This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

Measuring and Evaluating Live Content
Consistency in a Large-Scale CDN

Guoxin Liu, Haiying Shen*, Senior Member IEEE, Harrison Chandler, Jin Li, Fellow, IEEE

Abstract—Content Delivery Networks (CDNs) play a central role in today’s Internet infrastructure and have seen a sharp increase in
scale. More and more internet sites are armed with live contents, such as live sports game statistics, e-commerce, and online auctions,
and they rely on CDNs to deliver such contents freshly at scale. However, the problem of maintaining consistency for live (dynamic)
contents while achieving high scalability is non-trivial in CDNs. The large number of widely scattered replicas guarantees the QoS of
end-users while substantially increasing the complexity of consistency maintenance under frequent updates. Current consistency
maintenance infrastructures and methods cannot simultaneously satisfy both scalability and consistency. In this paper, we first analyze
our crawled trace data of cached sports game content on thousands of content servers of a major CDN. We analyze the content
consistency from different perspectives, from which we break down the reasons for inconsistency among content servers. We verify
that the CDN uses unicast instead of multicast trees as the update infrastructure, which may not scale effectively. Then, we further
evaluate the performance in consistency, scalability and overhead for different infrastructures with different update methods. We itemize
the advantages and disadvantages of different methods and infrastructures in different scenarios through the evaluation. Based on this
evaluation, we propose our hybrid and self-adaptive update method to reduce network load and improve scalability under the conditions
recorded in the trace and prove its effectiveness through trace-driven experiments. We aim to give guidance for appropriate selections
of consistency maintenance infrastructures and methods for a CDN, and for choosing a CDN service with different considerations.

Keywords: Content Delivery Network, Consistency Maintenance, Scalability.

1 INTRODUCTION

Over the past decade, Content Delivery Networks (CDNs) have
seen a dramatic increase in popularity and use. There were 28
commercial CDNs [1] reported in this crowded market, including
Akamai, Limelight, Level 3, and more recent entrants like Turner
and ChinaCache. Among them, Akamai [2], as a major CDN, has
more than 85,800 servers in about 1,800 districts within a thousand
different ISPs in more than 79 countries. The trend of scale is
growing rapidly at about 50% per year, due to the 100% increase
of traffic per year [3]. The vast growth of traffic and infrastructure
illustrates that CDNs serve as a key part of today’s Internet and
undertake heavy content delivery load. This promising growth
makes CDNs a hot spot for research. Figure 1 shows the standard
architecture of current CDNs [4]. When an end-user tries to visit
web content, the request is forwarded to the local DNS server,
which returns the IP address of a content server if the IP exists in
the cache and is not expired. Otherwise, the local DNS server
forwards the request to the CDN’s authoritative DNS servers,
which return the IP address of the content server close to this end-
user with load-balancing consideration [5]. Then, the user sends its
content request to the IP address of a content server, which returns
content. The content servers periodically poll content updates from
the content provider. We use the server and provider to denote the
content server and content provider in short, respectively.

o * Corresponding Author. Email: shenh@clemson.edu; Phone: (864) 656
5931; Fax: (864) 656 5910.

e Haiying Shen and Guoxin Liu are with the Department of Electrical and
Computer Engineering, Clemson University, Clemson, SC, 29634. E-mail:
{shenh, guoxinl} @clemson.edu

e Harrison Chandler is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109. E-mail:
hchandl @umich.edu

e Jin Li is with the Microsoft Research, Redmond, WA 98052. E-mail:
Jinl@microsoft.com

Content provider

Contentserver

P
.
Conteft server - California)

, ’

(Georgia)m ,-” Content Delivery Network

Corzg%@?igver
W I

— @ .
|' / @ { CDN’s authoritative
- e DNS servers
End-user @ Local DNS server

Fig. 1: The architecture of CDNSs.

CDNs not only serve static contents without updates such
as photos and videos, but also serve dynamic (or live) contents
such as live game statistics, e-commerce and online auctions.
The dynamic contents have frequent updates, which need to be
delivered from providers to all replicas. Caching/replicating to
surrogate servers near the network edge is widely used in CDNs
to optimize the end user experience with short access latency. The
large amount of widely scattered replicas make the consistency
maintenance methods non-trivial. In addition, this method has two
key requirements: scalability and consistency guarantee.

Based on the infrastructure, there are three common archi-
tectures used to deliver updates for consistency maintenance: i)
unicast [6], [7], [8], [9], ii) broadcast [10] and iii) multicast
tree [11], [12], [13], [14], [15], [16], [17], [18], [19], [20].
However, none of these approaches can satisfy both requirements
simultaneously. The unicast approach can guarantee consistency,
but since it relies on centralized content providers for updates, it
causes congestion at bottleneck links and thus cannot promise
scalability. Broadcasting can efficiently propagate the updates
inside a local network and guarantee consistency. However, it
generates very high overhead due to an overwhelming number of
update messages. Thus, it cannot support the scalability required
for large world-wide CDNs due to a vast number of redundant
messages. The multicast approach produces fewer update mes-
sages than broadcasting, but node failures break the structure

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

connectivity and lead to unsuccessful update propagation. Aside
from node failures, the structure maintenance will incur high
overhead and complicated management due to the dynamism of
servers in the multicast tree.

With each update architecture, there are three basic methods
for updating replicas: i) Time To Live (TTL) [6], [21], [8], [22],
[18], [23], [9], [19], [24], ii) Push [12], [13], [14], [15], [16], [17],
[20], [25], [26] and iii) server-based Invalidation [7], [9]. None
of these update methods can guarantee the aforementioned two
requirements. In TTL, servers poll the updates from providers
whenever the TTL is expired, which supports greater scalability.
TTL offers a tradeoff between freshness and CDN efficiency, and
it can be dynamically changed based on update rates. In Push, an
update is transmitted to every replica right after updating time,
which guarantees a short period of inconsistency. However, an
update will be pushed to all replicas immediately, which depends
on the consistency infrastructure to support scalability. Also,
Push may generate unnecessary update messages to uninterested
replicas. In server-based Invalidation, whenever there are updates
on content providers, an invalidation message is received by each
replica, and replicas only fetch the update whenever the needed
content is invalid. It can save traffic cost compared to Push if the
content visit rates on servers in CDNs are smaller than the update
rate of this content.

None of current update architectures together with update
methods can fully solve both scalability and strong consistency
in current CDNs. With the rapid growth of CDNs, consistency
maintenance in CDNs needs to be particularly studied. Can the
current update method used in the CDN provide high consistency
for dynamic contents? If not, what are the reasons for the content
inconsistency? What are the advantages and disadvantages of em-
ploying previously proposed consistency maintenance approaches
in the CDN environment? The answers to these questions help de-
velop consistency maintenance approaches specifically for CDNs
with different considerations. Thus, in this paper, we focus on
measuring the inconsistency of a CDN’s servers, and break down
the reasons for this inconsistency. Then, we conduct a trace-driven
evaluation to measure the performance of consistency maintenance
infrastructures and methods, and different parameters’ effects on
performance. The contributions of this paper are as follows:

® Measuring the inconsistency of a major CDN. This paper is the
first to measure content consistency for a large amount of globally
scattered servers in a major CDN. We measure the inconsistency
of individual servers when delivering live sports game statistics.

® Breaking down the reasons for the inconsistency of the CDN.
Through our measurement, we break down the reasons for incon-
sistency to different factors and analyze their effects. These factors
include TTL value, propagation delay, shortage of bandwidth,
content server overload/failure, content providers’ inconsistency
and so on.

® Deducing the update infrastructure used in the CDN. We check
for the usage of static and dynamic multicast tree methods among
clusters and servers to propagate the updates from the content
provider to content servers, and confirm that the content servers
directly poll updates from content provider based on unicast when
serving a live game statistic content.

o Evaluating infrastructures and methods for consistency
maintenance through trace-driven experiments. We further
evaluate the performance for different infrastructures and update
methods, since CDNs can easily adopt the other infrastructures
with different update methods [27]. We itemize the advantages
and disadvantages of different methods and infrastructures in
different scenarios through our evaluation. We aim to give
guidance for appropriate selections of consistency maintenance
infrastructures and methods for a CDN or choosing a CDN
service with different considerations.

2

o Discussing hybrid and self-adaptive methods. According to the
features of the updates of the dynamic contents in the trace, we
design a hybrid and self-adaptive method to save network load,
respectively. The experiments validate the effectiveness of our
design and show the promise of hybrid and self-adaptive methods.

The remainder of this paper is structured as follows. Section 2
presents a concise review of related works about the update
methods and infrastructures. Section 3 summarizes the consistency
measurement of dynamic contents in a major CDN and analyzes
the trace to propose our findings. Section 4 evaluates the advan-
tages and disadvantages of different update methods and infras-
tructures through trace driven experiments. Section 5 proposes two
hybrid update methods and validates their effectiveness. Section 6
summarizes this work and proposes future work.

2 RELATED WORK

Commercial CDNs enable efficient delivery for many kinds of
Internet traffic, such as e-commerce and live sports. Serving
dynamic contents not only requires a scalable CDN, but also
requires consistency guarantees, either strong or weak. Recent
studies of consistency maintenance have been applied to different
applications, such as P2P networks, web caches, and CDNs. Based
on the infrastructure, these studies can be categorized into three
classes.

One class of methods is based on unicast. In [7], an Invali-
dation method is recommended, since it is better at saving traffic
costs and reducing end-user query times. In [25], [26], [28], [29],
[30], Push methods are used for consistency maintenance. Tang et
al. [8] analyzed the performance of TTL-based consistency in an
unstructured P2P network and studied the impact of consistency
with different values of TTL. In [6], [22], [24], an adaptive TTL is
proposed to predict the update time interval based on a historical
record of updates. In [9], a hybrid update method is proposed,
which depends on Invalidation to notify of outdated data and then
uses an adaptive TTL method to poll for an update. Compared to
a fixed TTL [21], the adaptive TTL may reduce traffic costs as
well as support stronger consistency. However, the modification
behavior of a content is not natural, which is hard to predict to
guarantee consistency.

Another class of methods is based on broadcasting. Lan et
al. [10] proposed to use flooding-based Push for near-perfect
fidelity or a push/pull hybrid method for high fidelity. Broad-
casting is widely used in local computer networks but fails to be
sufficiently scalable for use in large scale networks such as CDNs
due to a large number of redundant messages.

The last class of methods is based on multicast. In [13],
an application-level multicast infrastructure is adopted to push
updates to a group of servers serving the same cached data content
in a CDN. In [20], a Push-based method is used to ensure strong
consistency of all the metadata, which validates the freshness
of contents in information centric networking. Li et al. [17]
presented a scheme that builds replica nodes into a proximity-
aware hierarchical structure (UMPT) in which the upper layer
form a DHT and nodes in the lower layer attach to physically
close nodes in the upper layer. SCOPE [16] builds a replica-
partition-tree for each key based on its original P2P system.
It keeps track of the locations of replicas and then propagates
updates. CUP [14] and DUP [15] propagate updates along routing
paths. In FreeNet [12], updates are routed to other nodes based
on key closeness. In a hybrid push/poll algorithm [11], flooding is
replaced by rumor spreading to reduce communication overhead.
When a new node joins or a node reconnects, it contacts online
replica nodes to poll updated content. This hybrid push/poll
scheme only offers probabilistic guarantee of replica consistency.
GeWave [18] builds a poll-based multicast tree for consistency
maintenance, in which the replica of a parent node has higher visit

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

Server A ServerB Servng SeglerD

'C]_

Gy

'C3

Fig. 2: An example of inconsistency.

frequency than the replicas of their child nodes. Tang et al. [19]
proposed a method to reduce consistency maintenance costs and
maintain low access latencies via an optimal replica placement
scheme in CDNs, which leverages a TTL-based method to poll
updates through a multicast tree. Tang and Zhou [31] studied
inconsistency in distributed virtual environments, which create a
common and consistent presentation of a set of networked com-
puters. Peluso et al. [32] introduced a distributed multi-version
concurrency control algorithm for transactional systems that rely
on a multicast-based distributed consensus scheme. S2PC-MP [33]
is a metadata consistency scheme for distributed file systems based
on multicast. Benoit et al. [34] studied replica placement in tree
networks subject to server capacity and distance constraints, and
proposed efficient approximation algorithms for the placement
problem without considering the consistency maintenance. The
work in [23] proposed a geographically-aware poll-based update
method. It builds a tree and let children poll parents to get the
updates.

So far, there has been no consistency maintenance method
specifically proposed for large-scale CDNs. Also, there has been
no study that investigates the content inconsistency in current
CDNs based on real trace. This is the first work that analyzes the
consistency performance and causes in a major CDN based on the
real trace, and extensively evaluates the consistency and overhead
performance in trace-driven experiments in different scenarios.

3 TRACE ANALYSIS
3.1 Measurement Methodology

In order to study the consistency maintenance strategies used in
current CDNs, we crawled cached content of a popular sports
game from a large number of servers in a major CDN. The content
we crawled was live game statistics webpages that need to be
continuously updated throughout the game. To identify the IP
addresses of the CDN content servers, we retrieved all domain
names in all webpages, and used the method in [4] to translate the
domain names to IP addresses by using their local DNS servers.
Then, we validated each IP address’s corporation to derive the
IP addresses of the content servers and providers using the same
method in [4]. Finally, we found 10 provider IP addresses and
50064 CDN IP addresses. Compared to the IP addresses of the
CDNSs crawled in [4], we have crawled most (57.2%) of the IPs
in [4], which has 59581 IPs in total. There are 26.9% more new
servers compared to their trace, which indicates the rapid scale
increase of the CDN. By looking through the webpage source
codes, we found out the content provider’s domain name. Then,
we also used the same method to track the IP addresses of the
content provider’s origin servers.

We randomly selected 200 globally distributed lightly loaded
PlanetLab nodes. Then, we randomly selected 3000 content
servers, each of which can continuously respond the content
requests with low latency to one of the PlanetLab nodes. Each
content server had one PlanetLab node simulating an end-user to

CDF of requests
o o o o
o N B Oy 00 - N

1 10 100 1000
Inconsistency length (s)

10000

Fig. 3: The inconsistencies of
data served by the major CDN.

poll live game statistics from it every 10 seconds for two and half
hours each day. We collected 15 days of trace data between May
15, 2012 and June 4, 2012.

To measure data inconsistency, for each poll we retrieve the
snapshot of statistics and current GMT (Greenwich Mean Time)
time on that content server in order to avoid the interference of
network delay. However, the GMT time may not be synchronized
among all content servers; we use a method to remove the
influence of the lack of synchronization. Specifically, we randomly
chose a PlanetLab node n; and then adjust each server’s time to
the time in n;. To achieve this, we make node n; poll the content
from each content server s;, and the GMT time difference of
server s; (denoted by €y, s,) is calculated by tfj — t% — RTT/2,
where ti_ and tg_ are the GMT times on PlanetLab node n; when
starting the query and on s; upon receiving the query, respectively,
and RTT is the average round trip time of a query between n;
and s;. Then, we subtract €,, s, from the GMT time associated
with each snapshot from each server s; in order to make the
timestamps of all snapshots be consistent with the GMT time
on 71;. As shown in Figure 2, we identified different snapshots
from all polled snapshots and use C; to denote the i*" content
snapshot. We find the first time when each snapshot C; shows up
in the trace and denote it as «Ci. For each server Sn, we ordered
its content snapshots over time. For each C;, we find the last time
that C; shows up, which is denoted by ﬁgj The inconsistency
length of C;_; (denoted by A¢,_,) for that server is calculated
by A¢g, , = Maa:{ﬂsc:f_l — a%i}. It denotes that a server first
saw the updated data C; at time a%i, and another server lastly
saw the unupdated data at 551 ~*, indicating that the inconsistency
existed for time length A¢,_,. Since we poll the contents from a
very large number of servers, the first time an update is observed
should be close to the time of this update at the content provider.
The inconsistency length of ¢ seconds means that the content is
expired for at least ¢ seconds.

3.2

Figure 3 shows the cumulative distribution function (CDF) of
inconsistency lengths for all content requests during the 15 days.
We see that only 10.1% of requests have inconsistency lengths
less than 10 seconds, and 20.3% of requests have inconsistency
lengths greater than 50 seconds. The results indicate that content
inconsistency exists among the content servers in serving the
dynamic contents of game statistics that require frequent updates.

Inconsistency in the Content Servers

3.3

The game statistics are sequenced over time. A user observes self-
inconsistency (inconsistency in short) when (s)he sees statistics
(such as game score) prior to the most recently statistics (s)he has
seen. For example, a user sees a game score of 2:3 at 1:00pm, and
then sees the score changes to 2:2 at 1:01pm. Such user observed
inconsistency is caused by the user receiving older webpage
content that is not updated in time from another server.

Inconsistency Observed by Users

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

100%

100%

0%

80% 80%

—
S
=

60%

2 NS

‘ ‘ 0%

o 0%
o)

—_
=3
=

0% Y4

CDF of clients

=

=
o
=

0%

Avg. percent of

=
=

=
=

100% ~
& 15 Median 951

80% L

o 6%

0

Y 409

0%

0% T

inconsistent servers

10 15

T 1% 1Tk 2% % 0

Percent of requests redirected

5
Day index

(a) Visits on another server (b) Avg. percent of inconsis- (c) Continuous

tent servers time

4o 80
Continuous consistency time (5)

0 0 20 30 40 5 60
Visit frequency (s)

NS N
Continuous inconsistency time (s)

consistency (d) Continuous inconsistency
time

(e) Inconsistency time

Fig. 4: User perspective consistency.

The local DNS server caches the IP of the CDN’s server for
each visited domain name. The IP expires in a short time. When
the local DNS server receives a request from an end-user, if the
IP is not expired, it sends the IP to the end-user; otherwise, it
forwards the request to the authoritative DNS servers for the
IP of a server. The authoritative DNS servers consider the load
balancing between the servers and send back an IP of a server.
To update the dynamic contents in a webpage, the end-user sends
out a request every 10 seconds. Therefore, the request may be
redirected to another server due to the expired cached IP in the
local DNS server and the server reassignment by the authoritative
DNS servers. If the content in the newly assigned server is not
updated, the user may observe the inconsistency.

To investigate user-observed inconsistency, we used 200
world-wide distributed PlanetLab nodes to visit the same game
statistics through its URL once every 10 seconds during the time
period of a game. We recorded the IPs of serving servers and
the received statistics contents for each user. We measure the
consistency performance from a single user’s perspective. First,
we introduce three metrics: the percent of requests redirected
to another server, continuous consistency time and continuous
inconsistency time.

Suppose a user creates [N requests in total, in which M
requests are served by redirected servers; then, the percent of
requests redirected to another server equals 7. Continuous
inconsistency time is the period of time between when the user
observes an inconsistency to the time of next consistency record.
Continuous consistency time is the period of time between
when the user observes a consistent record to the time of next
inconsistency record.

We first measure the percentage of a single user’s visits that are
redirected to a server different from the current server. Figure 4(a)
shows the CDF of users versus the percent of visits redirected to
another server. It shows that most of the users have 13%-17% of
visits switched to another server. From the trace we observed that
with continuous updates of the game statistics, on average, there
are around 11% of servers with inconsistent content at each polling
time during all 15 days as demonstrated in Figure 4(b), which
shows the average of percent of inconsistent servers in every 10
second on each day. This means that on average, a user’s request
has around 11% probability of being redirected to a server that has
outdated content. Thus, 1.43% to 1.87% of visits of a single user
during a game will be redirected to outdated content.

We then measure the continuous (in)consistency time from
a single user’s perspective. We calculated all continuous
(in)consistency times of all users with a request redirection prob-
ability as shown in Figure 4(a). Figure 4(c) shows the CDF of
the continuous consistency time. The median continuous consis-
tency time is around 160 seconds, and 82.4% of all continuous
consistency times are within 400 seconds. The result means that
most users can observe inconsistency and receive outdated con-
tents during watching. Figure 4(d) shows the CDF of continuous
inconsistency times. In this figure, 70% of all the continuous

inconsistency times are 10 seconds or less, and around 99% of all
the continuous inconsistency times are no longer than 20 seconds.
There are no inconsistency times longer than 40s. The result
indicates that users may observe outdated dynamic web content,
but it always lasts no more than 20 seconds, which means that the
inconsistency usually lasts no more than two continuous visits.

We varied the polling frequency from 10 seconds per poll to 60
seconds per poll with a 10 second increase in each step. The 95th
percentile measurement is widely used to calculate the network
bandwidth usage [35]. We adopt the 95th percentile measurement
to evaluate the inconsistency in this paper. For each polling
frequency, we collected all continuous (in)consistency times of all
users and calculated the 5th percentile, median and 95th percentile
of the continuous inconsistency times. Figure 4(e) shows the
results with different polling frequencies. From the figure, we
observe that the median value always equals the 5th percentile
value, meaning most inconsistency lasts for a short time period.
Also, we see that the median and the 95th percentile value of the
inconsistency time increase in proportion to the visit frequency due
to the slower polling frequency. From Figure 4 and Figure 4(e),
we can infer that an individual user can observe inconsistency
on dynamic contents in the CDN. This implies that the current
update strategy in the CDN can be improved to prevent users from
receiving outdated information for dynamic contents.

3.4 Causes of Inconsistency in CDNs

In the previous section, we observed that content inconsistency
exists in the servers and that end-users can also observe the
inconsistency (i.e., receive outdated content). In the following, we
identify and explore potential causes of content inconsistency in
the CDN, which will provide guidance for designing consistency
maintenance mechanisms. We measured the individual influence
on the inconsistency among content servers of each potential
cause, including the TTL value, content provider’s inconsistency,
provider-server propagation delay, content provider bandwidth
shortage, content server overload/failure.

3.4.1 Time-to-live based consistency maintenance

In the TTL-based consistency maintenance method, when a con-
tent server receives a content request from an end-user, it first
checks its cache for the content. If the content exists in the cache
and its TTL has not expired, the server serves the content. If the
content does not exist in the cache or its TTL has expired, the
server retrieves the content from the content provider, sends it to
the user, and caches the content. Therefore, if the content changes
before the TTL has expired, the content server will inadvertently
fulfill requests with outdated content. [36] indicates that the CDN
uses TTL-based consistency maintenance.

We study the impact of the TTL-based method on content
inconsistency. In order to minimize the influence of the provider-
server distance and server-user distance on content inconsistency,
we clustered geographically close servers, used the same or
geographical close PlanetLab nodes to poll the contents from

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

5
100% 100% 209 100%
o ~—Trace(TL=605 P
£ 80% £ 80% E o 80% | — Theory (TTL=60s) 2
v v g 7N ~ g
& 60% 2 60% o oy | e (T8
v o = 0% 3 —-Theory (TTL=80s) /.'/'((
“ a0 “ 409 5§ 0 527\ Theory 80s
5 40% 5 40% 0 40% | /R Trace 80
2 2 % 7 race 80s
8 20% 3 20% - 3 20% | X Trace 60s
o} Zd
0% ; ; 0% 0% ; ; ‘ 0% Theroy 605
1 10 100 1000 50 40 50 60 70 0 40 60
Inconsistency length (s) Inconsistency length (s) Expected TTL (s) Inconsistency length (s)
(a) CDF of all requests (b) CDF of requests with inconsistency (a) TTL refinement (b) Inconsistency in trace vs. in theory
less than 100s . >
) . . . Fig. 6: The CDN content severs’ TTL.
Fig. 5: CDF of inner-cluster inconsistency.
servers in the same cluster. We examined the distribution of inner- -
cluster inconsistency lengths, which refer to inconsistency lengths 00% 2 oo 0 o
calculated only within clusters of collocated nodes rather than all | 8% 2 sau .
servers in the CDN. To create clusters, we first translated the IPs §J 0% gse% Trendiing® ¢ ¢
of the CDN’s servers to geographical locations by an online IP g o 84% ¢ 2 reane% ______ Q.
geolocating service [37], and grouped the servers with the same ° 0% §§;; N R ° w0
longitude and latitude into a cluster. 3 20% o 000 ® 0 o
N . . ° ¢
Figure 5(a) shows the CDF of requests for different incon- 0% ‘ ‘ f}o 76% : :
sistency lengths. The figure shows that only 31.5% of served 1 10 100 1000 0 5000 10000 15000
requests have inconsistency lengths less than 10 seconds. Also, Inconsistency length (s Distance (km)

the CDF of requests approximately exhibits a linear increase
when the inconsistency length increases from 0 to 60 as shown in
Figure 5(b), which plots the CDF of requests with inconsistency
less than 100s. We can assume that the inner-cluster inconsistency
length is evenly distributed in [0, TTL], which will show a linear
increasing in CDF within [0,TTL]. Then we can assume that the
TTL for cached content is around 60 s.

Below, we attempt to derive TTL using another method. We
assume all updates are independent, and all servers independently
start to cache the dynamic contents. We then derive the average
inconsistency lengths of all servers, denoted by E[I]. If we split
the time into slots, each of which lasts TTL, then a server can
poll the content at any time within [0, 77TL] in a slot with the
same probability. If the first server gets the update C; at time ¢,
since servers poll the content independently, other servers receive
the update at any time ¢ within [¢,¢ + TTL] with a uniform
distribution. As the inconsistency length equals ¢’ — ¢, it is then
uniformly distributed within [0, 7T'L]. Thus, E[I] = T1E.

Since TTL is not the sole factor of inconsistency, the true
average inconsistency length from the trace denoted by E’[I]
is larger than E[I]. If TTL is the sole factor, 2E’[I] should
not be larger than TTL. Therefore, we use recursive refining
to derive the TTL used by the CDN from the trace. We first
calculate the average inconsistency length in trace E’[I], and
then calculate TTL' = 2E’[I]. Then, we calculate E”[I] from
the inconsistency lengths in the trace that are no larger than
TTL' and derive a new TTL"” = 2E"[I]. We then calculate
the deviation of the two TTLs as (TTL” — TTL')/TTL' .
We repeat this procedure to derive a TTL, which is closest
to 2 x E[I] according to the above equation. Thus, the TTL’
with the smallest deviation is the actual TTL used in the CDN.
Figure 6(a) shows the deviation distribution versus each derived
expected TTL. The smallest deviation is approximately at 60s,
which means that we can infer the CDN’s TTL to be 60s.

We then verify if TTL=60s is correct. Using 60s and 80s as
the TTL respectively, we calculate the CDF of the inconsistency
length. For TTL=60s (and 80s), we remove the inconsistency
lengths larger than 60s (and 80s) in the trace (which are incon-
sistencies caused by reasons other than the TTL) and plotted the
inconsistency distribution based on the remaining data. Figure 6(b)
shows the CDF of inconsistency lengths. From the figure, we see
that the deviation between the trace and theoretical inconsistency
with TTL=60s is smaller than that with TTL=80s. The root mean

Fig. 7: The inconsistencies of Fig. 8: The distance of servers.
data served from the provider.

square error of TTL=60s is 0.0462, while that of TTL=80s is
0.0955. We also test other TTL values, and find that TTL=60s
leads to the smallest deviation between trace and theoretical in-
consistency. Thus, the actual TTL should be 60s, which introduces
an average inconsistency length of 30s. We notice that the average
inconsistency is 40s in the trace. Thus, we can conclude that TTL
is the main cause for the inconsistency, and other factors such as
provider/server inconsistency, content server failure and overload,
network congestion introduce a small part of inconsistency, around

80—60 __
—60 _ 95%,

3.4.2 Content provider inconsistency

One potential cause of inconsistency between content servers is
inconsistency at providers that provide contents to the content
servers. We requested statistics contents for the same game from
the providers using the same setup as before. Figure 7 shows the
CDF of inconsistency length for requests served by the providers.
The figure shows that 90.2% of served requests have inconsistency
lengths less than 10 seconds, only 1.2% of requests have incon-
sistency lengths greater than 50 seconds, and the average incon-
sistency is 3.43 seconds. The inconsistency length is much lower
than that of the CDN-served content as shown in Figure 3. We have
checked the geographical locations of all our identified providers
and found that they are in the same geographical location. In this
case, the content providers can provide higher consistency than the
servers that are dispersed worldwide. Even if multiple providers
deliver the same dynamic content to the servers, the providers have
negligible content inconsistency; therefore, their responsibility for
the inconsistent contents received by end-users is negligible.

3.4.3 Provider-server propagation delay

Content servers are distributed globally so that end-users can be
served by their geographically close servers. However, globally
dispersed servers face considerable propagation delay for con-
tent originating from a central location. Since propagation delay
varies for different servers, inconsistency can be introduced. We
introduce a metric called consistency ratio for a server, which
is calculated by 1 — me;ﬁ?’ff;fﬁ’ii:zg ths " which indicates the
capability of a server to maintain consistency. We clustered servers
with the same distance to the provider and calculated the average
consistency ratio.

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

6
100% 100 » 90 n 60
z ~=5th —Median —-95th g0 _ - 5th —Median —-95th [/
ggo% E‘so,\ s . §707 - w SN T g:) 50 -
Vvt b s Sir AN e Al TN
o [A Y SATE ;‘ \‘-/\" lvn.r\ G360 - 95th g A0 TN AT T
3 60% 5 60 - PRl G @ 22 ' v . H v
g B [[E c 50 - €5y
o c 95th i R il 6 530
w“ o ot ! 040 - S
o 40% g 40 i i i < g 520 |
& N i g zg 1 Median w
o 2% & 20" MWW (220 7 10
® Median 5&?1 10 e N < —Intra-ISP - -Inter-ISP
0% ‘ ‘ £ 0 fmmoss=sosReps s==oomo £ - ST 0 ‘ ‘ ‘
1 10 100 1000 0 20 40 60 20 40 60 0 20 40 60
Inconsistency length (s) Index of ISP-based clusters Index of ISP-based clusters Index of ISP-based clusters

(a) The intra-ISP inconsistency. (b) The intra-ISP inconsistency of (¢) The inter-ISP inconsistency of (d) Avg. inconsistency of inter-ISPs

each cluster. each cluster. and intra-ISPs
Fig. 9: The effect on the inconsistency of inter-ISP traffic from the provider.
100% 50 46
80% -
w 60%
a
Y 40% -
20%

~-[0s,100s]
4 [2005,3005]

&

60 40 -20 0 20 40 60
Time period before and after node absence (s)

-EF[300,4005]
5¢[1005,2005]

N

o
~

= &

PO
&

length (s)

~

35 Trendline

o~
=

Avg. inconsistency
length (s)
N
8

v
'
\
'
|
'
'
'
'
'
\
\
'
'
'
\
\
'
Avg. inconsistency

0% £l)
3 1 10 100 0 00 200 300 400
Absence length(s) Absence length (s)

0% T T

3

1 2
Response time (s)

(c) The average inconsistency over (d) Inconsistency before and after ab-
length of absence. sence.

(a) The response time distribution of
provider.

(b) The length of absence.

Fig. 10: The effect of server overload/failure on the inconsistency.

Figure 8 shows the average consistency ratio versus the
provider-server distance. The figure shows that in that overall,
as the provider-server distance increases, the average consistency
ratio exhibits a very slight increase. The average consistency ratio
and distance have little correlation (r 0.11). As distance is
directly related to propagation delay, this result indicates that
propagation delay has a little effect on inconsistency.

We further investigate whether inter-ISP traffic has an effect
on inconsistency. Traffic transmitting between ISPs is more costly
for ISPs, and such traffic competes for the limited transmission
capacity [38]. To identify the ISP for each server, we first found
the ISP of each server based on its IP using IPLOCATION [37].
We further increase the accuracy of these identified ISPs. We use
Traceroute to diagnose the entire path for each request from a
PlanetLab node to a content server. Since the CDN'’s servers are
close to the backbone routers of ISPs [4], we checked whether
the router in the last several routing hops in a route belongs to the
identified ISP. If not, we removed the trace record of the server.
We successfully verified the ISPs of 99.6% of the servers.

We grouped servers within the same ISP to a cluster. We cal-
culated the inconsistency lengths for all servers in each ISP-based
cluster. Figure 9(a) shows the CDF of the intra-ISP inconsistency
of all clusters. We see that 33.7% of requests have inconsis-
tency lengths less than 10 seconds, and only 3.9% of requests
have inconsistencies greater than 60 seconds. This inconsistency
distribution is only slightly better than that in Figure 3. Thus,
we can conclude that although inter-ISP traffic competes for the
transmission capacity, it only contributes slightly to inconsistency
in servers on average.

In order to better understand the degree of influence of inter-
ISP traffic from providers on the inconsistency, we compare the
intra-ISP and inter-ISP inconsistency lengths. The inter-ISP incon-
sistency lengths are calculated using the same method as the intra-
ISP inconsistency lengths except that the o of a cluster is the
earliest time of C;’s appearance in all other clusters. Figures 9(b)
and 9(c) show the 5th, median and 95th percentiles of the intra-ISP
and inter-ISP inconsistency lengths of each ISP-based cluster. We
see that the inter-ISP inconsistency lengths are always higher than
the intra-ISP inconsistency lengths, meaning the inter-ISP traffic

from providers affects the inconsistency. The median percentiles
of the intra-ISP and inter-ISP inconsistency lengths range from
[13,28] and [30,45] respectively, and the 95th percentiles of the
intra-ISP and inter-ISP inconsistency lengths range from [36,73]
and [71,79] respectively. The median and the 95th percentiles
of the inter-ISP inconsistency lengths are larger than those of
the intra-ISP inconsistency lengths, and the increment indicates
the degree of influence of inter-ISP traffic from providers. The
increment of the average inconsistency lengths is illustrated in
Figure 9(d). We see that on average, the inter-ISP traffic from
providers increases the inconsistency lengths by [3.69, 23.2]s.

3.4.4 Content provider bandwidth

If the providers are overloaded or have insufficient bandwidth,
they will not be able to receive up-to-date content. We measure
each request’s response time by ¢, — t;, where ¢; is the time that
the PlanetLab node initiates the request and ¢, is the time that it
receives the content. Figure 10(a) plots the CDF of requests versus
the response time. The figure shows that the response time are in
the range of [0.5, 2.1]s, and 90% of requests are resolved within
1.5s. Thus, there is no large delay due to congestion or overloaded
of the providers. This indicates that the content providers have
sufficient computing capabilities and bandwidth to handle all
requests. Considering the time interval between the worst case
and the best case of the response time, the provider’s network
resource constraint only introduces less than 1.6s inconsistency in
servers. In the trace, the size of content is relatively small, so it
hardly causes congestion in provider’s uplinks. However in some
situations, such as live video streaming, the content provider’s
bandwidth may introduce large inconsistency when overloaded.

3.4.5 Content server failure and overload

Content server failure and overload could also be the cause of
content inconsistency. When a server has failed or is overloaded,
it cannot quickly send out content requests to or receive content
from the provider. If the IPs of failed or overloaded content servers
are cached in local DNS, end-users will acquire these cached IPs
from the local DNS service and observe inconsistent contents from
these servers. Suppose that two successive response times of a
server upon polling are ¢; and ¢;4;. We calculated the absence

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

=N
S
=N
S

g 5 Maxiinum 3

c c

[7] A A

B340 Mgt 5340 EOBAX@X%@gQQMQ%@E@

a P S 1Y WRTON] n| &l

c$ ST AT A A 2 c A% 0 0

G 30 Al e o o

Vg B

ISP R U AL S I £5n " X

% g | Minimum)

< —Maximum - --Minimum Z ODayl ADay2 xDay3 ODay4
0 0

1 21 81 5 10 15 20

4 61
Cluster index Cluster index

(a) Avg. inconsistency of clusters (b) Inconsistency varying of clusters

7
oSl OS2 AS3 XS4 xS5 0S6 +S7 0S1 OS2 AS3 XS4 xS5 056 +97
_C150 250
L) + o t
5 4 8 3 2W A A A
c =100 n A cl
0 6 510 A 4o A
I g 3 S 4
g5 y o x 84 28 ¥ a0
ey ¢ 22N F 4 oy X 0
PR R AN N
£ ©c

3 4 5 = 1 2 3 4 5 6 7
Day index Day index

(c) Avg. consistency inside cluster A (d) Avg. consistency inside cluster B

Fig. 11: Static multicast tree non-existence.

length of the server as t;41 — t; — 10s, where 10s is the time
interval of two successive polls. The absences could be due to
node overload, reboot, or failure. Suppose the content responded
at t;11 from the content server that was absent is C;11, then we
call the inconsistency length of C; 1 the inconsistency length of
this absence.

Figure 10(b) shows the CDF of absence lengths of servers.
The figure shows that absence lengths range from [1,500] seconds,
with 30.4% less than 10 seconds and 93.1% less than 50 seconds.
The CDN has a load balancing technique that balances the load
between servers, so it is unlikely that an overloaded node would
remain in the overloaded status for an extended period. Thus, node
failures/reboots are responsible for most of the absences lasting
longer than 50 seconds.

We plot the node absence length with the average inconsis-
tency length after node returns in Figure 10(c). We group trace
records first by their absence length. Since for a specific absence
length, there may not be enough inconsistencies to show its
general case of inconsistency with such an absence length, we
group absence length by every 50s. In order to show the average
inconsistency without absence, we divide first group with absence
length of [0,50]s to [0,0]s and (0,50]s. From the figure, we can see
that the inconsistency is increasing slightly from 38.1s to 43.9s
while the absence length increases from Os to 400s. It indicates
that the node overloads and failures have adverse effects on con-
sistency. They can increase the average inconsistency by 15.22%.

In order to determine the effect of node absences on the
inconsistency, we grouped the inconsistency lengths associated
with the same absence length and calculated the average. We
then group the average absence lengths with inconsistency lengths
in the range of (0,50]s, (50,100], ---, (350,400]. In order to
show the average inconsistency without absence, we also plot the
average inconsistency lengths for absence length equals 0. Figure
10(c) plots the average inconsistency length in different ranges of
absence lengths. From the figure, we see that the inconsistency
length increases from 38.1s to 43.9s while the absence length
increases from Os to 400s. That is, the absence contributes no
more than 6s inconsistency. This indicates that the overload and
failure do have influence on consistency and that they can increase
the average inconsistency by 15.22%. The figure also shows that
a larger absence length leads to a higher average inconsistency
length, because servers may not receive updates or send out update
requests in time when overloaded or failed.

Recall that the inconsistency length of C;_1 is calculated by
Ne,, = Max{ﬂgf_l — a%}. If a server’s absence length
is larger than 0, we calculated the inconsistency lengths of
C;—1 polled during [t; — x,t;41] and [t;,t;41 +], where
x = 20,40, 60. For all the inconsistency lengths in each range
of all absent servers, we derived those with absence lengths
within [0s,400s], classified them to 4 groups with absence lengths
in [0s,100s], [100s,200s], [200s,300s] and [300s,400s], and then
calculated the average inconsistency length in each group. Fig-
ure 10(d) plots the average inconsistency lengths in each group in
a certain time period before and after node absence. It shows that

in each group, the inconsistency measured closer to the absence
is larger and vice versa. We suspect this is because when a server
is about to be overloaded or has just recovered from overload
or failure, it has a lower probability of sending or receiving
update requests. From the figure, we also see that a larger absence
length leads to a higher inconsistency length and that sharper
inconsistency length increase. These results indicate that server
overload and failure affect inconsistency and we need to avoid
system failure when there are continuous updates of the dynamic
contents, as it causes largely degraded user experience.

3.4.6 Summary of the Causes of Inconsistency

We summarize the impact of different causes of content inconsis-
tency in the following. We order the different causes based on the
strength of their impacts.

o TTL is the main cause of the content inconsistency and con-
tributes 75% of the content inconsistency.

e Content server failures and overloads can increase the average
inconsistency by 15.22%. Also, a larger absence length leads to a
higher average inconsistency length.

e Provider-server propagation delay has a small effect on content
inconsistency. The main cause is the inter-ISP traffic of providers,
which increases the inconsistency lengths by [3.69, 23.2]s.

e The content provider’s network resource constraints introduce
less than 1.6s inconsistency in servers.

o Content provider inconsistency is low and introduces negligible
effect on content inconsistency.

3.5 Multicast-Tree Existence
3.5.1 Static Proximity-Aware Multicast Tree Existence

In this section, we analyze the base infrastructure that the CDN
uses to distribute dynamic content updates. Recall that a server
polls the provider for an update every TTL. We first attempt to
determine whether there is a static proximity-aware update tree
to update the dynamic contents. The proximity-aware multicast
tree is widely used to propagate updates to all replicas in order to
reduce the network load and improve scalability [17], [18], [39].
Due to the proximity-awareness, we can assume that the servers
geographically close to each other and within the same ISP should
be in the same cluster.

To infer the existence, we must check whether there is a tree
structure among clusters to update the contents. We calculated the
average inter-cluster inconsistency length of each cluster for each
day during the 15 days. Figure 11(a) plots the minimum and the
maximum average inconsistency of each cluster of one day. Due
to limitations of the plot area, we only show the inconsistencies
of 100 randomly selected clusters; however, all the other clusters
have similar results. We see that the average inconsistency of any
cluster length varies greatly during the trace. If there is a static
proximity-aware tree structure among clusters, the inconsistency
of the cluster in the higher layer of this tree should always have
smaller inconsistency. Figure 9(c) shows a similar tendency of
inter-cluster inconsistency as shown in Figure 11(a), where the
servers are grouped by their ISPs into clusters. Neither figure

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

100% 100%

o //'

80%

90%

80% +

70% 0%

CDF pf servers
CDF pf servers

60% 60%

50% 50% T T T T

60 120 180 240 300 360 0 120 180 240 300 30
Maximum inconsistency Maximum inconsistency

(a) CDF of maximum inconsistency (b) CDF of maximum inconsistency
in Day A in Day B

Fig. 12: Dynamic multicast tree non-existence.

shows a tiered layer of inconsistency among clusters, in which
clusters with smaller inconsistency should always have smaller
inconsistency. Thus, the figures indicate that there is not a static
proximity-aware tree among clusters for content updates. Further,
we measure the average inconsistency of each cluster for 4
successive days as shown in Figure 11(b). Though all clusters
together have similar results, due to limitation of the plot area,
we randomly select 20 clusters to be shown in the figure. In the
figure, each marker stands for one day. From the figure, we can
see there is no static inter relationship among clusters. Since we
randomly selected the content servers geographically distributed
over the world to crawl the trace,we can infer that the clusters are
at different layers of the tree. In a multicast tree, the higher layers
of the tree should always have smaller inconsistency lengths than
the servers in the lower layers. Then, the relative differences of the
average inconsistency lengths of different clusters should remain
similar in the 4 days, which contradicts the results as shown in
Figure 11(a). Thus, it confirms that there is not proximity-aware
tree structure among the clusters.

Further, we analyze whether a tree is used to distribute the
updates between geographically close servers inside a cluster. We
randomly selected two clusters for the analysis, denoted by Clus-
ters A and B. Clusters A and B have 140 and 250 servers, respec-
tively. For each cluster, we calculated the average inconsistency
length of each server for each day and order the servers based on
the average value for 7 successive days. The server with the lowest
inconsistency length has rank 1. We randomly selected 7 servers
from each cluster, and plot each server’s rank across 7 successive
days in Figures 11(c) and 11(d) for Clusters A and B, respectively.
Recall that we use s,, to denote server n. We see that the rank of
each server varies greatly. If there is a static tree structure among
geographically close servers, the rank of each server should vary
within a limited range, which contradicts the results as shown in
the two figures. Thus, we can infer that most likely, a static tree
structure is not used to distribute the dynamic web content updates
among geographically close servers in the CDN.

3.5.2 Dynamic and Static Multicast Tree Existence

Then, we look for evidence of a multicast tree with proximity-
awareness among servers. In the trace crawling, for each content
server we continuously polled the content every 10 seconds
as in Section 3.1. Therefore, we can assume that the dynamic
multicast tree structure was unchanged during our polling. In
order to remove the effect of dynamism of tree structure, we
removed the trace of all servers with any absence. We measure
the maximum inconsistency of each server for each day in the
trace. The maximum inconsistency of servers at the second layer
in the multicast tree (the root is the content publisher) should be
upper bounded by TTL. Recall that we have derived that the TTL
for each content server as 60 seconds. If there is a multicast tree
to update the content, there are more nodes at lower layers than
at the second layer. Recall that we randomly selected the content
servers which are geographically distributed all over the world.

Content provider

Fig. 13: The major CDN’s architecture.

Therefore, we can infer that the probability that a content server
in the trace is at a certain layer of the multicast tree is proportional
to the number of content servers at that layer. Thus, our trace show
that most of servers are at higher layers. Figures 12(a) and 12(b)
show the CDF of maximum inconsistencies of all servers for Days
A and B, respectively. They show that the majority of the servers
have inconsistency less than 60 seconds, which are 76.7% and
86.9%, respectively. The same phenomenon is shown in the CDF
of maximum inconsistencies of all servers on each of the other
days in the trace. Since there are more servers with maximum
latencies less than 60 seconds, that is contradict to the existence of
a multicast tree, we can derive that there is no multicast tree among
the content servers to propagate the updates with high probability.
In all, we can infer that, when serving the dynamic contents in
the trace, a content server directly polls updates from the provider
without a multicast tree.

3.6 Summary of Trace Analytical Results

Finally, we can complement Figure 1 with the dynamic content
update method and infrastructure between the content servers and
the content provider with the analysis above. We can induce that
the CDN depends on TTL for updates using unicast infrastructure,
in which the content servers directly poll contents from the
content provider. Therefore, when the user makes a request to
the content server for content at Step 5 as shown in Figure 1,
if the content on this server is missing, the server will directly
visit the content provider using a http request for the new content
as Step 5.1 as shown in Figure 13. Then, the content will be
returned to the CDN’s server at Step 5.2. After requesting the
content, the content server will set a TTL for this live content. If
the content TTL has expired, the server must retrieve the content
from the content provider again. Thus, if there are consecutive
visits towards this content on this server, it will repeat Steps 5.1
and 5.2 for consistency maintenance. Finally, the content will be
returned to the client at Step 6 as shown in Figure 1.

From the analysis, we can see that the major CDN’s servers in-
deed have large inconsistencies for their cached dynamic contents.
Thus, the CDN cannot guarantee consistency for dynamic contents
by using unicast with TTL method. Also, a user can observe the
inconsistency of his/her viewed content due to server redirection.
The inconsistency is caused by several factors including TTL,
provider-server propagation delay, providers’ inconsistency and
bandwidth, server overload and failure. The biggest factor is the
TTL, which contributes around 75% of average inconsistency. The
other factors contribute to the inconsistency significantly less than
TTL, and they are not easy or expensive to solve. For example, the
server overload problem can be resolved by improving the capa-
bilities of current servers and links. Compared to the other factors,
improving the TTL-based consistency maintenance method is the
easiest and only way to significantly improve content consistency.
Further, the unicast infrastructure may cause congestion to the
content provider and cannot promise scalability. We may need
to deploy different infrastructure to relieve the load of central
servers and improve the scalability for a more popular content

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

~
S

—Push - 1
—‘sﬂ }nlwmr Al BN [3\4‘&4 ww’l '
/

TIL +} Invalidation | | Pysh
244 / ; i v

—Push —

T gk

| ‘ ‘l‘,” i ul’, ,q\ nm,\,w /v??v\%-”‘i ”fi"'l'" "‘\ {,,fﬁ},;r

Invqhdatlon —-TIL Invalidation —-TTL

o
—
a

v

Inconsistency (s)
~
.
Inconsistency (s)
S

TIL Invalidation Push
0 0
61 91 121 151 1 31 61 91 121 151
Index of content servers Index of end-users

9

'.,;50 —Push ————Invalidahon —=TTL :,760 —Push --Invalidation —-TTL
I | "’“““W oo (T J TN
£y m' ,t,m PRI 29 W a0 y'*‘wm.!n,.v'
i3 ,u 5{ “‘ £30 'lfll’u‘,‘ll H “’;’“"“l\‘ it f
%20 - D90 | ‘\"H
6 ' h & i vvalldatmn PUSh v
210 v, TTL Invali jianon cys 010 | | . y
£ 5 Lot e £

1 31 61 91 121 151 1 31 61 91 121 151

Index of content servers Index of end-users

(a) Content inconsistency of servers (b) Inconsistency of end-users

Fig. 14: Inconsistency in the unicast-tree infrastructure.

with frequent updates. Thus, we conduct trace-driven experiments
to evaluate the performance of different consistency maintenance
approaches in a CDN to provide guidance for selecting or design-
ing optimal consistency maintenance approaches for CDNs.

4 TRACE-DRIVEN PERFORMANCE EVALUATION

We conducted trace-driven experiments to evaluate the perfor-
mance of consistency maintenance, scalability and overhead for
different consistency maintenance infrastructures and methods in
a CDN. The experimental results shed light on the selection or
design of optimal consistency maintenance methods based on the
varying needs of CDNs.

We built our simulated CDN on PlanetLab [40]. According to
the distribution of the content servers in the CDN [4], we selected
170 PlanetLab nodes with high performance and light load mainly
in the U.S., Europe, and Asia. We chose one node in Atlanta as
the provider. We randomly selected one-day live game events on
Jun. 2nd, 2012 in our trace data as the content. It includes 306
different snapshots lasting 2 hours and 26 minutes. We regard the
time of each snapshot’s first appearance in the trace as the update
time in the provider. In each PlanetLab node, we also created five
simulated end-users browsing the content.

We evaluate three different consistency maintenance methods,
Push, Invalidation and TTL-based method (TTL in short), on two
updating infrastructures, Unicast-tree and Multicast-tree. We do
not evaluate broadcast, since CDN is a large network over various
local networks, while broadcast is only effective and efficient
inside a local network. In the multicast-tree, the provider is the
tree root and geographically close nodes (measured by inter-ping
latency) are connected to each other to form a binary tree. A larger
d in d—ary tree leads to a smaller depth of the tree. Due to the
small scale of the network, we chose d = 2 in order to empha-
size the advantages and disadvantages of multicast compared to
unicast. In the unicast-tree, the provider directly connects to all
servers in multiple unicast channels. The size of all consistency
maintenance related packages and content request packages were
set to 1KB. According to the trace, the end users poll updates
every 10s, and we call this polling time period end-user TTL. In
each experiment, the provider starts to update contents at time 60s.
Each end-user starts requesting the content from a time randomly
chosen from [0s,50s].

4.1

With the unicast-tree structure, in Push (or Invalidation), the
provider directly sends updates (or notifications) to the servers,
and in TTL, the servers poll the provider directly. With the
multicast-tree structure, in Push and Invalidation, the update (or
notification) is pushed along the tree in the top-down manner,
and in TTL, the children poll their parents in the tree in the
bottom-up manner. There are two layers of content inconsistency:
i) the inconsistency between servers and the provider, and ii) the
inconsistency between the end-users and the provider.

Inconsistency in the Unicast-Tree Infrastructure

(a) Content inconsistency of servers (b) Inconsistency of end-users

Fig. 15: Inconsistency in the multicast-tree infrastructure.

Figure 14(a) shows the average of all inconsistencies of each
content server with different update methods in the unicast-
tree infrastructure, where all servers are sorted by their in-
consistency in Push. We see the inconsistency results follow
Push<Invalidation<TTL. In Push, the provider pushes an update
to the servers upon an update occurrence, leading to the small-
est inconsistency. Its inconsistency is due to the traffic latency
including the transmission delay, the propagation delay and the
queuing delay at the output ports of the provider. In Invalidation,
a server receives notifications for outdated content but does not
request the new update until it receives a request from an end-
user. Therefore, its inconsistencies are higher than Push. Since
there are no user requests during the inconsistency time period,
these inconsistencies do not affect the consistency of the contents
received by users. In TTL, the content in a server is considered
fresh during a TTL. This is why TTL generates the largest
inconsistency, the average of which equals 5.7s, around TTL/2.

Figure 14(b) shows the largest average inconsistency of
the end-users on each PlanetLab node. We see that Push and
Invalidation produce similar inconsistencies that are lower than
that of TTL. In Push and Invalidation, the servers always supply
updated content. However, since end-users request the content
periodically, they may send requests a certain time period after
the content update, thus generating inconsistencies. This result
implies that “pushing to end-users” should be a better method to
improve the consistency of contents viewed by end-users. In TTL,
the first-layer servers have certain inconsistencies. The second-
layer content servers’ periodical polling amplifies inconsistencies
as they may not poll right after the servers’ polling. Therefore,
TTL generates larger inconsistencies than other methods. Also,
TTL’s inconsistencies of end-users are higher than those of the
servers in Figure 14(b).

4.2 Inconsistency in the Multicast-Tree Infrastructure

In this section, we measure the inconsistencies of different
methods in the multicast-tree infrastructure. Figure 15(a) shows
the average of all inconsistencies of each server with different
update methods in the multicast-tree infrastructure, where all
servers are sorted by their inconsistencies with the Push method.
It shows that the inconsistency follows Push<Invalidation<TTL
due to the same reason as in Figure 14(a). Compared to
Figure 14(a), nodes in the lower layer of the multicast tree with
the TTL method have higher inconsistencies, since higher-layer
nodes are closer to the provider and expected to receive the update
earlier. For example, an update can reach nodes in layer 1 with a
longest delay as TTL, but for nodes in layer 2, the longest delay
will be 2« TT'L. In general, a node in layer m has around m — 1
times the expected inconsistency compared to a node in layer 1.
Figure 15(b) shows the average of all inconsistencies of
each end user with different update methods in the multicast-
tree infrastructure, in which all servers are sorted by their
inconsistencies with the Push method. We see that the
inconsistencies of end-users for TTL increase compared to
those in the unicast tree because of the increased inconsistencies

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

10
_3.E+08 - - _ 2.E+08 - - _2E+08 - -
a BUnicast OMulticast o BUnicast OMulticast Lamgm 50 Median 950 o BUnicast OMulticast
% 2648 1 £ 2608 - "5525) S — PRI
g £ o ¢ 200 - . g
EZ.E+08 1 1608 2 2150 | DUnicas T LE8
0] 0 9 @400 | MMulticast 0
o 1H O 5E7 | € §1gg 7 05407
£ 5.E407 4 E e E
£ £ 000 0 £ 0E00
0.£+00 10 20 30 40 50 60 0 30 60 % 120 10 3 6 9 12
Push Invalidation TTL TIL(s) End-user TTL(S) End-user TTL (s)
Fig. 16: Consistency mainte- Fig. 17: Consistency mainte- (a) Inconsistency (b) Consistency maintenance cost
nance cost. nance cost vs. TTL of content pjo 18: Performance with varying end-user TTL in Invalidation.
servers.
3 idat 7 10000 g5k Gnvalgation ETIL 8 ot 50 e
. @ | WPush DOlnvalidation BTIL . usp, U Invalidation <@ | BPush Olnvalidation ETTL + @ | WPush Olnvalidation ETTL
¢ E o £ 10000 g ¢ 40
><6 > 2 26 22
53 52 8 5
g2 g2 1000 a5)
2ol 20 245l £hH
5o gh 100 U0 g5
" 2% £ C vc
§cl 55 10 692 5910
338 39 O¢ O¢
Lo £ 1 0 T T T T 0
1 100 500 1 100 500 170 340 510 680 850 170 340 510 680 850
Package size (KB) Package size (KB) Number of content servers Number of content servers

(a) Inconsistency in Unicast (b) Inconsistency in Multicast

Fig. 19: Scalability vs. update package size.

in the servers in the multicast tree. The other two methods in the
multicast tree have the same performance as unicast tree.

4.3 Efficiency of Consistency Maintenance

As in [41], we measure the traffic cost as km * K B for all packets
for consistency maintenance. Figure 16 shows the total traffic cost
of all update methods in both the unicast-tree and the multicast-
tree. It shows that multicast can save at least 2.8 % 107 km * K B in
traffic cost over unicast for all methods. This is because multicast
trees are proximity aware, so updates are transmitted between
proximity close nodes with short latency. In unicast, the provider
needs to communicate with all servers distributed worldwide.
The figure also shows that in both unicast and multicast, the
traffic cost follows Push<Invalidation<TTL. In the trace, the
update frequency is low. Thus, TTL wastes traffic in probing
unchanged content. Invalidation has additional notification and
polling packets compared to Push. As a result, Push generates
lower traffic costs than Invalidation and TTL.

As shown in Figure 17, the overhead of consistency
maintenance decreases as the time-to-live in the TTL method
increases in both unicast and multicast. There are two reasons
for this decrease: (a) the traffic overhead querying messages can
be saved due to the larger time interval between queries; (b)
larger time-to-live has a higher probability to skip an update.
Since increasing the TTL has the same effect while decreasing
the update frequency, it indicates that with frequent updates, TTL
can be used for applications with weak consistency requirement
to save consistency maintenance cost.

4.4 Inconsistency with Varying End-User TTL

Figure 18 shows the performance changes when TTL of cached
content of end-users is varied from 10s to 120s. This TTL is
only related to the Invalidation update methods. Thus we only
measure the performance of Invalidation in both unicast and
multicast. Figure 18(a) shows the 5%, median and 95% of average
inconsistency of all servers for each TTL. It shows that both in
unicast and multicast, the inconsistency increases as the TTL
increases. That is because with longer end-user TTL, the expected
time interval between the first content request and the invalidation
increases due to the same reason as Figure 14(a), since the

(a) Inconsistency in Unicast (b) Inconsistency in Multicast

Fig. 20: Scalability vs. network size.

time-to-live is inverse proportional to the visit frequency. As
shown in Figure 18(b), the overhead of consistency maintenance
in traffic cost decreases as time-to-live increases in both unicast
and multicast. This is because with larger end user TTLs, there
may not be visits during two updates. Thus, it saves traffic costs
by eliminating unused updates.

4.5 Infrastructure Scalability

Figure 19(a) shows the average content server inconsistency of
different update methods in unicast tree. As the update packet
size increases, the inconsistency increases due to higher traffic
load and delay. The inconsistency increase rate as packet size
increases follows Push>Invalidation>TTL. Push has the fastest
inconsistency increase, because the provider needs to transmit
updates to all servers upon updating. Larger update packages
could cause congestion in the provider’s uplink, which greatly
increases the traffic latency of update packages. In Invalidation,
the provider only sends a notification package to servers; thus, it
is less likely to be overloaded. TTL generates the smallest increase
rate because content servers’ update requests are scattered in [0,
TTL] after the updating time. Thus, the provider is much less
likely to be overloaded. Figure 19(b) shows the average content
server inconsistency of different update methods in multicast tree.
It shows the same trend as in Figure 19(a) due to the same reasons.
Comparing the two figures, we notice that the inconsistency
increment of each method in multicast is smaller than that in
unicast. The packet queuing delay is proportional to the package
size and the number of children in the tree for pushing/responding
to updates. Since a node has two children in multicast but has 170
children in unicast, the inconsistency in unicast increases much
more rapidly than in multicast as packet size increases.

Figure 20(a) shows the average server inconsistency of differ-
ent update methods in unicast tree for different network sizes.
The inconsistency increases as the number of servers grows
because more servers generate higher network load to the provider
for transmitting updates. As the number of servers grows, the
inconsistency increase rate follows Push>Invalidation>TTL due
to similar reasons as in Figure 19(a). The content server incon-
sistency is stable in the TTL-based method, but it increases in
Push and Invalidation as the number of content servers increases.

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

The result indicates the high scalability of the TTL-based method
when the network load is high.

Figure 20(b) shows the average server inconsistency of differ-
ent update methods in multicast tree, where inconsistency in TTL
is less than 0.14s. It is intriguing to see that TTL has the fastest
increment; this occurs because larger network sizes increase the
depth of the multicast tree, and the inconsistency is proportional
to the depth of tree with an amplification factor in [0,TTL].

4.6 Summary of Trace-Driven Experimental Results

We summarize our experimental results below, which can provide
guidance for selecting or designing a CDN update approach.

e Push provides better consistency on content servers than other
methods in a small-scale network. However, its performance
deteriorates rapidly in a large-scale network with heavy traffic
burden.

e From the end user perspective, Invalidation can supply similar
consistency guarantees as Push. It can also reduce traffic costs
with infrequent visits from end users on frequently updated
contents. However, for frequently updated contents, it introduces
heavy network burden by transmitting the additional invalidation
notifications.

e The TTL-based method can supply a weak consistency with in-
consistency no larger than its TTL. It should have better scalability
than the other two methods by releasing update transmission load
of the content provider. However, it may waste unnecessary traffic
costs on contents with infrequent updates.

e The proximity-aware multicast tree infrastructure can save more
traffic costs and support better scalability than the unicast-tree
infrastructure. However, it introduces much more inconsistency
into the TTL-based method.

Given the varying performance of update methods, application
developers can choose an update method based on their needs. For
example, applications that require high consistency such as stock,
e-commerce and live game webpages can use Push and unicast-
tree infrastructure, while some applications that can tolerate small
periods of inconsistency but need to avoid heavy overhead can
use Invalidation or TTL-based methods depending on their degree
of tolerance. For further network traffic reduction, the proximity-
aware multicast tree infrastructure can be used. According to
measurements, no single update method or an infrastructure sup-
ports both scalability and consistency in all scenarios. However,
a combination of different methods with different infrastructures
could work. New APIs may be needed to probe visit and update
frequency of live contents, with which we can infer the changes of
the scale of interested users. Additionally, considering customized
requirements such as consistency, a self-adapting strategy could
switch between update methods and infrastructures to find an
optimal combination.

5 A SELF-ADAPTIVE UPDATE METHOD ON A HY-
BRID INFRASTRUCTURE

From the conclusion of our experimental results, there is no single
update method or a single infrastructure that can achieve both high
scalability and high consistency simultaneously in all scenarios.
Different update methods and infrastructures are suitable for dif-
ferent scenarios. We can use a self-adapting strategy that switches
between the update methods and infrastructures to adaptively meet
the specific features of a scenario.

Based on this guidance, in this section we propose a hybrid
and self-adaptive update system that builds a hybrid update in-
frastructure and adaptively uses different update methods on the
infrastructure. As a showcase, we consider the complex scenarios
in our self-crawled trace on the major CDN. In the trace, the live
game statistics have frequent updates during some time (during the
match), and maintain silence for a long time (during the breaks).

11

This update pattern has been found in other web applications,
such as online social networks. In an online social network, the
user data tends to be accessed heavily immediately after a post’s
creation, and the following comments for the post update the
user data frequently, and then are rarely accessed without any
updates [42], [43]. In this pattern, there are frequent updates due to
a big event and subsequent update silence. Thus, for this complex
scenario, the current update method using TTL based on unicast
is not appropriate.

In the following, we first introduce our proposed self-adaptive
update method that adaptively switches between the TTL and the
Invalidation methods. We then introduce our proposed hybrid up-
date infrastructure that uses both unicast and multicast. Finally, we
demonstrate the outperformance of our hybrid and self-adaptive
system compared to single update methods in achieving both high
consistency and high scalability.

5.1 Self-Adaptive Update Method

In this section, we assume that inconsistency between the content
provider and content servers is tolerable. Considering the much
more frequent updates during the match, TTL is more appropriate
than the other two methods, since it is scalable and can save
the number of messages by aggregating the update messages
within each TTL together. However, during the breaks, TTL is
less appropriate than other update methods, since it generates
unnecessary traffic. Therefore, in order to reduce the network load,
we can use a self-adaptive update method that adaptively uses TTL
or another update method when the update frequency becomes
high or low.

Algorithm 1: Algorithm for the self-adaptive update.

1 Procedure Main()
L TTL_based_update () ;

3 Procedure TTL_based_update()
4 do

5 Sleep for TTL;
6

7

8

(5]

Poll the update;
while 3 an update;
Invalidation_based_update () ;

o

Procedure Invalidation_based_update()

10 Wait (an invalidation);

11 Wait (a visit);

12 Poll update and Notify switch from Invalidation to TTL;
13 TTL_based_update () ;

As a showcase of the self-adaptive update methods, we pro-
pose a simple method combining TTL with Invalidation. Com-
pared to Push, the Invalidation may save more network load at
the initial after an update silence, since there may not be a visit
on a content server immediately after this update, the content
provider can aggregate several updates together at the beginning
of each match together until the first visit and send to the content
server. Additionally, the first visits on different CDN serves may
be different. If we switch to TTL after the first polling under
Invalidation, different content servers may have different time to
poll the contents periodically. The poll time diversity can avoid
the congestions of the content provider. Accordingly, if we switch
to TTL after the first push, the polling time of content servers
are almost the same, which causes the Incast problem. In the
Incast problem, a large number of data queries towards the content
provider within a short time can easily overload it.

Our self-adaptive update method combines TTL and Invalida-
tion. As shown in Algorithm 1, at the beginning, each content
server first uses TTL to poll the update (Line 2). If there is

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

no update during a TTL, the content server switches its update
method to Invalidation and notifies the content provider (Line
8); otherwise, the content server polls the update after each TTL
(Lines 4-7). The content provider maintains two types of update
methods: the passive method based on TTL and the active method
based on Invalidation. For the active method, the content provider
needs to record all content servers using Invalidation. After a
content server switches to the Invalidation method, it will not
switch back to TTL until it first polls the update from the content
provider. The first poll (Line 12) is generated after it receives
the invalidation notification from the content provider, and there
is a content query from client after this notification (Lines 10-
11). Meanwhile, it needs to notify the content provider for the
switching (Line 12), and then switches back to TTL (Line 13).
The switching between TTL and Invalidation saves the number of
update polling messages using the TTL while silence, and saves
the frequent invalidation notification messages and aggregates the
number of updates during a TTL together to reduce the number of
update messages.

As indicated previously, the adaptive TTL methods [6], [8],
[9], [18], [22], [24] may reduce traffic costs as well as support
stronger consistency. Adaptive TTL requires that the update rate is
predictable; otherwise, it is not effective in achieving consistency
or scalability. However, the modification behavior of content is
not necessarily regular, making consistency guarantees difficult.
For example, a large TTL will be reduced when an update occurs
much earlier than expected. If all subsequent updates occur at
much longer intervals, periodic polling will occur unnecessarily.
Our self-adaptive update method can avoid this problem. When
there is no update in a poll, the content server will use the
Invalidation update method. Then, it will not switch back to TTL
until it first polls the update from the content provider after it
receives invalidation message. Therefore, our method can be more
adaptive to the update rate change.

5.2 Hybrid Update Infrastructure

Since some live matches are watched worldwide, we can assume
that live statistics are also required by worldwide clients. There-
fore, the contents will be distributed to the CDN’s worldwide
surrogate servers near the network edge. Using the current TTL
method under unicast infrastructure, there are content servers far
away polling the contents from the content provider. Plenty of
updates to the content servers far away from the content provider
will cause a heavy network load to the passed-through ISPs.
In order to save network load, we can propagate the update
to several supernodes, and let the supernodes to be responsible
for the update polling of content servers nearby. Therefore, we
need to group content servers together into clusters according to
their geographical locations or their real cluster affiliation in the
CDN. The CDN operator can know every server’s location and
affiliations. We first group users according to their affiliations,
and then we group users according to their geographical locations
based on [39]. In [39], the Hilbert curve [44] is used to convert
two dimensions (longitude and latitude) to real numbers, named
Hilbert numbers. Since physical close nodes will have similar
Hilbert numbers, they group content servers based on the Hilbert
number. For each group, there is a supernode, which is responsible
for responding to update polling from servers in the same cluster.
In order to save the network load of the supernode, all other servers
adopt the self-adaptive update method.

To propagate updates to the supernodes from the content
provider, the TTL update method may not be appropriate. Since
the super nodes and other content servers form a multicast tree
using TTL. As shown in Figure 15(a), the servers at the lower layer
have much larger inconsistency, leading to twice the inconsistency.
Therefore, we choose Push to actively propagate the updates to

12

Hybrid infrastructure
Content provider

Self-adaptive update i
Supernode

-

ina

z
a

TTL

Invalidation

N,

Fig. 21: The hybrid and self-adaptive update method.

the supernodes in time, without enlarging the inconsistency much
more. However, the Push method under unicast does not scale well
as shown in Figure 14(a). Therefore, we switch the infrastructure
to multicast tree, with the content provider as the root. In order
to save network load, we build a proximity aware k-ary multicast
tree. Newly-joined supernodes or supernodes having lost parents
choose the nearest supernode that has fewer than k children as its
parent in the tree.

In summary, we build our hybrid infrastructure using both
unicast and multicast, and combine all update methods including
Push, Invalidation and TTL in order to propagate the updates in a
network load efficient and scalable manner as shown in Figure 21.
The content provider sends the updates to the supernodes in
each cluster using Push. Inside each cluster, the content servers
depend on the self-adaptive methods to get the updates. In this
way, the content provider does not need to maintain two update
methods, which simplify the CDN customer’s functionality. The
supernode instead plays the functionality as the content provider
in Section 5.1.

5.3 Performance Measurement

In this section, we verify the effectiveness of our proposed simple
hybrid and self-adaptive method in saving the network load under
the scenario in the trace. We use the same settings in Section 4.
We clustered the PlanetLab nodes into 20 clusters according to
their locality. In order to test at a large scale, each PlanetLab
node simulates 5 content servers, and each content server has
five observers. The supernode is randomly chosen from the node
in the cluster, and all supernodes form a 4-ary tree. Unless
specified, the TTL of the content servers is set to 60s, and the
TTL for the observer is set to 10s. We use HAT to represent our
Hybrid and self-AdapTive method. We also compare our method
with Push, Invalidation and TTL under unicast, the self-adaptive
update method under unicast (denoted by Self), and our Hybrid
update infrastructure using TTL update method inside each cluster
(denoted by Hybrid).

The size of an update message is usually much larger than
the size of other messages, termed light messages and including
update polling messages, invalidation messages and structure
maintenance messages. Therefore, we use the number of update
messages to indicate the network load including the polling
responses and update messages. Figure 22(a) measures the total
number of update messages to the content servers versus the
TTL of end users. It shows that the number of update messages
follows Push>Invalidation>Hybrid~TTL>HAT >Self. Since the
update rate is much larger than the content server’s TTL, Push
has many more messages than the methods using TTL, including
Hybrid, TTL, HAT and Self. Also, Invalidation can skip some
update messages to a content server, if between the update and its
successors there are no visits on this content server. Therefore,
Push has the largest number of update messages. Since there
are five end-users on each content server, the visit frequency on
a content server is high enough to have a visit between each
update and its succeed update with high probability. Therefore,
Invalidation skips very few messages compared to TTL, and

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

13

--Push lnvalidation 4-TTL --Push Hlnvalidation #-TTL

*-Self ~+Hybrid ©-HAT *-Self —+Hybrid ©-HAT
3.E+05 6 1.E+06

Qo 3E05 | B—E=E—R—g—0 | | £

3w 26405 1 £ 0 LEHS |

2 & 26405 3«

« O LE+05 1 5 o LE+04 -

SESEM g9 o o o 9|50
0.E400 F Q1R ee—t—b—0

10 20 30 40 50 60 £ 10 20 30 40 50 60
End-user TTL (s) Content server TTL (s)

(a) Number of update responses (b) Number of update responses from

the content provider

Fig. 22: Performance of update message saving.

generates many more messages than the TTL based methods.
The figure also shows that the number of update messages in
Invalidation decreases while the end-user TTL increases. Also,
the visit frequency decreases while the end-user TTL increases,
leading to a lower probability that there is a visit after each update.
TTL and Hybrid generate similar number of messages, since the
majority of servers in both methods use TTL. The Self and HAT
methods use the self-adaptive update method, switching between
TTL and Invalidation to save update messages in both frequent
update and rare update scenarios. Therefore, they generate fewer
messages than TTL and Hybrid. The Self method generates fewer
messages than HAT, because HAT uses Push to send updates to
supernodes, leading to more update messages. However, as Self
does not consider proximity, it generates much more network
load than HAT. The figure indicates that HAT generates nearly
the smallest number of messages in order to save network load.

We further measure the network load of the content provider
in order to show HAT’s effectiveness in saving the network load
of content provider to improve scalability. Figure 22(b) shows
the number of update messages from the content provider versus
the TTL of content provider. In Push, Invalidation, TTL and
Self, all updates are from the content provider directly. Thus, the
figure shows the same orders among these methods as shown in
Figure 22(a) due to the same reason, when the content server
TTL equals to 60s. Since the Hybrid and HAT methods both use
the multicast infrastructure for content provider to disseminate
the updates, only the four content servers at the second layer in
the tree receive updates from the content provider directly. There,
they generate the lightest network load for the content provider.
It also shows that TTL and Self generate more update messages
while the TTL decreases, that is because shorter TTL leads to
larger content polling frequency and get more update messages.
The figure indicates that HAT generates the smallest network load
for the content provider.

We then measure the network load by considering the total
transmission distance of update messages in kilometers. Figure 23
shows the network load of all systems for update messages and
light messages, respectively. It shows a similar order among
all methods as in Figure 22(a), since more messages lead to
larger network load. Different from Figure 22(a), it shows that
Hybrid generates much smaller network load for update messages
than TTL by considering locality. Therefore, Hybrid generates a
similar update network load as Self, despite generating many more
messages. It also shows that HAT generates the lightest update
network load since it generates very few update messages with
locality awareness. Also, all Invalidation or TTL based methods
generate almost the same number of light messages as of the up-
date messages due to the update polling. Considering all network
load together, HAT still generates the lightest network load. The
figure indicates that HAT successfully saves more network load
than other methods by reducing the number of update messages
and propagating updates with locality awareness.

We then measure the user observed inconsistency as shown

+TIL
©-HAT

HInvalidation
~+Hybrid

W Update message ~-Push
1.00E+09
8.00E+08 -
6.00E+08
4,00E408 -
2.00E+08 -

0.00E+00

[DLight message

X
&
e

Network load (km)

% of inconsistency
observations

O &

g «
J& S
End-user TTL (s)

Fig. 23: Consistency mainte- Fig. 24: % of inconsistency ob-
nance network load (km). servations.

in Figure 24. The percentage of inconsistency observations is
calculated by the number of observations receiving content older
than current content from all users divided by the total number
of observations. We evaluate the performance under a scenario in
which a user switches to another content server for every succes-
sive visit. It shows that percentage of inconsistency observations
follows TTL~Hybrid>HAT >Self>Push~Invalidation~0. Since
Push and Invalidation do introduce a very small inconsistency to
the content servers, the users hardly observe any inconsistency.
Therefore, they generate fewer inconsistency observations than
other methods based on TTL. We can observe that all TTL meth-
ods generate fewer inconsistency observations while the end-user
TTL increases. Because with a longer end-user TTL approximate
to the content server’s TTL, there is a higher probability that
the server switched to will have the latest content. We can also
say that the self-adaptive update method has fewer inconsistency
observations than the other methods based directly on TTL. This
is because after each update silence, the first visit on each content
server is expected to arrive in a short time than the end-user
TTL. Therefore, all content servers start the TTL update method
within a shorter period, leading to less inconsistency between
each other. Thus, users have lower probability to observe an
inconsistency. The figure indicates that HAT improves the user
observed inconsistency compared to other methods based on TTL.

6 CONCLUSIONS

In this paper, we analyzed our crawled trace data of cached sports
game content on thousands of servers in a major CDN. From
our analysis, we noted that the inconsistency problem does exist
in the CDN. From the analysis, we not only comprehensively
evaluated the inconsistency of dynamic contents among the CDN’s
servers, but also broke down the reasons for inconsistency among
end-users. We then verified that the CDN adopts unicast as
the infrastructure, which may introduce too much network load.
Finally we evaluated the performance in consistency and overhead
for different infrastructures with different update methods and
itemized the advantages and disadvantages. Based on the evalu-
ation, we further proposed our hybrid and self-adaptive method
to save network load under the scenario in the trace, and use
trace-drive experiments to validate its effectiveness. In this paper,
we aim to give guidance of appropriate selections of consistency
maintenance infrastructures and methods when building a CDN
or choosing a CDN service. In our future work, we will study
a more generic hybrid and self-adaptive consistency maintenance
method that can change the update method and infrastructure by
considering more factors, such as varying visit frequencies and
consistency requirements from customers.

REFERENCES
(1]
[2]

D. Rayburn. CDN Market Getting Crowded: Now Tracking 28 Providers
In The Industry. Business of Online Video Blog, 2007.
Akamai. http://www.akamai.com/.

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

(3]

(4]
(5]
(6]
(71

(8]
[9]

[10]
(11]
[12]

[13]

[14]
[15]
[16]
(171
(18]
[19]
[20]

[21]
[22]
(23]

(24]
[25]
[26]

[27]

[28]

[29]

[30]
(31]
[32]

[33]

[34]

[35]
[36]

[37]

10.1109/TPDS.2015.2479222, |EEE Transactions on Parallel and Distributed Systems

M. Zhao, P. Aditya, Y. Lin, A. Harberlen, P. Druschel, W. Wishon, and
B. Maggs. A First Look at a Commercial Hybrid Content Delivery Sys-
tem. http://research.microsoft.com/apps/video/default.aspx?id=154911.
C. Huang, A. Wang, J. Li, and K. W. Ross. Measuring and Evaluating
Large-Scale CDNs. In Proc. of IMC, 2008.

G. Pallis and A. Vakali. Insight and Perspectives for Content Delivery
Networks. Communications of the ACM, 2006.

Z. Fei. A novel approach to managing consistency in content distribution
networks. In Proc. of WCW, 2001.

P. Cao and C. Liu. Maintaining Strong Cache Consistency in the World-
Wide Web. In Proc. of the Seventeenth International Conference on
Distributed Computing Systems, 1997.

X. Tang, J. Xu, and W. Lee. Analysis of TTL-Based Consistency in
Unstructured Peer-to-Peer Networks. IEEE TPDS, 2008.

Z. Wang, S. K. Das, H. Che, and M. Kumar. A Scalable Asynchronous
Cache Consistency Scheme (SACCS) for Mobile Environments. /EEE
TPDS, 2004.

J. Lan, X. Liu, P. Shenoy, and K. Ramamritham. Consistency Mainte-
nance in Peer-to-Peer File Sharing Networks. In Proc. of WIAPP, 2003.
A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable,
Replicated Peer-to-Peer Systems. In Proc. of ICDCS, 2003.

1. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. In Proc. of the
International Workshop on Design Issues in Anonymity and Unobserv-
ability, 2001.

A. Ninan, P. Kulkarnil, P. Shenoy, K. Ramamritham, and R. Tewari.
Cooperative Leases: Scalable Consistency Maintenance in Content Dis-
tribution Networks. In Proc. of WWW, 2002.

M. Roussopoulos and M. Baker. CUP: Controlled Update Propagation in
Peer to Peer Networks. In Proc. of USENIX, 2003.

L. Yin and G. Cao. Ynamic-Tree Based Update Propagation in Peer-to-
Peer Networks. In Proc. of ICDE, 2005.

X. Chen, S. Ren, H. Wang, and X. Zhang. SCOPE: Scalable Consistency
Maintenance in Structured P2P Systems. In Proc. of INFOCOM, 2005.
Z. Li, G. Xie, and Z. Li. Locality-Aware Consistency Maintenance for
Heterogeneous P2P Systems. In Proc. of IPDPS, 2007.

H. Shen. GeWave: Geographically-Aware Wave for File Consistency
Maintenance in P2P Systems. In Proc. of ICPP, 2008.

X. Tang, H. Chi, and S. T. Chanson. Optimal Replica Placement under
TTL-Based Consistency. IEEE TPDS, 2007.

Z. Feng, M. Xu, Y. Wang, and Q. Li. An Architecture for Cache
Consistency Support in Information Centric Networking. In Proc. of
GLOBECOM, 2013.

V. Cate. Alex: A Global File System. In Proc. of the USENIX File System
Workshop, 1992.

H. Shen. IRM: Integrated File Replication and Consistency Maintenance
in P2P Systems. TPDS, 2010.

H. Shen and G. Liu. A Geographically Aware Poll-Based Distributed
File Consistency Maintenance Method for P2P Systems. [EEE Trans.
PFarallel Distrib. Syst., 2013.

C. Chen, S.Matsumoto, and A. Perrig. ECO-DNS: Expected Consistency
Optimization for DNS. In Proc. of ICDCS, 2015.

N. Diegues and P. Romano. STI-BT: A Scalable Transactional Index. In
Proc. of ICDCS, 2014.

P. Shang, S. Sehrish, and J. Wang. TRAID: Exploiting Temporal
Redundancy and Spatial Redundancy to Boost Transaction Processing
Systems Performance. IEEE TC, 2012.

E. Nygren, R. K. Sitaraman, and J. Sun.
A Platform for High-Performance Internet Applications.
SIGOPS, 2010.

A. Thomson and D. J. Abadi. CalvinFS: Consistent WAN Replication
and Scalable Metadata Management for Distributed File Systems. In
Proc. of FAST, 2015.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger
Semantics for Low-Latency Geo-Replicated Storage. In Proc. of NSDI,
2013.

H. Abu-Libdeh, R. Renesse, and Y. Vigfusson. Leveraging Sharding in
the Design of Scalable Replication Protocols. In Proc. of SoCC, 2013.
X. Tang and S. Zhou. Update Scheduling for Improving Consistency in
Distributed Virtual Environments. TPDS, 2010.

S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues. When Scal-
ability Meets Consistency: Genuine Multiversion Update-Serializable
Partial Data Replication. In Proc. of ICDCS, 2012.

J. Xiong, Y. Hu, G. Li, R. Tang, and Z. Fan. Metadata Distribution and
Consistency Techniques for Large-Scale Cluster File Systems. TPDS,
2011.

T. Distler and R. Kapitza. Optimal Algorithms and Approximation
Algorithms for Replica Placement with Distance Constraints in Tree
Networks. In Proc. of EuroSys, 2011.

X. A. Dimitropoulos, P. Hurley, A. Kind, and M. Ph. Stoecklin. On the
95-percentile billing method. In PAM, 2009.

Best Practices when Developing with
http://http://seabourneinc.com/2011/04/28/best-practices-when-
developing-with-akamai/.

Iplocation. http://www.iplocation.net/.

The Akamai Network:
In Proc. of

Akamai.

14

[38] V. Valancius, C. Lumezanu, N. Feamster, R. Johari, and V. V. Vazirani.
How Many Tiers?: Pricing in the Internet Transit Market. In Proc. of
SIGCOMM, 2011.

H. Shen and G. Liu. A Lightweight and Cooperative Multifactor
Considered File Replication Method in Structured P2P Systems. /EEE
Trans. Computer, 2013.

PlanetLab. http://www.planet-lab.org/.

M. P. Wittie, V. Pejovic, L. B. Deek, K. C. Almeroth, and Y. B. Zhao.
Exploiting Locality of Interest in Online Social Networks. In Proc. of
ACM CoNEXT, 2010.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani. TAO: Facebooks Distributed
Data Store for the Social Graph. In Proc. of ATC, 2013.

D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a Needle
in Haystack: Facebook’s Photo Storage. In Proc. of OSDI, 2010.

Z. Xu, M. Mahalingam, and M. Karlsson. Turning heterogeneity into an
advantage in overlay routing. In Proc. of INFOCOM, 2003.

(391

[40]
[41]

[42]

[43]

[44]

Guoxin Liu received the BS degree in BeiHang
University 2006, and the MS degree in Insti-
tute of Software, Chinese Academy of Sciences
2009. He is currently a Ph.D. student in the De-
partment of Electrical and Computer Engineer-
ing of Clemson University. His research interests
include distributed networks, with an emphasis
on Peer-to-Peer, data center and online social
networks. He is a student member of IEEE.

Haiying Shen received the BS degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Associate Professor in the
ECE Department at Clemson University. Her
research interests include distributed computer
systems and computer networks with an empha-
sis on P2P and content delivery networks, mo-
bile computing, wireless sensor networks, and
grid and cloud computing. She was the Program Co-Chair for a number
of international conferences and member of the Program Committees of
many leading conferences. She is a Microsoft Faculty Fellow of 2010, a
senior member of the IEEE and a member of the ACM.

Harrison Chandler received his BS degree in
Computer Engineering from Clemson Univer-
sity in 2012. He is currently a Ph.D. student in
the Department of Electrical Engineering and
Computer Science at University of Michigan. His
research interests include embedded and dis-
tributed systems.

Jin Li received the PhD (with honor) degree from
Tsinghua University in 1994. After brief stints
at USC and Sharp Labs, he joined Microsoft
Research in 1999, first as one of the founding
members of Microsoft Research Asia, and then
moved to Microsoft Research (Redmond, WA) in
2001. From 2000, he has served as an affiliated
professor in Tsinghua University. He manages
the Compression, Communication and Storage
group. Blending theory and system, he excels
at interdisciplinary research, and is dedicated to
advance communication and information theory and apply it to practical
system building. He is a research manager and principal researcher
at Microsoft Research, Redmond, Washington. His invention has been
integrated into many Microsoft products. Recently, he and his group
members have made key contributions to Microsoft product line (e.g.,
RemoteFX for WAN in Windows 8, Primary Data Deduplication in Win-
dows Server 2012, and Local Reconstruction Coding in Windows Azure
Storage), that leads to commercial impact in the order of hundreds of
millions of dollars. He was the recipient of Young Investigator Award from
Visual Communication and Image Processing98 (VCIP) in 1998, ICME
2009 Best Paper Award, and USENIX ATC 2012 Best Paper Award.
He is/was the associate editor/guest editor of the IEEE Transaction
on Multimedia, Journal of Selected Area of Communication, Journal of
Visual Communication and Image Representation, P2P networking and
applications, and Journal of Communications. He was the general chair
of PV2009, the lead program chair of ICME 2011, and the technical
program chair of CCNC 2013. He is a fellow of the IEEE.

1045-9219 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

