-LIS can locate more satisfying resources than
Alpha-LIS, which can find more satisfying resources than
SHA-LIS. We also see that MAAN locates the most satisfying
resources with no unsatisfying resources because it locates all
resources containing each attribute in the resource query.

Fig. 10(b) shows the number of discovered resource pre-
dicates of different LISmethodswith ranges equals to 8 and 16,
respectively. “Hilbert-LIS- “ represents Hilbert-LIS with
range , and so on with other methods. We observe that a
larger rangeenables thediscoveryofmore satisfyingresources,
but also locates more unsatisfying resources. The total number
of located resources in all algorithms is almost the same at each
range, andHilbert-LIS can findmore satisfying resources than
Alpha-LIS, which finds more satisfying resources than SHA-
LIS. This result is consistent with that in Fig. 10(a).

The next experiment evaluates the performance of similar
resource searching with . Fig. 10(c) shows the percent-
age of resources located among resources with different simi-
larities with the resource query in SHA-LIS, Alpha-LIS, and
Hilbert-LIS. It shows that thepercentagegrowsas the similarity
increases. This implies that all of the algorithms can locatemost
resourceswith high similarity andfilter out resourceswith low
similarity. Each algorithm can locate all resources with simi-
larity larger than 70%. SHA-LIS and Hilbert-LIS find all re-
sourceswith similarities between 60%and 70%with the query,
while Alpha-LIS discovers 71% of such resources. Thus, all LIS
algorithms perform effectively in similar resource searching.

We chose Hilbert-LIS as a representative of the three LIS
algorithms, and compared it with other resource information
services. The results are shown in Fig. 10(d). Since PIRD per-
forms better than OPIRD in similar resource searching, we
omit the results of OPIRD here. The figure shows that MAAN
always finds 100% of the resources in each group of resources
with different similarities due to the same reason explained
previously. Therefore, MAAN needs to filter out resources
with lower similarities in the filtering process, resulting in

higher overhead. In contrast, SFC locates no more than 25%
of the resources in each category. The effectiveness of SFC in
locality preservation decreases as the number of dimensions
increases. LIS locates more than 78% of resources with simi-
larities larger than 50%, and locates 50% of resources with
similarities between 30% and 40%. Though PIRD discovers all
resourceswith similaritiesbetween80%and100%, it onlyfinds
around 22% of resources with similarities between 60% and
80%.The results imply thatLIShashighperformance in similar
resource searching by filtering out resources with low similar-
ities and locating more resources with high similarities.

4.4 Load Balancing Algorithm
We then conducted experiments on the PlanetLab testbed in
order to test the methods in the real-world distributed envi-
ronment.We selected 100 PlanetLab servers across theworld,
placed the 2,048 nodes randomly on these servers. The capac-
ity of nodes followed the Pareto distribution [50]–[52] with a
minimum value of 25 and maximum value of 50, and a shape
parameter of 1. A nodewith capacity means that this node is
capable of storing and handling resource search requests.
The overload degree of a node is calculated by .

4.4.1 Overload Degree
Fig. 11(a), (b), and (c) show the Cumulative Distribution
Function (CDF) versus node overload degree with and with-
out the load balancing algorithm in the systems with Hilbert-
LIS, SHA-LIS and Alpha-LIS, respectively. We see that the
three figures show similar pattern.Without applying the load
balancing algorithm, in all the three methods, about 10% of
nodes suffer from overload. The load balancing algorithm
guarantees that the overload degree of all nodes does not
exceed 1. This result verifies the effectiveness of the load
balancing in handling the resource requests. Fig. 11(d) shows
the CDF versus node overload degree with and without the
load balancing algorithm in SFC. We see that many nodes in
SFC have 0 overload degree because it only stores resource
predicates on partial nodes, as explained previously. About
12% nodes suffer from overload without the load balancing

Fig. 9. Performance with different values of and .

Fig. 10. Performance in similar resource searching.

SHEN ET AL.: COMBINING EFFICIENCY, FIDELITY, AND FLEXIBILITY IN RESOURCE INFORMATION SERVICES 363

algorithm. With the load balancing algorithm, the load is
distributed more evenly and no nodes suffer from overload.
Fig. 11(e) shows the overload status for MAAN.

MAANmaps resource predicates to a DHT overlay based
on each attribute, leading to much more resource predicates
and higher overload degree. Without load balancing, about
25% nodes have overload degree larger than 1.5, and the
maximum overload degree equals 2.28. With load balancing,
about 12% nodes have overload degree larger than 1.5, and
the maximum overload degree equals 1.84. It is intriguing to
see that even with the load balancing algorithm, MAAN still
has overloaded nodes. This is because each resource has nice
attributes and hence has nice IDs. In LIS, each resource has
five IDs. With much more resource predicates, MAAN is
heavily overloaded and some overloaded nodes cannot find
lightly loaded nodes to offload their excess load.

4.4.2 Latency of Messaging
We built a 10-nary tree topology in the system for load
balancing. A child reports load status to its parent by the DHT
lookup function. A parent reaches its child by one hop to
notify it to move the load to another child. Fig. 12 shows the
CDF of the number of hops that a load status message or a
notification message has traveled. All messages of Alpha-LIS,
Hilbert-LIS, SHA-LIS and SFC traveled nomore than 15 hops,
while about 10% of messages need more than 15 hops in
MAAN. LIS generates five IDs and SFC generates one ID for
each resource, so their generated loads are generally not heavy
and available capacity for excess load can always be found
within a small number of hops. MAAN generates nine IDs for
each resource, so the system is overloaded andmessages from
overloaded nodes need to travel more hops to find available
capacities. Fig. 13 plots the time needed for messages to travel
through the tree. All methods approximately only need no
more than 3 ms. This result indicates that our proposed load
balancing algorithm only generates a very short latency.

Fig. 14 shows the total number of load transfers during the
load balancing process. As previously mentioned, the work-
load of MAAN is the heaviest, so it needs more transfers to
resolve excess workloads in the load balancing than other

strategies. SFC incurs the least workload and hence the least
number of transfers in load balancing.

The above experimental results show that our load balanc-
ing algorithm can balance load with limited latency and cost.
We then show its effectiveness in reducing resource query
latency. Fig. 15 shows the average query processing latency
per resource query for all five methods. When a node is
overloaded, a newly arrival request then waits in a queue
until the node has available capacity. We see that the load
balancing algorithm is effective in reducing the query latency;
this algorithm yields more than 0.011 ms improvement for
LIS, 0.013ms improvement for SFC and 0.08ms improvement
for MAAN which suffers from heavier load.

4.5 Efficiency on the PlanetLab Testbed
We then evaluate the efficiency of the resource information
services on the real-world PlanetLab testbed. We measured the
followingmetrics. 1) Querying/storing cost, which is defined as
the total number of routing hops of all messages for a query/
report in a DHT overlay; 2) Querying/storing distance, which is
definedas the total physical distances traveledby allmessages of
a query/report; 3)Querying latency,which is definedas the time
period fromwhen a requester sends out a resource query to the
time when it receives query results. It includes the routing time,
the query processing time at the destination and the reply time;
and4)Storing latency,which isdefinedas the timeperiodneeded
to senda resource report to theirdestinations in theDHToverlay.
As our three proposed algorithms produce similar performance,
we select SHA-LIS as a representative of the three algorithms.

4.5.1 Querying/Storing Cost
Fig. 16(a) and (b) show the 1st percentile, median and the 99th
percentile of the querying cost per query versus network size
and query range , respectively. Fig. 16(c) shows the total
querying cost versus the number of queries. Fig. 16(d) plots the
total storing costwith different number resources. In these four
figures, the result follows > > . This is
because More IDs generate more messages. MAAN generates
nine query IDs for every query or resource report, larger than
SHA-LIS and SFC, which generate five IDs and one ID,

Fig. 12. The number of hops travelled by messages. Fig. 13. Latency of messaging.

Fig. 11. Overload status with and without the load balancing algorithm.

364 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

respectively. From Fig. 16(a), we see that as the network size
increases, the querying cost in each service increases. This is
because a querymessage needs to travelmore hops to reach its
destination ina larger-scale system.FromFig. 16(b),wesee that
the querying costs of all three services increasewhen the range
is enlarged since a wider range incurs more querying hops for
each query message. From Fig. 16(c), we see that the total
querying cost increases as the number of queries increases
because more queries lead to more hops traveled in total.
Fig. 16(d) shows that more resources in the system lead to
more total storing cost to store these resources.

4.5.2 Querying/Storing Distance
As nodes in the system are geographically distributed in a
wide area, resource querying and storing distance is critical
for performance measurement.

Fig. 17(a) and (b) show the 1st percentile, median and the
99th percentile of querying distance per query versus network
size and query range, respectively. Fig. 17(c) shows the total
distance for different number of queries. Fig. 17(d) shows the
total distance for resource storing with different number of
resources. The four figures show that their results follow

> > because MAAN generates much
more messages for a query or resource report than SHA-LIS,
which generates more messages than SFC. Due to the same
reasons explained previously, the querying distance per query
increases as network size and query range grow in Fig. 17(a)

and (b). Also, more queries produce higher total querying
distance in Fig. 17(c). Further, as Fig. 17(d) shows, when the
number of resources increases, longer total distance is needed
to store resource predicates.

4.5.3 Querying/Storing Latency
As the query routing latency on PlanetLab ismuch larger than
the query processing latency, so the routing latency consti-
tutes a major part in the querying latency. Fig. 18(a) and (b)
show the 1st percentile, median and the 99th percentile
querying latency versus network size and query range, re-
spectively. Fig. 18(c) shows the total querying latency for
different number of queries. Fig. 18(d) shows the total storing
latency with different number of resources. All these four
figures show that the querying or storing latency follows

> > . MAAN generates nine IDs for
a query or report, SFC only generates one ID, and SHA-LIS
generates five IDs. More IDs lead to a higher probability to
have a higher maximum latency among the messages of the
IDs. Thus, MAAN needs longer querying or storing latency
than SHA-LIS, which produces longer latency than SFC.
Fig. 18(a) shows that the querying latency increases as the
network size grows. This is because more nodes lead to a
larger size of DHT overlay hence longer routing latency.
Fig. 18(b) shows that as the range value increases, the query-
ing latency exhibits increase because the query forwarding
between neighboring nodes generates latency. Fig. 18(c)

Fig. 15. Average query processing latency.Fig. 14. Number of transfers.

Fig. 16. Resource querying cost and resource predicate storing cost.

Fig. 17. Querying latency for resources and storing latency for resource predicates.

SHEN ET AL.: COMBINING EFFICIENCY, FIDELITY, AND FLEXIBILITY IN RESOURCE INFORMATION SERVICES 365

shows that when the number of queries increases, the total
querying latency of MAAN, SFC and SHA-LIS increases.
From Fig. 18(d), we see that to store 4,000 pieces of resource
information, MAAN needs about 7,000 s, while SHA-LIS
needs about 6,000 s, and SFC only needs about 4,600 s. Also,
more resources in the system lead to higher storing distance.

All of the above results indicate that SHA-LIS generates
relatively low overhead and high efficiency in resource dis-
covery and resource information storing. Though SFC gen-
erates the least overhead, it is not comparable to SHA-LIS in
terms of fidelity; MAAN generates the highest overhead and
latency though it has high fidelity.

5 CONCLUSIONS

Previously proposed resource information services for large-
scale resource sharing systems (e.g., collaborative cloud com-
puting and grid computing) lead to low efficiency and high
overhead or are ineffective in locating satisfying resources in an
environmentwith a tremendous number of resource attributes.
In addition, most services exhibit limited flexibility by relying
on a predefined attribute list for resource description and
offering only an exact-matching service. This paper presents
an efficient and high-fidelity LSH based resource Information
Service (LIS). LIS constructsLSHfunctionsandrelieson themto
cluster the data of resources with similar attributes for efficient
resource searching. More importantly, it is effective in locating
satisfying resources in an environment with an enormous
number of resource attributes. Furthermore, it provides high
flexibility by removing the need for a predefined attribute list
for resource description and similar-matching services. LIS is
built on aDHT overlay, which facilitates efficient resource data
pooling and searching in large-scale resource sharing systems.
Extensive simulation and Planetlab experimental results dem-
onstrate high efficiency and effectiveness of LIS in comparison
to other resource information services.

SHA-LIS only offers attribute exact-matching in resource
discovery, while Alpha-LIS and Hilbert-LIS provide attribute
similarity search that can find attributes with similar char-
acters (e.g., MEM and memory). In our future work, we will
study the effectiveness of Alpha-LIS and Hilbert-LIS in such
attribute similarity search and their side-effects caused by the
alphanumeric transformation. Also, we will apply LIS to the
real-world cloud environment, and develop an effective and
robust resource information service application.

ACKNOWLEDGMENTS

This research was supported in part by U.S. NSF grants IIS-
1354123, CNS-1254006, CNS-1249603, CNS-1049947, CNS-
0917056, CNS-1025652 and OCI-1064230, Microsoft Research

Faculty Fellowship 8300751, andU.S.Department of Energy’s
Oak Ridge National Laboratory including the Extreme Scale
Systems Center located at ORNL and DoD 4000111689. An
early version of thisworkwas presented in the Proceedings of
ICCCN’09 [53].

REFERENCES

[1] R. Ranjan, B. Benatallah, and M. Wang, “A cloud resource orchestra-
tion framework for simplifying themanagement ofweb applications,”
in Proc. Int. Conf. Service-Oriented Comput. (ICSOC), 2012, pp. 248–249.

[2] J. Li, B. Li, Z. Du, and L. Meng, “Cloudvo: Building a secure
virtual organization for multiple clouds collaboration,” in Proc. Int.
Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distrib. Comput. (SNPD),
2010, pp. 181–186.

[3] C.Liu, B. T. Loo, andY.Mao,“Declarative automated cloud resource
orchestration,” in Proc. Symp. Cloud Comput. (SOCC), 2011, p. 26.

[4] C. Liu, Y. Mao, J. E. Van der Merwe, and M. F. Fernandez, “Cloud
resource orchestration: A datacentric approach,” in Proc. Conf.
Innovat. Data Syst. Res. (CIDR), 2011, pp. 241–248.

[5] M.Nordin, A. Abdullah, andM.Hassan, “Goal-based request cloud
resource broker in medical application,” WASET, vol. 50, no. 74,
pp. 770–774, 2011.

[6] A. Goscinski and M. Brock, “Toward dynamic and attribute based
publication, discovery and selection for cloud computing,” in Future
Gener. Comput. Syst., vol. 26, no. 7, pp. 947–970, 2010.

[7] Y. Sun, T.Harmer, A. Stewart, and P.Wright, “Mapping application
requirements to cloud resources,” in Proc. Int. Conf. Parallel Process.
(ICPP), 2011, pp. 104–112.

[8] W. Yan, S. Hu, V. Muthusamy, H. Jacobsen, and L. Zha, “Efficient
event-based resource discovery,” in Proc. Int. Conf. Distrib. Event-
Based Syst. (DEBS), 2009, pp. 1–10.

[9] C. Germain, V. Neri, G. Fedak, and F. Cappello, “XtremWeb:
Building an experimental platform for global computing,” in Proc.
IEEE/ACM Grid, Dec. 2000, pp. 91–101.

[10] A. Chien, B. Calder, S. Elbert, andK. Bhatia, “Entropia: Architecture
and performance of an enterprise desktop grid system,” J. Parallel
Distrib. Comput., vol. 63, no. 5, pp. 597–610, May 2003.

[11] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen,
N. Spring, A. Su, and D. Zagorodnov, “Adaptive computing on the
grid using AppLeS,” IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 4,
pp. 369–382, Apr. 2003.

[12] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and P. Capello,
“Javelin++: Scalability issues in global computing,” Future Gener.
Comput. Syst. J., vol. 15, no. 5–6, pp. 659–674, 1999.

[13] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup protocol for internet applications,” IEEE/ACM Trans. Netw.,
vol. 11, no. 1, pp. 17–32, 2003.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proc. ACM SIGCOMM,
2001, pp. 329–350.

[15] A. Rowstron andP. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Proc.
Middleware, 2001, pp. 329–350.

[16] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastructure
for fault-tolerant wide-area location and routing,” Comput. Sci. Div.,
Univ. ofCalifornia, Berkeley, CA,Tech. Rep.UCB/CSD-01-1141, 2001.

[17] P. Maymounkov and D. Mazires, “Kademlia: A peer-to-peer infor-
mation systems based on the XOR metric,” in Proc. Int. Workshop
Peer-to-Peer Syst. (IPTPS), 2002, pp. 53–65.

Fig. 18. Distance for querying resource or storing resource predicates.

366 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

[18] H. Shen, C. Xu, and G. Chen, “Cycloid: A scalable constant-degree
P2P overlay network,”Perform. Eval., vol. 63, no. 3, pp. 195–216, 2006.

[19] M. Cai, M. Frank, and P. Szekely, “MAAN: A multi-attribute
addressable network for grid information services,” Grid Comput.,
vol. 2, no. 1, pp. 3–14, 2004.

[20] M. Cai and K. Hwang, “Distributed aggregation algorithms with
load-balancing for scalable grid resource monitoring,” in Proc. Int.
Parallel Distrib. Process. Symp. (IPDPS), 2007, pp. 1–10.

[21] A. Andrzejak and Z. Xu, “Scalable, efficient range queries for grid
information services,” in Proc. Int. Conf. Peer-to-Peer (P2P) Comput.,
2002, pp. 33–40.

[22] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
scalable multi-attribute range queries,” in Proc. ACM SIGCOMM,
2004, pp. 353–366.

[23] H. Shen, A. Apon, and C. Xu, “LORM: Supporting low-overhead P2
P-based range-query, and multi-attribute resource management in
grids,” inProc. Int. Conf. Parallel Distrib. Syst. (ICPADS), 2007, pp. 1–8.

[24] C. Schmidt and M. Parashar, “Flexible information discovery in
decentralized distributed systems,” in Proc. Int. Symp. High Perform.
Distrib. Comput. (HPDC), 2003, pp. 226–235.

[25] H. Shen, Y. Zhu, Z. Li, and T. Li, “PIRD: P2P-based intelligent
resource discovery in internet-based distributed systems,” in Proc.
Int. Conf. Distrib. Comput. Syst. (ICDCS), 2008, pp. 858–865.

[26] P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in Proc. Symp.
Theory Comput. (STOC), 1998, pp. 604–613.

[27] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” inProc. Very LargeData Base (VLDB), 1999,
pp. 518–529.

[28] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” J. Comput. Syst. Sci., vol. 60,
no. 3, pp. 630–659, 2002.

[29] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat,
“Scalable wide-area resource discovery,” Comput. Sci. Div., Univ.
of California, Berkeley, CA, Tech. Rep. TR CSD04-1334, 2004.

[30] S. Suri, C. Töth, and Y. Zhou, “Uncoordinated load balancing, and
congestion games in P2P systems,” inProc. Int.Workshop Peer-to-Peer
Syst. (IPTPS), 2004, pp. 123–130.

[31] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier, “Space
filling curves and their use in geometric data structure,” Theor.
Comput. Sci., vol. 181, no. 1, pp. 3–15, 1997.

[32] A. Fu, P. M. S. Chan, Y. L. Cheung, and Y. S. Moon, “Dynamic
VP-tree indexing for N-nearest neighbor search given pair-wise
distances,” Very Large Data Base J., vol. 9, no. 2, pp. 154–173, 2000.

[33] T. A.Welch, “A technique for high performance data compression,”
Computer, vol. 17, no. 6, pp. 8–19, Jun. 1984.

[34] D. Karger, E. Lehman, F. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing, and random trees: Distributed
caching protocols for relieving hot spots on the world wide web,”
in Proc. Symp. Theory Comput. (STOC), 1997, pp. 654–663.

[35] M. S. Charikar, “Similarity estimation techniques from rounding
algorithms,” inProc. Symp.TheoryComput. (STOC), 2002, pp. 380–388.

[36] P. Indyk and R. Motwani, “Approximate nearest neighbors: To-
wards removing the curse of dimensionality,” in Proc. Symp. Theory
Comput. (SOTC), 1998, pp. 604–613.

[37] H. Shen and G. Liu, “A lightweight and cooperative multi-factor
considered file replicationmethod in structured P2P systems,” IEEE
Trans. Comput., vol. 62, no. 11, pp. 2115–2130, 2013.

[38] H. Shen, “An efficient and adaptive decentralized file replication
algorithm in P2P file sharing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 21, no. 6, pp. 827–840, Jun. 2010.

[39] H. Shen, “IRM: Integrated file replication and consistency mainte-
nance in P2P systems,” IEEE Trans. Parallel Distrib. Syst., vol. 21,
no. 1, pp. 100–113, Jan. 2010.

[40] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in Proc.
DIMACS Workshop Streaming Data Anal. Mining, 2003, pp. 253–262.

[41] H. Shen, T. Li, Z. Li, and F. Ching, “Locality sensitive hashing based
searching scheme for a massive database,” in Proc. IEEE South-
eastCon, 2008, pp. 123–128.

[42] H. Shen and G. Liu, “An efficient and trustworthy resource sharing
platform for collaborative cloud computing,” IEEE Trans. Parallel
Distrib. Syst., 2013.

[43] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher,
“Adaptive replication in peer-to-peer systems,” in Proc. Int. Conf.
Distrib. Comput. Syst. (ICDCS), 2004, pp. 360–369.

[44] H. Shen andC.-Z. Xu, “Hash-basedproximity clustering for efficient
load balancing in heterogeneous DHT networks,” J. Parallel Distrib.
Comput., vol. 68, no. 5, pp. 686–702, 2008.

[45] P. Godfrey and I. Stoica, “Heterogeneity, and load balance in
distributed hash tables,” in Proc. INFOCOM, 2005, pp. 596–606.

[46] M. Bienkowski, M. Korzeniowski, and F. M. auf der Heide, “Dy-
namic load balancing in distributed hash tables,” in Proc. Int.
Workshop Peer-to-Peer Syst. (IPTPS), 2005, pp. 217–225.

[47] Y. Zhu and Y. Hu, “Efficient, proximity-aware load balancing for
DHT-based P2P systems,” IEEE Trans. Parallel Distrib. Syst., vol. 16,
no. 4, pp. 349–361, Apr. 2005.

[48] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I. Stoica,
“Loadbalancing indynamic structuredP2P systems,”Perform. Eval.,
vol. 63, no. 3, pp. 217–240, 2006.

[49] H. Bandara and A. Jayasumana, “On characteristics, and modeling
of P2P resources with correlated static, and dynamic attributes,” in
Proc. Global Commun. Conf. (GLOBECOM), 2011, pp. 1–6.

[50] K. Psounis, P. M. Fernandez, B. Prabhakar, and F. Papadopoulos,
“Systems with multiple servers under heavy-tailed workloads,”
Perform. Eval., vol. 62 (1–4), pp. 456–474, 2005.

[51] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-
similarity through high-variability: Statistical analysis of ethernet
LAN traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5,
no. 1, pp. 71–86, Feb. 1997.

[52] X. Zhang, Y. Qu, and L. Xiao, “Improving distributed workload
performance by sharing both CPU, andmemory resources,” in Proc.
Int. Conf. Distrib. Comput. Syst. (ICDCS), 2000, pp. 233–241.

[53] H. Shen, “Combining efficiency, fidelity, and flexibility in grid
information services,” in Proc. Int. Conf. Comput. Commun. Netw.
(ICCCN), 2009, pp. 1–6.

Haiying Shen received the BSdegree in computer
science and engineering from Tongji University,
Shanghai, China, in 2000, and the MS and PhD
degrees in computer engineering fromWayneState
University, Detroit, Michigan, in 2004 and 2006,
respectively.She iscurrentlyanassociateprofessor
with the Department of Electrical and Computer
Engineering atClemsonUniversity, SouthCarolina.
Her research interests include distributed computer
systems and computer networks, with an emphasis
on P2Pand content delivery networks,mobile com-

puting,wirelesssensornetworks,andgridandcloudcomputing.Shewas the
program co-chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft
faculty fellow of 2010 and a member of the ACM.

Yuhua Lin received both the BS degree in soft-
ware engineering and MS degree in computer
science from Sun Yat-sen University, Guangdong,
China, in 2009 and 2012, respectively. He is
currently a Ph.D student with the Department of
Electrical and Computer Engineering of Clemson
University, South Carolina. His research interests
include social networks and reputation systems.

Ting Li received the BS degree in computer
science and computer engineering from Heilong-
jiang University, Harbin, China, in 2003. She also
received the MS degree in software engineering
from University of Bradford, U.K., in 2005. She
conducted research on locality sensitive hashing
when she was studying PhD in computer science
and computer engineering at University of
Arkansas, Fayetteville, in 2007. She is currently
a programmer analyst with Wal-mart Stores Inc.,
Bentonville.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SHEN ET AL.: COMBINING EFFICIENCY, FIDELITY, AND FLEXIBILITY IN RESOURCE INFORMATION SERVICES 367

