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Abstract—Real-world applications, such as peer-to-peer (P2P) networks, e-commerce and social networks, usually employ
reputation systems to provide guidance in selecting trustworthy node for high system reliability and security. A reputation system
computes and publishes reputation score for each node based on a collection of opinions from others about the node. However,
collusion behaviors impair the effectiveness of reputation systems in trustworthy node selection. Though many reputation
calculation methods have been proposed to mitigate collusion’s influence, little effort has been devoted to specifically tackling
collusion. Based on the important collusion behavior characteristics in reputation evaluation and influence on reputation values,
we propose a basic collusion detection method to specifically detect suspicious collusion behaviors in pairs. We further optimize
the method by reducing the computing overhead. We also propose two pre-processing methods to firstly identify partial reputation
raters of a node that are more likely to be colluders before applying the collusion detection method on them, thus reducing the
collusion detection overhead. Extensive experimental results show that our proposed methods can significantly enhance the
capability of existing reputation systems to detect collusion with low overhead. Also, the pre-processing methods are effective in
reducing the collusion detection overhead without affecting the collusion detection accuracy.
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1 INTRODUCTION

In real-world applications, such as peer-to-peer (P2P)
networks, e-commerce and social networks, nodes or
users without preexisting trust relationships interact
with each other for different purposes (e.g., resource
sharing, transaction and communication). Reputation
system is a widely used approach in these application-
s to enhance collaborations and ensure reliability. In
a reputation system, reputation manager(s) computes
and publishes global reputation score for each node
based on a collection of local reputation ratings from
others about the node in order to provide guidance in
selecting trustworthy nodes. Despite the effectiveness
of the reputation systems, they are generally vulner-
able to collusion [1, 2], which impairs their effective-
ness in trustworthy node selection. In collusion, two
or more malicious nodes conspire to give each other
high local reputation values and (or) give all other
nodes low local reputation values in order to gain
high global reputation [3]. Colluders usually offer
low quality of service (QoS) and receive low ratings
from nodes outside of the colluding collective [1, 2].
Recent studies [4–7] indicate that collusion behaviors
commonly exist in online rating systems.
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Current methods that can indirectly deal with col-
lusion focus on how to calculate node reputations
to mitigate the influence of collusion. They can be
generally classified into two groups: (1) a node cal-
culates others’ reputations based on its own expe-
rience [8]; and (2) a node includes the feedback of
pretrusted nodes and (or) assigns weights to nodes’
feedback according to their global reputation [3, 9].
These methods can reduce the impact of collusion
when determining node trustworthiness, but they do
not specifically tackle collusion in reputation calcula-
tion. Some works [10, 11] detect suspicious collusion
based on the incorporated online social network in the
system. However, these methods are only suitable for
the systems that incorporate an online social network.
Most peer-to-peer and other distributed applications
do not incorporate social networks. Also, building
and maintaining such social networks cost high sys-
tem overhead. Unlike the previous works, in this
paper, we directly detect suspicious collusion behav-
iors based on user interaction history according to
the behavior characteristics of colluders in reputation
evaluation. Our proposed methods can enhance the
capabilities of existing reputation systems to detect
and combat collusion. As far as we know, this work is
the first that specifically detects suspicious collection
behaviors in distributed systems that do not incorpo-
rate social networks.

Previous study shows the important behavior char-
acteristics of colluders in reputation evaluation. That
is, the suspected colluders (1) gain high global rep-
utations [3], (2) frequently give each other high rep-
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utation values and (or) give other nodes low repu-
tation values [3], (3) receive low ratings from other
nodes [1, 2], and (4) tend to conspire in bidirectional
pairs rather than in a group of more than 2 nodes [1].
According to the behavior characteristics and influ-
ence, we propose a basic collusion detection method
to detect suspicious collusion behaviors in pairs by
directly monitoring user interaction history with low
overhead. Based on characteristic (4), we focus on
collusion in pairs in this paper and will briefly explain
how to extend our method for a collusion group
with more than 2 nodes later on though it is rare.
In these methods, the reputation manager(s) detects
collusion based on collected rating values and rating
frequency between nodes. If two high-reputed nodes
give high ratings to each other at a high frequency,
while receive low ratings from other nodes, the two
nodes are suspected colluders. We discuss how to
conduct collusion detection in centralized reputation
systems using a single reputation manager, and in
decentralized reputation systems using a number of
reputation managers. We further optimize the method
by reducing computing overhead.

We also propose two pre-processing methods to
firstly identify partial reputation raters of a node that
are more likely to be colluders before applying the col-
lusion detection method on them, thus reducing the
collusion detection overhead. One method is based
on the random cuts in a graph. A node’s graph is
formed by its raters and edges from the raters to itself
with the reputation rating as the edge weight. If the
reputation contribution from a random cut is within
a reasonable level, the raters in the cut do not need
to be checked for collusion. The other pre-processing
method is based on the k-means clustering algorithm.
Based on the collusion detection criteria, the k-means
clustering algorithm clusters all raters of a node. Then,
only the clusters matching the collusion criteria need
to be checked. The contribution of this work can be
summarized below:
• A basic collusion detection method to detect sus-

picious collusion behaviors by directly monitor-
ing user interaction history.

• An optimized collusion detection method that
reduces computing overhead.

• Random-cut based data pre-processing for collu-
sion detection to reduce computing overhead.

• K-means clustering algorithm based data pre-
processing for collusion detection to reduce com-
puting overhead.

We conduct extensive experiments to compare the
proposed collusion detection methods with other rep-
utation systems capable of handling collusion and
the effectiveness of the two pre-processing methods.
Experimental results show that our proposed col-
lusion detection methods significantly enhance the
capability of existing reputation systems in deter-
ring collusion with low overhead. Also, the two pre-

processing methods reduce the collusion detection
overhead while maintain collusion detection accuracy.

In this paper, we use P2P networks as an example
for real-world applications that need to use repu-
tation systems to incentivize node cooperation. Our
proposed methods can be applied to large-scale dis-
tributed systems and applications with large-scale dis-
tributed users (e.g., e-commerce and social networks).
Today’s Internet is still driven by a multitude of
large-scale distributed systems that efficiently deliver
a variety of data to end users; everything from files via
BitTorrent, streaming videos via PPLive, to content via
Akamai. Given their reliance on peer-delivery, these
systems are vulnerable to the significant impact from
selfish nodes. Our work can encourage cooperative
node behaviors and create a trustworthy cyber envi-
ronment, which could have an impact on the real-
world applications.

The remainder of this paper is as follow. Section 2
describes our proposed collusion detection methods.
Section 3 presents the performance evaluation of the
proposed method compared to existing reputation
systems and the effectiveness of the pre-processing
methods. Section 4 introduces related work in rep-
utation systems and in collusion deterrence. Section 5
concludes the paper with remarks on our future work.

2 COLLUSION DETECTION METHODS

2.1 Background

Our proposed methods can be built on any reputation
system to enhance its capacity to combat collusion.
In a centralized reputation system, such as the one
in Amazon, a resource manager collects the ratings
of all nodes and calculates the reputation values of
all nodes. The decentralized reputation systems are
more complex. We use EigenTrust [3] as an example to
explain how a decentralized reputation system works.
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Fig. 1: A distributed reputa-
tion system.

EigenTrust forms a num-
ber of high-reputed pow-
er nodes into a Distributed
Hash Table (DHT) for rep-
utation aggregation and
calculation. These power
nodes are reputation man-
agers. We use IDi to rep-
resent the DHT ID of node
ni, which is the consisten-
t hash value [12] of node
ni’s IP address. The repu-
tation manager of reputation ratings on node ni is
the DHT owner of IDi. A node uses DHT function
Insert(IDi,ri) to send the rating of node ni to its
reputation manager, and uses Lookup(IDi) to query
the reputation value of node ni from its reputation
manager. A reputation manager periodically collects
the ratings and computes the global reputation values
of its responsible nodes. The joins and departures of
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reputation managers are handled by the DHT-based
mechanism for node joins and departures [13].

Figure 1 presents a 4-node reputation system built
on top of the Chord DHT [13] with 4-bit circular hash
space. Other nodes report to n15 about n10’s local
reputation by Insert(10,r10). Node n15 calculates
n10’s global reputation value. When a node, say n6,
wants to select a server from several candidates, it
queries for the reputation values of the servers. For
example, it uses Lookup(10) to query n10’s reputa-
tion value, denoted by R10.

There are many ways to calculate global reputation
values of nodes [3]. We use the local reputation
calculation method in eBay [14] and EigenTrust [3] as
an example in this paper. That is, the local reputation
rating for each interaction for a node is -1, 0 and 1. A
node’s final reputation is the sum of all its received
reputation evaluation values. Reputation systems
usually specify a reputation threshold TR. Nodes
whose R ≥ TR are considered as trustworthy while
nodes with R < TR are considered as untrustworthy.
To apply our method to the reputation systems that
use different reputation calculation methods, we
regard local reputation rating with ≥ TR as 1, and
local reputation rating with < TR as -1.

Our collusion detection methods are based on the
observations of the collusion characteristics in repu-
tation evaluation in the previous study in [1–3] as
shown below:
Characteristic 1 (C1). Collusion leads to high reputation
of the colluders [3].
C2. Among the high-reputed nodes, colluders receive more
low reputations than non-colluders [1, 2].
C3. Colluders frequently submit very high ratings for their
conspirators [3].
C4. Most collusion behaviors are in pairs, and the collusion
of multiple colluders in one group rating each other is very
rare [1].

2.2 Basic Collusion Detection Method
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Fig. 2: Collusion model.

Based on the above-
mentioned characteris-
tics of collusion in rep-
utation evaluation (C1-
C4), we build a collu-
sion model shown in
Figure 2 that incorpo-
rates all the charac-
teristics. In the collu-
sion, two nodes (C4)
frequently (C3) rate high reputation for each other
(C3) in order to increase their global reputation values
(C1), but offer low-QoS to other nodes and receive low
ratings from other nodes (C2). Based on C4, we only
focus on collusion in pairs in this paper. Our goal
is to enhance the collusion resilience by mitigating
the effect from most collusion rather than from all
collusion. We will also briefly explain how to extend

our method for a collusion group with more than 2
nodes later on though it is rare.

TABLE 1: A list of notations in the paper.
∆t the time period for updating global reputations
Ni # of all ratings for ni in ∆t
N(i,j) # of ratings from nj for ni in ∆t
N(i,−j) # of ratings from all nodes except nj for ni in ∆t

N+
(i,j)

# of positive ratings from nj for ni in ∆t

N+
(i,−j)

# of positive ratings from all nodes except nj for ni in ∆t

N−
(i,j)

# of negative ratings from nj for ni in ∆t

N−
(i,−j)

# of negative ratings from all nodes except nj for ni in ∆t

a percent of positive ratings in all ratings from nj for ni

b percent of positive ratings from all nodes except nj for ni

Ta threshold of the a value
Tb threshold of the b value
TN threshold of rating frequency
TR threshold of reputation to check (un)trustworthy nodes
I average interactions for node ni in some time period T
rmax average maximum reputation contribution during a unit period

We define a number of notations shown in Table 1
for a pair of nodes ni and nj . We use a to denote the
percent of positive ratings in all ratings from nj for ni,
and use b to denote the percent of positive ratings in
all ratings from all nodes except nj for ni. We specify
a threshold Ta for a and a threshold Tb for b. Ta and
Tb can be determined by the historical data of a and
b of pairs of nodes with high interaction frequency.
For example, in our crawled data [15], for those
suspicious colluders found, using the threshold=20 for
the average number of transactions of a seller-buyer
pair per year, the average a=98.37 and average b=1.63.
If we want to reduce the false negatives in collusion
detection, we can decrease Ta and increase Tb. On
the other hand, if we want to reduce the number of
false positives in collusion detection, we can increase
Ta and decrease Tb. We use ∆t to denote the time
period for updating global reputations and use N(i,j)

to denote the number of ratings from nj for ni in
∆t . We also specify rating frequency threshold TN
for N(i,j) to show how frequently nj rates ni. For
example, based on our trace data [15], TN=20/year.

In our proposed collusion detection method, re-
source manager(s) relies on reputation values and
frequencies of ratings between a pair of nodes for col-
lusion detection according to the collusion model in
Figure 2. We first describe the method in a centralized
reputation system, and then describe how the method
works in a decentralized reputation system.

Centralized Reputation System. Based on C1, s-
ince colluders usually have high reputation values,
which is their objective by colluding, and reputation
systems regard nodes whose R ≥ TR as high-reputed
nodes, we can only check high-reputed nodes to
detect colluders. For each node in the system, the
centralized reputation manager keeps track of the
number of ratings (N(i,j)) and the number of positive
ratings (N+

(i,j)) during ∆t of every other node to this
node. The reputation manager builds an n×n matrix,
where n is the number of nodes in the network. The
matrix records the reputation ratings for nodes whose
R ≥ TR. If node ni’s reputation value Ri ≥ TR, matrix
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element hij=< IDi, Ri, N
+
(i,j), N(i,j) > (1 ≤ j ≤ n).

Otherwise, hij=empty.

The manager periodically updates the matrix with
its collected information and detects collusion accord-
ing to the characteristics in the collusion model. In
collusion detection, the manager scans each row in the
matrix in the top-down manner, and scans elements in
each row from the left to the right. For high-reputed
node ni (C1) in a row (non-empty line), the manager
checks hij from every other node nj (each column)
for ni. If Rj≥TR and N(i,j)≥TN , which means nj also
has a high reputation (C1) and nj rates ni frequently
(C3), then N+

(i,j) is further checked. If N+
(i,j)/N(i,j)≥Ta,

which means a large portion of nj ’s ratings are posi-
tive (C3), then the ratings from all other nodes except
nj (all other columns) are checked. The manager scans
each element in the line of ni except hij and calculate
the sum of all positive ratings, N+

(i,−j), and the sum of
all ratings, N(i,−j). If N+

(i,−j)/N(i,−j)<Tb, which means
a large portion of ratings from other nodes except nj
are negative (C2), then we can conclude that ni’s high
reputation is mainly caused by nj ’s frequent ratings
that are deviated from most others’ rating values. As
collusion is usually a mutual rating behavior based
on C4, then the reputation manager checks whether
node nj is a high-reputed node and whether its high
reputation is mainly caused by frequent ratings from
ni that are deviated from most others’ rating values.
Specifically, the manager finds the row of nj in the ma-
trix and repeats the same process for nj to check if nj ’s
high reputation is also mainly caused by ni’s ratings.
If N(j,i)≥TN , N+

(j,i)/N(j,i)≥Ta and N+
(j,−i)/N(j,−i)<Tb,

ni and nj are very likely to be colluding. Then, in the
periodical global reputation updating, the reputation
manager can reduce the reputation values of nodes ni
and nj to punish their colluding behaviors. During the
checking process, after an hij is checked, the manager
marks hij and hji to indicate that the two elements
no longer need checking.

Decentralized Reputation System. Decentralized
reputation systems distribute the role of the central-
ized resource manager to a number of trustworthy
nodes. We use Mi to denote the reputation manager
of node ni. As mentioned, a reputation manager Mi

of node ni keeps track of all ratings of other nodes
for ni. Thus, using the same way as the centralized
reputation systems, each reputation manager builds
an ñ × n matrix, where ñ is the number of its re-
sponsible nodes. For reputation manager Mi, for each
of its responsible node ni with Ri≥TR, if N(i,j)>TN ,
N+

(i,j)/N(i,j)≥Ta and N+
(i,−j)/N(i,−j)<Tb, ni is suspect-

ed to collude with nj . Then, if Mi is the reputation
manager of node nj , it uses the same method in the
centralized reputation system for the collusion detec-
tion. Otherwise, Mi contacts nj ’s reputation manager
Mj by the DHT function Insert(j,msg). Then, Mj

checks Rj and ratings from ni for nj . If nj has high

reputation and its reputation is mainly caused by
ni’s frequent ratings that deviate from most others’
ratings, i.e., Rj≥TR, N(j,i)≥TN , N+

(j,i)/N(j,i)≥Ta and
N+

(j,−i)/N(j,−i)<Tb, Mj sends a positive response to
Mi indicating that ni and nj are likely to be colluders.
Then, in the periodical global reputation updating,
reputation managers Mi and Mj can reduce the rep-
utation values of nodes ni and nj , respectively, to
punish their colluding behaviors. Algorithm 1 shows
the pseudo-code of the collusion detection method.

Algorithm 1 Pseudo-code of the collusion detection
method in a centralized reputation system.
1: /*Return pairs of nodes that are detected as colluders*/
2: for each ni with reputation value Ri≥TR do
3: for each reputation rater nj of ni do
4: if nj ’s reputation value Rj≥TR then
5: if CheckCollusion(ni, nj ) && CheckCollusion(nj , ni) then
6: Record ni and nj as colluders
7: Function CheckCollusion(ni, nj )
8: if rating frequency from ni for nj is ≥TN then
9: if percent of positive ratings from ni for nj is ≥Ta then

10: if percent of the positive ratings from other nodes is < Tb

11: return true
12: return false

We use m to denote the number of high-reputed
nodes and n to denote the total number of nodes in
the system.

Proposition 2.1: In the collusion detection method,
the computation complexity to identify colluders in
the P2P system is O(mn2).

Proof: For each high-reputed node ni (1 ≤ i ≤
m), at most n elements should be checked. For each
checking, at most n elements are scanned. Thus, the
computation complexity to identify colluders in the
system is O(mn2).

The collusion detection method can effectively i-
dentify the colluders based on the characteristics of
collusion behaviors in reputation evaluation. Howev-
er, in order to calculate N+

(i,−j) and N(i,−j), for each
rater nj , each element in matrix line i should be
scanned, generating a high computing cost. Therefore,
we propose an optimized collusion detection method
that produces much lower computation cost.

2.3 Optimized Collusion Detection Method
In the optimized collusion detection method, a re-
source manager does not need to scan each element
in matrix line i for each N(i,j) (1 ≤ j ≤ n). Each
manager detects collusion only based on the global
reputation value of each of their responsible nodes ni
and frequency of ratings of each of other nodes for ni.
According to the global reputation value calculation
method, for a given pair of nodes ni and nj , we can
get: 

b · (Ni −N(i,j)) = N+
(i,−j)

(1− b) · (Ni −N(i,j)) = N−(i,−j)

a ·N(i,j) = N+
(i,j)

(1− a) ·N(i,j) = N−(i,j)
N+

(i,−j) +N+
(i,j) −N−(i,−j) −N−(i,j) = Ri

⇒ Ri = 2b(Ni −N(i,j)) + 2aN(i,j) −Ni. (1)
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Figure 3 visualizes Formula (1) when 1≥a≥Ta (i)
and Tb≥b≥0 (ii). The surface in the figure shows
the range of the reputation values of a suspect-
ed colluder corresponding to given values of N(i,j)

and Ni, given different set of a and b. Condi-
tions (i) and (ii) mean that a large portion of
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Fig. 3: Reputations of colluders.

ratings from nj are pos-
itive, whereas a large
portion of ratings from
other nodes are nega-
tive. In this case, ni’s
high reputation is main-
ly caused by node nj ’s
ratings. Thus, we suspec-
t that nodes ni and nj
collude with each other.
Since (Ni − N(i,j))>0 and N(i,j)>0, based on Equa-
tion (1) and the conditions (i) and (ii), we can derive

2Tb(Ni −N(i,j)) + 2N(i,j) −Ni ≥ Ri ≥ 2TaN(i,j) −Ni. (2)
Thus, if the values of N(i,j), Ni and Ri conform

Formula (2), node ni and nj are very likely to col-
lude with each other. Therefore, to detect possible
collusion, each reputation manager Mi first identifies
nodes whose R≥TR. For each of such node ni, the
manager then checks the rating frequency of each
rater of ni, N(i,j). If N(i,j)≥TN , the manager then uses
Formula (2) to check whether ni’s high reputation is
possibly due to its collusion with nj .

In the case that Formula (2) is satisfied, if Mi is nj ’s
reputation manager, it checks whether nj ’s high rep-
utation is possibly due to its collusion with ni using
the same way. Otherwise, Mi uses Insert(j,msg)
to contact the reputation manager of nj . Reputation
manager Mj conducts the same process to check if
nj ’s high reputation is possibly due to its collusion
with ni. If Rj≥TR, N(j,i)≥TN and Formula (2) are also
satisfied, ni and nj are very likely to be colluding with
each other. Algorithm 2 shows the pseudo-code of the
optimized collusion detection method.

Proposition 2.2: In the optimized collusion detection
method, the computation complexity to identify col-
luders in the P2P system is O(mn).

Proof: For each high-reputed node ni (1 ≤ i ≤ m),
at most n elements should be checked for collusion
detection. Thus, the computation complexity to iden-
tify colluders in the system is O(mn).

Discussion of the Effectiveness of Our Method.
Our method is proposed specifically based on the
observations of the collusion characteristics in repu-
tation evaluation from previous studies [1–3] listed in
Section 2.1. Therefore, if a collusion does not show
these characteristics, our method will not be effective
in detecting it. However, if collusion nodes do not
show these characteristics, their purpose of conduct-
ing collusion may not be reached. We will discuss
how nodes can avoid showing each characteristic,
and the effectiveness of our method in each case in
the next paragraph. To achieve high effectiveness of

Algorithm 2 Pseudo-code of the optimized collusion de-
tection method in a decentralized reputation system.
1: /*Return pairs of nodes that are detected as colluders*/
2: for each responsible node ni do
3: if Ri ≥ TR then
4: for each rater nj of ni do
5: if nj ’s rating frequency is no less than TN (N(i,j) ≥ TN )
6: if N(i,j), Ni and Ri satisfy Formula (2) then
7: Ask reputation manager of nj to check the collusion
8:
9: if Receive a positive collusion detection result for ni and nj

then
10: return ni and nj

11: end if
12:
13: /*Receive a request to check the collusion of nj and its responsible

node ni*/
14: if Ri ≥ TR then
15: if ni’s rating frequency is no less than TN (N(i,j) ≥ TN ) then
16: if N(i,j), Ni and Ri satisfy Formula (2) then
17: Send positive msg to Mj indicating ni and nj are colluders

our method, it is important to determine appropriate
values for the thresholds (including TN , Ta and Tb)
to reduce both false negatives and false positives.
Strict settings will find the colluders that are not so
aggressive but generate more false positives, while
loose settings will generate more false negatives. Our
method aims to enhance collusion resilience by miti-
gating the effect from most collusions instead of from
all collusions. Our experimental results show that our
method can reach more than 99% precision rate, recall
rate and F1 measurement.

Discussion of Underlying Basis. Our collusion
detection method finds nodes whose behaviors match
the characteristics of collusion in reputation evalua-
tion (C1-C4). Then, an attacker can use evasion tech-
niques to remain undetected by avoiding exhibiting
these characteristics in their behaviors. It is very un-
likely for an attacker to avoid C1 because the purpose
of collusion exactly is to gain high reputation. If
colluders try to avoid C2, they need to try to receive
fewer low reputation ratings; the only way for this
is to be cooperative. Then, the nodes do not have to
be colluders since they can earn high reputation by
being cooperative. If colluders try to avoid C3, they
must not rate each other frequently with high ratings,
which however is the basic behavior of collusion. In
order to offset non-colluders’ low ratings and to gain
high reputation, colluders must rate each other at a
relatively high frequency and with a relatively high
rating. Therefore, it is also difficult to avoid C3. To
avoid C4, colluders can rate each other in a group
with more than two nodes and avoid collusion in
pairs. It is indicated in [1] that most group collusions
are in pairs and groups of three of more are rare in a
file sharing system. Thus, in this paper, we focus on
collusion in pairs in observing collusion. We can easily
extend our methods to observe possible collusion
behaviors in a group such as ni→nj→nk→ni, where
→means highly frequent ratings with high reputation
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values. Using our method, we can find ni→nj , nj→nk
and nk→ni. Then, if we find these observed behaviors
form a loop, it is likely to be a group collusion. We
leave the details of the detection of group collusion
as our future work.

Discussion of Possible Attacks. The proposed col-
lusion detection method may be abused by attackers
to reach their malicious goals. For example, a colluder
can submit fake high ratings with high frequency
for a normal node, with the purpose of misleading
the system into falsely identifying the normal node
as a colluder. However, this attack will not succeed
under the proposed collusion detection method. As
according to Algorithm 1, only when a normal node
receives a small portion of positive ratings from other
nodes besides the colluder (i.e., N+

(j,−i)/N(j,−i)<Tb),
this normal node will be identified as a colluder. Also,
only when two nodes mutually rate each other with
high ratings frequently, they will be considered as
potential colluders. Thus, if a normal node behaves
good and receives positive ratings from other nodes
and it does not rate highly and frequently for the
colluders, this attack fails to mislead the system into
falsely identifying it as a colluder.
2.4 Pre-processing using Random Cuts
In the optimized collusion detection method, for each
node with R ≥ TR, to sequentially find nodes with
N(i,j)≥TN generates high overhead, especially in a
large-scale P2P system with thousands or even mil-
lions of nodes. To increase the collusion detection scal-
ability with lower overhead, we introduce a random
cut based pre-processing method that first identifies
the possible colluders before applying the optimized
collusion detection method on these nodes.

In the random cut based pre-processing method,
each reputation manager draws a graph G = (V,E)
based on its received reputation feedback. Figure 4
shows an example of such a graph. In the graph, V
consists of the manager’s responsible nodes and their
raters (i.e., reputation reporting nodes) and E is a
set of edges. A uni-directional link eij is built from
node nj to node ni if nj has reported ni’s reputation.
Each edge eij has a weight wij , which equals the
accumulated value of node nj ’s reported reputation
values for ni (i.e., reputation contribution from nj to
ni) during ∆t . Then, ni’s reputation equals:

Ri =
∑

k⊂|Ei|

wik, (3)

where Ei denotes all edges pointing to ni.
Recall that if ni and nj are colluding, a large portion

of ratings for ni from nj are positive, whereas a
large portion of ratings from other nodes for ni are
negative. That is, if we cut the edge from nj to ni,
then Ri drops sharply. For example, in Figure 4,
the reputation contributions (link weights) from re-
porting nodes for n1 starting at n12 in the clock-
wise direction are {1,−1, 26, 4,−2, 0, 1,−1}, and those
for n2 starting at n5 in the clockwise direction are

Colluding edges

Colluding
nodes

1 ‐1

24

4‐20

1

‐1 1 ‐2

0

1 ‐1 2

1

1 2

3

4 5 6

7

8910

1213

14

11

26

Fig. 4: A graph G = (V,E)
showing reputation contribution
between different nodes.

Cut (C)  

Reciprocal 
      cut (C’) 

1 1 
2 

3 

4 5 

6 7 9 

Fig. 5: Graph cut.

{−2, 1, 0, 2,−1, 1, 24, 1}. Then, R1 = 28 and R2 = 26.
When we remove the edge e12 and e21, then their
reputations drop significantly, i.e., R1 = 2 and R2 = 2.
This means n1 and n2 contributes greatly to the high
reputations of each other and are possibly colluding
to boost each other’s reputation values.

Based on this phenomenon, for each node ni with
Ri ≥ TR, as shown in Figure 5, we cut a ran-
domly selected group of neighboring edges (denoted
by C) pointing to ni. If Ri does not drop sharply,
C is unlikely to contain colluder(s), then only the
remaining subgraph (i.e., reciprocal cut denoted by
C’) needs to be checked. In this way, many nodes do
not need to be checked compared to the optimized
collusion detection method, thus saving overhead. We
introduce the details of this algorithm below.

Node ni’s graph is formed by ni and other nodes
with edges pointing to ni, denoted by Gi. On Gi, we
perform a cut on randomly selected neighboring p·dGi

edges, where p is a percent constant and dGi is the
degree of ni in graph Gi. We use R(G) to denote the
reputation contribution to ni from nodes in graph G.
Then, Ri(Gi) = Ri(C) + Ri(C

′). We set a threshold
rt = ηrmax, where rmax is the average maximum
reputation contribution during a unit time period
from a node in the historical data and η is a percent
determined by the collusion detection strictness. If
Ri(C) ≤ rtdC , which means that nodes in C gave
reasonable ratings with high probability, then we do
not need to further check nodes in C. Otherwise, we
continually repeat the same random cut operation
on C. The reciprocal cut C ′ is handled in the same
manner. As the subgraph C with Ri(C) > rtdC
is repeatedly cut to a smaller subgraph, finally the
possible colluders are located that gave ni higher
rating than the reasonable level. In the worst case, for
node ni, the random cut operation needs to check all
neighbors of ni to find its possible colluders. Thus,
the computation complexity of the random cut pre-
processing is O(ndmax), where dmax is the maximum
degree of all nodes.

Let’s use Oi to denote the group of observed pos-
sible colluders of ni. For each node nj ∈ Oi, ni’s
reputation manager checks whether nj ’s Oj contains
ni. If yes, the manager uses Formula (2) to determine
if ni and nj are colluders. If nj is managed by a
different manager, then ni’s manager needs to contact
nj ’s manager to get nj ’s Oj using the method we in-
troduced previously. Therefore, the random cut based
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pre-processing method helps produce a much smaller
scope of suspected colluders before using Formula (2)
in the optimized collusion detection method, thus
greatly reducing overhead.
Algorithm 3 Pseudo-code of the random cut based pre-
processing executed by the reputation manager for a node.
Input: G: graph of node ni

Output: O: a vector of suspected colluders of ni

1: Function CheckCollusion(G,O)
2: (C,C’) = GetRandomCut(G) ( dC

dG
= p)

3: if Ri(C) > rtdC then
4: if dC > 1 then
5: CheckCollusion(C,O)
6: else
7: Insert(O,C) //insert possible colluder C into vector O
8: if Ri(C

′) > rtdC′ then
9: if dC′ > 1 then

10: CheckCollusion(C’,O)
11: else
12: Insert(O,C’) //insert possible colluder C’ to vector O

Algorithm 3 shows the pseudocode for the random
cut based pre-processing method executed by a repu-
tation manager. The reputation manager of node ni
(Mi) executes CheckCollusion(Gi, Oi) to obtain the
suspected colluders of node ni in Oi. It is a recursive
algorithm and can be divided into two steps. In the
first step, Mi obtains a random cut (C) and a recipro-
cal cut (C ′) in the graph (line 2). In the second step, Mi

checks the possible colluders in C (lines 3-9) and C ′

(lines 10-16), respectively. When checking the possible
colluders, Mi checks if the reputation contribution
from C is greater than a reasonable level. If yes, there
possibly exist colluders of C and then Mi recursively
calls this function with C as the parameter. Otherwise,
Mi checks C ′. Similarly, if C ′ contains possible collud-
ers, Mi recursively calls this function with C ′ as the
parameter. Otherwise, no further checking is needed.
Each reputation manager executes this algorithm for
each of its responsible nodes.

2.5 Pre-processing using K-Means Clustering
We also propose a pre-processing method using k-
means clustering to reduce the scope of nodes for
collusion checking in order to improve the perfor-
mance of computationally intensive collusion detec-
tion methods in large-scale P2P systems.

In data mining, k-means clustering algorithm [16] is
a method of cluster analysis, which aims to partition
a set of observations into k cluster such that each
observation belongs to the cluster with the nearest
mean. K-means clustering algorithm can also work
in a multiple-dimensional space.

In Section 2.2, we indicated that for reputation
manager Mi, for each of its responsible node ni with
Ri≥TR, if Rj ≥ TR, N(i,j)>TN , N+

(i,j)/N(i,j)≥Ta and
N+

(i,−j)/N(i,−j)<Tb, ni is suspected to collude with
nj . Sequentially checking each rater for a given node
ni produces high overhead. To resolve this problem,
reputation manager Mi uses the k-mean clustering
algorithm to cluster the raters of ni based on the above
criteria to identify only the clusters of nodes that are

likely to be ni’s colluders, and then uses the optimized
collusion detection method for further checking.

Thus, we set four dimensions: Rj , N(i,j),
N+

(i,j)/N(i,j) and N+
(i,−j)/N(i,−j). That is, each

rater of ni has a 4-dimensional dataset (a tuple of 4
elements). Reputation manager Mi performs k-means
clustering and obtains k clusters. The value of k is
predefined. It should be set to a value as small as
possible in order to reduce the computation time
but without compromising the collusion detection
performance. We show the performance of different
k values in Section 3. Each cluster is represented
by the 4-dimensional coordinates of its centroid. Mi

then uses the optimized collusion detection method
on the clusters of interests (COI), in which most
nodes satisfy the aforementioned conditions. We set
thresholds αTR, αTN , αTa and βTb, where α < 1
and β > 1 are parameters determined based on
the dispersed degree of the actual criterion values.
Suppose a cluster’s centroid is (x1, x2, x3, x4); if
x1 > αTR, x2 > αTN , x3 > αTa and x4 < βTb, this
cluster is COI. All nodes belonging to a COI need to
be checked, thus reducing all raters of ni to a smaller
group of nodes for collusion checking and hence
improving the efficiency of the collusion detection
method. The computation complexity of the k-means
clustering algorithm is O(dmax

4k+1 log dmax) [16], so
the complexity of the pre-processing method using
the k-means clustering is O(ndmax

k log dmax).

3 PERFORMANCE EVALUATION
Network model. Since this work is the first that
specifically detect suspicious collection behaviors in
distributed systems that do not incorporate social
networks, there is no collusion detection method we
can use to compare with our methods. Then, to e-
valuate our collusion resilient methods, we measure
the performance of EigenTrust [3] and PowerTrust [17]
with and without our collusion resilient methods. We
consider a generic P2P resource (e.g., file) sharing
network in which the nodes are able to issue resource
queries and resource offers with different qualities
directly between each other. We built an unstructured
P2P network with 200 nodes unless otherwise spec-
ified. The ratio of the number of individual node’s
interests to the number of all interest categories is
similar to the actual ratio in our crawled trace data
from Overstock [11]. Specifically, we assume there are
20 interest categories in the system. The number of
interests a node has is randomly chosen from [1,5],
and the interests are randomly chosen from the 20
interests. In the P2P network, nodes with the same
interest are connected with each other in a cluster. A
node with z interests is in z clusters. Each node in the
system has maximum 50 units of capacity (i.e., it can
handle 50 requests simultaneously per query cycle).
For a request of a file of an interest, a node queries
all of its neighbors in the cluster of the interest, and
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Fig. 6: Reputation distribution in EigenTrust when B=0.6
(Pretrusted node IDs 1-3, colluder IDs: 4-11).
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Fig. 7: Reputation distribution in EigenTrust when B=0.2 (Pretrusted
node IDs 1-3, colluder IDs: 4-11).

chooses its highest-reputed neighbor with available
capacity greater than 0. If a number of options have
an identical reputation value, then the client randomly
selects a node as a server.

Node model. We consider three types of nodes:
pretrusted nodes, colluders and normal nodes unless
otherwise indicated. The pretrusted nodes always
provide authentic files to the requesters. Normal
nodes provide inauthentic files with a default
probability of 20% unless otherwise specified. We use
B to denote the probability that a colluder offers an
authentic file (i.e., good behavior). We randomly chose
3 pretrusted nodes and 8 colluders. In order to show
the results more clearly, the IDs of the pretrusted
nodes were set to 1, 2 and 3, and the IDs of the
colluders were set to 4-11. The weight of the ratings
from pretrusted nodes was set to 0.5 in EigenTrust.

Simulation execution. In the simulation process, a
node can only send out a file request when it is active.
The probability that a node is active is randomly
chosen from [0.3, 0.8]. The simulation proceeds in
simulation cycles. Each simulation cycle is subdivided
into 20 query cycles. In each query cycle, each node
issues a query if it is active. Each experiment has 20
simulation cycles. Each experiment ran 5 times and
we report the average of the results finally.

Collusion model. In addition to functioning as
normal nodes, colluders also mutually rate each other
with positive values in order to boost the reputations
of each other. We paired up two colluders and let
them rate each other 10 times per simulation cycle.

Reputation model. The initial reputation value of
each node is 0. Similar to the rating mechanism used
in Amazon and Overstock, a client gives a server
rating 1 when it receives an authentic file and rating
-1 when it receives an inauthentic file. A node’s local
reputation value equals to the sum of all ratings. Each
node updates reputations once after each simulation
cycle based on the EigenTrust reputation calculation
method. The reputation threshold TR was set to 0.05,
and the rating frequency threshold TN was to 100
ratings per simulation cycle. Other parameter settings
include Ta=90% and Tb=30%. These are empirical
values that can better identify uncooperative nodes
in our experimental settings. With a collusion-resilient
reputation system, we expect to see that the nodes
with IDs 4-11 (i.e., colluders) have extremely low rep-
utation values and the normal nodes have comparably
higher reputation values.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 9
1

7
2

5
3

3
4

1
4

9
5

7
6

5
7

3
8

1
8

9
9

7
1

0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

R
e
p

u
ta

ti
o

n
 v

a
lu

e

Node ID

Probability of good behavior of
colluders = 0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e
p

u
ta

ti
o

n
 v

a
lu

e

Node ID

Probability of good behavior
of colluders = 0.2

Fig. 8: Reputation distribution in EigenTrust with compro-
mised pretrusted nodes when B=0.2 (Pretrusted node IDs 1-3,
colluder IDs: 4-11).
3.1 Effectiveness of EigenTrust
Figure 6 shows the reputation distribution of all n-
odes and nodes with IDs in 1 − 20 when B = 60%
in EigenTrust. We see that high-reputed nodes are
skewed at pretrusted nodes with IDs in 1 − 3 and
colluders with IDs in 4 − 11. We also can see that
some normal nodes have relatively higher reputations
than others. The reputations of pretrusted nodes are
higher than normal nodes, but are significantly lower
than colluders. Since the colluders behave well with
probability of 60%, they gain a certain number of high
ratings though they have 40% probability to receive
negative ratings. Furthermore, colluders increase the
reputations of each other greatly through collusion,
which helps them attract many file requests to fur-
ther increase their reputations. The results show that
EigenTrust cannot detect the collusion behavior and
its generated reputations cannot accurately reflect the
trustworthiness of nodes.

Figure 7 shows the reputation distribution of all
nodes and nodes with IDs in 1−20 when the colluders
offer authentic files at a probability of 20%. From this
figure, we can see that some normal nodes have high-
er reputations while others have lower reputations.
This is because at first when all reputation values are
0, nodes randomly choose servers. Since the chosen
servers earn reputation, they will have higher proba-
bility to be chosen and to further increase their reputa-
tions later on. Comparing this figure with Figure 6, we
can see that EigenTrust is able to reduce the reputation
values of the colluders when B = 20%. Though col-
luders can try to increase the reputation of each other,
the reputations they receive from many other nodes
are very low since they only have 20% good behavior
probability. Therefore, they are unable to greatly boost
the reputation of each other due to the low weight of
their ratings. Therefore, EigenTrust can reduce the in-
fluence of collusion behaviors in the system when the
colluders offer low QoS services at most of the time.

In above experiment, we assume that the pretrusted
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Fig. 9: Reputation distribution in PowerTrust when B=0.6
(Colluder IDs: 4-11).
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Fig. 10: Reputation distribution in PowerTrust when B=0.2 (Colluder
IDs: 4-11).

0

0.05

0.1

0.15

0.2

0.25

1 9
1

7
2

5
3

3
4

1
4

9
5

7
6

5
7

3
8

1
8

9
9

7
1

0
5

1
1

3
1

2
1

1
2

9
1

3
7

1
4

5
1

5
3

1
6

1
1

6
9

1
7

7
1

8
5

1
9

3

R
e

p
u

ta
ti

o
n

 v
a

lu
e

Node ID 

Probability of good behaviors
of colluders = 0.2

0

0.001

0.002

0.003

0.004

0.005

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
e
p

u
ta

ti
o

n
 v

a
lu

e

Node ID

Probability of good behavior
of colluders = 0.2

Fig. 11: Reputation distribution in our proposed collusion
resilient methods when B=0.2 (Colluder IDs: 4-11).
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Fig. 12: Reputation distribution in EigenTrust employing our
proposed methods when B=0.6 (Pretrusted node IDs 1-3, col-
luder IDs: 4-11).

nodes are trustable and are not involved in the col-
lusion. In this experiment, we assume that pretrusted
node n1 colludes with node n4 and pretrusted node
n2 colludes with n6. Nodes n4 − n11 are still paired
up and collude with each other. Colluders offer au-
thenticate files with probability of 0.2. Figure 8 shows
the reputation distribution of all node and the first
20 nodes. We see that the high-reputed nodes are
skewed among pretrusted nodes and colluders, and
the reputations of nodes n4−n7 are boosted while the
reputation value of nodes n8 − n11 are much lower
compared to Figure 7. The reason is that because
pretrusted nodes n1 and n2 rate highly on node n4 and
node n6, since EigenTrust assigns more weight to the
ratings of pretrusted nodes, n4 and n6’s reputations
are significantly increased. Since node n4 and node
n6 rate highly on their colluding partners n5 and n7,
respectively, the reputations of n5 and n7 also increase
greatly. Because nodes always choose the highest-
reputed nodes with available capacity, the reputations
of these colluders continually increase and ultimately
even exceed the pretrusted nodes’ reputations. The
result implies that compromising pretrusted nodes
will exacerbate the negative impact of collusion on the
reputation system, and EigenTrust cannot effectively
deal with such malicious behaviors.
3.2 Effectiveness of PowerTrust
PowerTrust can mitigate the influence of collusion. It
selects most reputable nodes as power nodes. The
global reputation of a node is aggregated from lo-
cal ratings weighted by the global reputation of the
raters. PowerTrust updates the global reputations of
nodes with a decaying factor and adds an additional
value to the global reputations of power nodes. Thus,
PowerTrust significantly improves global reputation
accuracy. As PowerTrust does not use pretrusted n-
odes, we did not deploy pretrusted nodes in the
experiments for PowerTrust. Figures 9 shows a whole
picture and partial details of the reputation distribu-
tion in the system when B = 60%. We can see that

colluders gain higher reputation values than others.
Since the colluders have 60% probability to behave
well, they gain a certain number of high ratings
from authentic transactions. The results show that
PowerTrust is not effective in deterring the collusion
behavior and its generated reputations cannot accu-
rately reflect the trustworthiness of nodes.

Figure 10 shows the reputation distribution of all
nodes and the first 20 nodes when B = 20%. The
distribution shows a similar trend as that in Figure 9
due to the same reason. The colluders in Figure 10
achieve lower reputations than those in Figure 9. As
colluders have 80% probability to offer fraudulent
transactions, which damages their reputation.

3.3 Effectiveness of Our Proposed Methods
Our Proposed Methods. We then test the collusion
detection effectiveness of our proposed basic collu-
sion detection method (denoted by Unoptimized) and
optimized collusion detection method (denoted by
Optimized). In this experiment, there are no pretrusted
nodes. After the methods detect the colluders, they
set their reputations to 0. Since Unoptimized and Op-
timized are only used for collusion detection and they
use the same reputation value calculation, their final
reputation distributions of the nodes are the same.
Thus we only use one figure to show the results of
both Unoptimized and Optimized. We show the results
of both Unoptimized and Optimized in Figures 11 with
the probability of good behavior of colluders equals
to 20%. They shows that both Unoptimized and Opti-
mized can detect all colluders, which indicates that the
methods can effectively detect the colluders based on
their contact frequency and reputation values.

EigenTrust with Our Proposed Methods. Next, we
test how Unoptimized and Optimized can help enhance
EigenTrust’s capability in detecting collusion. Since
Unoptimized and Optimized generate the same results
in collusion detection, we use Optimized to represent
both and use EigenTrust+Optimized to denote Eigen-
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Fig. 13: Reputation distribution in EigenTrust employing our
proposed methods when B=0.2 (Pretrusted node IDs 1-3, col-
luder IDs: 4-11).
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Fig. 14: Reputation distribution in EigenTrust employing our
proposed methods with compromised pretrusted nodes when
B=0.2 (Pretrusted node IDs 1-3, colluder IDs: 4-11).
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Fig. 15: Reputation distribution in PowerTrust employing our
proposed methods when B=0.6 (Colluder IDs: 4-11).
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Fig. 16: Reputation distribution in PowerTrust employing our
proposed methods when B=0.2 (Colluder IDs: 4-11).

Trust employing Optimized. Figure 12shows the repu-
tation distribution of all nodes and nodes IDs in 1−20
in EigenTrust+Optimized when the colluders offer au-
thentic files with probability of 60%. Comparing to
Figure 6, we find that EigenTrust+Optimized leads to
increased average reputation values for many normal
nodes. The results demonstrate the effectiveness of
Optimized in detecting collusion.

Figure 13 shows the reputation distribution of all
nodes and the first 20 nodes in EigenTrust+Optimized
when the colluders offer authentic files with prob-
ability of 20%. Comparing to Figure 7, we observe
that EigenTrust+Optimized increases the reputations of
normal nodes by a greater amount than EigenTrust.
The results confirm the effectiveness of Optimized in
collusion detection based on rating patterns.

Figure 14 shows the reputation distribution of the
nodes in EigenTrust+Optimized in the same scenario
as Figure 8. Comparing Figure 14 and Figure 8, we see
that EigenTrust+Optimized increases the reputations
of normal nodes in EigenTrust. By compromising
pretrusted nodes, colluders can receive much higher
reputations than pretrusted nodes in EigenTrust.
While in EigenTrust+Optimized, both colluders and
compromised pretrusted nodes receive 0 reputation
values. Since the pretrusted node with ID=3 does not
involve in the collusion, its reputation value is still
high. In conclusion, our proposed Unoptimized and
Optimized collusion detection methods can greatly en-
hance the collusion detection capability of EigenTrust.

PowerTrust with Our Proposed Methods. Fig-
ure 15 shows the reputation distribution in Pow-
erTrust+Optimized when B = 60%. It shows that Pow-
erTrust+Optimized can reduce the negative impact of
collusion by reducing the high reputations of collud-
ers with IDs 4−11 to 0. Figure 16 shows the reputation
distribution of the system in PowerTrust+Optimized
when B = 20%. Comparing to Figure 10, we ob-
serve that PowerTrust+Optimized deter collusion by

reducing colluders’ reputation values to 0. The results
confirm the effectiveness of our proposed methods in
collusion detection based on the rating patterns.

Comparison between Different Methods. We then
use precision rate and recall rate to show the effective-
ness of our proposed method in collusion detection.
EigenTrust and PowerTrust do not have collusion
detection mechanisms, so we used two thresholds and
consider nodes with reputations below the threshold
as colluders. One threshold equals the average rep-
utation value of all nodes (i.e., 0.005) and the other
threshold equals the highest reputation among the
real colluders. EigenTrust using the two thresholds are
denoted by EigenTrust-0.005 and EigenTrust-highest,
respectively. The same to PowerTrust. We use Eigen-
Trust /w and PowerTrust w/ to represent EigenTrust
and PowerTrust with our proposed method. As in
[18], we randomly chose a certain percent of nodes as
colluders and varied the percent value in testing. Col-
luders offer authenticate files with probability of 20%.

Table 2 shows the precision rate, recall rate and F1

measure in colluder detection in different methods
with different percents of colluders. We see that when
the percent of colluders equals to 10%, EigenTrust-
0.005 and PowerTrust-0.005 perform the worst among
different methods, with precision rates of 11.2% and
10.4%, respectively. Though EigenTrust-highest and
PowerTrust-highest improve the precision rates, they
are still very low (lower than 14%). With our pro-
posed collusion detection method, EigenTrust and
PowerTrust achieve precision rates as high as around
90%. We also see that as the percent of colluders
increases, our method makes EigenTrust and Pow-
erTrust maintain their precision rates at approximately
90%, and the precision rates of other methods in-
crease since more colluders have reputations below
the threshold. These results confirm the effectiveness
of our method in colluder detection.

EigenTrust-0.005 and PowerTrust-0.005 yield the
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TABLE 2: Precision/Recall/F1 measure of collusion detection.

% of colluders Precision Recall F1 measure
10 20 30 10 20 30 10 20 30

EigenTrust-highest 13.7 24.6 33.4 100 100 100 24.1 39.5 50.1
EigenTrust-0.005 1.9 9.6 11.2 7.4 25.1 27.3 3 13.9 15.9
EigenTrust w/ 99.1 98.9 99.3 100 92.8 83.3 99.5 95.8 90.6
PowerTrust-highest 10.2 21.4 32.7 100 100 100 18.5 35.3 49.3
PowerTrust-0.005 1.5 7.3 10.4 5.3 24.7 26.8 2.3 11.3 14.9
PowerTrust w/ 99.2 99.3 99.5 99.4 93.3 82.8 99.3 96.2 90.4

lowest recall rates since colluders can get high reputa-
tions even with the strategies of EigenTrust and Pow-
erTrust. EigenTrust-highest and PowerTrust-highest
exhibit the best recall rates because we chose the
highest reputation value of colluders as the threshold,
but at the cost of low precision rates. Our proposed
method can increase the recall rates of EigenTrust and
PowerTrust significantly. We see that as the percent
of colluders increases, the recall rates of EigenTrust-
highest and PowerTrust-highest keep at 100% due
to our selected threshold, those of EigenTrust-0.005
and PowerTrust-0.005 increase since more colluders
increase the probability of a colluder having repu-
tation lower than the threshold. The recall rates of
EigenTrust w/ and PowerTrust w/ show a slight de-
crease. When there are more colluders in the system,
the number of undetected colluders increases faster
than the number of detected colluders in our method
because the percent of colluders that satisfy the col-
lusion checking conditions decreases. As a result, the
recall rates with our method decreases.
F1 measure is the harmonic mean of precision and

recall. We see that both EigenTrust w/ and Pow-
erTrust w/ generate much higher F1 scores than
other methods. The result indicates that our proposed
method is effective in identifying colluders.

3.4 Performance Comparison
We use Random cut, K-means and K-means+Random cut
to denote the optimized collusion detection method
with the pre-processing using random cuts, with the
pre-processing using k-means clustering, and with the
pre-processing using k-means clustering first and then
using random cuts. We set p to 0.3 and set rt to 0.4 in
our random cut method.

Figure 17 shows the percent of the file requests sent
to the colluders in the total number of requests in the
system versus the number of colluders in the system
in Unoptimized, Optimized, EigenTrust, Random cut,
K-means and K-means+Random cut. In this experiment,
the setting of EigenTrust is identical to Figure 7. If the
computed global reputation values can more accu-
rately reflect the actual behavior of nodes, the number
of requests sent to the colluders should be smaller.
Since EigenTrust is not effective at collusion detection,
colluders have high reputations, they receive many
file requests from other nodes. The results indicate
that our methods are more effective in thwarting
collusion, and our proposed pre-processing methods
do not compromise accuracy of collusion detection.

We plot Figure 18 without EigenTrust to see the
differences between all our methods. We see that K-
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Fig. 18: Effectiveness of
thwarting collusion (without
EigenTrust).

means, Random cut and K-means+Random cut generate a
slightly higher percentage of requests sent to colluder-
s. As K-means partitions all raters of a node to different
clusters, there is a possibility that a colluder lies
within a non-COI cluster. In Random cut, a colluding
edge might be missed in checking if rt value is large.

Figure 19 shows the percent of file requests sent to
colluders versus the number of nodes in the system.
The total number of colluders was set to 64 in this
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Fig. 19: Effectiveness of
thwarting collusion with
different network size.

experiment. Both X and Y
axes are in a logarithmic
scale. We see a decline in
the percentage of request-
s sent to colluders in al-
l methods when there are
more nodes in the sys-
tem. EigenTrust is not as
effective as our methods
in thwarting collusion be-
cause even when the number of the nodes in the
system increases, the colluders still have high repu-
tation and thus a large number of request are sent to
them. We also see that K-means has higher percent and
it decreases more slowly than our other methods as
the number of nodes in the system increases due to
the reason that a colluder may lie within a non-COI
cluster as explained previously.

We define operation cost as the number of computer
cycles for thwarting collusion. The operation cost of
EigenTrust includes the cost for calculating all global
reputations for all nodes, and the operation cost of
our methods includes the cost for information analysis
and computation, and the pre-processing. Figure 20
shows the operation costs of Unoptimized, Optimized,
EigenTrust, Random cut, K-means and K-means+Random
cut. The figure shows that Unoptimized generates sig-
nificantly higher operation cost than others. This is
because for each high-reputed node in the system,
Unoptimized needs to scan all raters for rating values
and frequency for each rater. The operation cost in
EigenTrust is caused by the recursive matrix calcula-
tion, which is determined by the number of the nodes
rather than the number of colluders in the system.
Hence, the operation cost of EigenTrust is constant as
the number of colluders in the system increases.

In order to see the differences between other meth-
ods, we draw Figure 21 without Unoptimized. We
see that EigenTrust produces higher operation cost
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Fig. 23: Operation cost for the
pre-processing step.

than Optimized and other methods. The operation cost
of Optimized is very low because there is no need
to scan the ratings from a node’s raters. The only
operation cost of Optimized is caused by checking
the high contacting frequency between high-reputed
nodes and collusion inference. We see that Random
cut, K-means and K-means+Random cut produce similar
operation cost as Optimized, which indicates that the
additional cost of pre-processing does not exceed the
collusion detection cost saved by pre-processing. We
plot Figure 22 to show the operation cost of Optimized,
Random cut, K-means and K-means+Random cut. We no-
tice that K-means produces lower operation cost than
Optimized due to the reason that K-means clustering
algorithm reduces the scope of suspected colluders
for collusion checking.

3.5 Performance of Pre-processing
We plot Figure 23 to show the operation cost for only
the pre-processing step (without collusion detection
cost) in K-means, Random cut and Random cut+K-means.
Compared to Figure 22, we see that the pre-processing
step in different pre-processing methods generate
very low cost. These additional costs are lower than
the cost saved from collusion detection by these pre-
processing methods; that is, they bring about more
benefits than cost. We also see that as the number of
colluders in the system increases, the operation cost of
Random cut and Random cut+K-means increase steadily
while that of K-means remains relatively constant. This
is because the cost of K-means is independent of the
number of colluders since it only creates clusters for
the given number of nodes, while more colluders
make Random cut to have more recursive operations.

Next, we present the efficiency of the pre-processing
method with different number of reputation managers
and network sizes. We use the k-means clustering as
an example. In order to show the efficiency measured
by real processing time, we used the Palmetto Super-
computer [19] in Clemson University for experiments.
The Palmetto Supercomputer has 15,120 computing
cores and we used each core to simulate a node or a
reputation manager.

Figure 24 shows the computation time for pre-
processing using k-means clustering with varying
number of reputation managers and nodes in the
system. Because we aim to test the efficiency of the
k-means clustering, we assume that each node has
R ≥ TR so that the clustering is on all nodes. In
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the figure, ”m-RM” means there are m reputation
managers in the system. “1-RM” represents the cen-
tralized reputation system. In the system, each node
has received a reputation rating from every other
node, and k was set to n/1000 (n is the number of
nodes in the system) in order to keep the number of
clusters to be the same for different network sizes.
From the figure, we see that the run time of the k-
means clustering increases as the number of nodes in
the system increases or as the number of reputation
managers decreases. The time increases exponentially
in “1-RM”. As more nodes in the system generate
more ratings, the k-means clustering needs more time
to create clusters. Also, we observe that the run time
growth in a fully decentralized system is much slower
than that of the centralized method. Therefore, the
decentralized reputation system is more suitable than
the centralized method in large-scale P2P systems.
Figure 25 shows the computation time for the system
with 128,000 nodes and different number of RMs
when k is varied from n/500 to n/4000. We see
that computation time decreases when k decreases
due to the same reason as in Figure 24. Overall, the
computation time is short especially when there are
no less than 128 RMs, which indicates that the k-
means clustering based pre-processing is suitable for
large-scale P2P systems.

4 RELATED WORK

Recent studies show that collusion behaviors com-
monly exist in online rating systems [4–7]. Allah-
bakhsh et al. [4] studied the impact of collusion attacks
using the logs of Amazon online rating system, and
showed that current rating systems are vulnerable to
collusion attacks. You et al. [5] found that sellers in
consumer-to-consumer (C2C) markets use collusion
attacks to manipulate their reputations by studying a
dataset from Taobao, the largest C2C market in China.
You et al. [6] studied the damage of collusion attacks
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to crowdsourcing systems by analyzing anonymized
product ratings obtained from a large e-commerce
organization. They found that colluders are able to
boost the ratings of their products by cooperating
with others. Allahbakhsh et al. [7] showed that users
can give unfair evaluations to products by studying
the MovieLens dataset from a famous online movie
rating systems. Therefore, it is important to enhancing
collusion resilience in reputation rating systems.

Many previous reputation systems focus on how
to accurately calculate the global reputation value of
nodes. PowerTrust [17] dynamically selects a small
number of most reputable nodes using a distributed
ranking mechanism. The work in [8] focuses on first-
hand reputation calculation, in which a node only
believes its own observations. Li et al. [20] used a time
attenuation function to calculate local trust rating, and
then applied a scalable feedback aggregating over-
lay to compute trustworthiness of nodes. Koutrouli
et al. [21] proposed a credit-based recommendation
exchange mechanism. Ammar et al. [22] studied the
problems to rank items based on partial user inputs.
Yao et al. [23] indicated that previous trust inference
approaches largely ignore other important properties
and proposed a multi-aspect trust inference model.
Akavipat et al. [24] presented a framework for en-
hancing lookups in redundant DHTs by tracking how
well other nodes service lookup requests. Costa and
Furtado et al. [25] presented a reputation-based task
scheduling strategy for distributed database systems.

However, existing reputation systems are vulnera-
ble to collusion [1]. Current methods that can indirect-
ly deal with collusion focus on how to calculate node
reputations to mitigate the influence of collusion.
EigenTrust [3] breaks collusion collectives by using
the feedback of pretrusted nodes. Fan et al. [26] recom-
mended reputation value to evaluate the resource ser-
vice behavior, and recommending reputation value to
evaluate the trust recommendation behavior of nodes.
RCA [27] uses tamper-evident logs for all messages
to discover all misreporting and protocol violations.
Some works [28, 29] calculate the similarity among
users who provide ratings for suspicious products
(that are suspected to receive abnormal ratings) to
detect potential colluders.

Some works leverage social networks to combat col-
lusion. SocialTrust [11] adaptively adjusts the weight
of ratings based on the social distance and interest
relationship between nodes to combat collusion. In
Sorcery [10], a client labels a content provider as a
colluder if the provider’s votings on some items do
not agree with that of the its friends. SocialLink [30]
uses a weighted transaction network to manage the
trust among non-friends, and it can thwart collusion
because nodes need to upload files in order to receive
files from non-friends.

Sybil attacks share similar features as collusion and
many works use the social network clustering feature

to handle the sybil attacks. The works in [31, 32] use
sybil region and random walk strategy to determine
whether a node is potentially a sybil attack node. The
works in [33–38] restrict the number of attack edges
between honest regions (i.e., the regions including all
non-malicious nodes) and sybil regions (i.e., the re-
gions with all sybil nodes). The work in [39] uses land-
mark routing-based techniques to efficiently approxi-
mate credit payments over large networks to reduce
the overhead on computationally expensive network
analysis in the previous sybil tolerance systems.

Unlike the previous works that either adjust the
global reputation calculation method to mitigate the
influence of collusion or rely on social networks to
detect collusion which is not suitable for systems
without social networks or brings extra overhead, our
proposed collusion-resilient methods directly detect
suspicious collusion behaviors based on the behavior
characteristics of colluders in reputation evaluation
with low overhead.

5 CONCLUSION
Though many reputation systems try to reduce the
influence of collusion on calculating reputation val-
ues, there are few works that specifically tackle collu-
sion. According to collusion behavior characteristics
in reputation evaluation, we propose collusion detec-
tion methods to thwart collusion behavior and fur-
ther optimize the method by reducing the computing
cost. We also propose two pre-processing methods
to shrink the scope of nodes to apply the collusion
detection methods in order to reduce the overhead,
which is especially important in large-scale networks.
Experimental results show the higher capacity of the
methods in combating collusion in comparison with
the EigenTrust and PowerTrust reputation systems,
and the effectiveness of our proposed pre-processing
methods in reducing overhead. In our future work, we
will investigate how to detect a collusion collective
having more than two nodes, and consider other
collusion patterns (i.e, repetition, spam account and
traffic concentration) [1] in collusion detection.
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