
DSearching: Using Floating Mobility Information
for Distributed Node Searching in DTNs

Kang Chen, Haiying Shen, and Li Yan
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631
Email: {kangc, shenh, lyan}@clemson.edu

Abstract—In delay tolerant networks (DTNs), enabling a node
to search and find an interested mobile node is an important
function in many applications. However, the movement of nodes
in DTNs makes the problem formidable. Current node searching
methods in disconnected networks mainly rely on fixed stations in
the network and infrastructure-based communication to collect
node position information, which is difficult to implement in
DTNs. In this paper, we present DSearching, a distributed mobile
node searching scheme for DTNs that requires no infrastructure.
In DSearching, the entire DTN area is split into sub-areas, and
each node summarizes its mobility information as both transient
sub-area visiting record and long-term movement pattern. Upon
arriving at a sub-areas, a node generates a new visiting record
for the sub-area and distributes it to nodes that are likely to
stay in the previous sub-area, so that visiting records forms a
chain for the locators to trace it. Each node also stores different
parts of its long-term mobility pattern to long-staying nodes in
different sub-areas for others to trace it when visiting records
are absent. Considering that nodes in DTNs usually have limited
resources, DSearching constrains the communication and storage
cost in the information distribution while enabling efficient node
searching. Advanced extensions that can further improve the
searching efficiency is also proposed in this paper. Extensive
trace-driven experiments with real traces demonstrate the high
efficiency and high effectiveness of DSearching.

I. INTRODUCTION

In recent years, delay tolerant networks (DTNs) [1] have
attracted significant research interests. In DTNs, nodes are
sparsely distributed, and no end-to-end connection can be
ensured, Therefore, enabling a node to search and find another
interested node is an important function for node management
and many applications in DTNs. For example, in the DTN that
exploits sensors on animals (e.g., ZebraNet [2]) for various
purposes (e.g., environment monitoring and animal tracking),
we may need to find a specific sensor to upgrade or repair it.
For a DTN in battlefield, the system administrator needs to not
only isolate a misbehaving device but also find the owner who
carries the device. In the DTN formed by mobile device users,
the node search function can support allowing a person to find
and meet another person distributively. Figure 1 demonstrates
the problem of node searching in DTNs, in which the locator
node searches for the target node.

This paper addresses the node searching problem in DTNs
embracing social network properties: nodes move with certain
patterns and have skewed visiting preferences [3]–[5]. Such
properties can be found in many scenarios. For example, in
the DTN consisting of wild animals, animals usually move

A1 A2 A3

A4 A5 A6

A7 A8 A9

Target node

Node locator
How to meet the target
node quickly ?

Fig. 1: Demonstration of node searching in DTNs.

between different places for food, water, and flock gathering
with certain patterns. For DTNs in a battlefield, vehicles
and soldiers mainly move on specific routes. In a DTN
consisting of mobile devices on campus, device holders (i.e.,
students) often visit certain buildings repeatedly , e.g., library,
department building, and dorm.

There are already some works [2], [6]–[8] for object track-
ing (i.e., animal and people) under the context of DTNs or
mobile networks. In these methods, the position or mobility
information of a target object is proactively collected and
gathered to search for it. Specifically, these methods require
either central stations [2], [7], [8] or infrastructure-based com-
munication (i.e., GPSR [8] and satellite communication [6])
to collect position information. Though these techniques are
possible and even common in certain scenarios (e.g., campus),
they are costly to use and even impractical in DTNs designed
for certain areas, e.g., rural and mountain areas.

Therefore, decentralized node searching method is favorable
in DTNs. One intuitive way for node searching is to follow the
DTN routing algorithms [4], [9]–[14]. These methods deduce
a node’s probability of meeting other nodes and forward a
message to nodes that have higher probability of meeting their
destinations. Then, the node locator can find the target node by
following the movement of the holders of the message destined
for the target node. However, this scheme may lead to a long
delay because it only provides indirect mobility information
of the target node (i.e., other nodes’ probability of meeting the
target node). Without knowing the direct mobility information
of the target node, a node locator cannot move actively toward
the target node for efficient node searching.

In DTNs, nodes meet opportunistically with limited com-
munication range, leading to frequent network partitions and
posing great challenges on the retrieval of node mobility infor-
mation. Though the target node can be sensed by its neighbors,
its position information can hardly be forwarded to the locator

2

quickly. Further, the limited resources on mobile nodes make
the broadcasting of mobility information or the storage of all
mobility information on every node not applicable in DTNs.
As a result, a distributed and lightweight algorithm is needed
to distribute node mobility information in the network and
make such information easily accessible for locators.

In this paper, we propose DSearching, a distributed and
lightweight node searching algorithm in DTNs. The design
of DSearching is based on two social network properties in
DTNs. First, mobile nodes in DTNs usually exhibit certain
movement patterns [5]. Indeed, one previous research reveals
that the mobility of mobile devices carried by students on a
campus is predictable [15]. Second, nodes always visit certain
places and stay there for a relatively long time [4].

In DSearching, the entire DTN area is split into sub-
areas, and each node collects its mobility information as both
transient sub-area visiting records and long-term movement
patterns between sub-areas. Both types of mobility information
are distributed to selected nodes to control the overhead and
meanwhile support effective node searching. The transient sub-
area visiting record indicates where the node just visits. Each
node distributes its visiting record for a newly entered sub-area
to nodes that are more likely to stay in the previous sub-area,
so that the visiting records form a chain to enable locators to
know targets’ movement paths. The long-term mobility pattern
of a node in a sub-area reflects how it transits to next sub-
areas in general. Each node distributes its long-term mobility
pattern in a sub-area to long-staying nodes in the sub-area, and
distributes its mobility pattern in its home-area to all sub-areas.
Then, when the visiting records are absent, such information
can be used to search for the missing VRs to recover the target
node’s movement path.

In summary, our contributions are threefold:
(1) We propose a lightweight method to distribute and store

node mobility information on mobile nodes, which en-
ables a locator to easily access such information.

(2) We propose a node searching scheme that can efficiently
and timely find a target in a decentralized manner.

(3) We have conducted extensive trace-driven experiments to
show the efficiency and effectiveness of DSearching.

The remainder of this paper is organized as follows. Related
work is introduced in Section II. Section III presents the
detailed design of DSearching. In Section IV, the performance
of DSearching is evaluated through trace-driven experiments.
Section V concludes this paper with future work.

II. RELATED WORK

Tracking Objects in Disconnected Networks. Track-
ing objects in the network without constant connections has
been studied in several previous works [2], [3], [6]–[8]. In
SOMA [3], each node utilizes its previous records on encoun-
tering nodes and places to predict the places it is going to
visit. ZebraNet [2] tracks Zebras in Kenya by configuring
tracking collars on them, which record their positions and
send the data back to the central station through hop-by-hop
broadcasting. Cenwits [7] and SenSearch [8] aim to search
people in wilderness areas without a connected network. They

both utilize the opportunistic encountering among nodes to
forward their position information to stations or access-points
in the network. The work in [6] utilizes the flock behavior to
reduce costs needed to track sheep in wild areas. It basically
lets the flock leader monitor and report the positions of other
sheep to the server through GPRS or satellite communication.
Different from these methods, DSearching does not require
central stations, GPRS or satellite communication to collect
position information, but enables a node locator to actively
find the target node in a completely distributed manner.

Routing in DTNs. Routing in DTNs has been widely
studied in recent years [4], [9]–[14]. These methods can
generally be classified into two groups: probabilistic routing
methods [9]–[12] and geographical routing methods [4], [13],
[14]. In the former group, RAPID [9] and MaxContribu-
tion [10] predict a node’s future encountering probability with
the destination based on previous encountering records and
forward packets to nodes with higher probability of meeting
their destinations. They also specify the forwarding or storage
priorities of each packet based on their delivery probabilities.
BUBBLE [11] and SimBet [12] further use social factors (i.e.,
centrality and similarity with the destination node) to deduce
a node’s probability of meeting a packet’s destination.

In the latter group of methods, GeoDTN [13] predicts
node encountering possibility based on previous movement
and forwards a packet to nodes that are more likely to meet
the destination node. GeoOpps [14] deduces each possible
route’s minimal estimated time of delivery (METD) to reach
the closest point to the destination and forwards packets to
nodes that lead to smaller METD. LOOP [4] exploits mobility
patterns of mobile nodes to predict their future movement to
forward packets to certain areas in the network.

These algorithms only provide indirect information about
the target node’s position or mobility, i.e., how other nodes
meet it. Therefore, they lead to low efficiency on node
searching. On the contrary, DSearching uses a novel set of
data structures to directly depict a node’s mobility information.
Therefore, DSearching enables a locator to actively move to-
wards the target node, leading to more efficient node searching.

III. SYSTEM DESIGN

We assume a DTN with n nodes denoted by Ni (i =
1, 2, ...n). We regard the mobility of a node as the transits
between sub-areas (different places) in the network. This raises
a question on how to decide sub-areas? Clearly, the more
sub-areas are partitioned, the more overhead is needed on
maintaining node status, but also the more accurate depict
of node mobility. Considering that the sub-area division is
uniform for all nodes, we decide sub-areas based on popular
places that are frequently visited by all nodes.

Specifically, we first select popular places in DTNs, which
are common in DTNs with social network properties, e.g.,
villages in the DTNs on maintain or rural areas. Then, we
partition the entire DTN area into sub-areas by below rules:

• Each sub-area contains only one popular place.
• The area between two popular places is evenly split to

the two sub-areas containing the two places.

3

• There is no overlap among sub-areas.
Also, sub-areas with size smaller than a threshold (i.e., min-
imal sub-area size) are merged with the smallest neighbor
sub-area. This is to prevent too many small sub-areas. The
popular places and minimal sub-area size are decided by the
network/application administrator.

The area partition is completed off-line to generate an area
map with sub-areas. Each node is configured with the area
map when it initially joins in the DTN with the DSearching
enabled. This means that the map does not scale on individ-
ual node’s visiting preference, and all nodes have the same
map. Therefore, DSearching needs the application scenario
information, i.e., popular places and general node mobility
information, before applying it to a DTN. Though all sub-
areas in the illustration in this paper have regular shapes, i.e.,
squares, they can be any shapes. Each sub-area is stored as
the set of positions of its vertexes.

We assume that each node has a GPS in DSearching. Thus,
each node can know the sub-areas in which it is located. The
GPS is different from the infrastructures since it can easily
be installed on mobile devices. Furthermore, a node does not
need to query the GPS frequently to save energy, i.e., it can
query the position only when finding it may have transited to
a new sub-area. Other energy efficient localization techniques
that use other signals such as WiFi can also be adopted to
reduce energy consumption for this purpose.

A. Representation of Node Mobility

In DSearching, each node records its mobility information
for locators to search for it. First, to enable the locator to know
its actual movement path, each node leaves transient sub-area
visiting records as hints along the movement path. This is like
the phenomenon in which an ant leaves a trail of pheromone
as it looks for food for others to follow. Second, to enable
the locator to find its regular movement pattern, each node
creates a mobility pattern table (MPT) to summarize its staying
in different sub-areas and its transits between sub-areas. We
introduce the two types of mobility information below.

1) Transient Visiting Record: Each node leaves a hint, i.e.,
visiting record (VR), when it enters a new sub-area:

V R :< Ni, Anew, Aprev, T ime, Ts, Seq >

where Ni is node ID, Anew and Aprev are the newly entered
sub-area and the previous sub-area, respectively, Time denotes
the time when the node finds that it enters Anew, Ts is the TTL
of the VR, and Seq is the sequence number. Seq increases by
1 when a new VR is created. Considering that these records
are time sensitive, we often set Ts to a relative short period of
time, i.e., half day or one day. The visiting record is designed
to ensure that once the locator arrives at Aprev , it knows that
the target node goes to Anew after moving out of Aprev .

2) Long-Term Mobility Pattern: A node’s mobility pattern
table (MPT) contains two types of information for each of
its regularly visited sub-areas: staying probability and transit
probabilities. This is because nodes usually present skewed
preferences on staying at certain sub-areas or transiting from
a sub-area to another. The staying probability of a node, say

Ni, at a sub-area indicates how likely the node is in the sub-
area and is calculated as

Psi(Am) = Dm/D (1)

where Dm represents the total time Ni has stayed in sub-area
Am and D is the period of time the node has lived.

The transit probabilities of a node, say Ni, at a sub-area,
say Am, describes its probability to transit to another sub-
area, say An, in next movement, denoted Pti(Am → An). It
is calculated as below:

Pti(Am → An) = Tmn/Tma (2)

where Tmn is the number of occurrences that the node has
transited from Am to An and Tma denotes the total number
of occurrences that the node moves out of sub-area Am.

TABLE I: Mobility pattern table on a node.

Rank Sub-area Staying Prob. Next sub-areas and probabilities Seq
1 A5 0.50 A8(0.8), A2(0.2) 1
2 A2 0.25 A1(0.7), A3(0.3) 1
3 A6 0.15 A5(1) 1
4 A8 0.08 A7(0.6), A9(0.4) 1

· · · · · · · · · · · · · · ·

After accumulating sufficient movement records, each node
builds a MPT as shown in Table I. In the table, “Sub-area”
records the regularly-visited sub-areas of the node, which are
sorted in descending order of the staying probability. In the
row for a sub-area, say Am, the “Next sub-areas and probabili-
ties” records the probabilities that the node moves from Am to
corresponding sub-areas. For example, Pti(A2 → A1) = 0.7,
which means that the node’s probability of transiting from A2

to A1 is 0.7. “Seq” is the sequence number of the table. It
increases by 1 whenever the table is updated. Nodes update
their MPTs periodically in DSearching.

B. Mobility Information Distribution

We assume nodes are non-malicious and are willing to
carry the mobility information of others to support the node
searching function. We leave the work on how to motivate
nodes to follow rules in DSearching to future work.

1) Distribute Visiting Record: When a node, say Ni, moves
from sub-area Am to sub-area An, it creates a visiting record
as introduced in Section III-A1, denoted V Rimn. Recall that
the purpose of the visiting record is to enable the locator to
know the movement path of the target node. Following this
direction, DSearching requires that each node to distribute
VRs to nodes to ensure that the discovery probability that
the locator can find them in the previous sub-area (e.g., Am

for V Rimn) is larger than a threshold Thd.
Specifically, we use Pdi(Am) to denote the discovery

probability to find Ni’s visiting records in Am. Then, we copy
V Rimn to nodes in An that is likely to transit to Am and has
a high probability to stay in Am to satisfy that

Pdi(Am) = 1−
k∏

r=1

(1−Ptr(An → Am)∗Psr(Am)) ≥ Thd (3)

where k is the number of selected nodes and Ptr(An → Am)
and Psr(Am) denote the transit probability from An to Am

and the staying probability in Am of the r-th node, respectively.

4

We adopt two additional strategies to ensure that above
requirement is satisfied with a controllable amount of cost.
Firstly, considering each visiting record has a small TTL, we
can select more nodes to hold VRs. Secondly, we can relay
VRs to nodes that have high probability to stay in the previous
sub-area. Therefore, we set Thd to 0.8 in this paper.

Finally, whenever a node moves from one sub-area to
another sub-area, visiting records are created to leave hint in
the previous sub-area. As shown later in Section III-C, these
hints form a linked VR chain to help the locator find the target
node along its actual path gradually and effectively

2) Distribute the MPT: DSearching utilizes the storage on
mobile nodes to store the MPT in a distributed manner for
node searching. Since nodes usually have limited storage, it
is not practical to store a node’s MPT on every node. Also, a
node’s MPT should be easily accessed by its locators, which
can appear in any sub-aeas. Therefore, a node, say Ni, needs
to choose a subset of nodes to store its MPT so that

• The locators for Ni can easily retrieve the MPT of Ni;
• The overhead for distributing Ni’s MPT is controlled.
We take advantage of node mobility pattern and the mobility

of locators to realize the two goals. The general method in
DSearching is to only store the necessary part of a MPT in
each sub-area for easy retrieval.

Storage Host List: Recall that DSearching is proposed for
DTNs with social network property that each node has several
places it stays for a relatively long time [4]. This means a sub-
area may have nodes that often stay in it. We then define the
nodes with staying probability in sub-area Ai larger than a
pre-defined threshold as Ai’s hosts.

Then, in order to store a node’s MPT in a sub-area, a certain
number of hosts of the sub-area are selected to store the MPT.
These nodes guarantee that even when nodes move continually,
the probability that there is at least one copy of MPT stays in
the sub-area is higher than a threshold (Tht). In detail, each
node maintains a host list for each sub-area containing the
hosts in the sub-area that store its MPT, as shown in Table II.

TABLE II: Host list for each sub-area.

Sub-area Host list Staying prob. MPT staying prob.
Sub1 N1, N2, N4 0.90, 0.8, 0.7 0.994
Sub2 N9 0.99 0.99

...
SubM N3, N4 0.6, 0.7 0.88

The “MPT staying prob.” means the probability that at least
one copy of MPT is in the sub-area and is calculated by 1−∏k

r=1(1 − Psr(Am)), where k is the number of hosts and
Psr(Am) is the r-th host’s staying probability in Am.

Each node determines its host lists during its movement.
Specifically, suppose Ni tries to decide whether Nj can be
added to its host lists. For each sub-area in the table, Nj

is temporarily added to the host list for the sub-area when
it satisfies: 1) Nj is a host of the sub-area with available
memory, and 2) is not in the host list of the sub-area. Then,
if the MPT staying probability of the sub-area is smaller than
Tht, no further action is needed. Otherwise, the host with
the least staying probability is removed until the MPT staying
probability reaches the minimum value that is no less than

A1 A2 A3

A4 A5 A6

A7 A8 A9

Rank Sub‐area ID ……

1 A5 ……

2 A2 ……

3 A6 ……

4 A8 ……

(a) Mobility pattern table (b) Mobility information distribution

R1: A5
R4: A8

R1: A5

R1: A5

R1: A5

R1: A5
R2: A2

R1: A5

R1: A5
R3: A6

R1: A5
R1: A5

R1: A5

Fig. 2: Distribution of MPT entries (R1 denotes Row 1).

Tht. The host list of each sub-area can also be determined
off-line based on node movement patterns (similar to the sub-
area division process). We set Tht = 0.7 in this paper.

MPT Distribution and Update: After creating the host lists
from either on-line or off-line method, each node distributes
its MPT to nodes in the host list for each sub-area when
encountering them. In this step, DSearching does not store
the entire MPT on each node. Instead, only a part of the MPT
is stored on a node. Since the locator searches in a sub-area
by sub-area manner, the MPT in each sub-area only needs to
ensure that the locator knows where to search in the next step.
For example, based on Table I, a locator in A5 only needs to
know the row for A5 in the target’s MPT in order to know
where to search in the next step.

Therefore, when Ni meets a node in its host lists, say Nj ,
Ni decides the content to be stored in Nj as below.

• Ni copies the first row of its MPT to Nj .
• If the home sub-area of Nj , denoted hSub(Nj), exists in

Ni’s MPT, Ni copies the corresponding row to Nj .
• When a node receives the row of a MPT that it already

has, it only keeps the latest one.

We define a node’s home sub-area as the sub-area correspond-
ing to the first row in its MPT. The row for the home sub-area
is distributed to all sub-areas because it is the sub-area that the
target node is most likely to stay in. Algorithm 1 summarizes
the above MPT distribution process. Figure 2 also shows an
example of the distribution of a MPT. We see that except the
first row of the MPT, the hosts in sub-areas A5, A2, A6 and
A8 only store the corresponding rows in Ni’s MPT.

Algorithm 1 Pseudo-code of the MPT distribution when Ni

meets Nj .
1: procedure CHECKTODISTRIBUTEMPT(Nj)
2: if Nj ∈ Ni.HostList then
3: Nj ← the first row in Ni’s MPT
4: else if Nj .HomeSubarea ∈ Ni.MPT then
5: Nj ← the row for Nj .HomeSubarea in Ni’s MPT
6: end if
7: end procedure

Finally, this strategy can realize the aforementioned two
goals. Firstly, wherever a locator starts searching for the
target node, it can easily retrieve the needed mobility pattern
information from hosts in current sub-area for efficient node
searching. Secondly, each node only stores part of its MPT
on a selected set of nodes, which saves communication and
storage cost on the MPT distribution.

5

C. Node Searching

In node searching, we assume that the locator can move
much faster than the target node, i.e., can pass more sub-
areas in a unit time in average than the target node. This is
reasonable because the locator is dedicated for node searching
while the target node may sojourn at some places. When
a locator moves lower than the target node, the searching
efficiency will become very low in DSearching since it is
mainly designed for the locators to actively approach the
targets. In that case, finding a place to wait for the target node
would be more effectively, which is not the focus of this paper.
We also assume that when the locator arrives at a sub-area, it
can effectively search around to determine whether the target
node is in the sub-area with a very high probability.

1) Overview: DSearching utilizes the visiting records and
MPT tables distributed in the network to search for the target
node. When a locator is initialized, it first searches the home
sub-area of the target. Then, considering the chain of visiting
records provides information on actual node movement, the
locator tries to follow the VR chain to search for the target
node along its movement path. When a visiting record on the
VR chain cannot be found, i.e., there is a gap on the VR chain,
DSearching uses the MPT to search a valid VR that can bridge
the gap. During this process, whenever a valid visiting record
is obtained, the locator moves to the Anew indicated in it.
Above process repeats until the target is found.

2) Searching Startup: When a locator is initialized, it
knows nothing about the mobility of the target node and
can only search randomly. However, as mentioned in Sec-
tion III-B2, the first row (home sub-area) of each node’s
MPT table is copied to all sub-areas. Therefore, the locator
can easily know the target’s home sub-area. Then, the locator
moves to the home sub-area of the target to search for it. The
rationale behind such a design is that the target stays in the
home sub-area longer than in any other sub-areas.

3) Node Searching with VRs: Whenever the locator dis-
covers one or more VRs of the target node that are newer than
the previous one it uses, it moves to the Anew in the latest VR,
i.e., the one with the largest sequence number, to search for
the target node. In this sub-area, if the target node cannot be
found, the locator is supposed to discover the VR indicating
where the target node moves to from the sub-area. When the
locator finds such a VR, it again goes to search the Anew in
the VR. Ideally, following this manner, the locator searches for
the target node along its movement path indicated in a chain
of VRs. As shown in Figure 3(a), the locator searches along
the actual movement path of the target with the help of VRs,
i.e., A14 → A10 → A11 → A7 → A3.

4) Node Searching without VRs: Though the design in
Section III-B1 requires that a VR should exist in the previous
sub-area with a high probability (≥ Thd), the VRs actually
are floating in the network due to node mobility. Therefore,
it is common that a certain VR cannot be discovered by
the locator, leading to a gap on the VR chain. As shown
in Figure 3(b), the VR created in sub-area A7 fails to reach
A11. Then, after searching A11, the locator cannot know where
to search for the next step. In this case, the MPT table and

VR

A3

A7

A11

A14

VR

VR

VR

node movement

search route

A10

(a) Ideal situation.

node movement

VR

A3

A7

A11

A14

VR

VR
where to search
next?

A10

(b) A VR is missing.

Fig. 3: Node searching with VRs.

Ax0

1‐hop neighbor
sub‐areas

2‐hop neighbor sub‐areas

(a) N-hop neighboring sub-areas.

Ax0

(b) A searching route.

Fig. 4: Node searching without VRs.

geographical limitations are jointly considered to provide a
effective solution with a low cost.

Specifically, suppose the locator fails to find the expected
VR in a sub-area, say Ax0

, which indicates where the target
moves to from Ax0 . Then, the locator moves around to find the
missing VR or a VR created after it. We define the cost in this
process as the expected number of searching hops, denotedW .
One searching hop refers to the movement from one sub-area
to another sub-area. Then, the goal is minimizing theW needed
to find a VR that can bridge the gap on the VR chain. In below,
we first assume that when arrive at a sub-area, the locator can
obtain the corresponding row for the sub-area in the target’s
MPT from nearby nodes, which can easily be realized based
on the design in Section III-B2. We then discuss the case when
such MPT information cannot be obtained later.

Optimal Solution: We first model the searching process to
find the optimal searching route. Suppose there are total M
sub-areas and the locator searches sub-areas in the sequence
of Ax1

, Ax2
, Ax3

, · · · , AxM
. Then, the probability that a VR

that can bridge the gap in the VR chain can be found in Axr

(r ∈ [1,M]), denoted Pf(Axr
), can be expressed as

Pf(Axr) = Pv(Axr)Pd(Axr) (4)

where Pv(Axr) denotes the probability that the target has
visited Axr

after moving out of Ax0
, and Pd(Axr

) denotes the
probability that the VR created in the sub-area immediately
after Axr

can be found in Axr
, which is introduced in

Equation 3. We then have

W =

M∑
r=1

S(Axr−1 , Axr) ∗ (
r−1∏
s=1

(1− Pf(Axs)))Pf(Axr) (5)

where S(Axr−1
, Axr

) denotes the number of hops needed to
move from Axr−1

to Axr
. Therefore, the optimal searching

route is a set of Ax∗
1
, Ax∗

2
, Ax∗

3
, · · · , Ax∗

M
that results in the

minimal W . However, such a route can hardly be found.

6

Firstly, Pf(Axr
) cannot be obtained by the locator. For

Pv(Axr), it should consider all possible moving paths from
Ax0 to Axr . However, the locator can only know the tar-
get’s transit probabilities in Ax0

from the MPT, which only
shows the 1-hop path from Ax0

to neighboring sub-areas.
For Pd(Axr

), the information needed to calculate it (e.g.,
in Equation 3) cannot be known by the locator. Secondly,
S(Axr−1 , Axr) depends on both the locations of Axr−1 and
Axr . Therefore, even when Pf(Axr) is known, there is no
efficient way to find the optimal searching route.

A Practical Method: In order to find a practical and effec-
tive method, we first investigate the geographical limitations.
We define H-hop neighbor sub-area set of a sub-area, say
Ax0 , as the set of sub-areas that a node needs at least H hops
to reach them from Ax0

. In Figure 4(a), the 1-hop and 2-
hop neighbor sub-areas of Ax0

are connected by two circles,
respectively. We can easily find that after moving out of Ax0

,
the target node needs to visit at least one H-hop neighbor
(H = 1 or 2) sub-area in order to pass through the area covered
by these sub-areas. Therefore, it is highly possibility that a VR
that can bridge the gap on the VR chain can be found in these
sub-areas. We then limit the searching for VRs within 1-hop
and 2-hop neighbor sub-areas. Considering the 1-hop sub-area
set has smaller size than the 2-hop sub-area set (8 vs.16) and
is closer to Ax0 , we let the locator first searches all 1-hop
neighbor sub-areas and then all 2-hop neighbor areas.

Furthermore, we let the locator only searches sequentially
along the circle connecting all H-hop sub-areas, i.e., the circles
in Figure 4(a). This is because the movement from one H-hop
sub-area to another non-neighboring H-hop sub-area needs
at least 2 and at most 2 ∗ H hops, while the sequential
searching takes only 8H hops to search all sub-areas. With this
limitation, S(Axr−1

, Axr
) = 1 in Equation 7, which greatly

reduces the complexity of finding the most efficient route.
With above simplification, when searching the H-hop neigh-

bor sub-area set, we only needs to determine the start sub-area
and the searching direction, which has only 2 ∗ 8 ∗H = 16H
cases since each sub-area has two directions. Specifically, for
1-hop neighbor sub-area set, Equation 4 can be calculated by

Pf(Axr) = Pv(Axr)Pd(Axr)

= Pt(Ax0 → Axr) ∗ Thd (6)

where Pv(Axr
) and Pd(Axr

) are approximated by Pt(Ax0
→

Axr
) and Thd, respectively. For the former, the simplifica-

tion only considers the 1-hop transit from Ax0
to Axr

, i.e.,
Pt(Ax0 → Axr), because 1) the 1-hop transit accounts for
the majority of all transits and 2) this is the only information
the locator can get from the target’s MPT so far. For the
latter, since DSearching always try to ensure that Pd(Axr

)
is larger than Thd, which is set to a large number, e.g.,
0.8, it is acceptable to use Thd to represent Pd(Axr

). Then,
DSearching calculate theW for all the 16 cases, i.e., 8 possible
start sub-areas and each has two directions, by below.

W =

M∑
r=1

S(Axr−1 , Axr) ∗ (
r−1∏
s=1

(1− Pf(Axs)))Pf(Axr)

= (

r−1∏
s=1

(1− Pf(Axs)))Pf(Axr) (7)

With all Ws, the start sub-area and searching direction that
lead to the minimal W is selected.

After searching all 1-hop neighbor sub-areas, if the VR that
can bridge the gap on the VR chain is not found, the locator
then searches the 2-hop neighbor sub-area set. This process is
the same as that for the 1-hop neighbor sub-areas except the
calculation of Pf(Axr

). In this case,

Pv(Axr) =

Rr∑
r=1

Pt(Ax0 → Ayr) ∗ Pt(Ayr → Axr) (8)

where Ayr denotes the intermediate 1-hop sub-area through
which the target node can move from Ax0 to Axr , and Rr

is the number of such sub-areas. Then, the start sub-area and
searching direction that lead to the minimal W is selected
to search all 2-hop neighbor sub-areas. Note that Pt(Ayr

→
Axr

) can be learn from the MPT rows for 1-hop neighbor
sub-areas, which are obtained in the previous step.

Figure 4(b) demonstrates the searching of the 1-hop and 2-
hop neighbor sub-areas. During this process, if a VR that can
bridge the gap on VR chain can be found, the locator simply
follows the VR to continue the search. If not, the locator moves
randomly out of the areas covered by the 1-hop and 2-hop
neighbor sub-areas to search for VRs.

Without MPT Information: Due to node mobility, it
is possible that the MPT information in a 1-hop or 2-hop
neighbor sub-area cannot be obtained, which means that the
locator cannot know corresponding Pt(Ax0

→ Axr
). In this

case, we simply regard that each Pt(Ax0
→ Axr

) equals to
the average value, i.e., all transits have the same possibility.

D. Summary of the Behaviors of Nodes and Locators

We further summarize the behaviors of nodes and locators
in DSearching. For mobile nodes, they first collect enough
movement records to create the mobility pattern table as
introduced in Section III-A2. Meanwhile, when a node enters
a new sub-area, it creates a visiting record as introduced in
Section III-A1. Both visiting records and mobility pattern
tables are distributed to nodes in the network following the
methods in Section III-B1 and III-B2, respectively. Algo-
rithm 2 summarizes the behavior of node Ni.

Algorithm 2 Pseudo-code of the behavior of node Ni.
1: while System.Continue() = true do
2: if Ni.CheckArriveNewSubarea() = true then
3: Ni.UpdateMPT()
4: Ni.CreateNewVR()
5: if meet node Nj then
6: Ni.CheckToDistributeMPT(Nj) (Algorithm 1)
7: Ni.CopyNewVRTo(Nj)
8: end if
9: end if

10: end while

The locator first moves to the home sub-area of the target,
which can be known from the collected MPT of the target
node, to search for the target, as introduced in Section III-C2.
Then, from the home sub-area, the locator follows the VR

7

chain to search for the target along its actual movement path,
as introduced in Section III-C3. In case an expected VR cannot
be found, i.e., there is a gap on the VR chain, the locator
follows the method in Section III-C4 to find such a VR. Once
an expected VR is found, the locator again moves along the
VR chain to search for the target node. Such a process repeats
until the target node is found. Algorithm 3 demonstrates the
behavior of a locator.

Algorithm 3 Pseudo-code of the behavior of the Locator L
searching for target node Ni.

1: while L.TargetFind() = false do
2: if L.CheckArriveNewSubarea() = true then
3: L.SearchCurrentSubarea();
4: if L.TargetFind() = false then
5: if L hasn’t searched Ni.HomeSubarea() then
6: L.NextSubarea ← NextSubareaTo(Ni.HomeSubarea())
7: else if a VR generated in a neighbor subarea is found then
8: L.NextSubarea ← the neighbor subarea
9: else

10: L.NextSubarea ← L.NextSubareaWithoutVR()
11: end if
12: end if
13: L move to L.NextSubarea
14: end if
15: end while
16: procedure NEXTSUBAREAWITHOUTVR()
17: if the neighbor searching start sub-area and direction exist then
18: return the next sub-area in the determined search direction
19: else
20: minW ← 0;
21: StartSubarea ← null
22: Direction ← null
23: for each neighbor sub-area Ak do
24: W ← result of Equation (7) in clock direction
25: if W ¡ minW then
26: StartSubarea ← Ak

27: Direction ← clock direction
28: end if
29: W ← result of Equation (7) in reverse clock direction
30: if W ¡ minW then
31: StartSubarea ← Ak

32: Direction ← reverse clock direction
33: end if
34: end for
35: Take StartSubarea and Direction as the determined start sub-

area and direction for neighbor searching when VR is missing
36: end if
37: end procedure

E. Advanced Extensions of DSearching

We further introduce additional mobility information that
can be used to enhance the node searching efficiency. First,
in DTNs with social network properties, the sub-areas that a
mobile node frequently visits often are not independent. For
example, in DTNs on campus, students are likely to go to
library after finishing lectures in their department buildings;
professors often go back to their offices after giving lectures.
We denote such a correlation as sub-area visiting correlation.
Second, the transit pattern in each day tends to be stable for
many nodes. For example, a Ph.D. student often attends classes
from 9AM to 10AM and 2PM to 3PM each Monday. We define
such a pattern as the daily routine.

The locator can better summarize a node’s staying in differ-
ent sub-areas by considering its sub-area visiting correlation

and daily routine. We introduce how to utilize the sub-area
visiting correlation and daily routine for more efficient node
searching below.

1) MPT Considering Sub-area Visiting Correlation: In the
mobility pattern table described in Section III-A2, a node’s
transit probability from one sub-area to another sub-area is
solely determined based on previous frequency of such 1-hop
transits, as shown in Equation (2). In other words, it assumes
that a node’s next transit is independent with its previous
transits. However, in some cases, such an assumption may
not be accurate and may lead to misleading results.

We take the transit records of Node 27 in the Dartmouth
trace (DART) [16] as an example to illustrate this point.
Through analyzing the trace, we find that the frequency of
transit “AcadBldg34 → ResBldg82” is larger than that of
the transit “AcadBldg34 → LibBldg4”. Thus, according to
the design of current MPT, the probability that after staying
in AcadBldg34, the node will move to ResBldg82 is larger
than the probability that the node will move to LibBldg4.
Nevertheless, if we consider the previous transit through
which the node moves to AcadBldg34, the next hop transit
probability would be different. Specifically, the frequency of
transit “ResBldg82 → AcadBldg34 → LibBldg4” is larger
than that of the transit “ResBldg82 → AcadBldg34 →
ResBldg82”. This means that if node 27 transits to LibBldg4
from sub-area ResBldg82, it is more likely to transit to
LibBldg4 after staying at sub-area AcadBldg34. Such a case
shows that the previous transit of a node tends to have a certain
correlation with its next transit, which can be utilized to en-
hance the accuracy of node transit prediction. In below, we first
introduce the improved MPT based on such conditional transit
probabilities and then present how to utilize the improved MPT
for more efficient node searching.

Improved MPT: With above findings, we try to integrate
the previous sub-areas into the MPT to more accurately deduce
the probabilities on which sub-area the node may move to
in next transit. Based on our previous investigation [17],
considering previous one hop transition can lead to the highest
accuracy on the prediction of the next hop transit. Therefore,
we mainly consider the transit probabilities in condition of
the previous transit in this paper. In detail, we partition the
overall transit records into two categories: the transit without
previous sub-area, which is referred to as static transit,
and the transit with previous sub-area, which is referred to
as dynamic transit. We then design an improved mobility
pattern table that contains the transit probabilities for both
static transit and dynamic transit. The probability of a static
transit is calculated in the same way as in Equation (2). The
probability of a dynamic transit is calculated on condition
of the previous transit. For instance, the transit record of a
node, say Ni, at a sub-area, say Am, describes its intention
to transit to another sub-area, say An, in next movement. The
last transit record of the node, say from sub-area Al to Am,
describes where the node comes from. So the new transit
probability can be denoted Pti (Am → An|Al → Am), which

8

can be calculated as below:

Pti (Am → An|Al → Am) =
P (Al → Am, Am → An)

P (Al → Am)

=
Tlmn/TNi

Tlm/TNi

=
Tlmn

Tlm

(9)

where P (Am → An, Al → Am) is the node’s probability of
transiting from sub-area Al to sub-area Am and from sub-
area Am to sub-area An in a sequence. It is calculated as the
number of the two-hop transits, denoted Tlmn, over the total
number of transits of the node, denoted TNi

; P (Al → Am) is
the probability of the node moving from sub-area Al to sub-
area Am, which is represented as the number of the transits
from sub-area Al to sub-area Am, denoted Tlm, over TNi .

After running for some time, each node can accumulate
sufficient transit records to calculate the probabilities of both
static transits and dynamic transits, which are included in
the improved MPT. For a node, it may come to a sub-area
from several different sub-areas, which are all recorded as
the previous sub-areas in the mobility pattern table. Table III
presents one example of the improved mobility pattern table.
In the table, for each present sub-area, the sub-row that
takes “-” as the previous sub-area represents the probabilities
for static transits, and each sub-row with a specific sub-
area as the previous sub-area denotes the probabilities for
dynamic transits. Further, the staying probability in a sub-area
is calculated following the same method in the original MPT,
i.e., based on the portion of staying time in the sub-area.

Utilizing the Improved MPT: The improved MPT is
distributed following the same way for the original MPT, as
introduced in Section III-B. We then present how to use the
improved MPT to further improve the searching efficiency.
Specifically, when tracing a node to a sub-area, the locator
will consider the previous sub-area that the node transits to
this sub-area to predict the next sub-area that the node transits
to, i.e., the sub-area to search in the next step. For example,
suppose Table III is the improved MPT for a target node, if
the locator for the target node arrives at A5 and finds that the
target node previously moves to A5 from A1. Then, following
the dynamic transit probabilities, the locator will move to A6

to search for the target, rather than A8 as indicated by the
static transit probabilities.

TABLE III: Improved mobility pattern table with static and dynamic transits.

Rank Present Staying Previous Next sub-areas and prob.sub-area prob. sub-area

1 A5 0.5
A3 A8(0.74), A4(0.13), A2(0.13)
A1 A8(0.4), A6(0.6)

- A8(0.6), A6(0.2), A4(0.1), A2(0.1)

4
A2 0.25

A9 A1(1.0)
A4 A3(1.0)
A5 A1(0.6), A3(0.4)

- A1(0.7), A3(0.3)
3 A6 0.15 - A5(1.0)

TABLE IV: Routine table.

Node 0
Entry Time interval Landmark ID Prob.

1 08: 00 ∼ 09: 00 AcadBldg34 0.43
2 10: 00 ∼ 12: 00 AcadBldg8 0.21

· · · · · · · · · · · ·

2) Exploiting the Daily Routine: In this subsection, we
explain how to represent and distribute nodes’ daily routine
information, as well as the utilization of such information for
more efficient node searching.

Motivation: Through the analysis of the Dartmouth trace
[16] and DieselNet AP trace [18], we found that a large part
of nodes have preferences in visiting sub-areas. Moreover, the
intervals of time during which nodes visit their preferreed sub-
areas are relatively more stable than other rarely visited sub-
areas. Take the transit preference of Node 0 as an example, the
most frequently appeared transit record is from AcadBldg34
to AcadBldg8. Also, quite naturally, Node 0 often moves
from AcadBldg34 to AcadBldg8 within the time interval
between 1:30PM and 2:30PM. This matches with our daily
experience that people usually have certain routine on visiting
places such as work place, supermarket, and home.

Such routine information can help realize more efficient
node searching. After discovering the daily routine of the
target node, the locator can compare such information with
the current system time and then decide whether to go to the
places indicated in the routine information to search for the
target node directly. With such an improvement, the locator can
quickly move to places where the target node visits regularly,
thereby reducing the searching delay.

Such routine information can potentially enable efficient
node searching when the locator moves slower than target.
In this case, the locator can simply mainly stay in places the
target node visits regularly to meet for the target. Since this is
not the focus of this paper, we do not elaborate details here.

Summarizing Routine Information: We build a rou-
tine table to summarize a node’s routine information. The
routine table has three types of records: Time interval,
Landmark ID, and Probability. The Time interval in-
dicates during what periods of time the node has routines
in visiting places. The Landmark ID indicates where
the node will possibly be in the corresponding interval of
time. The Probability describes the probability of staying
in Landmark ID during the Time interval. Only the time
intervals with probability larger than a threshold, e.g., 0.2, have
a corresponding entry in the routine table. This is because only
stable routines can help node searching. The detailed structure
of the routine table is shown in Table IV.

The key issue with the routine table is how to determine
the list of time intervals. This is because even if a large part
of nodes reflect obvious skewed preference in visiting certain
places, the variance of the stay length may vary significantly.
This means that the time intervals for the routinely visited
landmarks tend to be not stable. As a tradeoff, the mostly
overlapped time interval for a landmark will be chosen as the
time interval for the routine table. Then, the probability for
each time interval is calculated as

Pri{Node 0 is in LMk during Interval i} = Ti,LMk

T
(10)

where the Ti,LMk
is the accumulated amount of time that Node

0 stays in LMk during interval i and T is the total active time
of Node 0 during interval i.

Distribution of Routine Table: Recall that we assume that

9

nodes are willing to carry all required mobility information
and exchange information as required upon meeting in this
paper. However, even when nodes are cooperative, duplicating
the whole routine table is exhausting and unnecessary. Then,
in order to reduce storage cost and guarantee the effectiveness
of the routine table entries collected by the locator, the
distribution of the routine table must meet the following goals:

• The overhead for storing and transferring the routine table
is acceptable for every node;

• The routine entry collected by the locator can reflect the
routine of the target node as accurate as possible.

To control the storage overhead, the size of the distributed
routine table should be limited. For a locator, the interval of
time covering present system time is much more important
than other intervals listed in the routine table. This is because
the real-time location of the target is the information that
the locator cares for the most. Thus, we partition the routine
table into several small-sized units, which are called transient
routine records. Each transient routine record consists of two
entries of the routine table, which are the entry covering
present system time and the entry covering the next time
interval. The structure of a transient routine record is as shown
in Table V, in which the current system time is 8:30AM.

TABLE V: Transient routine record.

Node ID
Seq 0 TTL 30min

Entry Interval of time Landmark ID Prob.
1 08: 00 ∼ 09: 00 AcadBldg34 0.43
2 10: 00 ∼ 12: 00 AcadBldg8 0.21

To disseminate the routine information of each node effi-
ciently, every node is required to generate a transient routine
record from its routine table periodically, e.g., every 1 hour,
according to the system time. Then, each node only distributes
the current transient routine record to nodes it meets until the
generation of the next record. Thus the routine information of
each node is floating in the network.

On the other hand, in order to provide reference for locator,
each node maintains a first-in-first-out queue to store the
transient routine records it receives from other nodes. All
records in the queue have identical TTL (time to live) which
decreases 1 per time unit. The queue is updated only under
four cases. 1) The new record comes from the node that the
queue doesn’t cover. In this case, the new record will be
allowed to enter the queue; 2) The queue already has a record
of the node that the new record belongs to but the new record
covers a different interval of time. The new record will also
be allowed to enter the queue in this case. 3) The TTL of
some records has reduced to 0, the record will be removed
from the queue. 4) If the new record is a newer version of an
existent record in the queue, i.e., comes from the same node
and covers the same interval of time but has a more recent
version stamp, the new version of the record will replace the
old version one in the queue. However, in this case, the TTL
of the record is still the old version one, i.e., not refreshed.
Therefore, the routine table of each node will be disseminated
and updated constantly in the network.

To control the storage overhead, the queue length should

have an upper bound. We set the maximum queue length to
be the number of nodes subtracting one. This is because the
routine table of the node holding the queue is not needed to be
stored in the queue. When the number of entries is less than
the upper bound of queue length, the arrived transient routine
record that is allowed to enter the queue will be pushed into
the queue directly. As long as the queue is full, an entry of
the node having the most transient routine records will be
removed. Such a setting is to ensure that each node can have
at least one transient routine record in queue.

Routine Table Aided Node Searching: After running for
some time, every node can generate a summary of its daily
routines in the form of the routine table based on its historical
transit records. Each node also distributes transient routine
records to other nodes according to the method mentioned
in the previous subsection. The routine table can be used as
an auxiliary positioning method for node searching.

Specifically, each time the locator meets a node, it tries to
fetch the transient routine record of the target node from the
newly encountered node. Then, the locator can find the most
possible landmark(s) the target will be based on current system
time and the collected routine information. Consequently, the
locator can directly move to the indicated landmark(s) to
search for the target. Figure 5 shows one case that the search
speed is accelerated through utilizing the routine information.
Suppose the target node, Node 0, currently is at sub-area
AcadBldg8, and the system time is 11:30AM. We also assume
a received transient routine record is as shown in Table V.
Generally, to reach sub-area AcadBldg8, the locator has to
go through sub-area LibBldg1. Now with the second entry
in Table V, the locator knows that Node 0 is most likely to
stay in sub-area AcadBldg8 now. Thus, rather than searching
LibBldg1 first, it moves towards sub-area AcadBldg8 along
the geographically closest path directly.

On the other side, though the routine information is useful
in indicating the places that the target node is likely to be,
V Rs and MPT information is the primarily way to decide
the searching direction. This is because the routine table may
only cover a short period of time in each day, i.e., a node
may have a routine only in a part of time daily. Therefore, the
routine table will be used to infer the possible position of the
target node only when available, i.e., the VR and MPT are the
major mechanisms to guide the node searching.

Locator LibBldg1 AcadBldg8

System time: 11:30

Fig. 5: Demonstration of routine table aided node searching.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DSearching
with two real DTN traces and the trace obtained by 9 students
carrying a mobile phone on our campus. We first disable
the advanced extensions mentioned in Section III-E to show
the advantage of basic DSearching. We then evaluate the
improvement of the advanced extensions in Section IV-F.

10

A. Empirical Datasets
The first trace, denoted Dartmouth trace (DART) [16],

records the association of students’ digital devices with APs
on the Dartmouth campus. We regarded each building as a
sub-area and merged neighboring records for to the same
mobile device and the same sub-area. We also removed short
connections (< 200s) and nodes with few records (< 500).
Finally, we obtained 320 nodes and 159 sub-areas.

The second trace, namely DieselNet AP trace (DNET) [18],
collects the AP association records of 34 buses in the down-
town area of a college town. Since there are many APs that do
not belong to the experiment in the outdoor environment, APs
with few appearances (< 50) were removed from the trace.
We mapped APs that are within certain distance (< 1.5km)
into one sub-area. The trace is pre-processed similarly as the
DART trace. Finally, we obtained 34 nodes and 18 sub-areas.

The characteristics of the two traces are shown in Table VI.
TABLE VI: Characteristics of mobility traces.

DART DNET
Nodes 320 34
Sub-areas 159 18
Duration 119 days 20 days
Transits 477803 25193

B. Experiment Setup
We set the initial period to 30 days for the DART trace

and 2.5 days for the DNET trace, during which nodes collect
mobility information to build the MPT. Then, locators were
generated with random start sub-area and target node at the
rate of Rp per day, which was set to 40 by default. Considering
students move less frequently than buses, the default locator
TTL was set to 24 hours in the DART trace and 4 hours in
the DNET trace. Since both traces do not provide the map
information, we assume that the locator needs 10 minutes to
move from one sub-area to another sub-area on average.

We compared DSearching with three representative meth-
ods: an encountering based method (Cenwits) [7], a routing
based method (PROPHET) [19], and a random searching
method (Random). In Cenwits, nodes record their meeting
locations and times with other nodes and exchange such
information with others. The locator collects such information
from encountered nodes and moves to the most recent place
where the target node appears to search for it. In PROPHET,
the locator follows the node that has the highest possibility to
meet the target node to search for it. In Random, the locator
moves randomly to search for the target node.

We measured four metrics: Success rate, Average delay,
Average path length, and Average node memory usage. The
former three refer to the percentage of locators that success-
fully find their target nodes and the average delay and average
path length of these locators, respectively. The last one denotes
the average number of memory units used by each node. For
DSearching, we take one row of the MPT and four visiting
records as one memory unit. For Cenwits, 4 meeting records
with others are regarded as one memory unit. For PROPHET,
8 meeting probabilities are regarded as one memory unit. We
set the confidence interval to 95% in the paper.

C. Experiments with Different Locator Rates
In this test, we varied the locator rate Rp from 20 to 70.
1) Success Rate: Figure 6(a) and Figure 7(a) present the

success rates of the four methods in the tests with the DART
trace and the DNET trace, respectively. We see that the success
rates follow: DSearching>Cenwits>Random>PROPHET.

PROPHET has the lowest success rate because a locator
does not move actively to search for the target node but only
follow the mobile node that has the highest probability to meet
the target node, which has its own mobility pattern. Therefore,
a lot of locators expire due to TTL, leading to the lowest
success rate. For Random, locators move actively but search
blindly, resulting in a low success rate. Cenwits explores the
witness of the target node’s appearances in different sub-areas
to actively search for it. Therefore, it has higher success rate
than Random and PROPHET. However, Cenwits has lower
success rate than DSearching. This is because Cenwits only
simply utilizes the recent appearances of the target node
but neglects the mobility pattern of the target node. On the
contrary, DSearching combines the two information to enable
more efficient and accurate node searching.

We also find that except DSearching, other three methods
have obvious higher success rate in the test with the DNET
trace than in the test with the DART trace. This is because
the DART trace represents a network with a lot of sub-
areas (i.e., 159) while the DNET trace is a small scenario
with 18 sub-areas. Then, in the test with the DNET trace,
though locators in Random, PROPHET, and Cenwits have no
or limited information about the mobility of the target nodes,
they can meet the target nodes easily. DSearching has similar
success rate in the tests with both traces because the locator
always moves towards the most possible sub-area that the
target node would be. Then, even when the number of sub-
areas increases, it can stably find most target nodes. Such a
result validates the effectiveness of the mobility information
distribution in DSearching in networks with different sizes.

2) Average Delay: Figure 6(b) and Figure 7(b) present the
average delays of the four methods in the tests with the DART
trace and the DNET trace, respectively. We see that the average
delays follow: DSearching<Cenwits<Random<PROPHET.

PROPHET has the highest average delay because the node
followed by the locator may stay in certain sub-areas for a long
time, resulting in an extremely long delay. Random also has
a large average delay since nodes search randomly. Cenwits
actively searches where the target node has shown recently.
Since nodes usually would stay in a sub-area for a while,
Cenwits has a small average delay. For DSearching, it further
reduces the delay by utilizing both recent visiting records
and long term MPT to guide node searching, which can
help predict where the target node would be more accurately,
leading to the least average delay.

3) Average Path Length: Figure 6(c) and Figure 7(c) show
the average path lengths of the four methods in the tests with
the DART trace and the DNET trace, respectively. We see
that the average path lengths of the four methods follow:
PROPHET<DSearching<Cenwits<Random.

PROPHET has the lowest average path length. This is
because locators in it often stay in a sub-area for a long time.

11

0.0

0.2

0.4

0.6

0.8

1.0

20 30 40 50 60 70

Su
cc
es
s
Ra
te

Locator Rate

DSearch Cenwits
Random PROPHET

(a) Success rate.

0

10

20

30

40

50

20 30 40 50 60 70

Av
er
ag
e
D
el
ay
 (x
10

3 s
)

Locator Rate

DSearch Cenwits
Random PROPHET

(b) Average delay.

0

10

20

30

40

50

60

20 30 40 50 60 70

Av
er
ag
e
Pa
th
 L
en

gt
h

Locator Rate

DSearch Cenwits
Random PROPHET

(c) Average path length.

0

20

40

60

80

100

120

140

160

20 30 40 50 60 70

Av
er
ag
e
M
em

or
y
U
ni
t

Locator Rate

DSearch Cenwits
Random PROPHET

(d) Average node memory usage.

Fig. 6: Performance with different locator rates using the DART trace.

0.45

0.55

0.65

0.75

0.85

20 30 40 50 60 70

Su
cc
es
s
Ra
te

Locator Rate

DSearch Cenwits
Random PROPHET

(a) Success rate.

2.5

3.0

3.5

4.0

4.5

5.0

20 30 40 50 60 70

Av
er
ag
e
D
el
ay
 (x
10

3 s
)

Locator Rate

DSearch Cenwits
Random PROPHET

(b) Average delay.

4.0

4.5

5.0

5.5

6.0

6.5

7.0

20 30 40 50 60 70

Av
er
ag
e
Pa
th
 L
en

gt
h

Locator Rate

DSearch Cenwits
Random PROPHET

(c) Average path length.

0

10

20

30

40

50

60

20 30 40 50 60 70

Av
er
ag
e
M
em

or
y
U
ni
t

Locator Rate

DSearch Cenwits
Random PROPHET

(d) Average node memory usage.

Fig. 7: Performance with different locator rates using the DNET trace.

Therefore, PROPHET searches very slowly, which means
successful locators only search a few sub-areas, leading to
the shortest search path. DSearching has the second least
average path length because the locator movement in it has
the highest possibility of encountering the target node by
utilizing both transient visiting records and long term mobility
pattern of the target node. For Cenwits, it only utilizes the
transient appearance records of the target node to guide the
node searching, resulting in less efficient locator movement
and longer average searching path length than DSearching.
Random has the highest path lengths because the locator
searches randomly in the network.

4) Average Node Memory Usage: Figure 6(d) and Fig-
ure 7(d) show the average node memory usages of the four
methods in the tests with the DART trace and the DNET trace,
respectively. We see that the average memory units of the four
methods follow: Random<PROPHET<Cenwits<DSearching.

Random has 0 average memory unit since nodes in it do
not need to store any information for node searching. In
PROPHET, each node needs to store its meeting probabilities
with all other nodes, leading to a small amount of mem-
ory units. Cenwits has higher average memory units than
PROPHET since it needs to store a large amount of node
appearance records on each node. For DSearching, each node
stores both visiting records and MPT of other nodes, resulting
in the highest memory usage.

Though DSearching has the most memory usage among
the four methods, the absolute amount of memory usage is
acceptable. We find that the average memory unit on each node
is about 150 and 50 in the tests with the two traces. Recall
that each unit is about 50 bytes (i.e. one row of the MPT and
four visiting records). This means that the average memory
usage on each node is only about 7.5 KB and 2.5 KB in
the two tests, which can easily be satisfied in modern devices.

Therefore, we conclude that the designed mobility information
distribution algorithm is memory efficient in DTNs.

We also see that the average memory units of the four
methods are constant with different locator rates. This is
because the memory usage on each node is only decided by
node mobility and is irrelevant with the number of locators.

D. Experiments with Different Locator TTLs
We varied the TTL of each locator to see how different

methods scale to locator TTL. Considering the DART trace is
much longer than the DNET trace (119 days vs 20 days) and
has relative slow node movement (student vs bus), we varied
the TTL from 18 hours to 24 hours and from 2 hours to 7
hours for the DART trace and the DNET trace, respectively.

1) Success Rate: Figure 8(a) and Figure 9(a) present the
success rates of the four methods in the tests with the
DART trace and the DNET trace, respectively. We see that
the success rates of the four methods follow: DSearching>
Cenwits>Random>PROPHET. This is the same as that in
Figure 6(a) and Figure 7(a) for the same reasons.

We further find that when the TTL increases, Cenwits
and PROPHET have closer and closer success rate with
DSearching. This is because that the major difference between
DSearching and the two methods is the node searching effi-
ciency. When each locator is allowed to search longer, Cenwits
and PROPHET can eventually find most target nodes, leading
to a high success rate. However, this comes at the cost of
increased average delay, as shown in the next section.

2) Average Delay: Figure 8(b) and Figure 9(b) present
the average delays of the four methods in the tests with
the DART trace and the DNET trace, respectively. We find
that the average delays of the four methods follow the same
relationship as in Figure 6(b) and Figure 7(b): DSearching
<Cenwits<Random<PROPHET. The reasons are the same
with those in the tests with different locator rates.

12

0.0

0.2

0.4

0.6

0.8

1.0

18 21 24 27 30 33

Su
cc
es
s
Ra
te

TTL (hour)

DSearch Cenwits
Random PROPHET

(a) Success rate.

0

10

20

30

40

50

60

18 21 24 27 30 33

Av
er
ag
e
D
el
ay
 (x
10

3 s
)

TTL (hour)

DSearch Cenwits
Random PROPHET

(b) Average delay.

0

20

40

60

80

18 21 24 27 30 33

Av
er
ag
e
Pa
th
 L
en

gt
h

TTL (hour)

DSearch Cenwits
Random PROPHET

(c) Average path length.

0

20

40

60

80

100

120

140

160

18 21 24 27 30 33

Av
er
ag
e
M
em

or
y
U
ni
t

TTL (hour)

DSearch Cenwits
Random PROPHET

(d) Average node memory usage.

Fig. 8: Performance with different locator TTLs using the DART trace.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7

Su
cc
es
s
Ra
te

TTL (hour)

DSearch Cenwits
Random PROPHET

(a) Success rate.

2

3

4

5

6

7

2 3 4 5 6 7

Av
er
ag
e
D
el
ay
 (x
10

3 s
)

TTL (hour)

DSearch Cenwits
Random PROPHET

(b) Average delay.

3.0

4.0

5.0

6.0

7.0

8.0

9.0

2 3 4 5 6 7

Av
er
ag
e
Pa
th
 L
en

gt
h

TTL (hour)

DSearch Cenwits
Random PROPHET

(c) Average path length.

0

10

20

30

40

50

60

2 3 4 5 6 7

Av
er
ag
e
M
em

or
y
U
ni
t

TTL (hour)

DSearch Cenwits
Random PROPHET

(d) Average node memory usage.

Fig. 9: Performance with different locator TTLs using the DNET trace.

We also see that when the TTL increases, the average delay
increases. This is because when the TTL increases, locators
that may fail to find their target nodes when the TTL is small
can find their target nodes. Then, the average delay increases
due to more successful locators with a large delay.

3) Average Path Length: Figure 8(c) and Figure 9(c)
present the average path lengths of the four methods in the
tests with the DART trace and the DNET trace, respectively.
We find that the average path lengths follow: Random<
DSearching<Cenwits<PROPHET, which is the same as in
Figure 6(b) and Figure 7(b). The reasons are also the same.

We also see that when TTL increases, the average path
length increases. This is caused by the same reason as in
Section IV-D1 and IV-D2: when TTL increases, more locators
can find their targets after searching many sub-areas, leading
to increased average search path length.

4) Average Node Memory Usage: Figure 8(d) and Fig-
ure 9(d) present the average memory units a node uses in the
tests with the DART trace and the DNET trace, respectively.
We see that the results are the same with Figure 6(d) and
Figure 7(d). This is caused by the fact that the memory usage
is independent with the locator TTL.

Combining all above results, we conclude that DSearching
presents superior performance compared to other methods with
different locator rates and TTLs. Such a result justifies our
design goal: efficient node searching with acceptable cost.

E. Test With Real Environment Data

We further applied the DSearching to the mobility data of 9
students on our campus. The 9 students are from 4 departments
in our university. We selected 8 sub-areas, each of which is
represented by a frequently visited building. Such mobility
data is obtained based on the GPS records on mobile phones,
which is more accurate than the AP association records in

L2 L0L1
L7

L6

L5L4L3

S‐Hall

Union

B‐Hall

R‐Hall Library

M‐Hall

D‐Hall

H‐Center

(a) Maps for sub-area division.

Item Value

Sub‐areas 8

Nodes 9

Transits 147

Duration 4 days

(b) Statistical data.

Fig. 10: Configuration in the real environment.

the two real traces. The test environment and the mobility
information are summarized in Figure 10(a) and 10(b).

Since DSearching shows stable performance with different
locator rates in previous tests, we only varied the locator TTL
from 20 minutes to 70 minutes and set the Rp to 40. Since
the distance between the test buildings are not far, we assume
that a locator averagely takes 5 minutes to move from one
sub-area to a neighboring sub-area.

TABLE VII: Results with real environment data

TTL (min) 20 30 40 50 60 70
Success Rate 0.62 0.75 0.83 0.88 0.89 0.93
Ave. Delay (min) 7.6 10.2 10.8 12.2 13.8 17.6
Ave. Path Length 1.4 1.9 2.0 2.3 2.6 3.1
Ave. Node Memory Usage 5 5 5 5 5 5

The test results are shown in Table VII. We find that
when the locator TTL increases, success rate, average delay
and average path length increase. This is the same as our
observation in previous experiments with the two real traces.
The reasons are the same that when the TTL increases, more
locators can find the target nodes after a large delay and a
long searching path.

We also see that when the TTL was set to 70 minutes, a
successful locator takes only about 17 minutes (or 3 transits

13

between sub-areas) to find the target node on average. Further,
each node only needs 5 units of memory on average to support
the node searching, which is very low and can easily be
satisfied. In conclusion, DSearching is effective and efficient
in searching mobile nodes in realistic DTNs.

F. Evaluation of the Advanced Extensions

We further evaluate the effect of the extensions proposed
in Section III-E. Considering that DSearching presents stable
performance in the tests with different locator rates, we
only conducted tests with different TTLs. Specifically, as in
Section IV-D, we again varied the TTL from 18 hours to
24 hours and from 2 hours to 7 hours for the DART trace
and the DNET trace, respectively. Other settings are the same
as mentioned in Section IV-B. In this test, we use DSearch
to denote the original DSearching without any extensions,
DSearch Pr to denote DSearching with the improved MPT,
DSearch Rt to represent DSearching with the routine table,
and DSearch Both to represent DSearch with both the im-
proved MPT and the routine table.

1) Success Rate: Figure 11(a) and Figure 12(a) present
the success rates of DSearch and the three extensions
in the tests with the DART trace and the DNET
trace, respectively. We see from the two figures that in
both tests, the success rates of the four methods fol-
low: DSearch Both>DSearch Rt≈DSearch Pr>DSearch. In
DSearch Pr, the advanced MPT can predict the next tran-
sit more accurately by considering the previous transit. In
DSearch Rt, the routine table can guide the locator to move
to the places where the target visits regularly. Therefore, both
DSearch Pr and DSearch Rt have higher success rate than
the original DSearch. Since the two extensions improve the
original DSearch from two different aspects, it is hard to dis-
tinguish which one is better. We can also see that they present
similar success rate in our test. Furthermore, DSearch Both
results in the highest success rate since it integrates both the
improved MPT and the routine table.

2) Average Delay: Figure 11(b) and Figure 12(b)
show the average delays of DSearch and the three ex-
tensions in the tests with the DART trace and the
DNET trace, respectively. We find from the two fig-
ures that the average delays of the four methods follow
DSearch Both<DSearch Rt≈DSearch Pr<DSearch. Such a
result matches with the relationship on success rate of each
method, as shown in the previous section. This is because by
utilizing the improved MPT and the routine table, DSearch Rt
and DSearch Pr can enable locaters to find the target more
quickly, thereby reducing the average search delay. Similarly,
DSearch Both has the lowest average delay because it enables
both the improved MPT and the routine table, both of which
can improve node searching efficiency.

3) Average Path Length: Figure 11(c) and Figure 12(c)
show the average path lengths of DSearch and the three
extensions in the tests with the DART trace and the
DNET trace, respectively. We observe from the two fig-
ures that the average path lengths of the four methods fol-
low DSearch Both<DSearch Rt≈DSearch Pr<DSearch. In

DSearch Pr, the improved MPT can guide the locator to search
along the path of the target more accurately. In DSearch Rt,
the routine table can guide the locator to move to the
regularly visited places of the target node. Both extensions
effectively avoid searching unnecessary sub-areas. Thereby,
they lead to shorter average path length than DSearch. Again,
DSearch Both leads to the shortest average search path be-
cause both extensions are included.

Combining above results, we conclude that the two exten-
sions can improve the node searching efficiency.

4) Average Node Memory Usage: Figure 11(d) and Fig-
ure 12(d) illustrate the average node memory usages of
DSearch and other three extensions in the tests with the DART
trace and the DNET trace, respectively. We see from the
two figures that the average node memory usage of the four
methods follow DSearch Both>DSearch Rt>DSearch Pr>
DSearch. In DSearch Pr, the MPT table is extended to in-
clude more fine-grained transit probabilities, resulting in more
memory usage than DSearch. For DSearch Rt, the routine
table is created and distributed in the same way as the
MPT table. Therefore, it generates even more memory usage
than DSearch Pr. Then, DSearch Both has the highest node
memory usage by including both extensions.

Though these extensions lead to more memory usage, they
bring about improvement on the node searching efficiency. On
the other hand, the increased memory usage is on the same
level with the original memory usage. This means that the
two extensions do not lead to a significant burden on memory
usage. The system designer can decide which extensions can
be enabled based on the actual system need to achieve a
balance on efficiency and memory usage.

V. CONCLUSION

In this paper, we propose DSearching, a distributed mobile
node searching scheme in DTNs where nodes present certain
mobility patterns. In DSearching, the whole network is split
into sub-areas. A node’s mobility information includes both
transient sub-area visiting records and long-term transition
patterns between sub-areas. Each node distributes its visiting
record for a sub-area to nodes that are likely to stay in the pre-
vious sub-area. The long term mobility information of a node
in a subarea is distributed to a limited number of long-staying
nodes in the sub-area. Such information enables the locator
to search along the path the target node traverses, resulting
in efficient node searching. Advanced extensions that utilize
sub-area visiting correlation and routine information are also
proposed in the paper to further enhance the node searching
efficiency. Extensive experiments with both real traces and on-
campus DTN trace validate the high effectiveness and high
efficiency of DSearching. In the future, we plan to investigate
how to fully utilize searching agents to further improve node
searching efficiency.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
IIS-1354123, CNS-1254006, CNS-1249603, CNS-1049947,
CNS-0917056 and CNS-1025652, Microsoft Research Faculty
Fellowship 8300751.

14

0.80

0.85

0.90

0.95

18 21 24 27 30 33

Su
cc
es
s
Ra
te

TTL (hour)

DSearch DSearch_Pr
DSearch_Rt Dsearch_Both

(a) Success rate.

3

6

9

12

18 21 24 27 30 33

Av
er
ag
e
D
el
ay
 (x
10

3 s
)

TTL (hour)

DSearch DSearch_Pr
DSearch_Rt Dsearch_Both

(b) Average delay.

0

20

18 21 24 27 30 33

Av
er
ag
e
Pa
th
 L
en

gt
h

TTL (hour)

DSearch DSearch_Pr
DSearch_Rt Dsearch_Both

(c) Average path length.

120

160

200

240

280

18 21 24 27 30 33

Av
er
ag
e
M
em

or
y
U
ni
t

TTL (hour)

DSearch DSearch_Pr
DSearch_Rt Dsearch_Both

(d) Average node memory usage.

Fig. 11: Performance of each extension with different locator TTLs using the DART trace.

0.70

0.75

0.80

0.85

0.90

0.95

2 3 4 5 6 7

Su
cc
es
s
Ra
te

TTL (hour)

DSearch DSearch_Pr
DSearch_Rt Dsearch_Both

(a) Success rate.

1.5

2.5

3.5

4.5

2 3 4 5 6 7

Av
er
ag
e
D
el
ay
 (x
10

3 s
)

TTL (hour)

DSearch DSearch_Pr
DSearch_Rt Dsearch_Both

(b) Average delay.

3.0

4.0

5.0

6.0

7.0

2 3 4 5 6 7

Av
er
ag
e
Pa
th
 L
en

gt
h

TTL (hour)

DSearch DSearch_Pr
DSearch_Rt Dsearch_Both

(c) Average path length.

40

50

60

70

80

2 3 4 5 6 7

Av
er
ag
e
M
em

or
y
U
ni
t

TTL (hour)

DSearch DSearch_Pr
DSearch_Rt Dsearch_Both

(d) Average node memory usage.

Fig. 12: Performance of each extension with different locator TTLs using the DNET trace.

REFERENCES

[1] S. Jain, K. R. Fall, and R. K. Patra, “Routing in a delay tolerant network,”
in Proc. of SIGCOMM, 2004.

[2] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with zebranet,” in Proc. of ASPLOS-X, 2002.

[3] J. Zhao, Y. Zhu, and L. M. Ni, “Correlating mobility with social
encounters: Distributed localization in sparse mobile networks.” in Proc.
of MASS, 2012.

[4] S. Lu, Y. Liu, Y. Liu, and M. Kumar, “Loop: A location based routing
scheme for opportunistic networks.” in Proc. of MASS, 2012.

[5] K. Chen and H. Shen, “Leveraging social networks for p2p content-
based file sharing in disconnected manets.” IEEE TMC, 2013.

[6] B. Thorstensen, T. Syversen, T. Walseth, and T.-A. Bjørnvold, “Elec-
tronic shepherd - a low-cost, low-bandwidth, wireless network system.”
in Proc. of MobiSys, 2004.

[7] J. Huang, S. Amjad, and S. Mishra, “Cenwits: a sensor-based loosely
coupled search and rescue system using witnesses.” in Proc. of SenSys,
2005.

[8] J.-H. Huang, L. Jiang, A. Kamthe, J. Ledbetter, S. Mishra, A. Cerpa,
and R. Han, “Sensearch: Gps and witness assisted tracking for delay
tolerant sensor networks,” in Proc. of Ad Hoc-Now, 2009.

[9] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “DTN routing
as a resource allocation problem.” in Proc. of SIGCOMM, 2007.

[10] K. Lee, Y. Yi, J. Jeong, H. Won, I. Rhee, and S. Chong, “Max-
Contribution: On optimal resource allocation in delay tolerant networks.”
in Proc. of INFOCOM, 2010.

[11] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forward-
ing in delay tolerant networks,” in Proc. of MobiHoc, 2008.

[12] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in Proc. of MobiHoc, 2007.

[13] J. Link, D. Schmitz, and K. Wehrle, “GeoDTN: Geographic routing in
disruption tolerant networks,” in Proc. of GLOBECOM, 2011.

[14] I. Leontiadis and C. Mascolo, “GeOpps: Geographical opportunistic
routing for vehicular networks,” in Proc. of WOWMOM, 2007.

[15] L. Song, U. Deshpande, U. C. Kozat, D. Kotz, and R. Jain, “Predictabil-
ity of wlan mobility and its effects on bandwidth provisioning.” in Proc.
of INFOCOM, 2006.

[16] T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of a mature
campus-wide wireless network,” in Proc. of MOBICOM, 2004.

[17] K. Chen and H. Shen, “Dtn-flow: Inter-landmark data flow for high-
throughput routing in dtns.” in Proc. of IPDPS, 2013.

[18] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Enhancing
interactive web applications in hybrid networks,” in Proc. of MOBICOM,
2008.

[19] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-
mittently connected networks.” Mobile Computing and Communications
Review, vol. 7, no. 3, 2003.

Kang Chen Kang Chen received the BS degree
in Electronics and Information Engineering from
Huazhong University of Science and Technology,
China in 2005, the MS in Communication and
Information Systems from the Graduate University
of Chinese Academy of Sciences, China in 2008, and
the Ph.D. in Computer Engineering from Clemson
University. He is currently a Postdoctoral Research
Fellow in the Department of Electrical and Computer
Engineering at Clemson University. His research
interests include mobile ad hoc networks, delay

tolerant networks and vehicular networks.

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen Haiying Shen received the BS degree
in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne State
University in 2004 and 2006, respectively. She is
currently an Associate Professor in the Department
of Electrical and Computer Engineering at Clemson
University. Her research interests include distributed
computer systems and computer networks, with an
emphasis on P2P and content delivery networks,
mobile computing, wireless sensor networks, and

grid and cloud computing. She is a Microsoft Faculty Fellow of 2010, a
senior member of the IEEE and a member of the ACM.

Li Yan Li Yan received the BS degree in Infor-
mation Engineering from Xi’an Jiaotong University,
China in 2010, and the M.S. degree in Electrical
Engineering from University of Florida in 2013. He
currently is a Ph.D. student in the Department of
Electrical and Computer Engineering at Clemson
University, SC, United States. His research interests
include wireless networks, with an emphasis on
delay tolerant networks and sensor networks.

