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Abstract—In many countries, the Internet is under strin-
gent censorship for political or religious reasons which
severely undermines the free flow of information. A
censorship-resistant web browsing system must be scalable,
blocking resistant, and tracing resistant. However, current
censorship-resistant web browsing systems, which use a
group of dedicated proxies to bypass censorship, fail to meet
these requirements. To tackle these challenges, we propose
Freeweb, which relies on widely-distributed peer-to-peer
(P2P) nodes in a decentralized manner rather than specified
proxies in a centralized manner. Freeweb is built on top of
a Distributed Hash Table (DHT)-based P2P network, where
nodes not under censorship help nodes under censorship to
access blocked webpages. Freeweb has a web browser front-
end whose user interface resembles existing web browsers.
The underlying complex process of retrieving blocked web-
pages is therefore hidden from users. We implemented and
open-sourced Freeweb and conducted extensive real-world
experiments on PlanetLab. The experimental results show
that Freeweb has a high success rate and reasonable browsing
latency.

Keywords-Censorship-Resistant; Web Browsing; Peer-to-
Peer Network; Distributed Hash Table

I. INTRODUCTION

A. Background and Motivation

The World Wide Web (WWW), containing around 160

million web sites [4], has become the most popular means

of publishing and accessing information. Unfortunately,

a long list of countries deem this vast amount of free

and heterogeneous information as a threat and therefore

vigorously block the sites that may publish content that is

sensitive to government interests. Such Internet censorship

has severely undermined the free flow of information. For

example, the Great Firewall of China blocks most western

news sites and many popular Web 2.0 sites (such as

Facebook, Twitter, Youtube, Flickr, Blogspot, WordPress,

Typepad, Bebo, Imageshack, and even Wikipedia) [2], [3]

because the opinions expressed by some users may be

offensive. The search engines in China, such as google.cn,

are required to perform censorship by filtering out cer-

tain sensitive information from their search results. Some

search engines, such as Bing and Live, are simply blocked

by the Great Firewall of China because they can be used

to search for sensitive materials [2].

Commonly used Internet censorship methods include,

but are not limited to, (1) IP blocking, which means to

block certain IP addresses such as all the IP addresses

allocated to a particular site, (2) DNS filtering and redi-

rection, which denies DNS requests to blocked sites or

returns incorrect IP addresses for such requests, (3) content

filtering, which drops packets whose payload contains

sensitive keywords, (4) web feed blocking, which blocks

incoming URLs starting with the words “rss”, “feed”, or

“blog”, and (5) URL filtering, which blocks requested

URLs that contain sensitive keywords.

B. Problem Statement and Challenges

We aim to build a system that allows users who are un-

der Internet censorship to access blocked web sites. Such

a system must satisfy the following three requirements.

First, the system must be blocking resistant, which means

that it is very difficult for censors to block the web brows-

ing service provided by this system. This requirement is

critical because it ensures the long-term viability of such

a service. Second, the system must be tracing resistant,
which means that it is very difficult to trace end users who

request to access blocked webpages. This requirement is

critical to ensure the safety of the users of this system

because the governments practising internet censorship

may punish citizens who violate such censorship with

imprisonment or other sanctions. Third, this system must

be scalable, which means that the system must scale to

a large number of users with no significant performance

degradation.

Current censorship-resistant web browsing systems fail

to meet these three requirements. The systems [8], [9],

[12], [15], [17], [23] use a group of dedicated proxies to

access webpages for censored nodes in order to bypass

censorship. However, any solution based upon a limited

number of permanent proxies is not blocking resistant and

tracing resistant because the proxies can be easily detected

and blocked by censors. Also, the centralized approach, in

which a limited number of proxies serve a large number of

censored nodes, prevents the systems from achieving high

scalability. Building a censorship resistant web browsing

system that can meet these three requirements has become

a formidable challenge.

C. Our Approach

To deal with the challenge, we propose Freeweb, the

first peer-to-peer (P2P) approach to censorship-resistant

web browsing. The basic idea of Freeweb is to allow the

P2P nodes in uncensored regions serve as the proxies of

the P2P nodes in censored regions for accessing blocked

web sites. Specifically, the URL of a webpage will be

used as the search key in the Distributed Hash Table

(DHT)-based P2P network. The user interface of this

system is a Firefox- or Internet Explorer-like web browser.

After a user types in a URL in the address bar of this

special browser, the URL, as a search key, traverses the
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P2P network and finally reaches a node that can access

the URL. This destination node will act as a proxy for

this URL request: obtaining the page and sending the

page back to the URL requester through a tunnel. In this

work, we design and implement Freeweb based on a DHT

structured P2P network [24]. It is not very difficult to adapt

Freeweb to unstructured P2P networks.

Freeweb meets the above three requirements. First,

Freeweb achieves blocking resistance because every node

in an uncensored region may serve as a proxy for some

URLs at some time in this P2P network, and blocking

all such nodes is practically infeasible. Attempts to block

the distribution of the Freeweb software can be defeated

by distributing Freeweb in existing P2P networks and dy-

namically changing bootstrapping nodes. Second, Freeweb

achieves tracing resistance because Freeweb encrypts URL

requests and does not distinguish request initiators and

request forwarders. Tracing the request initiators is there-

fore impractical. Third, Freeweb achieves high scalability

because the massive number of nodes from uncensored

regions and its decentralized manner allow Freeweb to

scale to a large number of users.

We argue that P2P is the right approach to enable free

web browsing in censored areas. To browse blocked sites,

proxies are inevitably needed. The number of proxies

has to be massive; otherwise, they can be identified and

blocked by censors, and fail to support a scalable system.

Furthermore, the massive number of proxies have to be

self-organized because any central management server can

be identified and blocked by censors. Thus far, P2P is

the leading technology to achieve such a massive self-

organized network.

D. Key Contribution

First, we propose a censorship-resistant web browsing

system that achieves the goals of blocking resistance,

tracing resistance, efficient transmission, and high

scalability. Second, we implemented Freeweb and open-

sourced Freeweb at http://freewebcu.sourceforge.net/. We

further conducted extensive experiments on PlanetLab

[5]. The experimental results show that Freeweb has a

high success rate and reasonable browsing latency.

The rest of the paper proceeds as follows. We first

examine prior work in Section II. In Section III, we present

the design and implementation of Freeweb. In Section IV,

we discuss a number of issues in Freeweb and analyze its

reliability. We present experimental results in Section V.

Finally, we give concluding remarks in Section VI.

II. RELATED WORK

Prior censorship-resistant web browsing systems all use

a group of dedicated proxies to bypass censorship. Web

MIXes (JAP) [8] is based on MIXes [9], which provides

anonymity by relay forwarding. In JAP, a node waits

until it has received a certain number of messages, then

mixes them up before forwarding them. In this way, it

hides the sender and the receiver from an eavesdropper

on network traffic. Kopsell et. al proposed an add-on [17]

to enable volunteers to act as forwarders in the MIXes

by letting them register in the centralized information

server, but it still requires a set of proxy servers. Infranet

[12] uses commercial web sites as proxies. In Infranet,

a user encodes a series of normal HTTP requests into a

covert request and sends it to a responder. The responder

retrieves the required content from the web server and uses

steganography to encode forbidden content into harmless

images, thus ensuring the deniability of users. Kaleido-

scope [23] limits every user’s knowledge to a small and

consistent proportion of all the proxies; however, due to

the limited number of proxies, all proxies can still be de-

tected after a number of tries. Proxify [6] does not require

users to install software; although convenient, it can be

easily defeated through URL filtering. Psiphon [15] allows

volunteer users to register their computers as proxies,

which can dynamically increase the number of proxies;

however, Psiphon still relies on a central server that can

be easily blocked. Furthermore, because a proxy directly

connects with both a blocked site and a URL requester, a

censor may “volunteer” their computers as proxies. Thus,

Psiphon is not tracing resistant.

Prior censorship resistant web browsing systems all

have difficulty achieving blocking resistance, tracing

resistance, and scalability due to the use of a small

number of fixed proxies that can be easily blocked

by censors. Psiphon tries to increase the number of

proxies, but it cannot prevent its central server from being

blocked. Infranet tries to provide tracing resistance by

steganography, but censors can easily hunt users down by

monitoring accesses to the small number of fixed proxies.

Tor [10], Tarzon [13] and MorphMix [21] provide

anonymity services using proxies or P2P networks.

OneSwarm [14] provides file sharing users privacy by

enabling users have configurable control over the amount

of trust they place in peers and in the sharing model for

their data. Unlike these works, FreeWeb mainly focuses on

censorship circumvention though it also offers anonymity.

III. FREEWEB DESIGN AND IMPLEMENTATION

A. Assumptions and Threat Model

We envision Freeweb as consisting of a massive number

(tens of thousands to millions as in a P2P network)

of joined nodes. The nodes are censored in some areas

while uncensored in other areas. In Freeweb, nodes in

an uncensored area help nodes in a censored area to

retrieve blocked webpages. In this process, we refer to

the uncensored node as the server and the censored node

as the client. Some uncensored nodes all over the world

may volunteer to help censored nodes to access blocked

web sites. This is true because in uncensored regions (such

as North America), people usually have extra computing

and networking resources to share [7] and they are willing

to help others for a good cause. Also, we can provide

incentives, such as virtual credits, to encourage nodes to

provide the service. The virtual credits can be used to buy

magazines, games, and movies. The servers earn virtual
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credits from clients, and nodes can buy virtual credits

using real money.

Since providing protection against a strong censor is

not feasible in designing a low-latency system [10], we

assume the censor is capable of controlling only a fraction

of all traffic and nodes in the network. Traffic control

includes analyzing, intercepting, generating and deleting

traffic. Node control includes deploying a number of

censor operated nodes in Freeweb and/or compromising a

fraction of all nodes in the network. These assumptions

hold in reality because, after all, censors have limited

resources.

The censor’s expected actions mainly include (1)

Identifying the initiator of a communication (client),
since the law where the censor is located may view such

clients as illegal. Even with encrypted data packets, the

censor can still find out clients by identifying traffic

patterns. We aim to protect clients from a traffic analysis
attack. (2) Identifying the nodes that provide service.

Since such nodes are usually located outside the censor’s

traffic control range, the censor can only determine

their existence by analyzing the intercepted packets and

blocking the traffic containing their IPs. (3) Passive

traffic analysis and active traffic controlling. Censors can

mimic/hijack typical service requesters to send out mas-

sive requests to the network or act like functional service

providers to collect overhead traffic. They can analyze

or correlate the traffic to identify abnormality. Moreover,

censors can mimic nodes or cooperate with compromised

nodes in generating false information, traffic redirecting,

or even running Sybil [11] or Eclipse [22] attacks.

B. Overview of Freeweb

Figure 1 shows a high-level overview of the workflow in

Freeweb. The client and server pair are nodes in the DHT

network. Firstly, the client sends out its request, including

a URL, an onion path, and a symmetric key Ks, with the

URL’s hashed value as the destination (Step 1). Via DHT

routing, the request is forwarded towards its destination

(Step 2). Once the request reaches an intermediate node

that can serve as the server or its destination that serves

as the server, the server node stores the request into its

Request Pool. From the pool, the server fetches the URL

request and then fetches the webpage specified by the

URL (Step 3). After a webpage is retrieved (Step 4), the

server compresses the webpage into one file, encrypts the

compressed file using the Ks in the request (Step 5), and

sends the file back along the onion path (Steps 6&7).

Finally, the client decrypts and decompresses the received

file, and displays the webpage in the Freeweb web browser

(Step 8).

In the following, we first briefly describe DHT networks

and then present the details of the design and imple-

mentation of Freeweb in terms of two aspects: request

forwarding and reply forwarding.

C. Introduction of DHT Networks

We build Freeweb on the Chord DHT [24], although

any DHT network is applicable. DHTs are a class of
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Figure 1: Workflow in Freeweb.

decentralized systems in the application level that partition

ownership of a set of objects among participating nodes

and efficiently route messages to the unique owner of any

given object. In a DHT network, peers function as clients

as well as servers. A DHT provides two main functions:

Insert(key,object), to store an object in its owner

node, and Lookup(key), to retrieve the object by the

DHT routing algorithm. Each object has a key that is the

consistent hash [16] value of the object’s name; similarly,

each node has a key that is the consistent hash value

of the node’s IP address. Each node maintains a routing

table of logN size to store its neighbors in the network,

where N is the number of nodes in the system. A DHT

provides O(logN) lookup time complexity. DHTs excel

in scalability and reliability. To maintain topology in node

dynamism, including node joins, departures, and failures,

DHTs use stabilization and self-organizing mechanisms.

Specifically, each node periodically updates its successor,

predecessor, and its neighbors in its routing table. Please

refer to [24] for the details of the DHT networks.

D. Design Details of Freeweb

In Freeweb, each node generates a public key Kpub and

a private key Kpri upon joining. Each node exchanges its

public key, IP address, and port number with its neighbors

in its routing table. The DHT routing table of a node in

Freeweb has one additional column for storing the public

key of each neighbor of the node. Thus, in DHT routing

in Freeweb, a request is always forwarded from a node

to its neighbor in its routing table whose public key is

known to the node. For further optimization, a node can

use the public keys to establish a symmetric key with each

neighbor; however, public key cryptography is much more

computing expensive than symmetric key cryptography.

This symmetric key can be periodically refreshed for better

security.

1) Request Forwarding: Because a webpage can

be uniquely identified by its URL, we use a URL

as the search key for a webpage. Figure 2 illustrates

the process of a requester finding a service provider.

When a censored node c wants to access a URL u, c
first applies the consistent hash function h used by the

DHT to URL u; it then sends its request r using h(u)
as the search key (i.e., destination key) in the DHT by

Insert(key,object), where object is r encrypted

by the public key of the next hop. The next hop decrypts

r using its private key, then encrypts r using the next

hop’s public key before forwarding the message to the

next hop. The request will finally arrive at the node that
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is the owner of h(u), denoted s1. If s1 is uncensored, s1
retrieves the webpage as a file, compresses the file, and

sends it back to c along an onion routing path specified

by c in its request; if s1 cannot access URL u, s1 uses

h2(u) = (h(h(u))) as the new search key for this request

and forwards the request to the owner node s2 of h2(u).
This process repeats v times until the owner node of

hv(u) is able to access URL u; then, this node serves

client c by accessing u for c. Thus, in Freeweb, the owner

node of hv(u) always act as the server of the URL u.

The deterministic routing provided by the DHT lookup

function ensures that nodes find the webpage server.

The server node caches its retrieved webpage in order

to serve the subsequent requests within a certain time

window without fetching the webpage again. We call the

above request forwarding scheme a deterministic scheme.

Always relying on one server to access a webpage may

overload the server and make it traceable. Thus, we extend

the deterministic scheme to an opportunistic scheme by

complementing it with an additional algorithm. Recall

that a message needs to travel a number of hops before

arriving at its destination. While traveling, the message

may arrive at an uncensored node that can access u. At

this time, the travel terminates, and this intermediate node

acts as the server for the request to access u from node c.
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Figure 2: Request forwarding.
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Figure 3: Reply forwarding.

Next, we introduce the way in which a node generates

its request. When a client c initiates a request r, c needs to

specify the reply path for the server s to send the retrieved

webpage back. To form a reply path, client c can use the

nodes in its routing table. Suppose that the specified reply

path is a→ b→ c. Thus, the full reply path is s→ a→
b → c. To preserve c’s anonymity, server s should only

know that it needs to send the reply to a but does not

know the rest of the path. Similarly, node a should only

know that it needs to send the reply to b and node b only

knows that it needs to send the reply to c. To achieve this

goal, we use the technique of onion routing [10], [20].

After c generates the reply path a → b → c, it includes

the following onion in the request r:

((random|IPc|Portc)Kb
pub
|IPb|Portb)Ka

pub
|IPa|Porta.

In the onion, random (e.g., 23abcABC) is a string

randomly generated by c. Later on, when c retrieves

string “23abcABC” from a reply message, it knows that

the string was generated by itself and hence the reply is

for itself.
There are two modes in webpage fetching: text-only

mode and full-page mode. In the text-only mode, the

server only fetches the plain text of the HTML page

specified by the URL. In the full-page mode, the server

fetches the rich content of the HTML page specified by the

URL including images, etc. We include the text-only mode

in Freeweb because many times the reader may be mainly

interested in the text content of a webpage, and getting

only the text content is faster than getting the full page.

The requester specifies a fetching mode in its request.
Figure 4 shows the format of the request message.

The URL field stores the requested URL. The onion field

is a layered onion structure, with each layer containing

the IP and port information of one onion routing hop

encrypted by the proper public key. The TTL field indicates

the maximum number of hops in a client-server path

that a message is forwarded before being discarded for

prevention of perpetual looping. The retrieval mode field

indicates the webpage retrieval mode: text-only mode or

full-page mode. The timeliness field is used only in the

case when a requested webpage is in a node’s cache. It

is a time period specified by the client to require that

the cached period of the webpage does not exceed the

specified value. The last file key field is the symmetric

key Ks generated by c and will be used by the server to

encrypt the retrieved webpage.

URL Onion TTL Timeliness

)port|(IP|))port|(IP|...)))port|(IP|))port|(IP|dTxt((...((Ran nnK1n1nKK11Kreqreq n
pub

1n
pub

2
pub

1
pub

���

Retrieval 
mode File key

Figure 4: Request message format.

In the Freeweb implementation, each node

provides the service of sending/forwarding a

request by SendRequest(URL, onionPath,
retrievalMode, TTL, Timeliness). This

function provides a customized request interface for

a web browsing service. Every parameter corresponds

to one field in a request message. The function

SendRequest() uses the public key of the next hop

to encrypt all the fields then executes the DHT function

Insert(key,object), where key is the hashed

value of the URL and object is the encrypted message.

For example, when request r is passing from node A to

its neighbor node B through SendRequest(), node

A encrypts r using node B’s public key. After node B
receives the encrypted request (r)KB

pub
, node B decrypts

it using its private key KB
pri. If node B cannot serve the

request, it needs to forward the request to node C. Node

B then encrypts r using node C’s public key and sends

(r)KC
pub

to node C through SendRequest(). Node C

repeats the same process.
2) Reply Forwarding: In each request originating from

client c, c specifies the reply path for the server node of

this request to send the retrieved webpage back to c. Fig-

ure 3 shows the process of reply forwarding. After server

s retrieves the webpage of URL u as a file f , s encrypts f
using key Ks, which is generated by client c and included

in the request. Thus, after receiving (f)Ks
, c can obtain

the webpage f using key Ks. Server s sends the webpage

(f)Ks
along the specified reply path in the request back to
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c. Recall that the path is encrypted using the onion routing

technique. The onion included in the request indicates that

server s needs to send (f)Ks to node a with IP address

IPa at port Porta. After node a receives (f)Ks
along with

((random|IPc|Portc)Kb
pub
|IPb|Portb)Ka

pub
, node a peels

off one layer of the onion by decrypting the onion using

its private key. Then, a knows that it needs to forward

the message (f)Ks
to node b with IP address IPb at port

Portb. After node b receives (f)Ks
along with the onion

(random|IPc|Portc)Kb
pub

, it peels off one more layer of

the onion by decrypting the onion using its private key.

Then, b knows that it needs to forward the message (f)Ks

to node c with IP address IPc at port Portc. After node

c receives (f)Ks
along with the onion random , it notices

that it is the final receiver according to its generated

random and then uses key Ks to obtain webpage f .

Consequently, server node s and every intermediate

node in the reply path only know the next node that they

should forward the reply to and do not know the final re-

ceiver, i.e., the request originator. In this way, the identity

of the request originator is kept confidential. An alternative

method of reply forwarding is to let the webpage traverse

the reverse path that the request follows; however, this path

may be unnecessarily long for a reply path. The number of

hops that the request traverses before reaching the server

is O(v log n), where v is the number of times that the

owner node is unfortunately under censorship. Because c
specifies a reply path, the length of the reply path can be

a constant, which is more efficient than using a path of

length O(v log n).

E. Implementation

Freeweb is built upon OpenChord, an open source

implementation of the Chord DHT. In the current version

of Freeweb, we mainly focus on web browsing func-

tionalities. We have not yet implemented other complex

functions such as POST, PUT, and video streaming sup-

port. We plan to add these functionalities to Freeweb in

the future version. Freeweb provides APIs to store all

serializable Java objects in a DHT network. For ease

of deployment, we developed two versions of Freeweb:

a Windows-based version and a Linux-based version.

Freeweb consists of about 5000 lines of Java code in

addition to the OpenChord infrastructure. We have put our

source code on the open source repository sourceforge at

http://sourceforge.net/projects/freewebcu/.

Freeweb has three additional layers built on top of

OpenChord as shown in Figure 5. The first layer is DHT
Server. It provides customized APIs based on the “raw”

APIs of Openchord for object storage and fetching, as well

as operations that deal with node dynamism. The second

layer contains two modules: a network daemon and a com-
munication management module. The network daemon

module constantly monitors the change of the request pool,

taking necessary actions such as forwarding or providing

service. The communication management module takes

care of TCP-based communication, including public key

dissemination and webpage distribution. The third layer

provides cryptography primitives, cache management, and

APIs for HTTP accesses.

DHT Server                                                  ------ -----Open chord

Network Daemon Communication Management

Cryptography Cache Management HTTP Access APIs

Figure 5: Freeweb modules.

1 while ! Interrupted do
2 Set entrySet = getRequestPool() ;
3 for Each entry in entrySet do
4 if canAccess(entry.getURL()) then
5 String onion = entry.getOnion();
6 String IP = entry.getIP();
7 Integer port = entry.getPort();
8 Integer Ks = entry.getKs();
9 Update all cache mapping information;

10 if There is a cached package in download cache
within the required entry.timeliness then

11 Use URL to locate the package;
12 Read object zipObj from the package;

13 else
14 Download files and zip to package using the

URL;
15 Read object zipObj from the downloaded

package;
16 Add this package to download cache;

17 Archive archive = ((zipObj)Ks )|onion;
18 sendContent(IP, port, archive);

19 else
20 if entry.getTTL()> 0 then
21 reInsertRequest(entry);

22 remove(entry);

23 Thread.sleep(T);

Algorithm 1: Daemon.start()

1) Network Daemon: The Network Daemon periodi-

cally scans the Request Pool and serves the stored requests

in a first-in-first-out order. Algorithm 1 shows how the

Network Daemon works. It cycles to look for new requests

and performs web accesses until interrupted by the user.

For each request, the IP and port information (code lines

6-7) of the requester is retrieved, and then the fetched

webpage is sent to the requester (code line 18). If the

requested webpage is in the cache, the corresponding

package is fetched from the cache (code lines 10-12).

Otherwise, the requested package is downloaded from the

URL (code lines 14-16). If the requested URL cannot

be accessed for a predefined period of time, the request

will be inserted back into the request pool (code lines

20-21). Note that this procedure is a simplified version

of the actual procedure. For example, line 22 is used to

remove the processed entry, but the actual execution of

this command needs to avoid “concurrency modification”

exception. Line 23 puts this thread to sleep for a time

period of T, which is typically a few seconds. This step

minimizes the CPU occupation in order to reduce the

influence on other applications running on a volunteer

computer; in practice, the response of Freeweb is not

sensitive to this sleep interval.
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2) Communication Management: The Communication
Management module manages TCP communication to

allow nodes to build TCP connections with other nodes.

To make the application more stable, we allocate multiple

TCP connections to each running communication manage-

ment module.

1 Object recv = readRecv();
2 if recv is an instance of other nodes’ public key then
3 Add this public key to public key pool;

4 if recv is an instance of Archive then
5 Write recv into local download cache folder;
6 Separate onion from recv;
7 String content = peelOnion(onion);
8 if getOnion(content) is the predetermined token then
9 Unzip recv and display the webpage;

10 else
11 IP = getIP(content);
12 port = getPort(content);
13 peeledOnion = getOnion(content);
14 Concatenate peeledOnion and recv (without original

onion) to form archive
15 sendContent(IP, port, archive);

Algorithm 2: CommMgt.start()

Algorithm 2 shows how a communication manager han-

dles a TCP connection. Currently, there are two different

tasks performed by a TCP connection in Freeweb. One

is the dissemination of public keys (code lines 2-3) and

the other is file transmission on the reply forwarding path

(code lines 4-15). In file transmission, after a node receives

an instance of archive, it first stores the received package

into its local download cache (code line 5). The node

then separates the onion from it and peels (i.e., decrypts)

the onion (code lines 6-7). If the decrypted result is a

predetermined token, this node is the webpage requester

and the received webpage is displayed (code lines 8-9). If

the decrypted result cannot be recognized, then this node

must be a relay node on the reply forwarding path. It uses

the delimiter, which is a 10 byte string in Freeweb, to

divide the decrypted result into 3 parts: the IP address,

the port information, and the peeled onion (code lines 11-

13). Finally, this node sends the newly generated archive
via TCP using the obtained IP and port number (code lines

14-15).

3) Cache Management: Freeweb employs cache man-

agement in order to reduce cost and speed up browsing

speed. Freeweb builds a folder cache/recv in each node for

webpage caching. Each node also maintains a map file that

contains the information of every stored cached webpage

file, including the file’s DHT key, file name, creation time,

and URL. A webpage file’s DHT key, denoted pkgID,

is a 128-bit unique key which is the consistent hash

value of the file’s name (e.g., 90368311-b1d6-49c1-91c5-

6a8ad5ad0f91). The unique file key helps to identify a

requested webpage in a cache and avoids duplicated file

caching operations for the same file.

Major APIs for cache management are listed in the

following.

1) AddPkgToCache(pkgID,URL). This function

adds a webpage to the cache/recv folder. When

a server finishes downloading a webpage for a

requester or a requester receives a webpage, they

put this webpage into their corresponding caching

folder. The given URL and pkgID are used to record

this package in the map file.

2) UpdateMap(pkgID). When a cached file is cre-

ated, deleted, or discarded, this function is used to

make updates to the map file.

3) GetPkgInCache(URL, Timeliness). This

function calculates the time interval between the

creation time of a cached file in the map file and the

current system time. Only when the time interval

is no more than the Timeliness will the cached

file be returned.

4) HTTP Access APIs: HTTP access modules are used

by a server to obtain webpages from webpage servers. To

protect the client’s identity, a server does not download

JavaScript files embedded in the HTML files, because

a node may expose its identity by executing such files.

Freeweb aims to provide normal webpages with all es-

sential elements in the webpages. Thus, a server retrieves

important items for a webpage: (1) HTML source files,

(2) all images, and (3) Cascading Style Sheets (CSS).

Recall that a request message has a field called retrieval
mode that indicates whether only HTML source files are

desired or both HTML files and images are desired. This

option enables users to choose higher browsing quality or

higher browsing efficiency according to their preferences.

Under most circumstances, users in censored areas only

need the text information by choosing text-only mode in

order to fetch the webpage quickly. The major APIs for

HTTP accesses are listed below.

1) AttemptURL(URL). Upon receiving a request, a

server attempts to establish a connection with the

requested webpage server for a few seconds, which

is much less than the typical TCP timeout. If it is

unable to make the connection, the server performs

the rehashing and forwarding operations.

2) DownloadHTMLPkg(URL, folderPath,
pkgID, retrievalMode). A server uses this

function to download the HTML source, image

files, and CSS, which are put together into one file.

IV. DISCUSSION AND ANALYSIS OF FREEWEB

A. Tracing Resistance

Note that a request r only contains a URL and the onion

for sending the webpage back. Thus, request originators

and request forwarders are not distinguishable. Because no

node knows the request originator, Freeweb achieves trac-

ing resistance on the request forwarding path. However,

the censor may find communicating clients and servers

through monitoring the inbound and outbound traffic of

individual nodes and analyzing the traffic pattern [19].

Generally, the censor cannot monitor the traffic of uncen-

sored nodes outside of its control regions. In regions where

the censor can monitor the traffic of nodes, the nodes

can defeat such traffic monitoring by padding traffic with
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dummy messages to camouflage the real traffic pattern.

Dummy messages are identical to real messages, but are

not accepted by nodes. For example, if request r is also

sent to other, fake destinations, then the censor cannot

detect the real destination.

Freeweb achieves tracing resistance on the reply for-

warding path because of the onion routing technique; only

the request originator knows who the final receiver is. Any

intermediate node only knows to whom it should forward

the message, because it can only see the outermost layer

of the onion and cannot understand the content inside the

onion.

B. Content Tampering Avoidance

When a censor joins Freeweb and receives a request,

the censor may reply to a webpage with incorrect con-

tent or simply drop the request. Freeweb can defeat

such attacks with redundant requests at a constrained

additional cost. For example, when node c wants to

access URL u, node c simultaneously sends out m
(m > 1) requests: u|1, u|2, · · ·u|m with hash values

h(u|1), h(u|2), · · · , h(u|m), respectively. These m re-

quests will be routed via different paths. After c receives m
replies f1, f2, · · · , fm, it can use majority voting to choose

the right reply. Because the number of nodes in the net-

work is expected to be very large, the probability that all m
paths contain a malicious censor node is ignorably small.

This probability can be further minimized by carefully in-

creasing the value of m. In addition to defeating malicious

censor node attacks, this redundant request strategy helps

to deal with communication failure caused by node dy-

namism (i.e., node joining and leaving), and therefore in-

creases the reliability of Freeweb. For a webpage that con-

tains dynamic content, the multiple copies f1, f2, · · · , fm
that c receives may not match even if they are all genuine

copies. To decide which copy to present to the user, c can

compare the similarity between any two copies and choose

a copy from the pair with the highest similarity.

C. Sybil and Eclipse Attack Discussion

Sybil attacks [11] on P2P networks are conducted by

deploying a large number of a single adversary’s identities

and the adversary tries to occupy the routing table in

other nodes to control the whole network. Tarzan [13]

uses IP prefixes to avoid using nodes from the IPs with

the same prefixes, which is also called resource testing.

Therefore, the possibility of a Sybil attack is decreased.

But Eclipse attacks [22], which utilize a small number

of nodes with legitimate identities (or heterogeneous IP

addresses), will spread more quickly than Sybil attacks

by advertising only malicious nodes to Tarzan nodes

when the Tarzan nodes try to discover new neighbors.

Freeweb can incorporate resource testing used in Tarzan

to prevent Sybil attacks. Moreover, Freeweb is naturally

resistant to Eclipse attacks. This is because a node in

Freeweb depends on the DHT policy for establishing

new neighbors instead of asking for recommendations

from other nodes. Thus, the Eclipse attack cannot spread
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Figure 6: Performance of two forwarding schemes in Freeweb.

quickly and the probability that a node’s message in

Freeweb encounters a malicious node only equals the

percentage of malicious nodes in the node’s routing table.

D. Reliability Analysis

Next, we analyze Freeweb’s reliability in servicing web

access requests. Let α be the fraction of uncensored nodes

in the network, β be the fraction of nodes willing to

provide their Internet connection resource, and ϕ be the

fraction of nodes not willing to forward requests or web-

pages, which can be censors or any other malfunctioning

nodes.

If we use the deterministic request forwarding scheme
in Freeweb, for each request REQ, let Ψ̂ (Ψ̂ ∈ (0,m)) be

the expected number of requests that are served within the

m duplicated requests. Therefore, the number of REQs

that can traverse to the destination node D is m(1− ϕ)
k
,

where k = 1
2 log2 N is the expected routing path length in

Chord in the average case. If D is a censored node, then

it rehashes REQ and sends it back to the network. The

possibility that REQ is served under such a circumstance

is (1 − α) Ψ̂
m . If D is an uncensored node, it will satisfy

this request with a probability of β, or otherwise re-send

REQ to the network if it does not want to serve. In the

latter case, the possibility that REQ is eventually served

is (1− β) Ψ̂
m . Therefore, we have

Ψ̂ = m(1− ϕ)k
{
(1− α)

Ψ̂

m
+ α[β + (1− β)

Ψ̂

m
]

}
. (1)

By solving Ψ̂ , we have

Ψ̂ =
αβm(1− ϕ)k

1− (1− ϕ)k(1− αβ)
. (2)

When a request is fulfilled, it will be sent back using

the onion routing method with a probability of (1− ϕ)
w

,

where w is the number of relay nodes in the replying route.

Based on the above analysis, we retrieve the number of

expected successfully returned responses Ψ ,

Ψ =
αβm(1− ϕ)k+w

1− (1− ϕ)k(1− αβ)
. (3)

If we use the opportunistic request forwarding scheme
in Freeweb, a request REQ could be served before it

arrives at the destination node with probability 1 − (1 −
α)k−1. Otherwise, it could be served with probability

(1−α)k−1. Noticing such differences and applying similar

analysis, letting Φ̂ be the expected number of requests that

are served within the m duplicated requests, we have
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Φ̂ =m(1− ϕ)k{[1− (1− α)k−1]+ (4)

(1− α)
k−1{(1− α)

Φ̂

m
+ α[β + (1− β)

Φ̂

m
]}}. (5)

By solving Φ̂, we derive

Φ̂ =
{αβ(1− α)k−1 + [1− (1− α)k−1]}m(1− ϕ)k

1− (1− ϕ)k(1− α)k−1(1− αβ)
. (6)

By applying the probability that the backward onion

routing process is successful, the expected number of

successfully returned responses Φ is

Φ =
{αβ(1− α)k−1 + [1− (1− α)k−1]}m(1− ϕ)k+w

1− (1− ϕ)k(1− α)k−1(1− αβ)
.

(7)

We set N = 210 and N = 214 to simulate a medium

and a large scale network. According to our assumptions

in Section III-A, the fraction of nodes that are willing to

provide web access service (β) is set to 8%. The fraction

of nodes that do not forward any requests (ϕ), e.g., censor

nodes, is set to 2%. The number of duplicated requests is

set to 3 to avoid content tampering.

Figure 6 shows the relationship between the fraction of

uncensored nodes α and the number of successful replies

for a request Ψ and Φ. When α is larger than 50%, we can

observe that Ψ and Φ can both theoretically return more

than 2 replies, so the users can benefit from content tam-

pering avoidance (see Section IV-B). The performance of

Freeweb becomes stable when α > 50%, which indicates

Freeweb is highly usable in regions where even half of

the nodes are censored. In addition, we can observe that

Freeweb is scalable, since both Ψ and Φ in the medium-

and large-scale networks are close.

V. PERFORMANCE EVALUATION

We chose PlanetLab [5] as the experiment testbed in or-

der to evaluate the effectiveness of Freeweb on censorship

circumvention in a real worldwide network environment.

However, since each slice on PlanetLab is given very

limited resources, the network transmission speed and

encryption time is much longer than normal. Therefore,

the performance presented in this paper reflects the per-

formance of Freeweb in a harsh environment, and its

performance in the practical network environment would

be much better. The default test parameters are shown

in Table I. Two content retrieval modes are used in the

test: full-page and text-only. Full-page mode means that

in addition to HTML files, image files of different formats

(e.g., GIF, PNG, JPG) and CSS files are also browsed. The

length of the onion reply forwarding path (i.e., tunnel) is

set to a maximum of 5 [18]. In the experiments, the default

setting for the retrieval mode is text-only, the network size

is 100 nodes, the proportion of the number of clients and

servers is 3:1 (denoted by client/server), and the length of

an anonymous tunnel is 2, unless otherwise specified.

The tested websites are retrieved from the 100 top

sites in Alexa [1]. We randomly chose 100 nodes located

in North America, Asia, Europe and Canada to join in

Freeweb and assign the role of either “client (censored

Bootstrap IP 138.232.66.195
Warmup time 320s
Each test duration 1 hour
Network size 25− 100 nodes
Client/server 1 : 1− 5 : 1
Percentage of malicious nodes 5%− 40%
Length of tunnel 1− 5 hops
Encryption method DES,RSA
Request interval of a node 100s
Content retrieval mode full-page, text-only
Request forwarding scheme only deterministic

Table I: Experiment parameters.

node)” or “server (uncensored node)” to each node. Upon

receiving the “join” notification, a node randomly chooses

a value c from [0, 60] and joins in the system after c
seconds. A client sends out one URL request every 100

seconds. Nodes in PlanetLab are not constantly connected,

which provides a simulation environment with ungraceful

node departure and failures. We tested the connectivity

failure rate of the selected PlanetLab nodes by letting

each node try to connect to all other nodes in the system.

The connection failure rate of a node is between 4-12%,

with an average of 6%. Thus, Freeweb is tested in an

environment with node dynamism.

Malicious servers in our experiment modify the content

of a webpage before sending it back to the client. In the

experiment, we did not encrypt requests using a public key

because the cost of encryption on PlanetLab nodes would

dominate the URL requesting process time. We conducted

a test on modern computers, and the results show that

their public key encryption time is usually 1/10 of that

on PlanetLab nodes. PlanetLab nodes are heavily loaded

most of the time, so their computing ability is limited.

Thus, we believe Freeweb can perform much better on

personal computers.

Figure 7 shows the success rate of Freeweb versus

different tunnel lengths. The time bound was set to 15s

and 20s, respectively. When the time bound is 20s and

the tunnel is shorter than 5 hops, Freeweb can successfully

handle 90% of requests for both text-only and full-page

modes. When the tunnel length is 5, both success rates

drop to around 80%. This is because more hops in a tunnel

result in a higher possibility of failed TCP communication

between two endpoints.

We find that the success rates with a 15s time bound

are lower than those with a time bound of 20s. This is

because Freeweb completes fewer requests in a shorter

time bound. In this case, full-page mode generates a lower

success rate than text-only mode because its webpage

contains images in addition to the HTML file, which

takes a longer time to process and transmit. The success

rate also decreases as the length of the tunnel increases.

The results show that Freeweb can achieve relatively

high success rates on heavily loaded nodes in PlanetLab

and that it is important to choose an appropriate tunnel

length to achieve an optimized tradeoff between browsing

timeliness and anonymity protection degree.

Figure 8 shows the success rate versus the network size

(the total number of nodes) in Freeweb. We can see that the
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success rate remains at [95%,100%] and [60%,70%] when

the time bound is 20s and 15s, respectively. The success

rate decreases slightly as the network size increases. Thus,

the network size does not have a significant impact on the

success rate. These results verify that Freeweb has a high

scalability that is inherited from the DHT network. This

figure confirms our analytical result in Figure 6 that the

success rate increase as the network size decreases.

We varied the client/server rate to test its impact on the

success rate. Figure 9 shows the success rate versus the

client/server rate. We can observe that the success rate still

remains above 95% under the 20s time bound and above

60% under the 15s time bound. We can also see that as

the client/server rate increases, the success rate of the 15s

bound exhibits a slight drop. A higher client/server rates

mean that the number of servers decreases and the number

of clients increases. Consequently, a request has a lower

probability of reaching a server and needs more rehashing

and forwarding operations to meet a server. This leads to

longer transmission latency, which makes some requests

unable to complete within 15s. It is intriguing to see that

the increase of the client/server rate does not significantly

affect the success rate of the 20s time bound. This is be-

cause most requests can still be completed within the time

bound. The results imply that a request can always reach a

server, even when the server/client ratio is as low as 1
6 , and

verify the high success rate and censorship-resistant ability

of Freeweb. The results confirm our analytical result in

Figure 6 that the success rate increase as the fraction of

uncensored nodes increases (i.e., client/server decreases).

Figure 10 shows the performance of Freeweb when

there are malicious nodes sending back tampered web-

pages. If the percentage of malicious servers is p, then the

expected success rate is 1−p. Recall that in order to tackle

tampering, a client in Freeweb sends three requests with

different destinations and compares its received webpages

to identify the correct one. The figure demonstrates that

when only 5%-10% of nodes are malicious, the success

rate is nearly 100%. When 20% of nodes are malicious,

the success rate is approximately 90%, which is higher

than the predicted value of 1 − 20% = 80%, as is the

cases where there are 30% and 40% malicious servers.

The results demonstrate that Freeweb’s redundant request

strategy is effective in increasing the success rate. There

are two main reasons why Freeweb sometimes cannot

identify the correct webpage. First, sometimes only one or

two webpages are returned. In the test, the first webpage

is chosen in this case. Second, as the number of malicious

nodes increases, two or three webpages among the three

may be from malicious servers.

Figure 11 demonstrates the fetch time with different

tunnel lengths. We can see that the fetch time increases

almost linearly as the tunnel length increases. The length

of a tunnel determines the number of hop-to-hop trans-

missions of a returned webpage package. We also see

that the onion encryption time increases linearly as the

length of tunnel increases. Onion encryption operation

only encrypts a number of IP and port addresses, but

takes 6.6-14.3 seconds, which is a large proportion of

the entire fetch time. On modern computers as we tested,

this encryption operation usually takes 1/5 of the shown

time. Therefore, the encryption can be performed faster in

normal computers than in PlanetLab nodes. In addition,

we notice the web access time of HTML is only slightly

less than that of rich content mode, which shows that web

access time contributes little to the overall fetch time.

Figure 12 plots the 90th percentile, median and the

10th percentile of fetch time under different network

scales. It can be observed the fetch time increases slightly

as network scale increases. Recall that the average path

length of DHTs is log n. Thus, fetch time grows as the

length increases in the client-server path. In addition, we
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can see the 10th percentiles of fetch time are all below 3.6

seconds and do not differ much in different network scales.

The 90th percentile of fetch time generally increases as

the network scale increase, because larger network scale

leads to more nodes to traverse before a server node can

be found. The result shows the high scalability of Freeweb

due to its underlying DHT network.

Figure 13 demonstrates that the 90th percentile and the

median of the number of hashed destinations increase as

the network size increases. Given the same percentage

of servers, it is easier to find a server in a smaller-scale

network than in a larger-scale network. More nodes in the

network increases the probability that a request reaches a

non-server node. The 10th percentile remains at 1, which

implies some requests can always reach servers after

the first hashing. Also, we see that the median number

stays between 4-8. This means most requests need to be

rehashed and forwarded to a new destination a number of

times before reaching a server.

Figure 14 shows the 90th percentile, median, and 10th

percentile of fetch time with different client/server rates.

We see that the fetch time grows as the rate increases.

This is because with fewer servers, the request needs more

time to find a server. We also observe that the increase in

fetch time slows down as the client/server rate increases

due to the slowdown of the server decrease rate. Another

observation is that the 10th percentile of fetch time is

not affected greatly by the client/server rate because a

few requests can always reach the server quickly. The

90th percentile of fetch time increases marginally as the

client/server rate increases because a request needs to

traverse more hops when there are fewer servers.

VI. CONCLUSIONS

In this paper, we propose Freeweb, which is built on a

P2P network to provide a blocking resistant and tracing

resistant collaborative censorship circumvention service. It

enables all nodes in the system to collaborate with their

web accesses in order to circumvent censorship. A node

in a censored area can retrieve its requested webpage with

the aid of a node in an uncensored area. Freeweb protects

node identify from censors and constructs an anonymous

tunnel for web content transmission. It also employs the

techniques of encryption, onion routing, and caching to

enhance its censorship circumvention ability and reduce

browsing cost and latency. Extensive experiments on

PlanetLab show Freeweb achieves low cost and latency,

resistance to malicious nodes, and high success rates for

website browsing. Admittedly, Freeweb is not completely

bulletproof. In our future work, we will consider other

attacks, such as DoS, and develop anti-attack mechanisms

for Freeweb.
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[17] S. Köpsell and U. Hillig. How to achieve blocking
resistance for existing systems enabling anonymous web
surfing. In Proc. of WPES, 2004.

[18] S. J. Murdoch. Hot or not: Revealing hidden services by
their clock skew. In Proc. of CCS, pages 27–36. ACM
Press, 2006.

[19] J.-F. Raymond. Traffic Analysis: Protocols, Attacks, Design
Issues and Open Problems. In Proc. of International Work-
shop on Design Issues in Anonymity and Unobservability,
pages 10–29. Springer-Verlag New York, Inc., 2001.

[20] M. Reed, P. Syverson, and D. Goldschlag. Anonymous
connections and onion routing. JSAC, pages 482–494,
1998.

[21] M. Rennhard. Introducing MorphMix: Peer-to-Peer based
Anonymous Internet Usage with Collusion Detection. In
Proc. of WPES, 2002.

[22] A. Singh, T. wan johnny Ngan, P. Druschel, and D. S.
Wallach. Eclipse attacks on overlay networks: Threats and
defenses. In Proc. of INFOCOM, 2006.

[23] Y. Sovran, A. Libonati, and J. Li. Pass it on: Social
Networks stymie censors. In Proc. of IPTPS, 2008.

[24] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Protocol for Internet Appli-
cations. In Proc. of SIGCOMM, 2001.

139139139139139139


