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Abstract—In peer-to-peer file sharing systems, file replication helps to avoid overloading file owners and improve file query efficiency.
There exists a tradeoff between minimizing the number of replicas (i.e., replication overhead) and maximizing the replica hit rate (which
reduces file querying latency). More replicas lead to increased replication overhead and higher replica hit rates and vice versa. An
ideal replication method should generate a low overhead burden to the system while providing low query latency to the users. However,
previous replication methods either achieve high hit rates at the cost of many replicas or produce low hit rates. To reduce replicas while
guaranteeing high hit rate, this paper presents SWARM, a file replication mechanism based on swarm intelligence. Recognizing the
power of collective behaviors, SWARM identifies node swarms with common node interests and close proximity. Unlike most earlier
methods, SWARM determines the placement of a file replica based on the accumulated query rates of nodes in a swarm rather than a
single node. Replicas are shared by the nodes in a swarm, leading to fewer replicas and high querying efficiency. In addition, SWARM
has a novel consistency maintenance algorithm that propagates an update message between proximity-close nodes in a tree fashion
from the top to the bottom. Experimental results from the real-world PlanetLab testbed and the PeerSim simulator demonstrate the
effectiveness of the SWARM mechanism in comparison with other file replication and consistency maintenance methods. SWARM
can reduce querying latency by 40%-58%, reduce the number of replicas by 39%-76%, and achieves more than 84% higher hit
rates compared to previous methods. It also can reduce the consistency maintenance overhead by 49%- 99% compared to previous
consistency maintenance methods.
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1 INTRODUCTION

Over the past years, the immense popularity of the
Internet has produced a significant stimulus to peer-to-
peer (P2P) networks. One of the most popular applica-
tions of P2P networks is file sharing such as BitTorrent,
Morpheus, eDonkey and Gnutella. P2P file sharing is a
system of sharing files directly between network users,
without the assistance or interference of a central server.
The total traffic on the BitTorrent P2P file sharing ap-
plication has increased by 12%, driven by 25% increases
in per-peer hourly download volume [1] in 2010; during
peak hours, BitTorrent accounted for more than a third
of all upload traffic [2] in 2012. According to the Cisco’s
network traffic measurement and forecast [3], the P2P
file sharing applications account for 83.5% of total file
sharing traffic, and will still account for 60.3% of total file
sharing traffic in 2018. In a P2P file sharing system, if a
node receives a large volume of requests for a file at one
time, it becomes a hot spot, leading to delayed responses.

File replication is an effective strategy to manage the
problem of overload due to hot files. Distributing the
load by replicating hot files to other nodes improves
file query efficiency by reducing query latency. There
exists a tradeoff between minimizing the number of
replicas (i.e., replication overhead) and maximizing the
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replica hit rate (i.e., file querying latency). More replicas
lead to higher replication overhead and higher replica
hit rates and vice versa. An ideal replication method
should generate a low overhead to the system while
providing low query latency to users. However, previous
file replication methods either achieve high hit rates at
the cost of many replicas or produce low hit rates with
fewer replicas. Specifically, previous replication methods
can be organized into four classes denoted by Random,
ServerEnd, Path and ClientEnd. Random, such as [4], repli-
cates files to randomly selected nodes. ServerEnd, such
as [5, 6] replicates a file into nodes close to its file owner
on the P2P overlay. Path, such as [7–9] replicates a file
along its query path. In Random, ServerEnd and Path, a
file query still needs to travel until it encounters the
file owner or a replica node. Random and Path may also
lead to high overhead due to a large number of replicas,
some of which may not be fully utilized. Recently, we
proposed Efficient and Adaptive Decentralized file repli-
cation algorithm (EAD) [10], an improved Path method.
The query traffic hubs of a file are the nodes where many
query paths of this file intersect at. EAD selects the query
traffic hubs and frequent requesters of a file as its replica
nodes in order to increase hit rate while limit the number
of replicas. ClientEnd, such as [11], replicates a file into
the nodes of frequent requesters, so they can access the
file directly without query routing. However, ClientEnd
cannot ensure high hit rates since other requesters’
queries have low probabilities of passing the frequent
requesters. Furthermore, ServerEnd, Path, ClientEnd and
Random cannot guarantee that a file query will encounter
a replica node of the file.

To provide this guarantee while constraining the num-
ber of replicas (i.e., replication overhead), this paper
presents SWARM, a file replication mechanism based on
swarm intelligence. Swarm intelligence is the property
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of a system whereby the collective behaviors of agents
cause coherent functional global patterns [12]. Recogniz-
ing the power of collective behaviors, SWARM identifies
node swarms with common interests and close proxim-
ity. Common-interest swarms further form into a colony.
Unlike previous methods that replicate a file according
to the query rate of a single requester, SWARM replicates
a file according to the accumulated query rates of nodes
in a swarm and enables the replica be shared among
the swarm nodes. Without spreading replicas all over
the network and enabling replicas to be shared among
common-interest nodes in close proximity, file replicas
are significantly reduced and fully utilized while im-
proving query efficiency. More importantly, most previ-
ous methods replicate files in the nodes that increase the
likelihood but cannot guarantee that a query encounters
a replica node. In SWARM, nodes can easily determine
the locations of replica nodes to actively query files.

In addition, SWARM has a novel algorithm for consis-
tency maintenance. Most consistency maintenance meth-
ods update files by relying on structures [7, 8, 13–15] or
message spreading [16, 17]. A structure-based method
builds all replica nodes into a structure and spreads
the updates through it. Structure-based methods do not
waste resources since non-replica nodes do not receive
update messages, but structure maintenance generates
high overhead. A message spreading method propagates
updates based on either broadcast or multicast schemes.
In message spreading methods, there is no structure
maintenance overhead, but more overhead is needed for
propagation, and some non-replica nodes may receive
update messages. In addition, the methods cannot guar-
antee that all replica nodes receive updates. The propa-
gation tree proposed in [14] for consistency maintenance
is a traditional d-nary tree without taking proximity into
account. SWARM consistency maintenance is novel in
that it dynamically builds a locality-aware balanced d-
nary tree with all replica nodes that does not need to be
maintained and enables message propagation between
nodes with close proximity in a tree fashion from the
top to the bottom, thus enhancing the efficiency of
consistency maintenance.

We summarize the contributions of this paper below.
• A structure construction method that efficiently

builds node swarms, and a structure maintenance
mechanism. It is proved that the number of mes-
sages for the construction of swarms is bounded.

• A file replication algorithm that conducts replica-
tions based on the constructed swarm structure.

• A file query algorithm that takes advantage of
replicas to improve file query efficiency. It is
proved that file query latency remains bounded.

• A file consistency maintenance algorithm based
on the constructed swarm structure. It allows
messages to be propagated between nodes with
close proximity in a tree fashion without the need
for tree construction and maintenance.

• Comprehensive PlanetLab and simulation
experiments demonstrate the superior performance
of SWARM in comparison with other file replication
and consistency maintenance methods.

Our experimental results show that SWARM can re-
duce query latency by 40%-58%, reduce the number
of replicas by 39%-76% and achieve more than 84%
higher hit rates compared to previous methods. It also

can reduce consistency maintenance overhead by 49%-
99% compared to previous consistency maintenance
methods. In this paper, we explain the SWARM mech-
anism within the environment of structured P2P (i.e.
Distributed Hash Table (DHT)) systems, though it can
also be applied to unstructured P2P systems. The con-
ference version of this work [18] introduces the basic
idea of SWARM file replication. This version provides
the structure maintenance mechanism and consistency
maintenance mechanism of SWARM, and also presents
comprehensive experimental results from simulations
and PlanetLab.

The rest of this paper is structured as follows. Sec-
tion 2 presents a concise review of representative ap-
proaches for file replication, consistency maintenance,
and node clustering in P2P networks. Section 3 presents
an overview of the SWARM mechanism. Section 4 de-
scribes the construction and maintenance of the SWARM
structure. Section 5 details the swarm-based file repli-
cation and querying algorithms. Section 6 presents the
swarm-based consistency maintenance algorithm. Sec-
tions 7 and 8 show the performance of SWARM in
comparison to other methods with a variety of metrics
in PlanetLab and the PeerSim simulator, respectively.
Section 9 concludes this paper with remarks on possible
future work.

2 RELATED WORK
Previous file replication methods can generally be orga-
nized into four categories: Random, ServerEnd, ClientEnd
and Path. In the Random category, Chen et al. [4] pro-
posed BloomCast, which replicates file items uniformly
across a P2P network by randomly selecting nodes in
which to replicate files. It guarantees a search success
rate under a bounded query communication cost. In the
ServerEnd category, RelaxDHT [5] replicates each file into
a set number of nodes whose IDs match most closely to
the file owner’s ID. Beehive [6] replicates an object into
nodes i hops prior to the server in the lookup path and
determines a file’s replication degree based on its popu-
larity. In the ClientEnd category, LAR [11] replicates hot
files into the file requester nodes. In the Path category,
CUP [7], DUP [8] and Freenet [9] perform caching along
the query path. EAD [10] enhances the utilization of
file replicas by selecting query traffic hubs and frequent
requesters as replica nodes. Cooperative multi-factOr
considered file Replication Protocol (CORP) [19] takes
into account multiple factors including file popularity
and update rate to minimize the replication cost. The
works in [20–22] studied the relationship between the
number of replicas and the system performance such
as successful queries and bandwidth consumption. As a
ClientEnd method, SWARM considers the total requests
of different groups of clients to determine the locations
of replicating files to achieve high query efficiency with
fewer replicas.

Along with file replication, numerous file consis-
tency maintenance methods have been proposed. They
generally can be classified into two categories: struc-
ture based [7, 8, 13–15, 23–26] and message spreading
based [16]. CUP [7] and DUP [8] propagate updates
along a routing path. SCOPE [13] constructs a tree for
update propagation. Li et al. [14] proposed building
a two-tiered update message propagation tree (UMPT)
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dynamically for propagating update messages, in which
a node in the lower layer attaches to a node in the
upper layer with close proximity. Hu et al. [15] pre-
sented a tree-like framework for balanced consistency
maintenance (BCoM) in structured P2P systems. Shen
et al. [23] proposed an adaptive polling method based
on a dynamic tree-like structure with locality-awareness.
In these methods, if any node in the structure fails,
some replica nodes are no longer reachable. Moreover,
they have high overhead costs for structure maintenance,
especially in churn in which node join and leave the
system constantly and frequently. Some structure based
works build a simple unicast client-server structure. The
work in [24] relies on polling for consistency mainte-
nance. Xiong et al. [25] proposed a consistent metadata
processing protocol to achieve metadata consistency
of cross-metadata server operations in supercomputers.
Tang and Zhou [26] investigated update scheduling
algorithms to improve consistency in distributed virtual
environments. These methods easily overload the server
due to the resource limitations of a single server. In
the message spreading methods, the hybrid push/poll
algorithm [16] uses rumor spreading, in which a node
spreads an update to a subset of nodes without broad-
casting to avoid excessive duplicate messages in flood-
ing. In these methods, an update is not guaranteed to
reach every replica, and redundant messages generate
high propagation overhead. SWARM distinguishes itself
by enabling message propagation among nearby nodes
in a tree fashion without building a tree structure.

Supernode based, proximity based and interest based
clustering [27, 28] have been extensively studied previ-
ously. Leveraging these clustering techniques, SWARM
distinguishes itself by a number of novel features.
First, structured P2P systems have strictly defined
topologies, which has posed a challenge for clustering.
SWARM deals with this challenge by taking advantage
of the functions of structured P2P systems to collect
the information nodes with a common interest and
close proximity. Second, rather than considering either
proximity or interest in swarm construction, SWARM
groups nodes with joint treatment of proximity and
interest. Third, to the best of our knowledge, SWARM is
the first work that applies a clustering technique based
on proximity and interest to file replication in order to
achieve high efficiency and effectiveness.

3 OVERVIEW OF SWARM
We use Chord [29] as an example to explain SWARM in
structured P2P file sharing networks. SWARM can also
be applied to other structured P2P systems such as Pas-
try, Tapestry, and CAN (Content-Addressable Network).
Figure 1 shows the basic idea of the SWARM mechanism
based on swarm intelligence. The nodes a − h, p and s
have the same interest, “book”. Node s is the owner
of a “book” file, and other nodes frequently request
the file. ClientEnd will make replicas in all nodes, and
ServerEnd will copy replicas at nodes near node s on the
P2P overlay that is logically close to s. Path replicates
a file into every node along the lookup path, and EAD
replicates a file into the forwarding nodes that receive
many queries for the file. Unlike these methods, as
indicated by the arrows in the figure, SWARM forms
nodes with a common interest and close proximity into a
node swarm, and creates one replica for each swarm. The
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Fig. 1: File replications in SWARM.

swarms with the same interest further constitute a node
colony. A replica is shared by all nodes in a swarm and
can be queried using the SWARM server communication
algorithm in Section 6 by all swarms in a colony. Thus,
SWARM reduces replicas and replication overhead, and
enhances replica utilization; it additionally improves
query efficiency by allowing nodes to get a file from
a nearby node. Each swarm has a supernode, which
has high capacity, as a swarm server. A file update
message is propagated among nearby servers in a tree
fashion from the top to the bottom. Specifically, SWARM
addresses the following problems:
(1) How to build a node swarm consisting of common-

interest and proximity-close nodes and a node
colony consisting of common-interest swarms?
(Section 4)

(2) How to replicate files using the swarm-based
structure and query files based on the replication
algorithm? (Section 5)

(3) How to propagate a file update message between
nearby servers in a tree fashion without maintaining
a structure? (Section 6)

Note that the swarm-based structure for file replica-
tion and querying cannot be used for update message
propagation which only involves replica nodes. Splitting
a large file into small pieces can increase the service
capacity of a large file rapidly. Replicating file loca-
tion hints along the query path can also improve file
query efficiency. SWARM can employ these techniques
to further improve its performance. These techniques are
orthogonal to our study in this paper.

The works in [30] and [31] measured the inter-ISP
traffic in BitTorrent and indicated the importance of
locality-aware traffic in reducing the traffic over long-
distance connections. Since SWARM clusters nodes with
a common interest and close proximity into a swarm,
BitTorrent can easily adopt SWARM’s techniques to fa-
cilitate their file searching with locality awareness. It can
build SWARM’s overly into their infrastructure, and use
BitTorrent techniques to share files within a swarm. In
addition to P2P systems, SWARM can also be used in the
cloud datacenters where file replication and consistency
maintenance are needed [32–34].

4 SWARM STRUCTURE CONSTRUCTION AND
MAINTENANCE
4.1 SWARM Structure Construction
SWARM builds node swarms by leveraging our previ-
ous work [35] that clusters nodes with close proximity
for load balance. SWARM builds the swarm structure
using a landmarking method [35, 36] that represents
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Fig. 2: Information marshaling for swarm construction. By
Insert(I,Info), the information of nodes with a common interest
is marshalled in node 56, which further clusters the information of the
same H into a group.

node closeness on the network by indices. Landmark
clustering is based on the intuition that nodes close to
each other are likely to have similar distances to a few
selected landmark nodes. Sophisticated strategies [37]
can be used for landmark node selection. We assume m
landmark nodes are scattered in the Internet. Each node
measures its proximity to the m landmarks, and uses
the vector of distances < d1, d2, ..., dm > as its landmark
vector. By “proximity”, we mean the average ping la-
tency between two nodes. Two nodes in close proximity
have similar landmark vectors. A Hilbert curve [36, 38]
is then used to map m-dimensional landmark vectors to
real numbers, such that the closeness relationship among
the nodes is preserved. This mapping can be regarded
as filling a curve within the m-dimensional space until it
completely fills the space. The m-dimensional landmark
space is then partitioned into 2mx grids of equal size
(where m refers to the number of landmarks and x con-
trols the number of grids used to partition the landmark
space), and each node gets a number according to the
grid into which it falls. The smaller the x is, the larger
the likelihood that two nodes will have same Hilbert
numbers, and the coarser grain the proximity informa-
tion. The Hilbert mapping may generate inaccuracy. For
the details of this problem and the solution to reduce
inaccuracy, please refer to [39, 40]. The Hilbert number of
a node, denoted by H, indicates the proximity closeness
of nodes on the Internet. Two proximity-close nodes
have close H values. SWARM clusters the nodes with
similar Hilbert numbers into a swarm.

Each node’s interests are described by a set of at-
tributes described by globally known strings such as
“image”, “music” and “book”. Each interest corresponds
to a category of files. If a node does not know its
interests, it can derive the attributes according to its
frequently requested files [28].

Consistent hash functions [41] such as SHA-1 are
widely used in DHT networks to generate node or file
IDs due to their collision-resistant nature. Using this
hash function, it is computationally infeasible to find
two different messages that produce the same message
digest. Therefore, the hash function is effective to group
interest attributes because the same interest attributes
will have the same consistent hash value, while different
interest attributes will have different hash values.

SWARM uses the Hilbert number and a consistent
hash function to build node swarms based on node
interest and proximity. To facilitate such structure
construction, the information of nodes with close

proximity and common interests should be marshaled
in one node in the DHT network, which enables these
nodes to locate each other and form a swarm. Although
logically close nodes may not have common interests
or be in close proximity to each other, SWARM enables
common-interest nodes to report their information to
the same node, which further clusters the gathered
information of nodes in close proximity into a group.

Algorithm 1 Pseudo-code for node join.
n.join ( ){
1: //When joining in the system
2: for each interest do
3: //reports information to the repository node of the interest
4: calculates the consistent hash value of the interest I
5: sends Insert(I,Info)
6: end for
7: }

Algorithm 2 Pseudo-code for having new interests.
n.newInterest ( ){
1: //reports information to the repository node of the new interest
2: for each new interest do
3: calculates the consistent hash value of the interest I
4: sends Insert(I,Info)
5: end for

Algorithm 3 Pseudo-code for losing interests.
n.loseInterest ( ){
1: //reports information to the repository node of the old interest
2: for each lost interest do
3: calculates the consistent hash value of the interest I
4: requests to remove its information by Lookup(I)
5: end for
6: }

In a DHT overlay, an object with a DHT
key is allocated to a node via the interface of
Insert(key,object), and the object can be located
via Lookup(key). If two objects have the same key,
they are stored in the same node. We use I to denote
the consistent hash value of a node’s interest, and Info
to denote the information of a node:

Info =< H, IP, ID >,

where IP and ID are the IP address and ID of the
node. I distinguishes node interests. If nodes report
their information to the DHT with their I as the key by
Insert(I,Info), the information of common-interest
nodes with the same I will reach the same node, which
we call a repository node. The highest-capacity node with
interest I is elected to be a repository node in the DHT.
The repository node further clusters the information
with the same H into a group. As a result, a group
of information in a repository node is the information
of nodes with close proximity with a common interest.
Figure 2 shows an example of information marshaling
in Chord with the nodes in Figure 1. These nodes have
interest “book”, and I(book) = 56. The 2-tuple notation
such as (56,4) in the figure represents (I,H) of a node.
The nodes send their information with their I = 56
as the key, using Insert(56,Info). All of the nodes’
information will arrive at node 56, which further groups
the information that has the same H as shown in the
table. Consequently, the information of nodes with a
common interest and close proximity is clustered in one
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group in the repository node. Algorithm 1 shows the
pseudocode of node join for information reporting. To
handle repository node dynamism, SWARM relies on
Chord’s node join and leave algorithms [29] to transfer
the responsibilities of repository nodes to their predeces-
sors and successors as new repository nodes, and relies
on its stabilization process to update the routing tables
in repository nodes.

If a node has a number of interests, it reports its
information based on each interest. When a node has
a new interest, it reports its information to a repository
node based on this interest as shown in Algorithm 2.
When the node loses an interest, it asks the repository
node of the interest to remove its information as shown
in Algorithm 3. In this way, SWARM tunes to handle
time-varying node interests dynamically, and a node
colony always consists of frequent requesters. On node
departure, it depends on Algorithm 3 to remove itself
from all repository nodes accordingly. The node interest
is important for accurately clustering nodes into swarms.
Inappropriate clustering leads to excessive inter-swarm
queries, since nodes may be interested in the files in
other swarms. Determining node interest correctly is
orthogonal to our work. In the future, we will study
how to accurately derive users’ interests from their file
searching and sharing logs. Proposition 4.1 shows the
efficiency of information marshaling in SWARM.

Proposition 4.1: In SWARM, with high probability1, the
average number of hops for reporting information for a
node with m interests is m(log n), where n is the number
of nodes in the network.

Proof Relying on the Chord routing algorithm [29], the
path length is log n in the average case for one message.
Therefore, w.h.p., the average hops for forwarding m
messages is m(log n).

A node can find other nearby nodes with the same
interest in its repository node with Lookup(I). For
instance, by visiting node 56, node a can discover that
node b is nearby and shares the interest in “book”. After
these nodes discover each other, they constitute a swarm.
All swarms of an interest constitute a colony. Figure 3
shows the swarm structure corresponding to Figure 2.
Specifically, in each swarm, the highest-capacity node is
elected as the server of the other nodes (i.e. clients) in
the swarm. Swarm servers are responsible for file query
among swarms in a colony. The servers are marked with
* in the repository node in Figure 2. Note there are many
repository nodes rather than a single repository node
in the system based on the node interest. Each swarm

1. An event happens with high probability when it occurs with
probability 1−O(n−1).

server can know all other servers through its repository
node. In a swarm, each client has a link connecting to
its server, and the server connects to a group of clients.
A server maintains an index of all files and file replicas
in its clients. Every time when a client accepts or deletes
a file replica, it reports to its server.

For inter-swarm file searching, servers can send file
queries using broadcasting, the client/server model or
the DHT model. If there are many servers, broadcasting
is not efficient. In the client/server model, the highest-
capacity server among all swarm servers can be elected
as the colony-server and each server connects to the
colony-server. The colony-server maintains an index of
files and replicas in all swarms in the colony. A server
contacts the colony-server for replica queries. Assign-
ing a single colony-server for a colony may overload
the colony-server and leads to inefficiency. In the DHT
model, each server needs to maintain a routing table,
leading to high overhead. SWARM utilizes a novel
server communication algorithm based on a locality-
aware balanced d-nary tree. This algorithm is also used
for consistency maintenance. The details of this algo-
rithm will be presented in Section 6. In addition to the
communication between swarm servers on the top level,
this communication algorithm can also be used by a
server for the communication with all of its clients in
a large-scale swarm.

4.2 SWARM Structure Maintenance

A P2P system is characterized by dynamism, with nodes
joining, leaving and failing constantly and frequently.
When a node joins in the system or has a new interest, it
reports its information with Insert(I,Info). At the
same time, it knows its swarm’s server and connects
to the server directly. The server adds the newly-joined
node into its index. If the newly-joined node has higher
capacity than the current server, it replaces the server
and the previous server becomes its client. When a client
leaves the P2P system or loses an interest, it requests that
its repository node(s) remove its information and notifies
its server to remove the client from its client list and
index. It also transfers its replicas to a neighbor client,
and notifies its server about the replica transfer. When a
server leaves the P2P system or loses the corresponding
interest, it selects the highest-capacity client from its
client list to be the new server before leaving the swarm.
SWARM uses lazy-update to handle node departures
without warning or failures. If a server has not received
a response from a client for a file query within a pre-
defined time period T , the server assumes the client
has failed. It removes the client from its client list and
index and requests the repository nodes(s) to remove
the client’s information. If a client has not received a
reply from its server for its file query within T , the
client assumes the server has failed. It communicates
with other clients in its swarm for election of a new
server. Since the swarm server fails, SWARM adopts
a distributed election process in [42] to facilitate the
swarm nodes’ election. The nodes are connected to other
nodes, which respond their file queries recently, and
the election vote goes through the links between them.
Every time when a new server is generated, it fetches the
information of other servers in the same colony from its
repository node and sends a notification to them.
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5 SWARM-BASED FILE REPLICATION AND
QUERYING

5.1 Swarm-based File Replication
Rather than replicating a file into individual requesting
nodes, SWARM considers the request frequency of a
node swarm and makes replicas for the swarm. Thus,
SWARM reduces the number of replicas, leading to
low replication cost, and increases replica utilization,
significantly improving file query efficiency. Since
nodes with a shared interest and close proximity form
a swarm, a node can find a frequently requested file
within its own swarm without routing a query through
the entire system.

We define a requester’s query rate of file f , qf , as the
number of queries for file f that the requester initiates
during a time period. The time period is determined
by each application, as the file visit frequency can vary
greatly across different applications. A rate calculation
method based on an exponential moving average [16]
can be used to reasonably determine the query rate. We
define the swarm query rate of file f , sf , as the number of
queries for f initiated by the nodes in a swarm during
one second. Nodes in close proximity have the same H.
Therefore, a requester includes its H in its file request in
order to facilitate computing sf .

In addition to file owners, SWARM enables replica
nodes to replicate their replica files. A replica node of
file f periodically calculates a file requester’s qf for a
file and sf based on H. That is:

(sf =
∑

qf i|Hi = v),

where v is a specific value of H. When overloaded, the
node replicates the file in the most frequent requester
in the swarm with the highest sf . Such a replication
strategy increases the replica utilization by making it
shared by more frequent requesters. Specifically, the
node chooses the swarm with the highest sf , then orders
the swarm nodes in descending order of qf , and selects
a non-replica node in a top-down fashion. The replica
node will report to its server of its new replica.

Initially, a file owner replicates files when overloaded.
Later, when a replica node is overloaded, it replicates
its file to another node. Thus popular files will have
increasing numbers of replica nodes until no node is
overloaded due to file queries.

Unlike ClientEnd and EAD that replicate a file in
all frequent requesters, SWARM avoids under-utilized
replicas by replicating a file for a group of frequent-
requesters in close proximity. It helps guarantee that
file replicas are fully utilized. Requesters that frequently
query for file f can get file f from itself or its swarm
without query routing. Thus, SWARM improves file
query efficiency and saves file replication overhead.

Considering that file popularity varies over time, some
file replicas become under-utilized when there are few
queries for them. To cope with this situation, SWARM
sets up a threshold Tf for swarm query rate that is deter-
mined based on the average swarm query rate. If sf ≤
αTf , where α (α < 1) is a percentage factor, a replica in
the swarm will be removed. A smaller Tf value leads to
more replicas with larger query rates while a larger Tf
value leads to fewer replicas with smaller query rates.
Thus, a smaller Tf increases replica hit rates at the cost
of storage and consistency maintenance overhead, while

Algorithm 4 Pseudo-code for file replication in a replica node.
n.manageReplica ( ){
1: //periodically executed by a node for each file
2: updates qf of each requester
3: updates sf based on the H of the requesters
4: while n is overloaded do
5: //replicates the file
6: chooses the swarm with the highest sf
7: orders nodes in the swarm in descending order of qf
8: for each node from the top of the list do
9: if the node is a non-replica node then

10: replicates the file in the node
11: update n’s load by excluding sf
12: break
13: end if
14: end for
15: end while
16: for any swarm’sf ≤ αTf do
17: //removes under-utilized replicas
18: orders nodes in the swarm in ascending order of qf
19: for each node from the top of the list do
20: if the node is a replica node then
21: notifies the replica node to remove the replica
22: break
23: end if
24: end for
25: end for
26: }

a larger Tf reduces costs but may decrease the file hit
rate. A proper value of Tf is determined based on the
hit rate requirement of the system and the overhead it
can afford. Hence, the decision to keep file replicas is
based on recently experienced query traffic due to file
popularity and query rate. If a file is no longer requested
frequently, there will be fewer file replicas for it. The
adaptation to swarm query rate ensures that all file
replicas are worthwhile and no overhead is wasted on
unnecessary file replica maintenance. Algorithm 4 shows
the file replication algorithm pseudocode. SWARM’s
replication algorithm works well if the swarm query rate
of a file f does not fluctuate frequently and largely over
time; otherwise, SWARM may waste replication costs
due to frequent deletion of replicas with a small swarm
query rate and frequent creation when the swarm query
rate becomes large. However, in reality, a file is usually
requested frequently soon after its creation and rarely
has queries after a certain time, such as the shared data
in [43]. Therefore, the replication cost waste is usually
not high. To overcome the frequent replication cost in
SWARM, a replica node deactivates a replica instead
of deleting it when there is enough storage capacity.
Then, when this replica needs to be created again, the
file owner only needs to send out all updates after its
deactivation to save on replication costs.

5.2 File Querying Algorithm
When node i requests a file, if the file is not in the re-
quester’s interests, the node uses a DHT Lookup(key)
function to query the file. Otherwise, node i first queries
the file in its swarm among nearby nodes interested in
the file, and then in its colony among nodes interested
in the file. Specifically, node i first sends a request to
its swarm server for that file’s interest category. The
server searches the index for the requested file in its
swarm. If the search fails, the server uses the SWARM
server communication algorithm (Section 6) to query for
the file replica in a nearby swarm. This communication



7

algorithm enables servers to propagate messages in a d-
nary tree fashion when the number of servers S is greater
than a threshold Ts. If this search also fails, node i uses
DHT routing to search for the file.
Algorithm 5 Pseudo-code for the file query in a requester.
n.lookup requester (key){
1: gets file f ’s key;
2: if key ∈ interests then
3: sends request to its server of swarm H
4: if receives negative response from the server then
5: Lookup(key);
6: end if
7: else
8: Lookup(key);
9: end if

10: }

Algorithm 6 Pseudo-code for the file query in a swarm sever.
n.lookup swarmserver (key){
1: if receives query from its client then
2: if there is a replica of requested file in its swarm then
3: returns the location of the replica
4: else
5: uses SWARM server communication algorithm to query for a

replica in the colony
6: if receives the location of a replica then
7: responds to node n of the location
8: else
9: returns a negative response

10: end if
11: end if
12: end if
13: }

For example, in Figure 3, when a node g queries for
a file in “book”, it sends a request to node p, which
returns the location of a replica in its swarm. If there
is no replica in its swarm, node p relies on the swarm
server communication algorithm to query for a replica
location in the colony. If there is no replica in the colony,
node g uses Lookup(key) to request the file from its
file owner. Algorithms 5 and 6 show the pseudocode
for the file query algorithms in a requester and a swarm
server, respectively. We then define S as the number of
swarms in a colony, and n as the number of nodes in
the network. Proposition 5.1 demonstrates the efficiency
of file query in SWARM.

Proposition 5.1: In SWARM, w.h.p., the average lookup
latency for a file is 3γ + logd Sβ + (1− γ − β) log n hops,
where S > Ts and γ and β represent the probabilities
that a replica of the requested file exists in the requester’s
swarm and colony respectively.

Proof In SWARM, if a replica of a requested file exists
in a requester’s swarm, it takes the requester three hops’
latency to query its server for a requested file. Otherwise,
if a replica exists in the requester’s colony and S > Ts,
it takes the requester logd S hops’ latency to inquire for
the file in the tree-based communication. If there is no
replica in the colony, using the Chord routing algorithm,
the path length is log n on average.

6 SWARM-BASED CONSISTENCY MAINTE-
NANCE
SWARM adopts a single-master replication protocol [43],
in which the file owner holds the master replica and all
other replicas are slaves. According to the protocol, a
slave replica node forwards an update to the file owner,

Root 
Level 0

Level 1Level 2 Level 2 Level 3Level 3

Fig. 5: The process of child assignment in LBDT.

which then pushes the update to all slave replicas. In
consistency maintenance, the client that updates a file
sends an update message to its swarm server which is
responsible for propagating the message to other swarm
servers. After a server receives the update message, it
further forwards the message to its clients that have
the replicas of the file. As mentioned, structure-based
and message spreading propagation methods have their
own advantages and disadvantages. To combine the
advantages of both methods, the SWARM consistency
maintenance algorithm sets a threshold for the number
of swarms Ts, which is a value that will not generate
overhead burden on nodes for broadcasting messages.
When S < Ts, a server uses broadcasting for update.
Otherwise, a server propagates messages based on a
locality-aware balanced d-nary tree (LBDT).

General d-nary tree construction methods [14] build a
traditional d-nary tree based on node IDs but do not con-
sider node proximity. The d-nary tree allows all nodes to
receive updates quickly, but cannot enable updates to be
propagated between nearby nodes. The proposed LBDT-
based propagation method distinguishes itself in three
aspects. First, it takes proximity into account to enable
messages to be propagated among nodes in close prox-
imity, reducing communication costs. Second, it enables
updates to be propagated in the fashion of a balanced d-
nary tree, improving communication efficiency. Third, it
does not require the construction and maintenance of a
tree structure, reducing overhead. After a swarm server
receives a message, it discovers its children in the LBDT
and sends messages to them.

“No tree structure construction” means that the entire
tree does not need to actually be constructed. Instead,
the tree is dynamically and virtually built in a file owner
with all replica nodes and itself as nodes in the tree
whenever there is an update. SWARM propagates the
updates based on the source routing until they reach the
leaf nodes in the tree; that is, the update is sent to a child
along with the sub-tree, in order to help the child further
propagate the update. “No tree structure maintenance”
means that the connected nodes in the tree do not
need to probe each other periodically, since the tree
is dynamically constructed before update propagation.
As in previous consistency maintenance methods that
require the file owner to maintain the replica nodes of
its file, SWARM requires each swarm server to maintain
other swarm servers for replica nodes.

Below, we first introduce LBDT and then introduce
how a swarm server identifies its children in LBDT in a
distributed manner to forward an update.

6.1 Locality-aware Balanced d-nary Tree (LBDT)
To enable the communication conducted between phys-
ically closer swarm servers, SWARM takes advantage
of the Hilbert number to allow the messages to be
propagated along an LBDT. In an LBDT, each non-leaf
node has d children which have close Hilbert numbers to
its Hilbert number. Figure 4(d) shows a simple example
of LBDT with d = 2. Assume a tree has L levels in
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Fig. 4: An example of of LBDT-based message propagation.

total. Level l (0 ≤ l < L) has dl nodes, denoted by N[i]
(0 ≤ i < dl), from the left to the right. The index i is
called the index of the node in level l. We use N l

lt and N l
rt

to denote all nodes in the left and right half of nodes in
level l, respectively. In a LBDT, as shown in Figure 4(d),
the Hilbert numbers of N l

lt are less than those of N l−1
lt ,

and the Hilbert numbers of N l
rt are higher than those of

N l−1
rt . That is,

HN l
lt
< HN l−1

lt
and HN l

rt
> HN l−1

rt
.

In the horizontal direction, the Hilbert numbers of
nodes at the same level are in ascending order. Thus,
nodes with close Hilbert numbers are connected. That
is, proximity closer nodes are connected in the LBDT.

We first introduce how to construct an LBDT given a
list of swarm servers (SS) sorted by their Hs as shown
in Figure 4(a). The tree root is the middle server in the
list. In a high-level view of the construction process,
the children are assigned to the tree one level by one
level in the top-down manner. We first use Figure 5 to
demonstrate the process of child assignment. The root is
in level 0 of the tree. Its predecessor and successor in the
list become its children in level 1, child[0] and child[1].
Then, the next two nodes on the left become the children
of child[0], the next two nodes on the right become the
children of child[1], and they are in level 2. After that,
the next four nodes on the left and right respectively
become the children in level 3, and so on.

Therefore, the dl nodes at level l actually are the dl

nodes in the center of SS that have not been assigned to
the tree. Thus, to construct an LBDT, starting from the
root, d1 nodes in the center of SS are fetched and as-
signed as the children of the root at level 1 (Figure 4(b)).
The shaded elements mean that the servers are fetched
and assigned. Then, d2 nodes in the center of SS that
have not been assigned are fetched and assigned to the
nodes in level 1 as their children in level 2. The children
assignment to parents is from the left to the right, and
every parent has d children (Figure 4(c)). After that, d3
nodes in the center of SS that have not been assigned
are fetched and assigned to the nodes in level 2 as their
children in level 3 (Figure 4(d)). This process is repeated
until all servers in the list are fetched and assigned to
the tree. Generally, we assume the file server sorts all
replica nodes by their Hilbert numbers and forms a
vector of all replica nodes as V =< r0, r1, ..., rm >. We
define lstart and lend as the index of first and last nodes
at level l in this vector, and we assume d is even for
simplicity. Then, the next nodes in the next level should
be V l+1 =< rl′start, .., rlstart−1, rlend+1, .., rl′end >, where
l′start = lstart−d(l+1)/2 and l′end = lend+d(l+1)/2.
For the kth node of level l, the (k ∗ d)th to ((k + 1) ∗
d − 1)th nodes in V l+1 are its children. This regular
children assignment can save file owner’s workload
of calculating and transferring the whole d-nary tree

structure; by simply transferring the information as the
procedure input shown in Algorithm 7, the child can
find their children recursively. The child assignment
achieves the smallest total Hilbert number H difference
between the parents and children in two adjacent levels
in LBDT. This is because the difference is calculated as∑
Hk −

∑
Hj −

∑lstart−1
i=l′startHi +

∑l′end
i=lend+1Hj , where Hk

stands for the Hilbert number of the parent for a child
between l′start to lstart, andHj stands for the Hilbert
number of the parent for a child between lend to l′end.
Since the remaining part in the equation is constant, our
assignment achieves the smallest

∑
Hk −

∑
Hj , which

equals d∗
∑lstart+dl/2−1

i=lstart Hi−d∗
∑lend

i=lend−dl/2+1Hi. That
is, our method achieves the smallest difference between
the parents and children in two adjacent levels in LBDT.
Algorithm 7 Pseudo-code of LBDT-based message propaga-
tion between swarm servers.
n.MsgChildren (l, lstart, lend, k, SS){
1: //l: current level
2: //[lstart,lend]: the index range in SS of current level
3: //k: this node’s index at current level
4: if lstart > 0 || lend < SS.Length - 1 then
5: // this node has children, and it calculates the index range in SS of the

children in the next level
6: cnodes = dl+1 // # of nodes at the next child level
7: // calculates the start index of the next child level
8: cstart = lstart - Floor(cnodes / 2)
9: if IsOdd(l) and IsOdd(d) then

10: cstart=cstart-1
11: end if
12: if cstart < 0 then
13: cstart = 0
14: end if
15: // calculates the end index of the next child level
16: cend = lend - lstart + cstart + cnodes
17: if cend ≥ SS.length then
18: cend = SS.length - 1
19: end if
20: // discovers its own children in SS[cstart,cend]
21: cindex = 0 // child level node index
22: for i = cstart to cend do
23: if i < lstart || i > lend then
24: // SS[i] is a node at the next level
25: if k == Floor(cindex++ / d) then
26: // SS[i] is the node’s child
27: sends the message to SS[i] with l = l + 1, lstart = cstart,

lend = cend, k = cindex
28: end if
29: end if
30: end for
31: end if
32: }

6.2 Distributed Update Propagation in LBDT
We now explain how update messages are propagated
based on LBDT in SWARM in a distributed manner in
order to save consistency maintenance costs with locality
awareness. In file consistency maintenance, the swarm
server initiating the update message becomes the root of
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LBDT. It locates its children in the LBDT, and forwards
the message to them. The children further discover their
own children and send the messages to them, and so
on. Thus, the messages are propagated one level by one
level in a top-down manner. Specifically, each node in
level l executes Algorithm 7 to discover its children in
level l+1, and messages them. This process is repeated
until all swarm servers receive update messages.

We use Figure 4 to explain the algorithm. The
shaded elements represent the servers that have already
received update messages. We assume the root’s H = 7.
At first, as shown in Figure 4(a), the root sorts the
swarm servers (including itself) into a ring based on
their Hilbert numbers, and breaks the ring to generate
a SS with itself in the middle. The root is in the middle
of the sorted list in the example. If the root’s H = 4,
then the SS is [12,13,14,0,1...4,5...11]. The root is in
level 0 of the tree, and its index in level 0 is 0. The
index range of level 0 in SS is [7,7]. The root executes
MsgChildren(0,7,7,0,SS) to discover its children and send
update messages to them. To discover its children, a
node calculates the index range in SS of all children in
the next level (line 7-19), and selects its own children
among the children (line 22-30).

First, the root calculates the number of nodes in the
next child level: cnodes=21 = 2 (line 6). It then calculates
the start index and the end index of the next level:
cstart=7-1=6 (line 10) and cend=7-7+6+2=8 (line 16-19).
Thus, the index range in SS of children in level 1 is [6,8].
When d is an odd number, in the odd level, cstart is
decremented by 1 (line 9-14) for the balance of the prop-
agation tree. Then, the root selects its children satisfying
k == Floor(cindex++/d) where cindex is the index of a child
in its level (line 25). All children in the next level are the
root’s children, and the root sends the message to its
children. This step is shown in Figure 4(b). After servers
6 and 8 receive the messages, they execute MsgChil-
dren(1,6,8,0,SS) and MsgChildren(1,6,8,1,SS), respectively.
Server 6 finds the index range of all children in level 2
is [4,10]. It selects its own children 4 and 5 from the
children and sends messages to them. Similarly, server 8
locates its children 9 and 10 and sends messages to them.
This step is shown in Figure 4(c). After the children
receive the messages, they execute the algorithm to
locate their own children and send messages to them,
which is demonstrated in Figure 4(d).

This message propagation algorithm can also be used
for the communication between swarm servers for
replica query. After a server receives a query, it checks
its index. If its client has the requested file, it responds
to the root without further forwarding the message
to its children. In the LBDT-based communication,
children and their parent are nodes in close proximity,
which helps improve communication efficiency.

7 PERFORMANCE EVALUATION ON PLANET-
LAB
This section first presents the performance evaluation
of SWARM in comparison with LAR [11], RelaxDHT [5],
Freenet [9], EAD [10] and BloomCast [4] in file replication.
We use LAR to represent methods in the ClientEnd cate-
gory. In LAR, replicas are created in frequent requesters.
We use Freenet to represent methods in the Path category,
in which replicas are created along the lookup paths of
a file. EAD selects querying traffic hubs and frequent

requesters as replica nodes. We use RelaxDHT to repre-
sent methods in the ServerEnd category, in which replicas
are created in the neighbors of the original file owner.
We use BloomCast to represent methods in the Random
category, which replicates files uniformly across the P2P
network by randomly selecting nodes to replicate files.
A file owner stops replicating files when it releases its
excess load by replication. We use replica hit rate to
denote the percentage of queries that are resolved by
replica nodes among total queries.

We also compared SWARM with three push-
based consistency maintenance methods, SCOPE [13],
UMPT [14] and BCoM [44], with regards to proximity-
aware message propagation. In SCOPE, all nodes form a
tree without considering locality to propagate updates.
In UMPT, high-capacity nodes dynamically form an
update tree; then, low-capacity nodes attach to nodes
in the tree with close proximity to receive updates. In
BCoM, replica nodes of each file are organized into a
d-ary (d = 2 in our experiments) dissemination tree
without proximity-awareness to propagate updates. In
SWARM, since not all nodes can use ping to measure
the network distance to the selected landmarks, we use
geographical distance to measure the distance vector for
all experiments.

We conducted experiments on the real-world Planet-
Lab testbed [45]. We randomly selected 256 PlanetLab
nodes all over the world, and used each node to rep-
resent 8 virtual peers. We constructed the 2048 virtual
peers into a Chord P2P network with the dimension
equals 11. We used the statistics derived from 4 million
MSN video users’ viewing behavior in the trace collected
by Microsoft [46] to decide the files and node capacity in
our experiments. Specifically, we randomly selected 500
files from the trace; each file has its query rate q and file
size. We also randomly selected 2,048 nodes from the
trace to map their capacities to our P2P nodes. In the
experiments, we set each file’s query rate to φq, where φ
(called query rate intensity) was varied from 60% to 100%
with 10% increase in each step. Based on a BitTorrent
trace [47], we set the total number of interests to 200.
Each node had 5 randomly selected interests. Each file
was randomly assigned an interest, and was assigned
to a randomly selected node with the interest. Each
node randomly selected 10 files in its interests to query.
For a given file with query rate φq, the query rates of
its requesters follow a Power Law distribution [48], in
which 20% of requesters account for 80% of the queries
for the file.

7.1 Performance of File Replication
Figure 6(a) plots the average path length for different
query rate intensities. We can see that BloomCast
generates the longest path length, RelaxDHT and LAR
generate longer path lengths than Freenet and EAD, and
SWARM leads to the shortest path length. All methods
except SWARM are unable to guarantee that every
query can encounter a replica. In contrast, SWARM
enables a replica to be shared within a group of frequent
requesters, which dramatically increases the utilization
of replicas and reduces path lengths. SWARM reduces
the path length of other methods by 22%- 44% when the
query rate intensity equals 100%. The figure also shows
that the average path lengths of all methods except
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Fig. 6: Effectiveness of the file replication methods on PlanetLab.
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Fig. 7: Effectiveness and efficiency of the file replication methods on PlanetLab.

BloomCast decrease as the query rate intensity increases.
A larger query rate intensity leads to more overloaded
servers hence more replicas. The decreasing rates of the
methods follow the same order as the path lengths, i.e.,
BloomCast>RelaxDHT/LAR>Freenet/EAD>SWARM,
due to the same reasons. Figure 6(a) indicates that
SWARM offers the most efficient file querying by
reducing the expected path lengths due to its most
effective file replication.

Figure 6(b) shows the average file lookup cost mea-
sured by the total geographical distance of a query path.
It shows similar trends and order of performance for
the methods as in Figure 6(a) due to the same reasons.
Figure 6(c) shows the average query latency versus
the query rate intensity. All methods show the same
tendency as in Figure 6(b) due to the same reasons.
SWARM reduces the query latency of other methods by
40%- 58% when the query rate intensity equals 100%.
These results confirm that SWARM achieves the shortest
query cost and latency in all methods due to its effective
file replication.

Figure 6(d) shows the cumulative distribution function
(CDF) of the query path lengths when the query rate
intensity equals 100%. We see that in SWARM, around
50% of total files are offered by nodes within 2 hops,
while in other methods, 50% of files are offered by nodes
within at least 4 hops. In SWARM, almost all files are
provided by nodes within 8 hops, but other methods
require 10 hops. The results show that most files can be
offered by nodes in shorter distances in SWARM than
other file replication methods due to the same reasons
as in Figure 6(a).

Figure 7(a) shows the replica hit rates of all meth-
ods versus the query rate intensity. We observe that
the replica hit rate follows BloomCast<LAR<RelaxDHT<
EAD<Freenet<SWARM. SWARM replicates a file for a
group of common-interest nodes and enables a node to
actively retrieve the locations of replica nodes, which
significantly improves the probability that a file query is
resolved by a replica node, leading to the highest hit rate.
As a result, SWARM achieves more than 84% higher hit

rates compared to other methods. This result confirms
that SWARM achieves the highest replica hit rate, in-
dicating that the replicas in SWARM have the highest
utilization and relieve greater load from the file owners.

Figure 7(b) illustrates the total number of replicas of
all methods versus query rate intensity. It shows that the
number of replicas increases as the query rate intensity
increases because of more overloaded file owners. In
SWARM, a replica is created for a swarm rather than a
single node. Hence, a replica is fully utilized through be-
ing shared by a group of nodes, generating high replica
hit rate and reducing the probability that a file owner
is overloaded. Thus, SWARM produces fewer replicas
and lower overhead for replica consistency maintenance.
Specifically, SWARM reduces the number of replicas
compared other methods by 39%-76% when the query
rate intensity equals 100%, which also means 39%-76%
less overhead for replica consistency maintenance.

Figures 7(c) and 7(d) show the total replication cost
measured by the geographical distance and latency of all
file replications, respectively. They show similar trends
and performance as in Figure 7(b) due to the same rea-
sons, which confirm that SWARM generates the lowest
cost and highest efficiency for replication.

7.2 Performance of Consistency Maintenance
In this experiment, we test the proximity-aware per-
formance of SWARM’s LBDT-based consistency main-
tenance method. The update rate of each file was ran-
domly chosen from [0.05,0.15] updates per second. We
report the average total consistency maintenance cost
and latency every 10s for 200s.

We measured the consistency maintenance cost by the
total transmitting geographical distance of all update
messages. Figure 8(a) and Figure 8(b) show the consis-
tency maintenance cost and latency, respectively, versus
the query rate intensity. The figures show that the cost
and latency follow SWARM<UMPT<BCoM<SCOPE.
All methods except SWARM either propagate update
messages to all nodes or propagate updates without con-
sidering proximity to partial replica nodes. Compared
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Fig. 8: Consistency maintenance cost and latency on PlanetLab.
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Fig. 9: Scalability of the file replication methods on PeerSim.

to them, SWARM always propagates update messages
along geographically close replica nodes, thus leading
to the lowest communication cost and latency. SWARM
reduces the consistency maintenance cost by 66%-87%
compared to BCoM due to its locality awareness. It
reduces the consistency maintenance cost by 99% com-
pared to SCOPE due to its saved number of update
messages. Overall, SWARM reduces consistency mainte-
nance costs by 49%-99% compared to other consistency
maintenance methods. We see that the cost and latency
of all methods increase as the query rate intensity in-
creases. As query rate intensity increases, the number
of replicas increases as shown in the Figure 7(b), which
introduces higher update costs and longer latencies. The
experimental results imply that SWARM is effective in
enabling messages being propagated between geograph-
ically close nodes, while still achieving fast propagation
due to tree structure.

Figure 8(c) depicts the CDF of communication mes-
sages versus the consistency maintenance cost when the
query rate intensity equals 100%. We see that 52% of total
messages in SWARM are transmitted between a pair of
nodes within 1000km of each other, while only 26% of
total messages in other methods are. Similarly, SWARM
transmits 66% of total messages between nodes within
5000km of each other, while other methods transmit 45%.
The results show that most messages are transmitted
short geographical distances in SWARM, while most
messages are transmitted in long distances in the other
methods due to the same reason as in Figure 8(a). It
confirms the high efficiency of the locality-aware LBDT-
based consistency maintenance method in SWARM.

8 PERFORMANCE EVALUATION ON PEERSIM
While PlanetLab experiments can provide real-world
experimental results in terms of geographical distance
and latency, it cannot test large-scale networks and the
performance in different degrees of churn. To compre-
hensively test SWARM, we then implemented the meth-
ods on the event-driven P2P simulator PeerSim [49, 50]

for performance evaluation. In this section, we aim
to test the performance of SWARM in large-scale P2P
networks with different degrees of churn, different up-
date rates and different number of replicas. The net-
work has 150,000 nodes unless otherwise noted, and the
maximum number of nodes is 300,000, around 1/10 of
all nodes in [47]; a node’s five most frequent down-
load/upload file categories in the trace are set to the
node’s interests; the geographic locations of the nodes
are randomly selected from node geographic locations
in the BitTorrent trace [47]. Similarly, we set the number
of interests to 200, and randomly selected 10000 files
from the trace [47]. The node capacity distribution was
determined based on the MSN trace data set [46]. Each
experiment lasted 10,000s, and 100 queries were gener-
ated per second. These 100 requesters were randomly
chosen from all peers; each peer queried a randomly
selected file within its interests.

8.1 Scalability of File Replication
Figure 9(a) shows the average path lengths of different
file replication methods versus the network scale. It
shows that BloomCast result in the longest average path
lengths, and LAR and RelaxDHT generate shorter path
length followed by EAD and Freenet; SWARM produces
the shortest path length due to the same reasons as
Figure 6(a). This figure shows that as the network scale
increases, the average path length of SWARM increases
slightly while that of other methods increases relatively
faster. This result implies that SWARM is more scalable
than other methods.

Figure 9(b) shows the replica hit rate of different file
replication methods versus the network scale. As in
Figure 7(a), SWARM has the highest hit rate, followed
by Freenet, EAD, RelaxDHT, LAR and BloomCast. We also
see that Freenet, EAD and LAR decrease gradually as
network scale increases, while SWARM and RelaxDHT
remain nearly constant. As the number of nodes in-
creases, the replicas in Freenet, EAD and LAR have lower
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Fig. 11: Consistency maintenance cost versus update frequency on PeerSim.
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Fig. 10: Performance of the file replication methods with churn
in PeerSim.

probability to be encountered by many requests, while
the replicas in SWARM and RelaxDHT always have a
constant probability to be encountered by each request.
This figure confirms that SWARM can maintain a stable
replica hit rate at different network scales.

Figure 9(c) shows the number of replicas as network
scale increases. Freenet has the greatest number of repli-
cas, followed by RelaxDHT/BloomCast, LAR, EAD, and
finally SWARM due to the same reason as in Figure 7(b).
Unlike other methods, SWARM replicates files into
interest- and locality-based swarms; thus, its number of
replicas is not greatly affected by network size.

The experimental results in Figures 9(a), 9(b) and 9(c)
confirm that SWARM has high scalability, high replica
utilization and low overhead for file replication.
8.2 Churn-resilience of File Replication
Figure 10(a) shows the replica hit rates for different
replication methods versus the node join/leave rate. The
performance of all methods except BloomCast degrades
similarly as churn increases; this is expected, since some
departing nodes might hold replicas. Additionally, all
five methods rely on P2P routing to a certain degree,
and node churn can adversely affect routing success.
In BloomCast, since its hit rate is already very small as
shown in Figure 9(b), it is not greatly affected by the
churn. Figure 10(b) shows the success rate of queries for
different replication methods versus the node join/leave
rate. The success rates of all methods except SWARM
have similar decreasing trends as the rate increases;
since each method uses DHT routing to locate a file,
the success rate decreases as churn increases. Since the
SWARM replica querying method takes much fewer
hops, the success rate for SWARM is not as greatly
affected by churn as other methods. The experimental
results show that SWARM has higher churn-resilience
than other methods.
8.3 Performance of Consistency Maintenance
In this experiment, we test SWARM’s consistency main-
tenance scheme against SCOPE, UMPT and BCoM. Since

none of these experiments consider the update/visit
rates for consistency maintenance and they build the
structures based on the proximity, the update rate will
not affect the performance difference among systems.
Thus, we set a high update rate in order to distinguish
the performance differences between different systems
in a short time. SWARM replicas are shared by entire
swarms, which are clustered by both interests and lo-
cations. There are only 169 different locations in the
trace [47], which leads to at most 169 swarms in a colony.
Therefore, unless otherwise noted, we randomly placed
100 replicas for a single file and set the update rate to
0.1 updates/second. Figure 11(a) shows the consistency
maintenance cost measured by total distances versus
the file update frequency. SCOPE produces the greatest
communication cost, followed by BCoM, UMPT, and
then SWARM, due to the same reason as in Figure 8(a).
It confirms that SWARM produces the lowest commu-
nication cost since it propagates update messages along
geographically close nodes.

Figure 11(b) shows the 99th percentile of a node’s
total communication cost in consistency maintenance.
UMPT has the highest communication cost, SCOPE
has lower communication cost, followed by BCoM and
SWARM. UMPT produces the highest communication
cost because many low-capacity nodes attach to a single
high-capacity node to receive updates, resulting in
a highly uneven distribution of communication cost.
SCOPE, BCoM and SWARM propagate updates in a
tree-like fashion, so message sending is more evenly
distributed among nodes. As SCOPE involves all nodes
in the system while SWARM and BCoM only involve
the replica nodes, SCOPE generates a higher result.
Since SWARM builds a locality-aware tree while BCoM
builds a locality-oblivious tree, SWARM generates
lower communication cost than BCoM. This result
confirms that SWARM generates more even distribution
of update overhead among nodes, which indicates its
better scalability.

Figure 11(c) shows the total number of messages
sent in each consistency maintenance method versus
the update frequency. SCOPE propagates updates
throughout the entire network, so its total number of
messages is significantly higher than BCoM, UMPT and
SWARM. These three methods build only replica nodes
into trees for propagating updates, requiring much
fewer messages for consistency maintenance.

Figure 11(d) shows the 99th percentile of a node’s
number of messages. UMPT has the highest number of
messages, SCOPE has the middle number of messages,
and SWARM and BCoM have the lowest number of
messages. UMPT has the highest result because many



13

3.E+06

3.E+07

3.E+08

3.E+09

3.E+10

100 200 300 400 500

C
o

n
s
is

te
n

c
y

 
m

a
in

te
n

a
n

c
e

 c
o

s
t 

(k
m

) 

Number of replicas 

SCOPE UMPT

BCoM SWARM

(a) Total communication cost

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

100 200 300 400 500

N
o

d
e

 9
9

th
 c

o
n

s
is

te
n

c
y

 
m

a
in

te
n

a
n

c
e

 c
o

s
t 

(k
m

)
 

Number of replicas 

SCOPE UMPT

BCoM SWARM

(b) The 99th percentile of a node’s
communication cost

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

100 200 300 400 500

N
u

m
b

e
r 

o
f 

m
e

s
s
a

g
e

s
 

Number of replicas 

SCOPE UMPT

BCoM SWARM

(c) The total number of messages

0

200

400

600

800

1000

1200

100 200 300 400 500

N
o

d
e

 9
9

th
 n

u
m

. 
o

f 
m

e
s
s
a

g
e

s
 

Number of replicas 

SCOPE

UMPT

BCoM

SWARM

(d) The 99th percentile of a node’s
number of messages

Fig. 12: Consistency maintenance cost versus the number of replicas of a file on PeerSim.

low-capacity nodes attach to a single high-capacity node
to receive updates, resulting in a highly uneven distribu-
tion of sending messages. SCOPE, BCoM and SWARM
propagate updates in a tree-like fashion, so message
sending is more evenly distributed among nodes. As
SCOPE involves all nodes in the system while SWARM
and BCoM only involves the replica nodes, SWARM and
BCoM have a lower result than SCOPE.

Figure 12(a) shows the consistency maintenance cost
measured by the total distances versus the number of
replicas of a single file. SCOPE generates significantly
higher communication cost than BCoM, UMPT and
SWARM. Also, as the number of replicas increases,
SCOPE remains nearly constant while BCoM, UMPT and
SWARM increase slightly. Figure 12(b) shows the 99th
percentile of a node’s communication cost. UMPT has
the highest result, SCOPE is in the middle followed by
BCoM, and SWARM has the lowest result. The results
in these two figures are caused by the same reasons as
in Figure 11(a) and Figure 11(b), respectively.

Figure 12(c) shows the total number of messages for
consistency maintenance versus the number of replicas
of a single file. As in Figure 11(c), SWARM has the fewest
messages, followed by BCoM, UMPT and SCOPE, for the
same reasons. Figure 12(d) shows the 99th percentile of a
node’s number of messages. UMPT generates the highest
result, followed by SCOPE, then BCoM and SWARM due
to the same reasons as in Figure 11(d).

These experimental results confirm the effectiveness
of the LBDT-based consistency maintenance method in
reducing both the highest and the average overhead for
updates of a node, which indicates that SWARM has
higher scalability and efficiency than other methods in
consistency maintenance.

9 CONCLUSIONS
Current file replication methods for P2P file sharing
systems are not sufficiently effective in improving file
query and replica utilization. This paper proposes a
swarm intelligence based file replication and consistency
maintenance mechanism called SWARM. SWARM in-
cludes algorithms for swarm structure construction and
maintenance, file replication, querying, and file con-
sistency maintenance. It builds common-interest nodes
in close proximity into a swarm and relies on swarm
servers to connect swarms with the same interest into a
colony. It replicates a file in a swarm with the highest
accumulated file query rates of the swarm nodes and
enables the replica to be shared among the nodes in a
swarm and colony. Furthermore, it dynamically adapts
to time-varying file popularity and node interest. The
SWARM consistency maintenance algorithm allows up-
dates to be propagated among nearby swarm servers in a

tree fashion, enhancing the efficiency of traditional tree-
based propagation. SWARM reduces file replicas and
improves query efficiency and replica utilization. Exper-
imental results demonstrate the superiority of SWARM
in comparison with other approaches. It dramatically
reduces the overhead of file replication and consistency
maintenance, and produces significant improvements in
lookup efficiency and replica hit rate. Its low overhead
and high effectiveness are particularly attractive to the
deployment of large-scale P2P file sharing systems.

In our future work, we plan to explore adaptive
methods to fully exploit file popularity and update rate
for efficient consistency maintenance. We will use a real
trace of file replication and updates for experiments. We
will also work on the extenuation of SWARM for cloud
computing. Cloud computing (such as Amazon EC2,
Google Cloud Platform) is a scalable service platform
that consists of globally distributed data centers. Appli-
cations of file sharing or file storage, such as Dropbox,
operate on the cloud platform. We can organize the
virtual machines involved to a P2P overlay, and apply
SWARM’s file replication and consistency maintenance
methods to save the storage and traffic load of cloud
services as well as reduce the service latency to tenants.
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