
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

1

Efficient File Search in Delay Tolerant Networks
with Social Content and Contact Awareness

Kang Chen, Haiying Shen, Senior Member, IEEE,, Li Yan

Abstract—Distributed file searching in delay tolerant networks formed by mobile devices can potentially support various useful
applications. In such networks, nodes often present certain social network properties of their holders in terms of contents (i.e., interests)
and contacts. However, current methods in DTNs only consider either content or contact for file searching or dissemination, which
limits the file sharing efficiency. In this paper, we first analyze real traces to confirm the importance and necessity of considering
both content and contact in file search. We then propose Cont2, a social-aware file search method that exploits both node contents
and contact patterns. First, considering people with common interests tend to share files and gather together, Cont2 virtually groups
common-interest nodes into a community to direct file search. Second, considering human mobility follows a certain pattern, Cont2
exploits nodes’ contact frequencies with a community to expedite file searching. To further improve the searching efficiency, Cont2 also
integrates sub-communities and parallel forwarding as optional components for file searching. Trace-driven experiments on the GENI
testbed and NS-2 simulator show that Cont2 can effectively improve the search efficiency compared to current methods.

Index Terms—Social-Aware, File Search, Delay Tolerant Networks

F

1 INTRODUCTION

The wide usage of portable digital devices (e.g., laptops
and smart phones) has stimulated significant researches
on distributed file search in mobile environments. In this
paper, we envision DTNs as a backup network for in-
frastructure intensive areas or a low-cost communication
structure in severe environments, e.g., mountain/rural
areas and battle field. For example, even with no net-
work connection, students can acquire course materials
from other students’ mobile devices [1] and drivers can
acquire weather and traffic conditions from passing by
vehicles [2]. Besides, people or vehicles moving in moun-
tain areas can help forward data, e.g., emails, between
villages at a very low cost, i.e., without the need of
infrastructures [3]. Thus, in this paper, we focus on
distributed peer-to-peer file search in a delay tolerant
network (DTN) [4] formed by mobile devices, the hold-
ers of which exhibit certain social network properties.

However, due to sparse node distribution and con-
tinuous node mobility, DTNs are featured by frequent
network partition and intermittent connections. As a re-
sult, packet forwarding is often realized in a store-carry-
forward manner in DTN routing algorithms [3], [5]–[7],
which means that a message is carried by current holder
until meeting another forwarder. Furthermore, due to the
distributed network structure, it is almost impossible to
maintain global file distribution information in DTNs.
This means that a file request often does not know which
nodes contain the requests file when it is generated.
These characteristics lead to significant challenges on
efficient file searching in DTNs.

Kang Chen is with the Department of Electrical and Computer Engi-
neering, Southern Illinois University, Carbondale, IL 62901 USA email:
kchen@engr.siu.edu

Haiying Shen and Li Yan are with the Department of Electrical and
Computer Engineering, Clemson University, Clemson, SC, 29631 USA e-
mail: {shenh,lyan}@clemson.edu.

Recently, some methods [1], [8]–[16] have been pro-
posed to leverage node contacts/interests for content
dissemination or publish in DTNs. They either group
nodes with frequent contact or forward contents follow-
ing node interests for file service in DTNs. However,
only considering interest/content or contact may lead to
a low file searching efficiency. First, a node usually has
multiple interests, and few nodes share many interests.
This implies that contact based communities may hold
files from different interests, leading to frequent inter-
community search. Second, same interest nodes may not
always stay together due to node mobility. Therefore,
purely relying on node interests for file searching may
not be able to find the file holder quickly. Our study on
crawled Facebook data and a real trace obtained from
students on a campus [17] confirms these reasons, as
discussed later in Section 3.

Furthermore, file searching is different from data dis-
semination in two aspects. First, they have different
directions. The former forwards a request to the content
holder, while the latter distributes contents to interested
nodes. Second, a request only servers one node, while
a data can repetitively satisfy many nodes. Therefore, it
would be desired to not replica a request to control the
overhead, while a data may be replicated multiple times.

To overcome these shortcomings, we propose a social-
aware Content and Contact based file search method,
namely Cont2, for DTNs in which the holders of mobile
nodes present certain social network properties. Cont2 is
a single-copy file searching algorithm that utilizes both
node contact and node interest to efficiently locate the
requested file in DTNs. The cornerstone for the design
of Cont2 originates from two properties of the social
networks in the DTN scenario:
(P1) Common interest: every node has social interests,
and nodes with a common interest, though may be
separated, tend to meet more often with each other than

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

with other nodes [18];
(P2) Movement pattern: people usually present skewed
visiting preferences to certain places [19].

By leveraging P1, we develop a social community
creation algorithm that virtually classifies nodes into dif-
ferent communities based on their interests. This helps to
forward a file request toward the destination community
that contains the file. By leveraging P2, we develop a
file searching algorithm that always forwards requests to
nodes that are more likely to meet the requests content.
On the basis of basic components, we also propose
advanced components that exploit contact-based sub-
communities and parallel forwarding to further enhance
file searching efficiency. As a result, both content (i.e.,
interests) and contact are exploited to find appropriate
forwarders for file requests, leading to a high file search-
ing efficiency. In a nutshell, the major contribution of
Cont2 is to synergistically exploit both node contents
(interests) and contacts under the social network context
for efficient file searching in DTNs, while previous meth-
ods only utilize one of the two properties for content
dissemination or publish service in DTNs.

The remainder of this paper is arranged as follows.
Related works are described in Section 2. Section 3 intro-
duces the analysis on real traces. Section 4 presents the
detailed design of Cont2. In Section 5, the performance
of Cont2 is evaluated through experiments. Finally, Sec-
tion 6 concludes the paper with remarks on future work.

2 RELATED WORK

2.1 Packet Routing in DTNs

DTNFLOW [3] uses node transit patterns between dif-
ferent landmarks to find the fastest path for efficient
packet routing among landmarks in DTNs. RAPID [5]
regards opportunistic encountering among nodes as re-
sources in the network and converts packet routing into
a resource allocation problem. The work in [6] exploits
nodes’ frequently visited communities to realize efficient
multi-copy packet routing in mobile social networks.
SMART [7] uses the social map that shows the social
closeness between surrounding nodes to guide packet
routing. However, packet routing algorithms in DTNs
cannot be employed for file searching/sharing. This is
because in DTNs, the destination node of a file request
is not determined when it is generated.

2.2 Content Dissemination in DTNs

In Haggle project [1], data is forwarded along nodes
with matched interests. MOPS [8] groups nodes with
frequent contact into a community and selects nodes
that frequently visit a neighboring community as brokers
for inter-community communication. The socio-aware
overlay [9] builds brokers into an overlay, in which
brokers use unicast or direct communication protocols
(e.g., WiFi) for communication. In the work of [10],
the author considers users’ impatience in acquiring
files for optimal file caching in opportunistic networks.

Lenders et al. [11] discussed different content solicita-
tion strategies in the podcasting through the peer-to-
peer communication among mobile devices. Zhang et
al. [12] defined friends as nodes with similar interests
and evaluated four data diffusion strategies. In Content-
Place [13], nodes collect files that are possibly interested
by nodes in their social communities. In addition to node
interests, Gao et al. [14] further considered social contact
patterns in data dissemination. This method forwards
data to nodes that are more likely to meet nodes that are
interested in the data. The works in [15] and [16] exploit
transient node contacts and community structures to find
key relay nodes for effective data dissemination.

These methods differ from Cont2 in two aspects. First,
they only utilize either contact or interest for data for-
warding, while Cont2 considers both properties. Sec-
ond, these works mainly investigate data dissemination,
which is different from the goal of data searching. Data
dissemination distributes contents to interested users,
while data searching forwards requests to file holders.

2.3 Content Searching in DTNs
There are also works on data searching/sharing in
DTNs [20]–[23]. The works in [20] and [21] allow each
node to delegate its file requests to other nodes to
reach the requests files. However, a node simply chooses
the node that it can meet frequently as its file request
delegates, leading to a low file sharing efficiency.

The work in [22] investigates how to stop the content
searching in file searching in DTNs so that the number of
discovered files and searching overhead can be balanced.
SPOON in our previous work [23] was developed for
disconnected MANETs that have strong node interest
and contact correlation, while Cont2 is developed for
DTNs where nodes with similar interests do not neces-
sarily always stay together. Therefore, SPOON and Cont2

have different file search algorithms. SPOON relies on
the meeting frequency with a content to search for
the content within an interest community, while Cont2

utilizes intra-community mobility pattern to search for
files. Cont2 novelly builds community contact table and
neighbor table to direct the file searching.

3 REAL-TRACE ANALYSIS
3.1 MIT Reality Trace Analysis
We first analyzed the MIT Reality trace [17], which
records the encountering of 94 smart phones held by
students and staffs at MIT, to verify the drawbacks of
only considering node contacts in file search in DTNs.
Such a trace shows the typical scenario for the proposed
Cont2, i.e., campus, and is representative in analysis.

Using the method in MOPS [8], we classified nodes
into 7 communities (C1−7), and nodes in each commu-
nity share frequent contacts. We also selected one pair of
brokers for each community pair. A community’s broker
for another community, say Cx, is the node in the com-
munity that has the highest overall contact frequency

2

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

300 10300 20300 30300 40300 50300

C1

C2

C3

C4

C5

C6

C7

Ra
tio

 o
f

co
nn

ec
tio

ns
 to

 b
ro
ke
rs

Time (s)

(a) Ratio of connections to brokers.

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

300 10300 20300 30300 40300 50300

C1

C2

C3

C4

C5

C6

C7

Ra
tio

 o
f

sa
m
e
co
m
m
un

ity
 n
ei
gh
bo

rs

Time (s)

(b) Ratio of same community neighbors.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

300 10300 20300 30300 40300 50300

Av
er
ag
e R

at
io

Time (s)

Ratio of same community neighbors
Ratio of connections to brokers

(c) Overall average ratio.

Fig. 1. Real-trace analytical results.

with nodes in Cx. The overall contact frequency with a
community is the sum of contact frequencies with nodes
in the community. Due to page limit, we only show the
analysis result for one day (15 hours=54000s). The results
on other days show similar trend.

3.1.1 Connectivity to Brokers

A community’s ratio of connections to brokers is the portion
of community members that connect to at least one bro-
ker. Figure 1(a) plots this metric for each community ev-
ery 100s and shows that the ratio varies in range [0.5,1].
Figure 1(c) plots the average value of all communities,
which shows that the average value is around 0.8. This
means that averagely, 20% of nodes cannot communicate
with their brokers, and in some communities, 50% of
nodes cannot communicate with their brokers.
O1: Due to node mobility, community nodes do not always
connect to their brokers.

3.1.2 Connectivity to Community Members

A node’s ratio of same community neighbors is the portion
of its neighbors that belong to the node’s community.
Figure 1(b) plots the average of the ratios of all nodes
in each community every 100s, and shows that the ratio
varies greatly in [0.1, 0.9]. Figure 1(c) plots the average
value of all communities and shows that the average
value is around 0.5, which means that on average half
of a node’s neighbors are not from the same community.
O2: Due to node mobility, nodes in one community do not
always stay together.

3.2 Facebook Data Analysis

3.2.1 Do nodes with a common interest also share many
other interests?

We crawled the data of 117 users from Facebook [24]
and examined their interest closeness. These people
watched a video of a randomly selected user in Face-
book. We identified 20 interests (e.g., sports, gaming
and pop music) and found 86 users who have at least
one of these interests. We found 1462 pairs of users
that share at least one common interest. We then cal-
culated the interest closeness between user i and j
(cij) by: cij = m2

ij/sisj , where mij is the number of
shared interests of the two users, and si and sj are the
number of interests of user i and user j, respectively.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800 1000 1200 1400

In
te
re
st
 c
lo
se
ne

ss

User pair sequence

Average value = 0.2143

Fig. 2. Interest closeness
of common-interest user
pairs.

Figure 2 shows the inter-
est closeness of different
pairs of users. We observe
that the interest closeness
mainly varies in the range
[0.1, 0.33] and few exceed
0.4, and the average close-
ness is only 0.2143. This
result proves that though
each pair of nodes shares
at least one common interest, they rarely share most
interests. Although such a result is obtained from Face-
book data, it reflects users’ interests and matches our
daily experience that people usually do not share many
common interests [18].
O3: In a social network, nodes usually have multiple interests.
Two nodes sharing one interest usually do not necessarily
share many other interests.

Based on O1, O2, and O3, we can infer that:
I1: Forming frequently contacted nodes into a community may
not be able to limit most file searches within a community due
to nodes’ movement and diverse interests.
I2: Same interest nodes may not always connect to each other
due to node mobility.

3.3 Why Combined Content and Contact Design

Figure 3 shows an example of the communities con-
structed with a contact-based method (i.e., MOPS) and
a content-based method (i.e., Cont2), respectively. In
MOPS, each community consists of nodes in a depart-
ment since they meet frequently. In Cont2, nodes are
grouped according to their interests (contents). In the fig-
ure, some students (gray nodes) in different departments
also attend a poetry class. These nodes gather together
regularly during the poetry class.

Obviously, MOPS is efficient if most requests can be
satisfied within its current community for its tight intra-
community connections. However, this does not hold
in practice (I1), leading to frequent inter-community
searchers. Also, since communities in MOPS do not rep-
resent content information, a forwarder needs to know
the content indexes of all other communities, which is
costly and inefficient. For example, in Figure 3(a), a
requester in community C1 requests a file in community
C3. The broker of C1 (b1) has to know the file index of
C3 first. Otherwise, the file request either waits on b1 for
such information or gets forwarded blindly. Therefore,

3

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

C1
C2

C3

C1

C2
C3 C4

Cont2MOPS

(a) contact‐based (b) content‐based

C1: Computer Science
interest

C2: Physics interest
C3: Chemistry interest
C4: Poetry interest

C1: Computer Science
Dept. building

C2: Physics Dept.
building

C3: Chemistry Dept.
building

Fig. 3. Community creation of MOPS vs. Cont2.

purely relying on node contacts for file search may lead
to a low searching efficiency.

On the other side, nodes in interest (content) based
communities may not tightly connected (I2). Therefore, a
request reaching the destination community cannot meet
the file holder easily. For example, in Figure 3(b), when
a poetry related request arrives at community C4, its file
holder may stay in other places at the moment, leading
to a long waiting time. In this case, social properties
about node contacts (P2) should be utilized to forward
the request to the file holder greedily, thereby overcom-
ing the relatively loose structure in interest (content)
based communities and enhancing file search efficiency.

In summary, both contents and contacts are necessary
for efficient file searching in DTNs.

4 THE DESIGN OF CONT2

Following the findings in the previous section, we de-
sign three components in Cont2: community creation,
neighbor table construction and update, and content and
contact based file search. We also propose advanced tech-
niques that can further enhance file searching efficiency,
thought at additional costs. In below subsections, we
first introduce the network model for Cont2 and then
elaborate the technical components in detail.

4.1 Network Model and Application Scenarios
Cont2 is proposed for DTNs in which mobile nodes
are held by people and the social network properties
indicated in the introduction section are presented. There
are n mobile nodes in such a network, denoted by
Ni (i = 1, 2, · · · , n). Ni is also called node i in this
paper. Each node holds some files, which can reflect
the interests of the node. The interests represent the
content categories of shared files in Cont2. Therefore,
the interests are specified by the file sharing applications
running above Cont2 and do not necessarily include
all general file interests. Recall that based on the social
network properties, nodes with common interests, i.e.,
interested in similar contents, tend to meet more fre-
quently than with other nodes. However, Cont2 does not
require common-interest nodes to always stay together,
and they can be dispersed in the network.

Considering the high packet routing delay in DTNs,
Cont2 is suitable for delay-tolerant file sharing rather
than time-sensitive file sharing. It can be applied to many
practical scenarios. For example, students on a campus
can share video clips and study materials through Cont2.
People in rural villages, where it would be costly to build

infrastructures, can share files based on the peer-to-peer
communication between their devices in Cont2.

4.2 Community Creation
Without loss of generality, we assume that files stored on
a node can be reflected by the node’s interests. We then
define a community as a group of nodes sharing the same
interest for the purpose of file searching. Thus, in Cont2,
common-interest nodes virtually form into a community.
By virtually, we mean that nodes in one community do
not have to always stay together. However, based on
previous discussion, same interest nodes still are more
likely to meet with each other than with others, which
connects our community definition with node mobility
for the purpose of file sharing. A node with multiple
interests belongs to multiple communities.

Cont2 has a server that functions as a bootstrap for
node (or interest) joining. The server maintains an inter-
est list containing all interests and associated keywords
in the system. This list is initially configured by the
system administrator and is updated when necessary.
For example, in a movie file sharing system, the interests
include action, comedy, and romance. The server can
map a set of keywords to an interest. Such automatic
mapping can be conducted through machine learning
techniques, which are beyond the discussion of this pa-
per. A node needs to register to the server when joining
in the system. The node derives its keywords from its
files through a keyword abstraction technique [25] and
reports that to the server during the registration process.
Based on the keywords, the server identifies the node’s
interests and community IDs. If there is no community
matching the node’s interest, a new community ID is
created for the node. When a node changes its interests,
it also reports to the server to get the new community
IDs. A node can manually connect to the server through
the Internet or 3G network for the registration, and then
switches to the P2P mode for file sharing.

Common-interest communities benefit file searching
from two aspects: (1) it increases the probability that a
node finds its interested files in its own community since
common-interest nodes tend to meet more frequently, as
introduced in Section 1, and (2) it can enable a request
to learn the destination community directly.

4.3 Neighbor Table Construction and Update
Each node in Cont2 maintains a neighbor table (Table 2)
to help decide the next hop node in file searching. We
present how this table is constructed and updated on
each node below. The notations used in this subsection
are summarized in Table 1.

TABLE 1
Notations for Neighbor Table

Notation Meaning
CCTi Community Contact Table of neighbor Ni

Cx The x-th community
FinCx Node Ni’s n-hop contact frequency with community Cx

4

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

4.3.1 Neighbor Table Construction
The neighbor table on a node records the information of
its current neighbors and encountered same-community
neighbors. The information includes node ID, commu-
nity ID, content synopses, community contact table (CCT)
and a connection bit (CB). The content synopses of a
neighbor shows its contents, which are generated with
the keywords of all its files. Each keyword k is asso-
ciated with a weight wk, which is the portion of files
that contain the keyword on the node. Thus, a content
synopses is represented by <k1, wk1

; k2, wk2
; · · ·>. The

content synopses is updated when two nodes meet. CB is
a Boolean value indicating whether the node is currently
connected to the neighbor.

TABLE 2
Neighbor Table

Node ID Community ID Content synopses CCT CB
1 0x0001, 0x0010 < k1, wk1

; k2, wk2
; · · · > CCT1 1

2 0x0008 < k1, wk1
; k2, wk2

; · · · > CCT2 0
· · · · · · · · · · · · · · ·

TABLE 3
Community Contact Table (CCT)

Community ID 1-hop contact frequency 2-hop contact frequency
0x0001 0.7 0.9
0x0010 0.2 0.7
0x0011 0 0.5
0x0100 0.6 0.2
· · · · · · · · ·

In Table 2, CCTi denotes the CCT (Table 3) of neighbor
Ni, which records its n-hop (n = 1, 2, 3, · · ·) contact
frequency with each community. A node’s n-hop contact
frequency with a community represents its probability of
connecting to the community through n hops. A node’s
probability of connecting to a community equals to its
accumulated probabilities of meeting the members in the
community. We use this definition since CCT serves to
forward a file request to its matched community. Specifi-
cally, node Ni’s 1-hop contact frequency with community
C represents its direct contact probability with C; Ni’s n-
hop (n > 1) contact frequency with community C refers
to the accumulated n− 1 hop contact frequency of Ni’s
current and past neighbors with C. CCT helps inter-
community search by selecting nodes with the highest
probability of meeting the destination community as the
next relay node. Although more information in the CCT
would give better direction on request forwarding, we
confine n to 2 in order to balance the routing perfor-
mance and storage and transmission cost.

4.3.2 Neighbor Table Update
We use FinCx

(n ≥ 1) to denote node i’s n-hop contact
frequency with community Cx, which is initialized to 0
in the beginning. Node i periodically updates its FinCx

with each community after each unit time period T .
Specifically, when node i meets a new neighbor j, they
exchange their neighbor tables for subsequent periodical
table updates. Suppose the accumulated time period that
nodes i and j connect with each other is tij during T and

node j belongs to community C1. Then, node i’s CCT is
updated by:{

FinC1 = FinC1 +
tij
T

; if n = 1

FinCx+ =
tij
T
∗ Fj(n−1)Cx

; if n > 1 & x 6= 1
(1)

where FinCx (n > 1) refers to node i’s n-hop contact
frequency with each community Cx. Thus, Nj ’s (n-1)-
hop contact frequency with Cx is added to FinCx because
a message from Ni needs one more hop to reach Cx

through Nj . With such design, the calculated community
meeting frequency may be larger than 1 since a node
may meet multiple nodes from a community in each T .
However, it still can reflect the relative tightness of a
node’s connection with a community.

In the end of each T , node i updates its contact
frequency to each community by

Fnew
inCx

= βF old
inCx

+ (1− β)FinCx
(n ≥ 1), (2)

where β < 1 is a fading weight, F old
inCx

and Fnew
inCx

denote
node i’s old and new contact frequency with commu-
nity Cx before and after T , respectively. The value of
β is determined by the weight of previous and most
recent meeting frequency on deciding FinCx . The system
administrator should decide a suitable T based on the
mobility of nodes in the system.

The community contact table reflects a node’s contact
frequencies with different communities and guides the
file searching algorithm, as explained later. Therefore, it
should be updated properly so that it can reflect both
long term meeting ability and short term changes. β is
designed for this purpose by controlling how fast the
overall contact frequency evolve along with the contact
frequency measured in current time unit. It should match
the actual frequency change rate. We leave how to decide
it accurately to future research. In this paper, consider-
ing meeting frequencies in daily social network usually
present both long term stability and short term changes,
we set β to a medium value of 0.5.

4.3.3 Functions of the Neighbor Tables
With the above design, a node’s neighbor table provides
information on how it can meet each community and the
synopses of contents hold by nodes in its community.
The former helps guide a content request to reach the
community that contains the requested file. The latter
helps determine which nodes contain the requested file,
i.e., possible file holder. Then, the request is routed to
reach the possible file holder based on above informa-
tion. Even if the possible file holder does not have the
requested file, it can provide more information on which
node may hold the requested file since nodes containing
similar contents tend to meet with each other. In sum-
mary, the neighbor table provides organized information
regarding how to find the requested file efficiently.

4.3.4 Efficient Storage of the Neighbor Tables
Considering that the storage resource on mobile nodes
usually is limited, we further propose a strategy to

5

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

improve the storage efficiency of the neighbor tables.
When a node, say Ni, is disconnected with its neighbor
node, say Nj , Ni cannot forward a request to Nj any-
more. Then, Ni does not need to store the CCT of Nj ,
which is mainly used to guide the request forwarding.
Thus, we let the neighbor table only store the CCTs of
currently connected neighbor nodes and the CCTs of fre-
quently met same-community nodes. Always storing the
CCTs of frequently met same-community nodes avoids
frequently adding and removing these CCTs, which
otherwise would cost significant communication cost.
Similarly, each node also stores the content synopses
of a number of top frequently met nodes from other
communities in order to save the communication cost.
Then, when node Ni meets its top frequently met node,
say Nk, Ni can use its stored content synopsis of Nk in
file searching. If the content synopsis has been updated
after last encountering, Nk informs Ni.

4.4 Content and Contact Based File Searching
The searching algorithm is developed based on the social
network property described in Section 1. Since each node
knows the interest list in the system, a file requester can
map its request to an interest (destination community).
When a node receives a request, if it is the file holder,
it returns the file. Otherwise, if the node is located in
the destination community, it conducts intra-community
searching. If it is not in the destination community,
it conducts inter-community searching, which forwards
the request gradually to the destination community.
When the request arrives at the destination community,
the intra-community search is launched. Note that the
definition of community ensures that the requested file,
if exists in the system, is highly possible to be held by
nodes in the destination community (i.e., nodes with
files in the interest are classified into the corresponding
community). Then, it is not needed to request encoun-
tered nodes for the requested file before arriving at the
destination community, thereby saving energy for file
searching. Each request has a Time To Live (TTL), after
which the request is expired and is dropped.

4.4.1 Intra-Community Searching
In this step, requests are forwarded within the destina-
tion community to find the file holder. In each forward-
ing, the request is forwarded to a neighbor node that
has more intra-community connections toward the node
having the highest similarity with the requests file. Such
a design comes from two reasons. First, the node having
a high similarity with a request has high probability
of containing the requested file. Second, an interest can
usually be further classified into sub-interests, and peo-
ple in a sub-interest group have a higher probability of
meeting with each other than with other members in the
interest community. For example, lab members majoring
in computer systems tend to meet more often. Then, even
when the high similarity node fails to satisfy the request,
its frequently met nodes may contain the requested file.

Therefore, the similarity works as an indication of the
probability of satisfying the request.

We denote the node with the highest similarity with
the requests file as the temporary destination node (TDN).
The similarity is calculated as following:

Sim(Rf , Ni) =
∑
k∈K

wk, (3)

where Rf is the request, K denotes the keyword group
in the request, and wk denotes the weight of keyword k
in node Ni’s content synopses. wk=0 if the synopses does
not contain k. The similarity here shows the percentage
of files on the node that matches the keywords in the
request and indicates the possibility that the requested
file is on the node. Therefore, the TDN should be the
node with max{Sim(Rf , Ni)} among all nodes that have
been visited by the request. That is

Sim(Rf , TDN) = max{Sim(Rf , Ni) (Ni ∈ AN(Rf)}, (4)

where AN(Rf) represents all nodes that Rf has already
visited. When a request arrives at a new node, the
AN(Rf) and TDN are updated accordingly.

Specifically, suppose node Na receives the file request,
if it holds the requested file, it returns the file to the
requester and the file search is successful. Otherwise, it
first checks whether the file holder or the TDN currently
is connected. If yes, the file holder or the TDN node
is the next relay node. If not, by referring to the CCT
in its neighbor table, Na then chooses the node (i.e.,
active node) that is lightly loaded and has the highest
Fi1C with its current community as the next relay node.
This is because the node with the highest Fi1C has more
contacts with the destination community and usually has
higher probability to meet the TDN or know the actual
file holder. We consider node load status in routing
because the active node may become overloaded. A
node measures its overload status by the occupation of
its buffer, and piggybacks such a status on the “hello”
messages used in neighbor scanning process.

4.4.2 Inter-Community Searching
In inter-community searching, node Na first checks its
neighbor table to see whether there is a neighbor from
the destination community (Cd), and takes it as the
next relay node if one exists. If more than one exist,
Na chooses the one with the highest Fi1Cd

by referring
to the CCT in its neighbor table since that node has
more connections with the destination community. If
none of such nodes can be found, Na chooses the node
that has the highest Fi1Cd

as the next relay node. If
multiple nodes have the same highest Fi1Cd

, the node
with the highest Fi2Cd

is chosen. In this way, the request
can be quickly forwarded to the destination community,
because FinC reflects a node’s probability of meeting
nodes in community C in n hops.

It is possible that all nodes in current community have
very few contacts with the destination community. To
deal with this problem, we pre-define a threshold for
Fi1C and Fi2C , denoted by Td. If no node in the neighbor

6

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

C1 C2

N1N1

N3

N3

M1

D1

D2R1

R1

R1

R2
R2

R2
R2M2

M2

N4
N4 X F F

M3F

F

F

M3

R2

N0

S1
S2

N2

Fig. 4. File searching and retrieval process.

table has FinC > Td, the active node with the highest 1-
hop contact frequency with the current community is
chosen. The purpose of this strategy is to quickly move
the request out of current area. If the node itself is chosen
as the next relay node after these steps, it holds the
request. While it is moving, it updates its neighbors and
repeats the above steps until the request is forwarded to
the destination community.

4.4.3 File Retrieval and Summary
Upon receiving a request, the destination node first
tries to send the file back along the route the request
traversed, which is inserted into the request during the
forwarding process. If the reverse route is broken, the
intra-community and inter-community searching algo-
rithms can be used to send the file back to the requester
according to the IDs of the requester and its community.
In current design, we only consider the scenario that
there is only one matched file for each request. This can
be extended to multiple matched requests by allowing
each request to continue searching after a successful hit.

Figure 4 shows an example of file searching between
two communities (C1 and C2). Two requests (R1 and
R2) are initiated in C1. R1’s destination community is
C1. Thus, the requester uses intra-community searching.
It first finds the temporary target N0 in its neighbor
table and forwards R1 to N0. N0 updates the temporary
target with D1, which has closer similarity with the
requested file. Because D1 is not N0’s current neighbor,
N0 forwards R1 to its neighbor N1, which has the highest
1-hop contact frequency with C1. Since D1 is not N1’s
current neighbor, N1 holds the request, and delivers
R1 to D1 when moving close to it. D1 notices that its
synopses match the request exactly, so it replies the
requested file to the requester.

The file requested by R2 belongs to community C2.
Since the requester cannot find a current neighbor that
belongs to C2, it forwards R2 to its current neighbor N2

that has the highest 1-hop contact frequency with C2.
N2 forwards R2 to N3. On the way moving to C2, N3

forwards R2 to M1 of C2, which has higher 1-hop contact
frequency with C2. Then, intra-community searching is
used to forwards R2 to destination D2 through M2.

We use a line with a solid arrow to stand for the file
retrieval process. Node D2 first sends the requested file
(F) back to the requester S2 along the request route.
However, when M1 receives the request, it finds that
node N3 on the reverse route is not available. Node
M1 then launches a search for requester S2. First, inter-
community searching is used to route F to node N4

in community C1 through node M3 in community C2.
Second, N4 starts intra-community searching. N4 finds
itself has the highest mobility among all neighbors, so it
carries the request until it moves close to S2.

4.5 Advanced File Searching
The three components introduced above can realize effi-

cient file searching. However, they suffer from two draw-
backs considering sparse node distribution in DTNs.
First, interest-based community structure may have a
loose structure, which limits the efficiency of the intra-
community search. Second, a request may be generated
in an area that is far away from the file holder, which
means that it may not be forwarded towards the correct
direction in the beginning. We then propose advanced
techniques to solve the two problems and further im-
prove the efficiency of file searching in Cont2. Specifi-
cally, we exploit contact-based sub-communities within
each interest community to facilitate intra-community
file searching. We also propose a parallel forwarding
algorithm to improve the inter-community file searching
efficiency. We present the details below.

4.5.1 Contact-based Sub-communities
Recall that common-interest nodes form a community.

Actually, nodes within the same community also form
sub-communities, in which nodes meet with each other
more frequently than with other community members.
This phenomenon is normal in real life. For example,
as shown in Figure 5, for graduate students with the
Computer Science interest, students in different labs
meet their labmates more frequently than with those
in other labs. Clustering nodes that more frequently
meet each other can expedite forwarding requests to
file holders. Therefore, we further propose an algorithm
to construct contact-based sub-communities in Cont2 to
facilitate file searching.

Specifically, each node first collects its meeting fre-
quencies with same-community members. After nodes
have collected their stable contact frequencies with
same-community members, i.e., after the initial pe-
riod, they begin to construct sub-communities. Each
sub-community has a coordinator known by all sub-
community members that is responsible for membership
management. It is the node in the sub-community that
can meet the most nodes in the sub-community.

We define a node’s average contact frequency with a
group of nodes as the sum of its contact frequencies with
these nodes divided by node number. It is used for sub-
community construction. In detail, when two nodes, say
Ni and Nj , meet with each other, if they both do not be-
long to any sub-communities, they check whether their
contact frequency is more than Tsub times of their indi-
vidual average contact frequency with other community
members. If yes, they form a new sub-community and
the node with higher contact frequency with the whole
community (i.e., Fi1c) is selected as the coordinator. If
one of the two nodes, say Nj , is the coordinator of one

7

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

SC1
SC2

Community on Department of
Computer Science

SC1: Networking group
SC2: Architecture group
SC3: Software group
SC4: Image group

SC3
SC4

SC: sub‐community

Fig. 5. Demonstration of sub-communities.

sub-community, and the other node Ni does not belong
to any sub-communities, Nj checks whether Ni can be
a member of its sub-community. If Ni’s average contact
frequency with Nj ’s sub-community is more than Tsub
times of its average contact frequency with nodes in the
community excluding Nj ’s sub-community, Ni becomes
a member of this sub-community. If Ni’s average contact
frequency with the community is larger than Nj ’s, Ni

becomes the new coordinator for this sub-community
and Nj notifies the sub-community members about the
coordinator change.

When a node notices that its average contact frequency
with another sub-community (denoted by SCj) is higher
than its current sub-community (denoted by SCi), it
needs to leave SCi and joins SCj . To avoid frequent
sub-community joins and departures, we set a threshold
Tsj , (e.g., 20%). Only when its average contact frequency
with SCj is Tsj more than that with SCi, the node
leaves SCi and joins SCj . The node then notifies SCi’s
coordinator to remove its membership. By this process,
contact-based sub-communities are gradually created in
each interest community. The values of Tsub and Tsj are
determined by the dynamism degree of contact frequen-
cies in the community. If the contact frequencies among
nodes are stable, small Tsub and Tsj can help find sub-
community effectively. If the contact frequencies change
frequently, larger Tsub and Tsj are needed to avoid false
positives on sub-community construction.

4.5.2 Advanced Intra-community Searching
The contact-based sub-communities help enhance the

efficiency of intra-community file searching. In the
intra-community searching algorithm introduced in Sec-
tion 4.4.1, the node with higher Fi1Cd

(i.e., with more
connections with the destination community) is selected
as the carrier for the request. However, such a node may
not have a high probability of meeting the file holder. It
may frequently meet nodes in its sub-community but
rarely meets nodes out of its sub-community. Conse-
quently, a request may be trapped in the sub-community,
which degrades the file searching efficiency.

In order to solve this problem, we propose another
metric for intra-community file searching: active level. It
represents the frequency that a node visits different sub-
communities in a community. We use F (SCj

ik) to denote
Ni’s contact frequency with the j-th sub-community in
Ck, which is calculated as the average portion of a
unit time period that Ni connects with the j-th sub-
community. We use such a definition to limit the con-

tribution of the connection with one sub-community in
the overall active level. We use ALik to denote Ni’s active
level in community Ck, which is calculated as

ALik =

vik∑
j=1

F (SCj
ik) (5)

where vik is the total number of sub-communities Ni has
contacted. Therefore, a larger ALik means that Ni visits
more sub-communities in Ck on average.

The active level is used to decide the carrier for a
file request in the advanced intra-community searching
algorithm. Specifically, after a file request arrives at the
destination community, it is first forwarded to the node
with higher active level in the destination community.
This can enable the file request to meet more sub-
communities. When the request arrives at a node in a
sub-community, it can learn whether the file holder exists
in the sub-community from the content synopses in the
neighbor table of the node. Then, the request can quickly
find the sub-community that contains the holder of the
requested file through the high active level node. Once
the sub-community is identified, the file request is only
forwarded to the node that has higher average contact
frequency with the sub-community.

Such a scheme can improve the intra-community
searching efficiency since the node with high active level
can carry the file request to more sub-communities and
consequently enhances its probability of meeting the file
holder or knowing which node is the file holder.

4.5.3 Advanced Inter-community Searching
Recall that in the inter-community searching process

introduced in Section 4.4.2, when none of the nodes in
the neighbor table satisfies FinC > Td, a file request is
forwarded to the node with the highest 1-hop contact
frequency with the current community that the request
resides in. However, this scheme cannot ensure that the
file request can arrive at the destination community
quickly. Therefore, we propose parallel forwarding to
enhance the efficiency of this step.

Specifically, when none of the nodes in the neighbor
table satisfies FinC > Td, the request is allowed to be
replicated to a number of nodes to enhance its proba-
bility of being forwarded to the destination community.
Two types of nodes can be the recipients of the replicas
of a request. The first one has a high active level in
the community, which can help carry the request to
other sub-communities to search for better forwarder.
The second one has a high overall contact frequency with
other communities. Such a node can carry the request to
other communities to search for a better forwarder. A
request replica is not further replicated to constrain the
overhead. When a file holder receives multiple replicas
of the same request, it only responds to the first one and
ignores all others. Note that this does not mean that the
holder only sends one response for the request. When
necessary, it can send multiple responses for a request
to ensure that the requester can receive the file.

8

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

The replications of a file request can help forward it
to the destination community quickly, thereby avoiding
being trapped in a community. Consequently, the overall
file searching efficiency is improved.

5 PERFORMANCE EVALUATION
We first deployed the systems on the GENI Orbit
testbed [26], [27]. The testbed has 400 nodes in total, each
of which is equipped with a wireless card. We adopt such
a testbed since it can reflect the performance of Cont2 in
a more real scenario. We then conducted experiments
on NS-2 [28] using the converted one-day trace data
since the whole trace is too long for simulation. We also
used a community based mobility model [29] to further
evaluate the systems with different network sizes and
node mobility. Detailed introduction and configuration
of the community based model are given later in Sec-
tion 5.1.4. We also evaluated the performance of the
advanced file searching algorithm, which is introduced
in Section 4.5, in Section 5.6. Considering the storage
and energy constraint of mobile devices, we expect the
system size to be at most several hundreds of nodes.

5.1 Experiment Settings
In order to better evaluate the file search, we determined
the community construction and file generation in ad-
vance. We extracted interest groups and corresponding
keywords from the profiles we crawled from 117 Face-
book users who watched the same randomly selected
video. We selected the top seven mostly shared interests
and mapped them to the 7 communities identified from
the real trace. For each of a node’s interests, we randomly
selected 40 keywords from the keyword pool of the
interest and generated about 20 files. A requested file
of an interest is randomly picked from the file pool of
the interest, and each request matches only one file in the
system. Consider people would like to request file in its
interests, 70% of requested files have the same interest of
the originator. We run each test for 5 times and present
the average results within the 95% confidence interval.
The confidence intervals are very small and thus are not
shown in figures to avoid obscuring the results.

5.1.1 Comparison Methods
We used below comparison methods:

(1) MOPS [8]: MOPS provide publish/subscribe ser-
vice in disruption-tolerant networks by grouping nodes
that have frequent contacts into a community, which is
regarded as a reflection of social relations. Each commu-
nity uses nodes that have frequent contact with other
communities as brokers for inter-community communi-
cation. We use 2 brokers for each community to balance
the cost and search efficiency.

(2) PDI+DIS [30], [31]: PDI [31] uses 3-hop local broad-
cast and content tables for file searching. A content table
contains corresponding routes to content owners and is
built in nodes along the response path. We complement
PDI with the advertisement-based DIS method [30], in

which each node disseminates its content to its neigh-
bors. In PDI+DIS, a request is first broadcasted for 3
hops. During and after the 3-hop broadcasting, when
it finds a route to the requests content, it follows the
route for file searching. A node buffers a request if it
cannot forward the request due to expired routes or lack
of routes.

(3) Epidemic [32]: Epidemic is a buffering based broad-
casting mechanism. It tries to disseminate requests to
all nodes in the system by letting two nodes exchange
requests they haven’t seen upon their encountering.

5.1.2 Test Metrics
Since the routing process of file retrieval is similar as
the file searching process, we only test the performance
of file searching. We used the number of generated
messages to represent costs. We define that one message
only contains the information of one node.

(1) Hit rate: the percentage of requests that are success-
fully delivered to the file holders.

(2) Average delay: the average delay of all requests that
successfully find the requested files.

(3) Maintenance cost: the total number of message for-
warding for routing information update (i.e., node con-
tent exchange in all the four methods, request exchange
in Epidemic, routing table establishment in PDI+DIS,
and neighbor table construction in Cont2).

(4) Total cost: the total number of messages generated
during the simulation including request messages.

5.1.3 GENI Experiment Parameters
We first conducted experiments on the GENI Orbit
testbed, which consists of 400 nodes that can connect
with each other through wireless connections. We adopt
the MIT Reality project trace to drive node mobility,
which lasts for about 2.56 million seconds. We set the
first 0.3 million seconds as the initialization period so
that nodes can collect enough records to reflect their
meeting probabilities with others. After that, we ran-
domly picked one node to generate one request every
100 seconds for 1 million seconds. The watching period
(or TTL) of each request was set to 1.2 million seconds.
To be practical, each node can hold at most 2000 requests
in its buffer. When the buffer is full, the oldest request
is dropped.

5.1.4 Simulation Parameters
According to the settings in the GENI experiment and

the works in [33]–[35], we determined the parameters
for the simulation on NS-2, as shown in Table 4.

We recorded the experimental metrics every 100s after
the initialization period. In the community based mobil-
ity model [29], the test area is divided into many caves,
each of which represents one community area. Nodes
move within its home community randomly in most
of the time. We map each interest community defined
in Cont2 to a randomly selected cave in the mobility
model [29]. The model also allows setting travelers

9

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

TABLE 4
Parameters in simulation

Real trace Synthesized
Environment Parameters Value Default Value
Simulation area 2.5km × 2.5km 2.5km × 2.5km
Number of caves - 25
Cave size - 500m × 500m
Number of communities 7 7
Node Parameters Value Default Value
Number of nodes 45 100
Communication range 250m 250m
Average node speed − 1.5m/s
Re-wiring probability − 0.1
Number of travelers/cave − 2
Traveler speed − 2*(average speed)
Number of keywords 40 40
Requesting Parameters Value Default Value
Requesting rate 8/s 8/s
Intra-request percentage 70% 70%
Initialization period 1000s 1000s
Requesting period 2000s 2000s
Waiting period 51000s 51000s

that frequently commute between two communities with
high speed. We then take travelers as brokers in the
test. Considering that travelers are more active, we set
a normal node’s speed to a value randomly selected
from the range [2v/3, 4v/3] (v denotes the average speed)
and a traveler’s speed to 2v. In the tests with different
node mobility, we varied the average speed (v) from the
medium walking speed of human beings (1.5m/s) to the
medium vehicle speed (15m/s).

5.2 Performance in GENI Experiment
Table 5 shows the GENI experiment results. We see that
Epidemic generates the highest hit rate but also the
highest cost since it tries to replicate each request to all
nodes. PDI+DIS generates the lowest hit rate because
the routes in content tables often expire due to node
mobility and many requests wait passively for the file
holders. Therefore most successful requests in PDI+DIS
are resolved locally within 3 hops, leading to a low
average delay. Cont2 achieves the second highest hit rate
but significantly lower cost than Epidemic. Cont2 also
generates higher hit rate than PDI+DIS, which shows
Cont2’s higher mobility-resilience. Comparing Cont2 and
MOPS, we see that Cont2 is superior over MOPS in
terms of hit rate, delay and cost. This is because Cont2

utilizes all possible forwarding opportunities around a
node while MOPS relies heavily on brokers.

We also evaluated the memory usage of the four
methods, measured by the average number of requests in
the buffer and the average size (i.e., number of entries) of
the neighbor table. Table 6 shows the average values of
all nodes. We find that PDI+DIS has the smallest average
number of requests in the buffer. This is because most
requests are quickly resolved in the 3-hop local broad-
casting without further buffering. In Cont2 and MOPS,
requests are buffered until meeting better forwarding
nodes. Cont2 generates fewer requests in the buffer than
MOPS since it can deliver requests more quickly as
shown in Table 5. Epidemic produces the largest memory
usage as it tries to distribute each request to all nodes.

Each node in all methods except the Epidemic also
stores the content synopses of nodes it has met. Cont2

and MOPS need content synopses for both intra- and
inter-community searches. PDI+DIS uses it to build con-
tent tables. From Table 6, we find that Cont2 stores fewer
content synopses than the other two methods because it
only stores the information of same community nodes
and currently connected neighbors. For MOPS, brokers
store that of all communities they have known, and
normal nodes store that of the nodes in their own
communities. Therefore, MOPS has the largest average
number of stored content synopses. In PDI+DIS, a node
disseminates its contents to its neighbors. Thus, each
node stores the content synopses of all nodes it has met,
leading to higher memory consumption than Cont2.

In summary, Table 5 and Table 6 show that Cont2 has
superior performance over other methods considering
overall efficiency, delay, cost and memory consumption.

TABLE 5
Efficiency and cost in the experiments on GENI

Method Hit Rate Average Delay (s) Maintenance Cost Total Cost
Cont2 0.696 142892.8 231918 269917
MOPS 0.625 161070.0 311302 328266
PDI+DIS 0.508 7562.5 301918 361506
Epidemic 0.8745 15230.1 676685 867939

TABLE 6
Memory usage in the experiments on GENI

Metric Cont2 MOPS PDI+DIS Epidemic
Ave. # of requests in buffer 33.5 43.5 12.3 1998.6
Ave. size of a neighbor table 7.9 17.5 15.7 0

5.3 Performance in Trace-drive Simulations
5.3.1 Hit Rate
Figure 6(a) shows the hit rates of different methods
over time. We see that the hit rates of Epidemic and
Cont2 reach 99%, that of MOPS is about 95% and that
of PDI+DIS is below 90%. Epidemic tries to disseminate
each request to all nodes in the system, thereby resulting
in a high hit rate. In Cont2, request forwarders fully uti-
lize nearby nodes to forward the request in the direction
of the destination, leading to efficient file search.

MOPS only relies on brokers for inter-community
search and direct encountering of community members
for intra-community search. As previously introduced,
due to the diversity of node interests, inter-community
search is always needed in MOPS. However, without
the guidance of content, MOPS has to rely on the infor-
mation exchange between brokers for inter-community
search, which may miss some forwarding opportunities.
Moreover, the passive waiting in the intra-community
search also takes a long time. Consequently, MOPS can-
not resolve some requests before they expire, resulting
in a lower hit rate than Cont2. PDI+DIS only completes
about 74% of requests, and its hit rate remains nearly
constant throughout the test. This is because many re-
quests cannot be resolved in the test since the routes in
a content table expire quickly due to node mobility. After
the local broadcast, requests just wait passively, leading
to almost no increase in the hit rate.

10

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1200 11200 21200 31200 41200 51200

Hi
t R

at
e

Simulation Duration (s)

Cont^2 MOPS
Epidemic PDI+DIS

Epidemic

Cont^2 MOPS
PDI+DIS

(a) Hit rate.

0.0

0.5

1.0

1.5

2.0

1200 11200 21200 31200 41200 51200

Av
er
ag
e
De

la
y
(×
10

3
s)

Simulation Duration (s)

Cont^2 MOPS
Epidemic PDI+DIS

Epidemic
Cont^2

MOPS

PDI+DIS

(b) Average delay.

0

1

2

3

4

5

6

1200 11200 21200 31200 41200 51200M
ai
nt
en

an
ce
 C
os
t (
×1
05
)

Simulation Duration (s)

Cont^2
MOPS
Epidemic
PDI+DIS

Epidemic

Cont^2

MOPS
PDI+DIS

(c) Maintenance cost.

0
1
2
3
4
5
6
7
8
9

1200 11200 21200 31200 41200 51200

To
ta
l C
os
t (
×1
0
5)

Simulation Duration (s)

Cont^2 MOPS
Epidemic PDI+DIS

Epidemic

Cont^2

MOPS
PDI+DIS

(d) Total cost.

Fig. 6. Performance in trace-driven simulation.

We also find that the hit rates of Epidemic, Cont2,
and MOPS exhibit sharp rises at the initial stage and
increase slightly afterwards, while PDI+DIS remains
nearly constant throughout the test. In Epidemic, Cont2,
and MOPS, requests that cannot be immediately resolved
stay in current nodes and gradually arrive at file holders
using request forwarding algorithms. Therefore, the hit
rate increases gradually. In PDI+DIS, after 3-hop broad-
casting, buffered requests passively wait for routes to
file holders, generating much fewer successful searches.
Therefore, its hit rate remains almost stable.

5.3.2 Average Delay

Figure 6(b) shows that the average delays of the four
methods follow MOPS>Cont2 >Epidemic>PDI+DIS.
Recall that we only measure the delay of successful
requests. So PDI+DIS has the least average delay since
most successful requests are resolved in the initial 3-hop
broadcasting stage. Cont2 reduces the delay of MOPS
by half for the same reasons as in Figure 6(a). This
result confirms that only considering contacts for file
search cannot provide high efficiency. Epidemic results
in relatively lower average delay than Cont2 due to its
broadcasting nature. It is reasonable that Cont2 generates
higher delay than Epidemic since Cont2 only maintains
one copy for each request.

It is interesting to observe that the delay of MOPS
increases rapidly at around 40000s while that of Cont2

increases steadily. In MOPS, a broker may need to buffer
inter-community requests for a long period before being
able to contact brokers in a neighboring community.
Then, the encountering of two brokers with many un-
resolved requests may lead to a rapid increase in hit
rate and average delay, as occurred at 40000s. Without
relying on fixed brokers, Cont2 utilizes every forwarding
opportunity, leading to a steady increase in hit rate
and average delay. This result confirms the drawback
of depending only on brokers and the advantage of
utilizing all available nodes in request forwarding.

5.3.3 Maintenance Cost

Figure 6(c) plots the maintenance costs of differ-
ent methods over time. After 31200s, the costs fol-
low Epidemic>MOPS>PDI+DIS>Cont2. In all methods,
node content is exchanged among encountered nodes,
which contributes to the linear growth of maintenance

cost over time. Except Cont2, nodes in other three meth-
ods need to exchange other information in addition to
their own contents. PDI+DIS builds routes in nodes
along the response paths of successful requests. Thus,
PDI+DIS generates higher maintenance cost than Cont2.
In MOPS, brokers exchange contents of all nodes from
their home communities, leading to an even higher
maintenance cost. In Epidemic, two nodes exchange
information about all known requests to decide unseen
requests, resulting in the highest maintenance cost.

5.3.4 Total Cost

Figure 6(d) shows the total cost of each method
over time. We observe that Epidemic>PDI+DIS>MOPS
>Cont2. Epidemic has very high cost since it tries to
replica a request to all nodes. Each message has only one
copy in MOPS and Cont2. PDI+DIS has a local broadcast,
which generates many request copies, leading to higher
total cost than MOPS and Cont2.

5.4 Performance With Different Network Sizes

In this test, we evaluate the four methods when the total
number of nodes varied from 40 to 220 in Simulation.
When the number of nodes increases, the total amount
of data in the network also increases.

5.4.1 Hit Rate

Figure 7(a) plots the hit rates of the four meth-
ods. We find that the hit rates of Epidemic, Cont2

and MOPS reach over 95% (MOPS<Cont2<Epidemic)
while PDI+DIS resolves only 60% of requests. Epidemic
achieves a high hit rate due to its system-wide message
dissemination. The reasons for MOPS<Cont2 and the
low hit rate of PDI+DIS are the same as explained in
Figure 6(a). Also, the hit rates of Cont2, MOPS, and
Epidemic remain relatively stable while that of PDI+DIS
increases as the network size increases. The former three
methods actively forward messages to file holders by
broadcasting or routing algorithms, which ultimately
forwards most requests to their destinations, even in a
sparse network. In contrast, unsolved requests after the
3-hop broadcasting stage in PDI+DIS passively wait for
routes to the file holders. Hence, higher node density
enables more forwarding opportunities, thus increasing
the hit rate of PDI+DIS.

11

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

(a) Hit rate. (b) Average delay. (c) Maintenance cost. (d) Total cost.

Fig. 7. Performance with different network sizes in simulation.

5.4.2 Average Delay
Figure 7(b) shows the average delay of each method. The
result matches what was obtained in Figure 6(b), i.e.,
MOPS>Cont2>Epidemic>PDI+DIS and Cont2 reduces
the delay of MOPS by about 20% on average. We also
find the delay of MOPS remains relatively stable while
those of Epidemic and Cont2 exhibit a slight decrease
as network size increases. This is because higher node
density means more forwarding opportunities, thereby
reducing the delay. MOPS only relies on brokers for
inter-community communication. Though the number of
nodes increases, the probability that two brokers meet
does not change. Therefore, the average delay of MOPS
remains stable though the network size increases.

5.4.3 Maintenance Cost
Figure 7(c) illustrates the maintenance cost of each
method. It can be observed that the maintenance
costs follow Epidemic>MOPS>PDI+DIS>Cont2. Gener-
ally, Epidemic produces much higher maintenance cost
than Cont2, the maintenance cost of MOPS is approx-
imately 40% higher than that of Cont2, and PDI+DIS
generates a 5% higher maintenance cost than Cont2

in dense networks. The reasons for this result remain
the same as in Figure 6(c). Also, the costs of all the
methods grow quickly as network size increases. This
is because with more nodes in the network, the amount
of exchanged messages increases.

5.4.4 Total Cost
Figure 7(d) demonstrates that Epidemic generates the
highest total cost. PDI+DIS and MOPS show moderate
total costs while Cont2 has the lowest total cost. Epi-
demic has the highest total cost since it generates a high
maintenance cost (Figure 7(c)) and a large amount of
requests in the test. The number of request messages
in PDI+DIS increases quickly as the number of nodes
increases due to the local broadcasting, resulting in a
high total cost. MOPS incurs approximately the same
number of request messages as Cont2, but renders higher
maintenance cost (Figure 7(c)), leading to higher total
cost than Cont2. The results in Figure 7 show the supe-
rior performance of Cont2 and its efficiency in networks
with different sizes.

5.5 Performance With Different Node Mobility
We evaluated the performance of the methods when the
average speed varied from walking speed (1.5m/s) to

medium vehicle speed (15m/s) in Simulation.

5.5.1 Hit Rate
Figure 8(a) shows the hit rate of each method. Epidemic,
Cont2, and MOPS have hit rates close to 100% at all
speeds while PDI+DIS exhibits a low hit rate. The results
show the same relative performance of the four methods
as in Figure 6(a) and Figure 7(a) with the same reasons.

5.5.2 Average Delay
In Figure 8(b), the average delays of the methods follow
MOPS>Cont2>Epidemic with PDI+DIS having almost
no delay at all node movement speeds. This matches
with the results in Figure 6(b) and Figure 7(b) due to the
same reasons. Moreover, we find that Cont2 has a 20%
lower delay than MOPS at all movement speeds, which
confirms the high efficiency of Cont2 in file searching.
Also, we see that the delays of MOPS, Cont2 and Epi-
demic decrease as node movement speed increases. This
is because fast node movement increases the frequency
of node encountering and reduces the waiting time of re-
quests in the buffers, hence shortening the average delay.

5.5.3 Maintenance Cost
Figure 8(c) shows that the maintenance costs of the four
methods follow Epidemic>MOPS >PDI+DIS>Cont2 for
the same reasons as in Figure 6(c) and Figure 7(c).
We also find that the maintenance costs of Epidemic,
PDI+DIS, MOPS and Cont2 increase linearly when nodes
move faster. This is because with faster movement, nodes
meet frequently and exchange more contents, leading to
a higher maintenance cost.

5.5.4 Total Cost
Figure 8(d) shows that the total costs of the four methods
follow Epidemic>PDI+DIS >MOPS>Cont2. The reasons
are the same as in Figure 6(d) and Figure 7(d). The total
costs of the four methods increase as the average speed
increases because nodes generate higher maintenance
costs with faster movement (Figure 8(c)). The total cost
of Cont2 still remains lower than other methods, which
verifies Cont2’s low cost in different mobility rates.

5.6 Evaluation of the Advanced File Searching
In this section, we evaluate the proposed advanced

file searching algorithm (Section 4.5). We set Tsj to 20%
and the number of allowed replicas to 2. These values

12

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

(a) Hit rate. (b) Average delay. (c) Maintenance cost. (d) Total cost.

Fig. 8. Performance with different node mobility in simulation.

are chosen randomly in their reasonable ranges. The
selection of parameter values will not change the relative
performance differences between different methods.

5.6.1 Sub-community Construction
We first evaluate the contact-based sub-community con-
struction algorithm (Section 4.5.1). We applied this al-
gorithm to the 7 communities identified from the MIT
Reality trace. We tested the algorithm with Tsub = 1.5,
2 and 2.5, respectively. Figure 9(a) shows the number
of sub-communities identified in each community. We
find that when Tsub increases, the number of identified
sub-communities decreases. This is because when the
threshold Tsub for joining a community increases, the
contact frequencies between most nodes may not be
qualified to form a sub-community. We also see from
the figure that even when Tsub = 2.5, sub-communities
can be identified in almost all interest communities. The
results demonstrate the existence of sub-communities in
real scenarios, which can be leveraged for more efficient
file searching, as shown in the next subsection.

5.6.2 Advanced Intra- and Inter- File Searching
We conducted event-driven experiments with the MIT
Reality trace. We followed the same configuration as
in the GENI experiment but varied the number of file
requests from 5000 to 25000. We used Cont2 to represent
the original Cont2, Cont2-Sub to represent Cont2 with
the advanced intra-community searching algorithm, and
Cont2-Adv to represent Cont2 with both advanced intra-
and inter-community file searching algorithms.

Figure 9(b) shows the hit rates of the three methods.
We find that the hit rates follow Cont2<Cont2-Sub<
Cont2-Adv. This means that both the advanced intra-
and inter-community searching algorithms improve the
efficiency of file searching. We also find that Cont2-Adv
only slightly increases the hit rate compared to Cont2-
Sub. This is because only the requests that cannot find
a suitable forwarder are replicated in Cont2-Adv, which
only count for a small portion of requests.

Figure 9(c) shows the average delays of the three
methods. We find that the Cont2-Sub and Cont2-Adv
present slightly higher average delay than Cont2. This
is because the advance file searching algorithms lead
to more successful requests with a large delay, which
may not be delivered successfully in the original Cont2.
Figure 9(d) shows the the average delay of all requests by

counting the delay of a failed request as the configured
TTL. Note that the TTL is smaller than the experiment
time. Since Cont2-Sub and Cont2-Adv lead to more
successful file requests, the overall delay is decreased.
Above experimental results demonstrate the efficiency
of the proposed advanced file searching algorithms.

6 CONCLUSION

This paper presents a content and contact based file
search method for DTNs in a social network environ-
ment, namely Cont2. It exploits the properties of social
networks to enhance file searching efficiency. Through
the study of a real trace, we found that the interests
(content) of each node can help guide file searching.
We also find that the movement patterns of mobile
nodes can more accurately predict the encountering of
nodes holding the requested files. Thus, Cont2 virtually
builds common-interest nodes into a community and
forwards a file request to nodes with higher meeting
frequency with the interest community or the node that
has the most similar content with the requested file. We
compared Cont2 with other file search methods using
mobility from both real-trace and a community based
mobility model on the real-world GENI testbed and NS-
2 simulator. Cont2 shows superior performance in hit
rate, delay and overall cost. In the future, we plan to
investigate how the influence of a node’s interest weights
on its movement patterns and how to leverage it to
enhance file search efficiency.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, CNS-1249603,
Microsoft Research Faculty Fellowship 8300751. An early
version of this work was presented in the Proceedings
of ICPP’13 [36].

REFERENCES

[1] “Haggle Project,” http://www.haggleproject.org/t.
[2] M. Li, Z. Yang, and W. Lou, “Codeon: Cooperative popular

content distribution for vehicular networks using symbol level
network coding.” IEEE JSAC, vol. 29, no. 1, pp. 223–235, 2011.

[3] K. Chen and H. Shen, “Dtn-flow: Inter-landmark data flow for
high-throughput routing in dtns.” in Proc. of IPDPS, 2013.

[4] S. Jain, K. R. Fall, and R. K. Patra, “Routing in a delay tolerant
network,” in Proc. of SIGCOMM, 2004.

13

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2472005, IEEE Transactions on Parallel and Distributed Systems

0

1

2

3

4

5

6

1 2 3 4 5 6 7

of
 s
ub

‐c
om

m
un

iti
es

Community ID

Tsub = 1.5 Tsub = 2 Tsub = 2.5

(a) Identified sub-communities.

0.45

0.55

0.65

0.75

0.85

5 10 15 20 25

H
it
Ra
te

Number of Packets (x103)

Cont^2 Cont^2‐Sub
Cont^2‐Adv

(b) Hit rate.

14

16

18

20

22

24

5 10 15 20 25

Av
er
ag
e
D
el
ay
 (x
10

4
S)

Number of Packets (x103)

Cont^2 Cont^2‐Sub
Cont^2‐Adv

(c) Average delay.

34

44

54

64

74

5 10 15 20 25

Av
er
ag
e
D
el
ay
 o
f A

ll
Re

qu
es
ts
 (x
10

4
S)

Number of Packets (x103)

Cont^2 Cont^2‐Sub
Cont^2‐Adv

(d) Average delay of all requests.

Fig. 9. Performance of the advanced file searching.

[5] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “DTN
routing as a resource allocation problem.” in Proc. of SIGCOMM,
2007.

[6] J. Wu, M. Xiao, and L. Huang, “Homing spread: Community
home-based multi-copy routing in mobile social network,” in
Proc. of INFOCOM, 2013.

[7] K. Chen and H. Shen, “Smart: Utilizing distributed social map
for lightweight routing in delay tolerant networks,” IEEE/ACM
Transactions on Networking, vol. 22, no. 5, pp. 1545–1558, 2014.

[8] F. Li and J. Wu, “MOPS: Providing content-based service in
disruption-tolerant networks,” in Proc. of ICDCS, 2009.

[9] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft, “A socio-aware
overlay for publish/subscribe communication in delay tolerant
networks,” in Proc. of MSWiM, 2007.

[10] J. Reich and A. Chaintreau, “The age of impatience: optimal repli-
cation schemes for opportunistic networks,” in Proc. of CoNEXT,
2009.

[11] V. Lenders, M. May, G. Karlsson, and C. Wacha, “Wireless ad hoc
podcasting,” SIGMOBILE Mob. Comput. Commun. Rev., 2008.

[12] Y. Zhang, W. Gao, G. Cao, T. L. Porta, B. Krishnamachari, and
A. Iyengar, Social-Aware Data Diffusion in Delay Tolerant MANETs.
Springer Publisher, 2010.

[13] C. Boldrini, M. Conti, and A. Passarella, “Design and performance
evaluation of contentplace, a social-aware data dissemination
system for opportunistic networks.” Computer Networks, vol. 54,
no. 4, pp. 589–604, 2010.

[14] W. Gao and G. Cao, “User-centric data dissemination in disrup-
tion tolerant networks.” in Proc. of INFOCOM, 2011.

[15] W. Gao, G. Cao, T. L. Porta, and J. Han, “On exploiting transient
social contact patterns for data forwarding in delay-tolerant net-
works.” IEEE Trans. Mob. Comput., vol. 12, no. 1, 2013.

[16] X. Zhang and G. Cao, “Transient community detection and its
application to data forwarding in delay tolerant networks.” in
Proc. of ICNP, 2013.

[17] N. Eagle, A. Pentland, and D. Lazer, “Inferring social network
structure using mobile phone data,” PNAS, vol. 106, no. 36, pp.
15 274–15 278, 2009.

[18] M. Mcpherson, “Birds of a feather: Homophily in social net-
works,” Annual Review of Sociology, vol. 27, no. 1, pp. 415–444,
2001.

[19] W.-J. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling
time-variant user mobility in wireless mobile networks,” in Proc.
of INFOCOM, 2007.

[20] C. E. Palazzi and A. Bujari, “Social-aware delay tolerant net-
working for mobile-to-mobile file sharing,” International Journal
of Communication Systems, vol. 25, no. 10, pp. 1281–1299, 2012.

[21] ——, “A delay/disruption tolerant solution for mobile-to-mobile
file sharing,” in Wireless Days (WD), 2010 IFIP, 2010, pp. 1–5.

[22] M. Pitkänen, T. Kärkkäinen, J. Greifenberg, and J. Ott, “Searching
for content in mobile DTNs.” in Proc. of PerCom, 2009.

[23] K. Chen, H. Shen, and H. Zhang, “Leveraging social networks
for p2p content-based file sharing in mobile ad hoc networks.” in
Proc. of MASS, 2011.

[24] “Facebook,” http://www.facebook.com/.
[25] A. Y. Halevy, “Piazza: Data management infrastructure for seman-

tic web applications,” in Proc. of WWW, 2003.
[26] “GENI project,” http://www.geni.net/.
[27] “Orbit,” http://www.orbit-lab.org/.
[28] “The Network Simulator ns-2,” http://www.isi.edu/nsnam/ns/.
[29] M. Musolesi and C. Mascolo, “Designing mobility models based

on social network theory.” Mobi. Comp. and Comm. Rev., vol. 11,
no. 3, pp. 59–70, 2007.

[30] T. Repantis and V. Kalogeraki, “Data dissemination in mobile
peer-to-peer networks,” in Proc. of MDM, 2005.

[31] C. Lindemann and O. Waldhorst, “A distributed search service
for peer-to-peer file sharing in mobile applications,” in Proc. of
P2P, 2002.

[32] A. Vahdat and D. Becker, “Epidemic routing for partially-
connected ad hoc networks,” Duke University, Tech. Rep., 2000.

[33] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco, “Socially-
aware routing for publish-subscribe in delay-tolerant mobile ad
hoc networks,” IEEE JSAC, vol. 26, no. 5, pp. 748–760, 2008.

[34] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in Proc. of MobiHoc, 2007.

[35] A. Lindgren, A. Doria, and O. Scheln, “Probabilistic routing in
intermittently connected networks.” Mobi. Comp. and Comm. Rev.,
vol. 7, no. 3, pp. 19–20, 2003.

[36] K. Chen and H. Shen, “Cont2: Social-aware content and contact
based file search in delay tolerant networks,” in Proc. of ICPP,
2013.

Kang Chen Kang Chen received the BS degree
in Electronics and Information Engineering from
Huazhong University of Science and Technol-
ogy, China in 2005, the MS in Communication
and Information Systems from the Graduate Uni-
versity of Chinese Academy of Sciences, China
in 2008, and the Ph.D. in Computer Engineering
from Clemson University in 2014. He is currently
an assistant professor in the Department of
Electrical and Computer Engineering at South-
ern Illinois University. His research interests fall

in emerging networks such as vehicular networks and SDN.

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineering
from Wayne State University in 2004 and 2006,
respectively. She is currently an associate pro-
fessor in the Department of Electrical and Com-
puter Engineering at Clemson University. Her
research interests include distributed computer
systems and computer networks, with an em-
phasis on P2P and content delivery networks,

mobile computing, wireless sensor networks, and grid and cloud com-
puting. She is a Microsoft Faculty Fellow of 2010, a senior member of
the IEEE and a member of the ACM.

Li Yan Li Yan received the BS degree in Informa-
tion Engineering from Xi’an Jiaotong University,
China in 2010, and the M.S. degree in Electrical
Engineering from University of Florida in 2013.
He currently is a Ph.D. student in the Depart-
ment of Electrical and Computer Engineering at
Clemson University, SC, United States. His re-
search interests include wireless networks, with
an emphasis on delay tolerant networks and
sensor networks.

14

