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Abstract—Though the new OSN model, which deploys datacenters globally, helps reduce service latency, it causes higher
inter-datacenter communication load. In Facebook, each datacenter has a full copy of all data, and the master datacenter updates all
other datacenters, generating tremendous load in this new model. Distributed data storage, which only stores a user’s data to his/her
geographically closest datacenters mitigates the problem. However, frequent interactions between distant users lead to frequent
inter-datacenter communication and hence long service latencies. In this paper, we aim to reduce inter-datacenter communications
while still achieving low service latency. We first verify the benefits of the new model and present OSN typical properties that underlie
the basis of our design. We then propose Selective Data replication mechanism in Distributed Datacenters (SD3). Since replicas need
inter-datacenter data updates, datacenters in SD3 jointly consider update rates and visit rates to select user data for replication;
furthermore, SD3 atomizes users’ different types of data (e.g., status update, friend post, music) for replication, ensuring that a replica
always reduces inter-datacenter communication. SD3 also incorporates three strategies to further enhance its performance:
locality-aware multicast update tree, replica deactivation, and datacenter congestion control. The results of trace-driven experiments on
the real-world PlanetLab testbed demonstrate the higher efficiency and effectiveness of SD3 in comparison to other replication
methods and the effectiveness of its three schemes.
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1 INTRODUCTION

In the past few years, Online Social Networks (OSNs) have
dramatically spread over the world. Facebook [1], one of
the largest worldwide OSNs, has 1.15 billion users, 80%
of whom are outside the US [2]. However, Facebook dat-
acenters are deployed sparsely outside the US. Except for
one datacenter in Europe [3], all Facebook datacenters are
located within the US [4]. Each datacenter stores complete
replicas of all user data [4]. An entire user data set is made
up of several types of data, including wall posts, music,
personal info, photos, videos, and comments. While photos
and videos are stored in Facebook’s content delivery net-
work (CDN) partners, all other data is stored in Facebook’s
datacenters, which are the focus of this paper. The browsing
and posting interactions between OSN users lead to user
data reads (visits) and writes (updates) in OSN datacenters.
Facebook has now become one of the top Internet traffic
sources with more than 2 billion posts per day [2]. It
employs a single-master replication protocol [5], in which
a slave datacenter forwards an update to the master data-
center, which then pushes the update to all datacenters.

With sparsely deployed datacenters outside the US and
complete replicas of all users’ data stored in each datacenter,
two issues arise: high latency and costly service to distant
users, and difficulties scaling service due to limited local
resources [6]. These problems can be solved by distributing
many small datacenters globally instead of relying on a
few large, centralized datacenters [7]. Each small datacenter
should be close to a location with dense user distribution
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and require only the capacity to serve nearby users, not
all users in the OSN. Assigning the geographically closest
datacenter to a user to serve the user and store his/her
master replica helps reduce service latency and service
network load to the users of OSNs, since the network
load of a package is related to both package size and
transmission distance [4]. Indeed, Facebook is now build-
ing a datacenter in Sweden to make Facebook faster for
Europeans [3]. However, this new model causes higher
inter-datacenter communication load (i.e., network load, the
resource consumption for data transmission [4]). In this new
model, Facebook’s single-master replication protocol obvi-
ously would generate a tremendously high load. Though
the distributed data storage that maintains a user’s data
in his/her geographically closest datacenter mitigates the
problem, the frequent interactions between distant users
lead to frequent communication between datacenters.

Thus, in this paper, we study how to replicate data in
OSN distributed datacenters to minimize inter-datacenter
communication load while still achieving low service la-
tency. Increasing replication of user data can enable the reso-
lution of more data requests locally, leading to lower service
latencies; however, a rarely visited replica provides little
benefit in terms of service latency reduction but increases
network load for updates, leading to higher inter-datacenter
communication load. In this paper, we aim to break the tie
between network load and service latency. As far as we
know, this work (including the conference version [8] and
this extended journal paper) is the first attempt to jointly
consider update and visit rates for selective data replication
among distributed datacenters under the new OSN model
in order to achieve the aforementioned goal to the benefit of
both users and OSN owners.

It has been observed that most interactions and
friendships are between local users, while some interactions
and friendships are between distant users [4, 10, 11].
A user’s interaction frequencies with his/her different
friends vary widely [12, 13]. Also, the visit/update rates
for different types of user data (e.g., posting, status update)
differ greatly [14, 12, 15]. For example, wall posts usually
have higher update rates than photo/video comments. In
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Fig. 1: The OSN user distri-
bution [9].

Fig. 2: The OSN datacenters
and one community distribu-
tion.
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Fig. 3: CDF of user connec-
tion latencies to the OSN.
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Fig. 4: CDF of user latencies
vs. num. of simulated data-
centers.

this work, we first analyze our crawled data to verify these
OSN properties and the benefits of the new OSN model that
serve as the basis of our proposal. We then propose Selective
Data replication mechanism in Distributed Datacenters
(SD3) for OSNs that embraces the aforementioned general
features. SD3 is proposed for the new OSN model that
distributes smaller datacenters worldwide and maps users
to their geographically closest datacenters. SD3 mainly
incorporates the two novel components below.
Selective user data replication. To achieve our goal, a
datacenter can replicate its frequently requested user
data from other datacenters, which however necessitates
inter-datacenter data updates. Thus, to break the tie
between service latency and inter-datacenter network load,
a datacenter jointly considers visit rate and update rate in
calculating network load savings, and creates replicas that
save more visit loads than concurrently generated update
loads.
Atomized user data replication. To further reduce inter-
datacenter traffic, SD3 atomizes a user’s data based on
different data types; that is, the data of a user is split into
chunks with respect to different types (e.g., status updates,
friend posts, and music), each of which is considered
separately for replication. Then, SD3 only replicates the
atomized data that saves inter-datacenter communication.
Performance enhancement. SD3 also incorporates
three strategies to enhance its performance: locality-
aware multicast update tree, replica deactivation, and
datacenter congestion control. When there are many
replica datacenters, SD3 dynamically builds them into
a locality-aware multicast update tree that connects the
geographically closest datacenters for update propagation,
thus reducing inter-datacenter update network load by
minimizing update transmission distance. In the replica
deactivation scheme, SD3 does not update a replica if it
will not be visited for a long time in order to reduce the
number of update messages. In the datacenter congestion
control scheme, when a datacenter is overloaded, it releases
its excess load to its geographically closest datacenters by
redirecting user requests to them.

For data updates, SD3 can directly use Facebook’s
single-master replication protocol. It is worth noting
that we do not endorse a complete removal of full data
replication from the system. Rather, we believe that some
dedicated servers periodically replicating all data in each of
the β−1 places still play an important role in providing high
data availability and reliability, where β is the replication
degree (such as β = 3 in Amazon Cloud Storage [16]).

The rest of this paper is structured as follows. Section 2
presents the basis of the design of SD3 with our analysis
of OSN traces. Section 3 details the design of SD3.
Section 4 shows the performance of SD3 with trace-driven
experiments on PlanetLab [17]. Section 5 presents a concise
review of related works. Section 6 concludes this paper
with remarks on our future work.

2 BASIS OF THE DESIGN OF SD3

In this section, we verify the benefits of the new OSN
model and analyze trace data from a major OSN to verify
general OSN properties. SD3 is particularly proposed for
OSNs that embrace these general properties. In order to
obtain a representative user sample, we used an unbiased
sampling method [18] to crawl user data. If a randomly
generated id exists in the OSN and the user with the
id is publicly available, we crawled the user’s data. We
anonymized users’ IDs and only recorded the time stamps
of events without crawling event contents. All datasets are
safeguarded and are not shared publicly. We crawled three
OSN datasets for different purposes in our data analysis.

For the first dataset, the number of statuses, friend posts,
photo comments and video comments during a one month
period (May 31-June 30, 2011) were collected from 6,588
publicly available user profiles to study the update rates of
user data. In order to collect detailed information about to
whom and from whom posts were made, post timestamps
and friend distribution, in the second dataset, we crawled the
information from 748 users who are friends of students in
our lab for 90 days from March 18 to June 16, 2011. For the
third dataset, we collected publicly available location data
from 221 users out of users in the first set and their publicly
available friends’ location data (22,897 friend pairs) on June
23, 2011, in order to examine the effects of user locality. We
only use the datasets to confirm the previously observed
OSN properties in the literature.

2.1 Basis of Distributed Datacenters
Figure 1 shows the global distribution of the OSN users,
as reported in [9]. Of countries with the OSN presence, the
number of users ranges from 260 to over 150 million. Figure
2 shows the locations of the OSN’s current datacenters
represented by stars. The typical latency budget for the
data retrieval portion of a web request is only 50-100
milliseconds [19]. In order to investigate the effect of the
new OSN model, we conducted experiments on simulated
users or datacenters via PlanetLab nodes [17]. Figure 3
shows the OSN connection latencies from 300 globally
distributed PlanetLab nodes to front-end servers in the
OSN. The OSN connections from 20% of the PlanetLab
nodes experience latencies greater than 102 ms, all of
which are from nodes outside the US. Such wide variability
demonstrates the shortcomings of the OSN’s centralized
datacenters and the increased latencies associated with
user-datacenter distance. Since the OSN’s popularity
has become global, the new OSN model with globally
distributed datacenters and locality-aware mapping (i.e.,
mapping users to their geographically close datacenters for
data storage and services) would reduce service latency.

We then conducted experiments with different numbers
of simulated distributed datacenters. We first randomly
chose 200 PlanetLab nodes as users in different continents
according to the distribution of the OSN users shown in
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Fig. 5: Distance of friend and
interaction.
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Fig. 6: Avg. interaction rates
between friends.
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Fig. 7: Variance of interaction
frequency.
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Fig. 8: User update rates.

Figure 1. We chose 5 PlanetLab nodes in the locations of
the current datacenters of the OSN to represent the data-
centers. We then increased the number of datacenters to 10,
15 and 30 by choosing nodes uniformly distributed over
the world. We measured each user’s average local service
latency for 10 requests from the user’s nearest datacenter.
Figure 4 shows the cumulative distribution function (CDF)
of percent of users versus the latency. The result shows that
increasing the number of distributed datacenters reduces
latency for users. With 30 datacenters, 84% of users have
latencies within 30ms, compared to 73%, 56% and 24%,
respectively with 15, 10 and 5 datacenters; more than 95%
of all users have latencies within 120ms for 30, 15 and
10 datacenters, compared to only 58% with 5 datacenters
within the US. Thus, adding 5 more datacenters for a total
of 10 datacenters would significantly reduce the service
latencies of the current OSN, bringing an additional 14% of
users’ latencies within 30ms and an additional 3% of users’
latencies within 60ms. However, the further addition of
datacenters leads to diminishing improvements in latencies.
These results confirm the lower service latencies of the new
OSN model and suggest distributing small datacenters glob-
ally. Since additional datacenters above a certain number do
not greatly reduce service latencies, an OSN provider can
decide the total number of datacenters based on the tradeoff
between capital investment and service latency to maximize
benefit.

It was observed that the communities partitioned with
locality awareness are tight based on both social graphs and
activity networks [10, 11]. Most interactions are between
local users while some interactions are between distant
users [4]. Our analysis results from the third dataset shown
in Figure 5 are consistent with these observations. Figure 5
shows the CDF of friend pairs and the CDF of interactions
(i.e., a user posts or comments on another user’s wall, video,
or photo) between users versus distance based on the loca-
tions of users. It shows that 50% of friend pairs are within
100km and around 87% of friend pairs are within 1,000km,
which indicates that friends tend to be geographically close
to each other [20]. This result implies that with the locality-
aware mapping algorithm, the data of most friend pairs
is stored in the same datacenter, while the data of some
friend pairs is mapped to separate datacenters. Regarding
the interaction distance, 95% of interactions occur between
users within 1,000km of each other, which means most
interactions are between geographically close friends [4],
whose data tends to be stored within the same datacenter.

2.2 Basis for Selective Data Replication
It was observed that in OSNs, the ties of social links decrease
with age [21] and different users have different updates for
user data [12, 13]. Thus, friend relationships do not necessar-
ily mean high data visit/update rates between the friends
and the rates vary between different friend pairs and over
time. These features are confirmed by Figure 6 and Figure 7.
Figure 6 plots the CDF of friend pairs versus the average
interaction rate (i.e., average number of interactions per

day) for each pair of friends in the second dataset. Around
90% of all friend pairs have an average interaction rate
below 0.4, and the average interaction rate of the remaining
10% ranges from 0.4 to 1.8. This result implies that the data
visit rate between some friends is not high. Thus, replication
based on static friend communities will generate replicas
with low visit rates, wasting resources for storage and inter-
datacenter data updates. Therefore, we need to consider the
visit rate of a user’s data when determining the necessity of
data replication.

We calculated the variance of interaction rates between
each pair of friends by σ2 =

∑
(x − μ)2/(n − 1), where x is

the interaction rate, μ is the average of all interaction rates
and n is the number of interaction rates. Figure 7 shows the
variance of interaction rate for each friend pair. We see that
around 10% of friend pairs have high variance in the range
of [0.444,29.66], which means their update rates vary greatly
over time. This implies that the visit/update rate of data
replicas should be periodically checked and replicas with
low visit rates and high update rates should be discarded
in order to save inter-datacenter communications for data
updates and resources for storage.

Figure 8 shows the distribution of users’ update rates
(number of updates per day) from the first dataset. We see
that 75% have ≤0.742 updates per day, 95% have ≤15.51
updates per day. Also, only 0.107% have an update rate in
the range [50,100] and 79% users have an update rate in the
range [0.0,1.0]. The result verifies that the update rates of
user data vary greatly. Therefore, to save network load, user
data should be replicated only when its replica’s saved visit
network load is more than its update network load.

2.3 Basis for Atomized Data Replication

Previous studies [14, 12, 15] showed that different types
of user data have different visit/update rates. Figure 9
show the distribution of update rates (number of updates
per day) for friend posts, statuses, photo comments, and
video comments respectively from our second trace dataset.
We see that different types of user data have different
update rates. Specifically, the update rate follows friend
posts>statuses>photo comments>video comments.

We calculated the average update rate of each user over
90 days for different data types. We then identified users
with the 99th, 50th, and 25th percentiles and plotted their
updates over time in Figures 10 and 11 from the top to the
bottom, respectively. These figures showcase the variation
in update behaviors for different types of data, where
statuses tend to be updated relatively evenly over time,
while photos tend to have sporadic bursts of rapid activity.
For example, a user receives many comments on his/her
birthday photos in a short time. Thus, a replication strategy
can exploit the different visit/update rates of atomized
data to further reduce inter-datacenter communication. We
can treat each type of a user’s data as distinct and avoid
replicating infrequently visited and frequently updated
atomized data to reduce inter-datacenter updates.
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ent types.
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Fig. 10: Status updates over
time.

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90

P
h

o
to

s 
/ 

d
ay

 

Day index 

99th
50th
25th

99th 50th 25th 

Fig. 11: Photo updates over
time.
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Fig. 12: The time between
successive comments.
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Fig. 13: Standard deviation of
friends’ post rates of a user.
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Fig. 14: Time of absent peri-
ods.
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Fig. 15: Number of updates
in an absence period.
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quent absent time.

2.4 Basis for Replica Deactivation
Currently, the update delay from the master datacenter to
another datacenter in the OSN can reach 20 seconds [22]. A
comment (status, photo or video) causes an update. Face-
book relies on strong consistency maintenance [5], in which
the slave datacenter that received an update of a user data
item forwards the update to the master datacenter, which
then pushes the update to all datacenters. Therefore, each
comment leads to many inter-datacenter communications,
thus exacerbating the network load. In order to see how
heavy this network load is, we drew Figure 12, which shows
the CDF of the time interval between pairs of successive
comments on a user data item in the second dataset. We see
that 13.3% pairs of comments have an interval time less than
one minute. Taking Facebook as an example, there are 10
million updates per second [23]. Such a tremendous number
of user postings within a short time period leads to a high
network load between datacenters.

The purpose of data updating is to enable users to see
the updated contents when they visit the user data. Some
replicas may not be visited for a long time after an update,
which indicates that immediate updates are not necessary.
Additionally, after an update the data may be changed
many times; transmitting all the updates together to the
replicas can reduce the number of update messages. In order
to see whether there are replicas with visit rates lower than
update rates, we analyzed publicly available trace data of
the wall posts in Facebook [21]; each post includes the two
anonymized IDs of the poster and the wall owner, and the
posting time. The trace covers inter-posts between 188,892
distinct pairs of 46,674 users in the Facebook New Orleans
networks for two days, and all of these user pairs have at
least one inter-post. We calculated the standard deviation, σ,
of each user’s friend post rates (# of posts per day). Figure 13
shows the CDF of users according to the standard deviation
of each user’s friend post rates. It shows that 11% of users
have standard deviations larger than 7 (posts/day), and the
largest standard deviation is 287 (posts/day). We could not
crawl the data visit rate of each of a user’s friends. Since 92%
of all activities in OSNs are transparent (e.g., navigation)
compared to 8% update activities [14], we can multiply the
post rate by 92

8 to estimate the data visit rate. The large
standard deviations indicate that among a user’s friends,
some friends’ post rates (and hence, visit rates) are much
smaller than others. The update rate of a user’s data replica

is the sum of the user’s friend post rates. The visit rate of a
user’s data replica is the sum of the visit rates of the user’s
friends being served by this replica. Then, if a replica with a
high update rate serves only a few of the user’s friends with
very low visit rates, the replica’s visit rate is low. Since such
a replica is not visited for a long time, it can be deactivated
and its updates can be aggregated together for the next visit.
This way, the number of communication messages between
datacenters for updates can be reduced.

We then measured the time interval between two con-
secutive posts on a user’s wall, named as an absent period of
the user’s wall. Figure 14 shows the CDF of absent periods.
It shows that 57% of absent periods are over 100s and 30%
of absent periods are over 600s. This result implies that the
time interval between two consecutive visits on a user’s wall
may last a long time. We then measured the time between
user i’s two consecutive posts on user j’s wall, called the
absent time of poster i on user j’s wall, and then calculated
the number of updates on each user’s wall within each
absent period of each poster on the user’s wall. Figure 15
shows the 1st, median and 99th percentiles of the number
of updates for each time period of absent periods of posters.
The result indicates that the absent periods of posters can be
very long (as confirmed by Figure 14) and during a longer
absent period, there are more updates. If a replica of a user’s
data serves a group of visitors, the replica does not need to
immediately require the user’s data updates, as visitors do
not view the data until much later. If we deactivate such
a replica (i.e., transmitting all updates together to a replica
upon its next visit), we can save many update messages as
implied in Figure 15.

Figure 16 shows the expected subsequent absent time
versus the time that each absent period has already lasted,
i.e., y =

∫∞
x (ai − x) × Nai

dai/
∫∞
x Nai

dai, where ai is the
time of an absent period, and Nai

is the total number of
the absent periods lasting time t. It implies that the longer
an absent period has lasted, the longer subsequent time
is expected to last. Thus, we can set a threshold for the
lasting absent period. If the time period that a user’s data
replica is not visited, lasts longer than this threshold, it
means that it will not be visited for a long time period. This
threshold cannot be too small. If it is too small, the expected
subsequent absent time is not long enough to save the
update messages and frequent deactivation and activation
lead to many additional communication messages.
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3 THE DESIGN OF SD3

In this section, we first provide a design overview of SD3.
To break the tie between service latency and network load,
SD3 focuses on where and when to replicate a user’s data
and how to propagate updates in order to save network load
and reduce service latency. SD3 incorporates selective user
data replication, atomized user data replication, a locality-
aware multicast update tree, and a replica deactivation
method to achieve this goal. SD3 also adopts a datacenter
congestion control method that shifts traffic from over-
loaded datacenters to their neighbors in order to achieve
load balance. We show the detailed design below.

3.1 An Overview of SD3

Based on the guidance in Section 2, in SD3, a datacenter
replicates the data of its mapped users’ remote friends only
when the replicas save network load by considering both
visit and update rates. Also, SD3 atomizes a user’s data
based on different types and avoids replicating infrequently
visited and frequently updated atomized data in order to
reduce inter-datacenter communications. Below, we use an
example to show each component in SD3. Figure 17 shows
an example of SD3, where users A, B, C and D are friends.
• Global deployment of datacenters. A new datacenter is added
to Japan (JP). Then, the master datacenter of users A and B
is switched from CA to their nearest datacenter, JP, and they
will no longer suffer long service latency from CA.
• Considering visit rate in data replication. Though C and D
are friends of JP’s users, as user D’s data is rarely visited
by JP’s users, JP only creates a replica of user C, denoted by
C’. As a result, users A and B can read and write their own
data in JP and also locally read C’s data with whom they
frequently interact, thus saving inter-datacenter traffic. Also,
the network load for updating D’s data is saved. When user
A reads D, JP needs to contact CA, but such visits are rare.
• Jointly considering visit and update rates in data replication.
Though user A is visited by C and D, A’s data is so
frequently updated that the update load is beyond the load
saved by replication in both CA and VA; thus CA and VA
do not create replicas of A. CA only has replicas of C and B,
and VA only creates replicas of B and D. When user A reads
D, JP needs to contact CA, but such visits are rare.
• Updating. When user B updates status in its master data-
center in JP, JP pushes the update to CA and VA, since they
both have B.

A 
B 

D 

CA 

Japan(JP) 
A,B,C’ 

D,B’,C’  C 

VA 

C,D’,B’ 

Endpoints 
Data center User 

Fig. 17: Inter-datacenter interactions in SD3.

SD3 also incorporates three schemes to enhance its
performance: locality-aware multicast update tree, replica
deactivation, and datacenter congestion control. When there
are many replica datacenters, SD3 dynamically builds them
into a locality-aware multicast update tree, which connects
the geographically closest datacenters for update propaga-
tion, thus reducing inter-datacenter update network load.
As illustrated by the dashed red lines in Figure 17, master
datacenter JP builds a locality-aware multicast update tree.
When JP needs to update CA and VA, it pushes the update
to CA, which further pushes the update to VA. In the replica
deactivation scheme, SD3 does not update a replica if it

TABLE 1: Notations.
C/c the whole datacenter set/datacenter c

Uout(c) the set of visited remote users with respect to datacenter c
RUout(c) the set of selected and replicated users out of Uout(c)

j/dj the user j / atomized user data d of user j
c(j) the master datacenter of user j
Uj the update rate of user j’s data
Vc,j the visit rate from users in datacenter c towards user j
Sv
k,j the message size of the kth visit towards user j’s data

Sv
j /S

u
j the average visit/update message size

Dc,c(j) the distance between datacenters c and c(j)
Os

c,j/O
u
c,j the saved visit/consumed update load by replicating j in c

Bc,j the network load benefit of replicating user j’s data in c
δMax the threshold to determine whether to replicate any user’s data
δMin the threshold to determine whether to remove any user’s replica

Os
c,dj

/Ou
c,dj

the saved visit/consumed update load by replicating dj in c

Bc,dj
the network load benefit of replicating j’s atomized data d in c

will be a long time until its next visit in order to reduce the
number of update messages. In the datacenter congestion
control scheme, when a datacenter is overloaded, it releases
its excess load to its geographically closest datacenters by
redirecting user requests to them.

3.2 Selective User Data Replication
3.2.1 Algorithm Design
Inter-datacenter communication occurs when a user
mapped to a datacenter reads or writes a friend’s data in
another datacenter or when a master datacenter pushes an
update to slave datacenters. The inter-datacenter commu-
nications can be reduced by local replicas of these outside
friends, but replicas also generate data update load. This
work aims to break the tie between service latency and
network load with selective replication. We first measure the
extra saved network load of all replicas by considering both
saved visit network load and consumed update network
load. For easy reference, Table 1 lists all primary parameters
in SD3.

The network load for any message is related to its size,
since a larger package requires more bandwidth. Also, the
network load is related to transmission distance; longer
distances may introduce greater cross ISP network load,
which is costly. Therefore, we adopt a measure used in [4]
for the network load of inter-datacenter communications. It
represents the resource consumption or cost in data trans-
mission. That is, the network load of an inter-datacenter
communication, say the kth visit from any user in datacenter
c towards a remote user j in datacenter c(j), is measured
by Sv

k,j ×Dc,c(j) MBkm (Mega-Byte-kilometers), where Sv
k,j

denotes the size of the response of the kth query on user j
and Dc,c(j) denotes the distance between datacenters c and
c(j).

We use Uout(c) to denote the set of users remote with
respect to datacenter c and visited by users in datacenter
c, and use RUout(c) to denote the set of remote users
replicated in datacenter c. After a time period, we measure
the total network load of inter-datacenter communications
saved by all replicas in the system (denoted by Os). We
called this time period the checking period, denoted by T.
Then Os equals:

Os =
∑

c∈C

∑

j∈RUout(c)

∑

k∈[1...Vc,j×T]

Sv
k,j ×Dc,c(j)

=
∑

c∈C

∑

j∈RUout(c)

Vc,jS
v
j ×Dc,c(j) × T,

(1)

where C denotes the set of all datacenters of an OSN, Sv
j

denotes the average visit message size, and Vc,j denotes
the visit rate of datacenter c on remote user j, which is the
number of the visits on user j during a unit time interval. In
OSNs, users are usually interested in friends’ recent news
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such as posts in the News Feed. Thus, user data tends to be
accessed heavily immediately after creation for some time,
and then will be accessed rarely [5, 24]. Accordingly, SD3

only focuses on user j’s recent data to make the replication
decision, which may have high Vc,j in order to enlarge the
savings. If each datacenter c replicates user data for each
visited remote user j ∈ Uout(c), Os reaches the maximum
value. However, the replicas bring about extra update load
(denoted by Ou). Similar to Os in Eq. (1), Ou is calculated
by the summation of network load of each update message,
which is the product of the package size and the update
transmission distance. Thus,

Ou =
∑

c∈C

∑

j∈RUout(c)

UjS
u
j ×Dc,c(j) × T, (2)

where for user j’s recent data, Uj denotes its update rate,
and Su

j denote its average update message size.
Our objective is to minimize the inter-datacenter net-

work load by maximizing the benefits (denoted by B) of
replicating data while maintaining a low service latency:

Btotal = Os −Ou. (3)

To achieve this objective in a distributed manner, each
datacenter tries to maximize the benefit of its replicas
by choosing a subset of remote visited users to replicate.
Accordingly, it only replicates remote visited users whose
replica benefits are higher than a pre-defined threshold,
denoted by δMax. Each datacenter c keeps track of the visit
rate of each visited remote user j (Vc,j), obtains j’s update
rate from j’s master datacenter, and periodically calculates
the benefit of replicating j’s data:

Bc,j = Os
c,j −Ou

c,j = (Vc,jS
v
j − UjS

u
j )×Dc,c(j) × T, (4)

where Os
c,j and Ou

c,j are the saved visit network load
and update network load of replica j at datacenter c. If
Bc,j > δMax, datacenter c replicates user j. As previously
indicated, the interaction rate between friends varies. Thus,
each datacenter periodically checks the Bc,j of each replica,
and removes those with low Bc,j . Removing a replica sim-
ply means the replica stops receiving updates; the replica is
not deleted from storage, in order to facilitate its creation
later. It will be deleted only when there is not enough stor-
age space. In order to avoid frequent creation and deletion
of the same replica, SD3 sets another threshold δmin that
is less than δMax. When Bc,j < δmin, datacenter c removes
replica j. As a result,

RUout(c) ←{j|j ∈ Uout(c)

∧ ((Bc,j > δMax ∧ ¬ j ∈ RUout(c))

∨ (Bc,j > δMin ∧ j ∈ RUout(c)))}.
(5)

In Eq. (5), if we set δMax and δMin to negative infinity,
SD3 becomes the method of simply replicating all previ-
ously queried data [4] with a long cache time. Datacenter
c sets δMax (δMin) for different remote datacenter c′ with
different values, denoted by δMax,c′ (δMin,c′ ), since differ-
ent datacenter c′ has different Dc,c′ for the same update
message. For a specific datacenter c′, there exists a tradeoff
between service latency and update load. More replicas gen-
erate lower service latency, but increase update load, and
vice versa. SD3 uses the benefit metric and two thresholds
to break the tie in order to achieve an optimal tradeoff;
that is, δMax and δMin in Eq. (5) represent the weights
for each respective objective. They can be determined based
on multiple factors such as user service latency constraints,
saved network load, user data replication overhead, replica
management overhead and so on. For example, if the OSN
needs very short service latencies for browsing, it can set
a negative value to δMax. Therefore, even when a replica
benefit Bc,j has a negative value, which means this replica

generates more update network load than its saved visit
network load, it may still be created in order to meet the low
service latency requirement. However, this replica brings
more inter-datacenter communications.

Algorithm 1 Pseudo-code of the selective user data replica-
tion algorithm

Input: Set of visited users during previous period, H(c)
Current slave replicas set, RUout(c)

Output: RUout(c)
for each j ∈ RUout(c) do

if j ∈ Hc then
Bc,j ← (

∑
k

Sv
k,j ×Dc,c(j) −

∑
k

Su
k,j ×Dc,c(j))× T

else
Bc,j ← 0

end if
if Bc,j < δMin,c(j) then

remove local replica of j
delete j from RUout(c)
notify c(j)

end if
end for
for each j ∈ Hc ∧ j �∈ RUout(c) do

Bc,j ← (V (c, j)× Sv
j ×Dc,c(j) − Uj × Su

j ×Dc,c(j))× T

if Bc,j ≥ δMax,c(j) then
create a local replica of j
add j into RUout(c)
notify c(j)

end if
end for

The checking period T needs to be carefully determined
to reflect the general visit and update rates. A small T could
be sensitive to the varying of visit and update rates, leading
to frequent replica creation and deletion. Therefore, T needs
to be long enough to contain the majority of the absent
periods in Figure 14. Such a T takes into account the visits
before, within and after the absence period, which avoids
frequent deletion and creation of replicas that are frequently
visited before and after a long absent period. The selective
user data replication algorithm has a O(N) time complexity.
Due to space limitations, we skip the detailed analysis.

Algorithm 1 depicts the procedure for selective user data
replication. After a datacenter creates or removes a replica of
user j, it notifies j’s master datacenter. Each master datacen-
ter maintains an index that records the slave datacenters of
its user’s data for data updates. When user i writes to user
j, if c(i) does not have j’s master replica, c(i) sends a write
request to c(j). When c(j) receives a write request from c(i)
or a user in c(j) writes to user j, c(j) invokes instant update
to all slave datacenters. A datacenter responds to a read re-
quest for a remote user j’s data if the datacenter locally has
a replica of j; otherwise, it redirects the read request to c(j).

3.2.2 Data Structure and Time Complexity
Data Structure. Based on Algorithm 1, when a datacenter
checks whether it needs to create or remove a user’s replica
(say user j) that it visits, it must know the update and visit
rates of user j’s data, the average response and update sizes,
and the distance between datacenter c and user j’s master
datacenter. The datacenter distance is constant after the
datacenters’ deployment. To retrieve the other parameters,
if the datacenter has a slave replica of user j, then it can
keep track of the update and visit rates on user j and
the average sizes of responses and updates from its data
request log. If the datacenter does not have a slave replica
of user j, it can still keep track of the visit rate on user j and
the average size of responses locally. However, the update
rate and the average size of updates can only be retrieved
from the master datacenter of user j. Querying the two
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parameters each time when visiting the master datacenter
generates unnecessary load. Also, periodical querying may
cause replicas to be created too slowly. To handle these
problems, we use the following strategy. Since a replica is
created when Bc,j is larger than δMax,c(j), we first assume
the update rate is equal to zero and calculate Bc,j . Only
when Bc,j is larger than δMax,c(j) does the datacenter
retrieve its update rate and average response sizes together
with the next data visit on the master datacenter. If the
calculated Bc,j based on the real update rate is larger than
δMax,c(j), the datacenter then replicates user j’s data locally.
Time Complexity. With the update and visit rates, we
analyze the time complexity of the selective data replication
algorithm of a datacenter. Suppose that datacenter c needs
to decide whether it creates or removes a replica of each
user that it visited. We partition all users into two groups;
one group G1 is formed by the users in one datacenter c and
the other group G2 is formed by all other users in the OSN.
We draw an edge between c and each of its visited users j
in G2, and an edge’s weight equals the benefit value Bc,j .
Then, the problem of benefit maximization is equivalent to
the problem of maximizing the total weights of edges in
this bipartite graph. Our method is a greedy algorithm that
predicts future benefits by maximizing previous benefits.
We use N2 to denote the total number of all c’s remote
users in G2, and N to denote the total number of users
in the OSN. Then, the time complexity of the selective
data replication algorithm is O(αN2) = O(N). Thus, this
selective replication algorithm is cost effective. SPAR uses a
complete social graph of all users for partitioning and then
decides data replications, which is a NP-Hard problem [25].
Despite the low time complexity of SD3’s selective user
data replication method, it is still difficult for datacenter c to
keep track of the visit rate from datacenter c to each remote
user due to the potentially vast size of OSNs. For efficiency,
datacenter c records each user’s visits to remote users
during the checking period (T). Datacenter c periodically
depends on a word count-like application in Map/Reduce
parallel framework [26], which is already deployed in many
datacenters including Facebook’s, to calculate the visit rate
of each remote user.

3.3 Atomized User Data Replication
In OSNs, a user’s data can be classified into different types
such as photo comments, video comments, friend posts, mu-
sic, movies, statuses and personal information. As shown
in Section 2, these different types of data have different
update rates. If SD3 replicates a user’s entire data, it wastes
storage and bandwidth resources for storing, replicating
and updating the atomized data that is infrequently visited
but frequently updated. Therefore, rather than regarding a
user’s data set as a whole replication entity, SD3 atomizes
a user’s data based on different types and regards atomized
data as an entity for replication. Accordingly, each datacen-
ter keeps track of the visit rate and update rate of each
atomized data in a user’s data set. By replacing user j’s
data in Eq. (4) with user j’s atomized data d, denoted by dj ,
we get:

Bc,dj = Os
dj

−Ou
dj

= (Vc,djS
v
dj

− UdjS
u
dj

)×Dc,c(j) × T. (6)

Based on Eq. (6), datacenters decide whether to create or
maintain the atomized data of a user using the same method
introduced in Section 3.2. A datacenter can directly respond
to local requests for frequently visited atomized data of
remote user j, and directs the requests for infrequently
visited atomized data to the master datacenter of j. Each
master datacenter maintains a record of its users’ atomized
data replicas for updating the replicas. Since the number

of different user data types is limited and can be regarded
as a constant, the time complexity of atomized user data
replication is still O(N).

3.4 Locality-aware Multicast Update Tree
If a master datacenter c of a user’s data dj broadcasts an up-
date to all slave datacenters of the data, the update network
load equals

∑
i∈Rr(dj)

Su
dj
×Dc,ci ×T where Rr(dj) denotes

the set of all slave replicas of data dj . We see that larger Dc,ci
generates higher network load and also a larger Rr(dj)
may overload the master datacenter. Since datacenters are
spread out worldwide, we can reduce Dc,ci and meanwhile
reduce the load on the master datacenter by transmitting an
update between geographically close datacenters in order
to reduce the update network load while still constraining
update delay. For example, in Figure 18, JP needs to send
an update to datacenters in CA, VA, AK, and Canada. The
sum of the update transmission network loads from JP to
four other datacenters is much higher than the sum of the
update transmission network loads of JP→AK→CA→VA
and Canada. Also, the transmission along geographically
close datacenters guarantees low latency.

B 

Update path AK 

VA 
CA 

Canada 

Japan (JP) 

Multicast tree 
Broadcast 

Fig. 18: Locality-aware mul-
ticast vs. broadcast tree.

VA 

CA 

Canada A 

B 

Neighborhood Req/ACK 

Fig. 19: The datacenter con-
gestion control.

Recall that a master datacenter c records the slave data-
centers of each of its users and builds the slave datacenters
of the user into a minimum spanning tree [27] G = {v, e}.
Node v denotes a datacenter. Edge e denotes an edge
connecting two datacenters, and takes their geographical
distance as its weight. Then, c sends the update along with
the tree information to its children in the tree. The children
receiving the update further forward it to their children in
the tree. This process repeats until the leaf nodes in the tree
receive the update. The minimum spanning tree is acyclic
with the minimum sum of the path weights when a package
travels from the root to the leaf nodes. Therefore, there are
no redundant updates in the multicasting, and the update
travels the minimum geographical distance, which reduces
the updating network load. Note that the datacenters con-
tinue in operation and are reliable for a long time once
deployed, so no maintenance is required for the multicast
tree. SD3 depends on the replicas’ creation and remove
messages to update the multicast tree.

3.5 Replica Deactivation
As shown in Figure 14, in OSNs, the time interval between
two consecutive visits on the same user replica may be long,
during which there may be many updates. These updates
do not need to be immediately pushed to the replica upon
occurrence during this time interval. They can be pushed
together to the replica upon its next visit, which can reduce
the number of update messages and the network load on
the datacenters for consistency maintenance. Based on this
rationale, we propose a replica deactivation method, the
details of which are presented below.

Recall Figure 16 indicates that the longer an absent
period has lasted, the longer subsequent absent periods are
expected to last; then, we can set a threshold using the pre-
vious absent period length to identify user replicas that will
have a future long absent period. Thus, in order to identify
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the replicas that will have long absent periods before the
next visit, we set a time threshold Ta. If the absent period of
a replica of user j in datacenter ck (denoted by Rj,ck ) is over
Ta, datacenter k deactivates this replica, i.e., it notifies the
master datacenter of user j to stop updating this replica.
Upon receiving the deactivation notification, the master
datacenter will not involve datacenter k in building its
multicast update tree. Later on, once datacenter ck receives
a visit request on this replica, it reactivates this replica, i.e.,
it requests that the master datacenter push all updates that
occurred during the deactivation and continue to push each
update upon occurrence. The master datacenter notifies the
closest datacenter of datacenter ck in the multicast update
tree to push all missed updates to datacenter ck, and adds
datacenter ck back to the multicast update tree. To avoid
network congestion, the updates can be sent during low
network usage time periods, taking into account the diurnal
pattern of data visits [28], rather than at the time of a data
visit.

Recall that at the end of each checking period T, each
datacenter determines whether it should keep a user data
replica and remain in the multicast update tree of the user
data. If the closest datacenter (say cj) of datacenter ck
leaves the tree before ck reactivates its replica, then when
ck reactivates its replica, a datacenter geographically farther
than cj needs to push the missed updates to cj . To save
the network load, if a leaving datacenter has a deactivated
child datacenter, it pushes missed updates to this datacenter
before leaving. When ck reactivates its replica, the master
datacenter notifies its currently closest datacenter cj to push
the remaining updates to ck.

3.6 Datacenter Congestion Control
The users in an OSN are not evenly distributed throughout
the world, as shown in Figure 1. Also, the number of
users in different areas and the visit rates from users to
a datacenter may vary over time. These changes in user
service load in an area may overload some datacenters
while lightly loading others. Thus, we propose a datacenter
congestion control scheme to release the excess load of the
overloaded datacenters to lightly loaded datacenters.

In this strategy, when datacenter ci is overloaded, i.e.,
its user request workload (Lc) is greater than its request
serving capacity (Cc) during a unit time period Tc, it con-
tacts M geographically neighboring datacenters to release
the excess workload equal to Lci − Cci . Specifically, at the
start, it replicates its master replicas to these neighboring
datacenters to reduce service latency. Later on, when data-
center ci is overloaded, it redirects the upcoming requests
to these datacenters proportional to their available service
capacity, i.e., Ccj − Lcj . Figure 19 shows an example of
the datacenter congestion control scheme. As shown in the
figure, when the CA datacenter is overloaded, it contacts
its neighboring datacenters VA and Canada, to release its
workload. Assume datacenters VA and Canada are lightly
loaded datacenters with available capacities equal to m and
n, respectively. Then, when redirecting the requests, CA has
probability of m/(m+n) and n/(m+n) to redirect a request
to datacenter VA and Canada, respectively. In order to avoid
infinite redirection, a request cannot be redirected twice.
Note that this datacenter congestion control scheme creates
user data replicas, which should be considered as normal
user data replicas to be handled by the locality-aware mul-
ticast update tree and replica deactivation schemes.

4 PERFORMANCE EVALUATION
To evaluate the design of SD3, we implemented a prototype
on PlanetLab and conducted trace-driven experiments. We

used the first dataset for users’ update rates of three data
types including wall, status, and photo comments. For post
activities of each data type’s update rate, we used the
second, 90 day dataset. Unless otherwise indicated, the
number of users was set to 36,000 by randomly selecting
user data in the trace. Note that the number of users in
the trace is smaller than 36,000. We kept randomly selecting
users until 36,000 users were reached. We distributed the
users according to the user distribution (i.e., percent of all
nodes located in each country) in Figure 1. We chose 200
globally distributed nodes from PlanetLab. For each user,
we randomly chose one of the PlanetLab nodes in the user’s
country to virtually function as the user. From the PlanetLab
nodes that always have relatively low resource utilization,
we chose 13 PlanetLab nodes to serve as globally distributed
datacenters; 4 nodes are randomly from America, Europe
and Asia, respectively and 1 node is randomly chosen
from Australia, according to the distribution of the physical
servers of the DNS root name servers. The round trip time
(RTT), measured using the Ping command, is relatively
stable among any pair of nodes simulating datacenters.
The RTTs of all pairs have a median standard deviation of
2.23ms and a 95% standard deviation of 58.84ms, and the
median and 95% last mile latencies of all PlanetLab nodes
are 0.80ms and 2.47ms, respectively. These indicate that the
13 PlanetLab nodes have stable networks. Thus, they can
be used to simulate datacenters with stable networks. The
distribution of friends of each user follows the trend in Fig-
ure 5; to determine the friends of a user, we randomly chose
a certain number of users from all users within different
distance ranges.

Since 92% of all activities in OSNs are transparent (e.g.,
navigation) [14], we calculated a user j’s visit rate (Vj) by
his/her update rate (Uj): Vj = 0.92

0.08Uj . The distribution of
read requests on a user among the user’s friends follows
the interactions’ distribution in Figure 5, which indicates
the update rate over distance. All users read and write on
different types of data over time at the rate in the trace data.

Based on the real sizes of update (write request) and
visit (read) response packets on the OSN, we set the size
of each update and visit response packet size to 1KB and
10KB, respectively. We ignored the size for visit requests
since it is negligibly small. Considering the replication cost,
we set each datacenter’s δMax with datacenter c′ to the visit
load of a visit packet transmission between this datacenter
and datacenter i and set δMin,c′ to −δMax,c′ . We set the
replica checking time period to 1 hour, during which a
datacenter determines whether to keep or discard replicas
based on their update and visit rates.

We use LocMap to denote the locality-aware user-
datacenter mapping method in the new OSN model with
many worldwide distributed small datacenters. As there
are no existing replication methods specifically for this
new OSN model, we adapt SPAR [25] and RS [4] in
this environment for comparison evaluation. Based upon
LocMap, we implemented SPAR [25], RS [4] and SD3. We
use RS S and RS L to denote RS with 1-day cache timeout
and all 90-day cache timeout, respectively. In order to test
the effectiveness of SD3 without enhancements, by default,
SD3 does not incorporate the enhanced schemes, if without
specific declaration.

4.1 Effect of Selective User Data Replication
Initially, we did not apply the atomized user data replication
algorithm in order to see the sole effect of the selective
data replication algorithm. Figure 20 shows the median, 1st
and 99th percentiles of the number of total replicas in all
datacenters each day during the 90 days versus the number



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2485266, IEEE Transactions on Parallel and Distributed Systems

9

1
10

100
1000

10000
100000

1000000

6.E+3 1.E+4 2.E+4 2.E+4 3.E+4

N
u

m
b

er
 o

f 
to

ta
l 

re
p

lic
as

 

Number of users 

SPAR
RS_L
SD3
RS_S

Fig. 20: Num. of total replicas.

-10%

0%

10%

20%

30%

40%

50%

1 11 21 31 41 51 61 71 81

Pe
rc

en
t 

o
f 

re
d

u
ce

d
 

n
et

w
o

rk
 lo

ad
 o

ve
r 

Lo
cM

ap
 

 

Day index in trace data 

SPAR RS_L SD3 RS_S
SD3 

RS L 

RS_S 
SPAR 

Fig. 21: Network load.

24
29
34
39
44
49
54

1 11 21 31 41 51 61 71 81

A
vg

. s
er

vi
ce

 la
te

n
cy

 
o

f 
d

ay
 1

- 
x 

(m
s)

 

Day index in trace data 

SPAR RS_L RS_S
SD3 SD3 (0) LocMap

SD3 
SD3(0) 

LocMap 

SPAR 
RS_L 

RS_S 

Fig. 22: Avg. service latency.

85%

90%

95%

100%

1 11 21 31 41 51 61 71 81

H
it

 r
at

e 

Day index in trace data 

RS_L RS_S SD3 LocMap

RS_S 

SD3 RS_L 

LocMap 

Fig. 23: Visit hit rate.

of users. Note that the Y axis is in the log scale. We see that
the median results follow SPAR>RS L>SD3>RS S. Also,
the median number of replicas of SD3 is about one third
of SPAR’s. SPAR replicates user data so that all data of a
user’s friends is in the same datacenter and the total number
of replicas is minimized. As Section 2 indicated that most
friend relationships are not active, SPAR wastes system
resources on those relationships with few interactions, thus
producing the largest number of replicas. Each datacenter
in RS replicates previously queried data from other data-
centers. RS L produces fewer replicas than SPAR because
RS does not replicate unvisited friend data. SD3 considers
the real interactions among datacenters, and only replicates
user data that saves more network load for visits than the
generated update load, thus producing fewer replicas than
RS L. RS S has only a one-day cache timeout, which makes
its total number of replicas much smaller than SD3. SD3

always maintains replicas with high visit rates, resulting in
better data availability than RS S. The results indicate that
SD3 needs lower load to create and maintain replicas than
the other systems.

From the figure, we also observe that the variation of
the total replicas follows SPAR<SD3<RS S<RS L. Because
of the stable social relationships, the number of replicas in
SPAR remains constant. RS S has a greater variation than
SD3. RS S creates a replica after each inter-datacenter visit
and removes it after timeout. SD3 periodically measures the
benefit of a replica when determining whether to create or
remove a replica, which leads to a relatively stable number
of replicas and avoids frequent creations and deletions of
replicas. Because RS L has no timeout, it aggregates replicas
during the 90 days and generates nearly triple the peak
number of replicas in RS S. Therefore, the variance of RS L
is larger than RS S. The result indicates that SD3 avoids
frequent replica creations and deletions that consume un-
necessary inter-datacenter communications. We also see that
as the number of users increases, the number of total repli-
cas increases. The result indicates that given the extremely
rapid growth of users in the OSN, it is important to design
a replication method that constrains the number of replicas,
without compromising the data availability to guarantee
low service latency. SD3 meets this requirement.

We measured the total network load for reads, writes,
updates and replication in MBkm in each of the 90 days
for each system. We then calculated the average value
per day, which follows LocMap>RS S>SPAR>RS L>SD3.
LocMap generates 7.06 × 106MBkm network load per day.
Using LocMap as the baseline, Figure 21 shows the percent
of reduced network load over LocMap of other systems.
RS S produces 4% lower network load than LocMap, and
SPAR and RS L have 15% and 16% lower network load,
respectively, while SD3 generates 33% lower network load.
Compared to other methods, SD3 considers both visit and
update rates when deciding replication, ensuring that each
replica always reduces network load. RS replicates all pre-
viously visited data and SPAR replicates all friends’ data
regardless of their visit and update rates. As a result, for

replicas that are infrequently visited but frequently updated,
SPAR produces much higher network load. In a nutshell,
SD3 dramatically reduces the inter-datacenter network load
of the other systems.

Next, we study whether the reduction of the inter-
datacenter network load of SD3 results in compromised
user service latencies. Figure 22 shows the average service
latency per user request from day 1 to day x = {1, 2, ..., 90}.
In this experiment, we also measured SD3 with δMax = 0,
denoted by SD3(0). The average service latency follows
LocMap>RS S>SD3>SPAR>SD3(0)>RS L. Since a user
is assigned to the same geographically closest datacenter in
all systems, the round-trip latencies of all methods from the
user to its master datacenter are comparable. The latency
differences between systems depend on the inter-datacenter
query delay, which SD3 aims to reduce. LocMap generates
the highest average service latency because it does not have
a replication strategy, thus generating many inter-datacenter
queries for long-distance user interactions. RS S has a short
cache timeout for replicas, hence generating many inter-
datacenter visits even for previously visited data and lead-
ing to long service latency. RS L does not have replica
timeouts during the experiment, so most of the visit requests
can be resolved locally, reducing the average service latency.
It is intriguing to see that SPAR produces longer average
latency than RS L despite placing all of a user’s friends
together in a datacenter. This is because, as previously indi-
cated, SPAR may map some users to distant datacenters to
reduce the number of total replicas. Thus, the long distance
between these users and their master datacenters increases
the average service latency. SD3 uses the selective replica-
tion strategy, which does not replicate infrequently visited
user data with high probability. Queries towards such data
are only a small part of total queries. Therefore, SD3’s
latency is lower than those of LocMap and RS S. Reducing
the threshold introduces more replicas, thus increasing the
probability of queries being resolved locally. This is why
SD3(0)’s latency is shorter than SPAR after day 37.

From the figure, we also see that the average service
latencies of LocMap and RS S remain nearly constant while
those of RS L and SD3 decrease as the time elapses. Since
LocMap has no replication strategy and RS S has a short
cache timeout, both gain no or little benefit from replicas. In
RS L and SD3, the growing number of replicas over time
increases the probability of requests being resolved locally.
This figure shows that SD3 still achieves strong perfor-
mance for user service latency even though it also generates
the lowest network load and a smaller number of total repli-
cas. Also, the parameter δMax can be adjusted to balance the
tradeoff between the network load and service latency.

To further investigate the reasons for the service latency
result, we measured the data hit rate, defined as the percent
of requests that are resolved locally in a datacenter. Fig-
ure 23 shows the hit rate of different systems for each day.
RS L generates the highest hit rate, which increases from
89% to 99%. SD3’s hit rate increases from 89% to 97%. On
average, it is 9% and 4% higher than LocMap and RS S,
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respectively. LocMap generates a stable hit rate because an
interaction between geographically distant friends always
produces a miss. Due to the variation in visit rates and
different interacting friends each day, the hit rate of SD3

also varies over time. Additionally, we observe that the hit
rates of SD3 and RS L exhibit a rise during day1-day14, and
then stay stable during day15-day90. This is because they
initially do not have replicas, and replicas are created over
time and subsequently help increase the hit rate. The results
are consistent with the results in Figure 22, as a higher hit
rate means lower user service latency.

4.2 Effect of Atomized User Data Replication
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Fig. 24: Network load sav-
ings by data atomization.
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Fig. 25: Service latency by
data atomization.

We then evaluate the performance of SD3 with and
without the atomized user data replication, denoted by
SD3(w/) and SD3(w/o), respectively. We set the user visit
packet size to 1/3 of its entire data size in SD3(w/). In
current OSNs, there exist different types of user data that
are visited individually (e.g., posts, music, and movies) and
are visited together (e.g., wall, status, and photo comments).
Using the three types of data in our trace as an example, we
tested three scenarios: i) when different types of data are vis-
ited individually (denoted by SD3(w/)-I), ii) when different
types of data are visited together (denoted by SD3(w/)-T),
and iii) part of the types of data (i.e., photo comments and
user status) are visited together while other types (i.e., wall)
are visited individually (denoted by SD3(w/)-P), which
represents the real scenario. In SD3(w/)-I, each type of
data has its own visit rate, while in SD3(w/)-T, all types
of data of a user have the same visit rate. In SD3(w/)-P,
status and photo comments of a user have the same visit
rate (i.e., 92

8 times of the sum of both update rates), which
is different from the visit rate of wall. Figure 24 shows the
network load saving percentage measured by (SD3(w/o)-
SD3(w/))/SD3(w/o) for different scenarios. SD3(w/)-I
saves at least 42% of the network load of SD3(w/o);
SD3(w/)-T and SD3(w/)-P save 3.2% and 11.7% of the net-
work load of SD3(w/o) on average, respectively. SD3(w/)-
I independently considers each type of a user’s data and
avoids replicating partial user data with a high update rate
and low visit rate, thus further reducing network load. In
SD3(w/)-T, for frequently updated user data, some types
of data (e.g., photo comments) are still rarely updated com-
pared to the user data’s visit rate. Then, these types of data
have high replica benefit and are replicated to save network
load for remote visits. In SD3(w/)-P, some types of data are
visited together while other types are visited individually,
so its saved network load lies in the middle of SD3(w/)-I
and SD3(w/)-T. The result indicates that the atomized user
data replication algorithm can further reduce network load,
especially when many types of data are visited individually.

Figure 25 shows the average service latency of
SD3(w/o), SD3(w/)-I, SD3(w/)-T and SD3(w/)-P. It
shows that SD3(w/)-I generates a slightly longer service
latency than SD3(w/o), with up to only 1.4ms higher
latency. SD3(w/o) replicates the whole user data locally,

TABLE 2: Network load saving over LocMap.

SPAR RS L RS S SD3(w/o) SD3(w/)
Reduced percentage (%) 46.8 48.1 23.6 50.2 71.8

while SD3(w/)-I does not create replicas for frequently up-
dated but rarely visited atomized data, which leads to more
remote visits than SD3(w/o). In SD3(w/)-T, since all types
of data are visited together, there are fewer rarely visited
atomized data than in SD3(w/)-I. Therefore, the probability
that a data atom is replicated increases, leading to simi-
lar latency as SD3(w/o). Lying in the middle ground of
SD3(w/)-I and SD3(w/)-T, the number of locally replicated
data atoms in SD3(w/)-P is less than SD3(w/)-T but larger
than SD3(w/)-I. As a result, SD3(w/)-P’s service latency
is also similar to SD3(w/o). Figures 24 and 25 indicate
that the atomized user data replication can effectively save
network load without greatly compromising service latency
and is more effective when different types of data are visited
individually.

4.3 Effect of Locality-aware Multicast Update Tree
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Fig. 27: Multicast vs. broadcast transmission time.
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Fig. 26: Network load sav-
ings by Multicast.

We compared SD3(w/)
with broadcasting (denoted
by Broadcast) and with the
locality-aware multicast up-
date tree (denoted by Mul-
ticast). Figure 26 shows the
total update load in each day
on the left Y axis, and the
network load savings percent
with the right Y axis, which
is calculated by (OBroad −
OMulti)/OBroad. As the fig-
ure shows, the update network load of both systems varies
over the days due to the update rate’s variation, and Multi-
cast incurs much less update network load than Broadcast.
The network load savings percentage varies from 3.6% to
33.5% with a median of 13.2%. This is because Multicast
saves update network load by reducing the total transmis-
sion distance of traffic and avoiding redundant traffic paths
for each update.

We also modified all other systems to use the locality-
aware multicast update tree in SD3 for replica updates. We
then conducted experiments to measure the total network
load savings of each modified system over LocMap. Table 2
shows the network load reduced percentage of each system
compared to LocMap. It shows that the reduced percentage
follows RS S<SPAR<RS L<SD3(w/o)<SD3(w/) due to
the same reasons as Figures 21 and 24. We can also see
that SD3 saves a smaller extra percentage of network load
compared to SPAR and RS L than SD3 saves in Figure 21,
because the multicast tree is effective in reducing the update
network load to replicas with rare visits in SPAR and RS L.
The result indicates that the multicast tree is effective in
saving network load, and SD3 saves more network load
than other systems.
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Fig. 28: Effectiveness of the replica deactivation over thresholds.
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Fig. 29: Percentage of visits
invoking activations.

Next, we compare the total traffic transmission time of
consistency maintenance using SD3’s multicast tree and
broadcasting. We first randomly chose j nodes from 200
PlanetLab nodes; then, we randomly selected 1/i nodes
from the j nodes, that will be involved in update. Among
those nodes, we randomly selected one node as the mas-
ter datacenter, and other nodes as slave datacenters. We
calculated total traffic transmission time for the update
with Broadcast and Multicast strategies. We repeated this
operation 10× j times and then calculated the average. We
varied j from 20 to 100 with an increase of 20 in each step,
and varied i from 2 to 6 with 1 increase in each step. For
each pair of < i, j >, we calculated the average total time,
which is shown in Figure 27.

The average latencies of both broadcasting and multicast
tree increase as j increases or i decreases. When j increases
or i decreases, more nodes are involved in an update, pro-
ducing more update transmissions and total transmission
time. Given a pair < i, j >, the time for Multicast is
much smaller than that of Broadcast, since Multicast has
much shorter transmission distance, which determines the
majority of total time in a normal case. In all, the multicast
update tree saves traffic cost reflected by both load and
transmission time.
4.4 Effect of Replica Deactivation
We then evaluate the effectiveness of the replica
deactivation scheme under different thresholds for
deactivation (Ta) and different checking periods (T). We
used the publicly available trace data of the wall posts in
an OSN [21] to set the experimental environment. We used
all 46,674 users in the trace. All other settings are the same
as the default settings.

Figure 28(a) shows the total number of reduced mes-
sages for updates, deactivations, and activations in SD3

with the replica deactivation scheme compared to SD3

without this scheme under different checking periods T

and deactivation thresholds Ta. It shows that the replica
deactivation method with different combinations of T and
Ta reduces many messages by a range of 7%-13% due to the
reduced update messages. This scheme deactivates replicas
(i.e., stops propagating updates to them) that have a high
probability not to be visited for a long time until their next
visits. This method ensures the updated status of such a
replica when being visited while reducing n − 1 number
of messages, where n is the total number of updates of the
original data prior to its next visit. The experimental result
indicates that the replica deactivation scheme is effective in
reducing the number of messages to reduce network load
from the master datacenter to slave datacenters. Figure 28(a)
also shows that the number of reduced messages decreases
as T increases for a given Ta. A smaller T is more sensitive
to the varying of visit rates and update rates, causing more
replica creation whenver there are frequent visits. In other
words, more datacenters are added to the update tree,
leading to more update pushes saved due to the deactivated
replicas, and hence increasing reduced update messages.

This figure further shows that the number of reduced
messages first increases and then decreases as the deactiva-
tion threshold Ta increases. As a longer Ta may miss some
short absent periods that contain many updates, there is a
smaller number of reduced messages. Though a small Ta

is unlikely to miss short absent periods, it introduces more
frequent deactivations and reactivations. The total reduced
numbers of messages reach the highest at Ta = 10min
only except T = 30min, where it is the second-highest.
Thus, Ta = 10min is the optimal threshold maximizing the
number of reduced messages.

Figure 28(b) shows the reduced network load for up-
dates by the replica deactivation scheme. The reduced net-
work load is due to the exempted updates to the replicas,
which will be removed in the next checking period due
to low visit rates. Note we did not include the network
load for deactivation and reactivation notifications here.
The result confirms that this scheme can reduce the update
network load due to the fewer update messages as ex-
plained previously. This figure also shows that the reduced
update network load decreases as T increases due to the
same reason as in Figure 28(a); since smaller Ta saved more
update messages due to the same reason as Figure 28(a), the
reduced update network load decreases as Ta increases.

As the deactivation of a replica makes its datacenter
disappear from the multicast update tree of this user data,
we define replica maintenance time as the total existing time
of all replicas in all multicast update trees in the entire
experiment. Figure 28(c) shows the total reduced replica
maintenance time by the replica deactivation scheme. It con-
firms that this scheme can reduce the replica maintenance
time due to the same reason as in Figure 28(a). It also shows
that the reduced replica maintenance time decreases as T

increases and as Ta increases due to the same reason as
in Figure 28(b). Note that smaller T actually increases the
number of replicas and hence replica maintenance time even
though it reduced more replica maintenance time.

Recall that once there is a visit for a deactivated replica,
the replica datacenter needs to ask for its missed updates
before responding, which introduces a certain service delay.
Figure 29 shows the percentages of such delayed visits
with different values of T and Ta. It shows the percent-
age decreases as Ta increases due to the same reason as
in Figure 28(b). Thus, Ta determines a tradeoff between
the service latency and network load. Smaller Ta leads to
lower network load as shown in Figure 28(b); however, it
also increases the percentage of visits with longer service
latency. The average service latency of such visits is 278ms
compared to the normal average service latency less than
45ms as shown in Figure 22. However, when T = 120min
and T = 240min, the percentage rates are constrained to
lower than 0.2%. We see that the percentage increases as T

decreases. Recall that a smaller T leads to more slave replica
creations and deletions, which increase the probability that
a visit is served by a deactivated slave replica, and hence in-
crease the number of activation with higher service latency.
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4.5 Effect of Datacenter Congestion Control
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Fig. 30: Datacenter overload.
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Fig. 31: Total replica main-
taining time.

In this section, we evaluate the effectiveness of the dat-
acenter congestion control scheme under the same scenario
as Section 4.4. In this experiment, the periodical time for
each datacenter to measure workload, Tc, was set to 10 sec-
onds. The user request serving capacity of each datacenter
was set to 150 requests per second. Additionally, overloaded
datacenters need to probe M neighboring datacenters to
release their excess workloads; we varied M from 0 to 4
with increase of 1 in each step. For a datacenter, recall that
Lc denotes its user request workload and Cc denotes its
request serving capacity during a unit time period Tc. We
define a datacenter’s overload rate as Lc

Cc
. Figure 30 shows the

minimum, median and maximum of the 99.9th percentile
overload rate of the datacenters during the simulated time
of two days. M = 0 indicates that the datacenter congestion
control scheme is not employed. This case generates the
highest maximum rate and the lowest minimum rate, which
indicates the effectiveness of this scheme in avoiding data-
center overload and balancing the load distribution among
datacenters. The figure also shows that the maximum and
median rates exhibit a decreasing trend and the minimum
exhibits an increasing trend as the number of probed neigh-
boring datacenters M increases. This is because a larger M
leads to both more datacenter options for an overloaded dat-
acenter to successfully release its excess load and a higher
probability for lightly loaded datacenters to afford the
workload from overloaded datacenters. These experimental
results verify that the datacenter congestion control method
is effective in avoiding overload datacenters, and probing
a larger number of neighboring datacenters achieves lower
overload rates.

Figure 31 shows the maximum, median and minimum
of each datacenter’s total replica maintenance time. It shows
that a larger M leads to longer replica maintenance times,
which causes higher network load for updates. Because
each pair of neighboring datacenters need to replicate all of
each other’s master replicas, the replica maintenance time
increases even using the replica deactivation scheme. Thus,
in the datacenter congestion control scheme, it is important
to consider the tradeoff between overload rates and the
network load to decide the M value. A larger M decreases
the overload rates when datacenters are busy; however, it
also introduces more network load in releasing excess loads.

4.6 Summary of Evaluation and Limitations of SD3

In this section, we summarize our experimental results by
enumerating the outperformance of SD3 compared to the
other systems: SD3 is effective at saving the largest amount
of network load by incorporating selective user data repli-
cation, atomized user data replication, and multicast update
tree and replica deactivation methods; SD3 achieves com-
parable low service latencies and a high percentage of lo-
cally resolved requests by replicating frequently visited user

data; and SD3 can release the load of overloaded servers by
incorporating a datacenter congestion control method.

The trace analysis in Section 2 sheds light on the design
of SD3. However, the datasets only consist of the data
which can be seen by all friends or all users. Such data
may have a larger visit rate than its update ratemaking
replication beneficial. However, some private data that can
be visited by a limited number of friends, such as Face-
book messages, may have different visit/update patterns.
Intuitively, the visit latency is more important to these data
than to the five types of data crawled in the trace. However,
SD3 may not replicate the message data in order to save
network load, leading to an average service latency longer
than the requirement. Thus, using the same δMax and δMin

for all types of data may not be appropriate. In the future,
we will crawl and analyze more different types of data,
and propose a method to generate adaptive thresholds to
different types of data in order to meet different quality of
service requirements.

A user’s master datacenter needs to be close to this
user in order to reduce the service latency. Due to a user’s
mobility, the master datacenter also needs to be changed
among datacenters. However, since it is hard to crawl users’
OSN login traces currently, SD3 considers a constant master
datacenter for each user. This design leads to longer service
latencies and higher network loads to users that have re-
located, but immediately switching to a closer master dat-
acenter after a user’s move can introduce more replication
overhead for a short term travel. In future work, we will also
study mobility patterns and master datacenter switching
load to determine a user’s master datacenter dynamically.

Moreover, if the percentage of visits is much higher than
the 92% in [14], SD3 should create more replicas, leading
to an even greater reduction in network load over LocMap
than is shown in Figure 21. However, SD3’s improvement
compared to RS and SPAR will be reduced due to the de-
creased amounts of user data with high update rates but low
visit rates. Due to difficulties in crawling navigation activ-
ities, more accurately measuring SD3’s network load sav-
ings compared to other systems remains an open problem.

5 RELATED WORK
The design of SD3 is based on many previous studies on
OSN properties. The works in [29, 30] studied OSN struc-
tures and evolution patterns. OSNs are characterized by the
existence of communities based on user friendship, with a
high degree of interaction within communities and limited
interactions outside [31, 32]. For very large OSNs, the com-
munities become untight [33]. This supports the decision
in SD3 to create replicas based on user interaction rates
rather than static friend communities. Some other works
focus on communication through relationships and con-
struct weighted activity graphs [34, 10]. Viswanath et al. [21]
found that social links can grow stronger or weaker over
time, which supports SD3’s strategy of periodically check-
ing the necessity of replicas. Previous studies [14, 12, 15]
also showed that different atomized user data has different
visit/update rates, which supports the atomized user data
replication in SD3.

Facebook’s original centralized infrastructure with all
datacenters in US has several drawbacks [6]: poor scalabil-
ity, high cost of energy consumption, and single point of
failure for attacks. To solve this problem, some works [6, 24]
improve current storage methods in Facebook’s CDN to
facilitate video and image service, and some works [35, 36]
utilize the geo-distributed cloud to support large-scale so-
cial media streaming. Unlike these works, SD3 focuses on
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OSNs’ datacenters’ other types of user data and distributed
small datacenters worldwide, which do not necessarily have
full copy of all user data.

To scale Facebook’s datacenter service, a few works that
rely on replication have been proposed recently. Pujol et
al. [25] considered the problem of placing social commu-
nities in different servers within a datacenter and proposed
creating a replica for a friend relationship between users
in different servers. Tran et al. [37] considered the same
problem with a fixed number of replicas of each user data,
and S-CLONE was proposed, which attempts to place as
many socially connected data items into the same server as
possible. Wittie et al. [4] indicated the locality of interest of
social communities, and proposed to build regional servers
to cache data when it is first visited. This method does
not consider the visit and update rates to reduce inter-
datacenter communications, which may waste resources for
updating barely visited replicas. Little previous research
has been devoted to data replication in OSN distributed
datacenters in order to reduce both user service latency
and inter-datacenter network load. TailGate [28] adopts a
lazy content update method to reduce the peak bandwidth
usage of each OSN site. It predicts future accesses of new
contents and pushes new contents only to sites close to the
requesters in order improve QoE and reduce bandwidth
consumption. In TailGate, users’ access patterns (such as
a diurnal trend) are predicted to help TailGate decide a
time for new content transmission when the source and
destination sites’ uplinks and downlinks are in low us-
age and content has not yet been accessed. Different from
TailGate, SD3 deals with dynamic content such as profile
information. SD3 aims to reduce the total network load
instead of peak bandwidth usage. That is, SD3 does not
replicate user data to a datacenter close to some requesters
if the total request rate from that datacenter is much smaller
than the update rate of that data. Therefore, compared to
TailGate, SD3 can reduce network load but introduce longer
service latencies. The replica deactivation scheme in SD3 is
similar to the lazy updating in TailGate but aims to save
network load instead. However, after replica deactivation,
SD3 can incorporate TailGate to decide when to transmit
updates to the replicas by predicting replicas’ next visits, in
order to save bandwidth costs.

To scale clouds, the techniques of service redirection,
service migration and partitioning [38, 39] have been intro-
duced. In large-scale distributed systems, replication meth-
ods [40–42] replicate data in the previous requesters, the
intersections of query routing paths or the nodes near the
servers to reduce service latency and avoid node overload.
Many structures for data updating [43–45] also have been
proposed. However, these methods are not suitable for
OSNs because OSN data access patterns have typical char-
acteristics due to OSN’s social interactions and relationship
and the datacenters have a much smaller scale. SD3 also
shares the adaptive replication techniques with some works
in P2P systems [46–48] and in clouds [49], which dynam-
ically adjusted the number and location of data replicas.
These works focus on load balancing, while SD3 focuses
on saving network load. Some works [50–52] studied the
consistency maintenance of replicas over geographically
distributed datacenters or within a datacenter. Cidon et
al. [53] proposed replica allocation methods among servers
to achieve high data availability in the correlated failures of
data replicas. Unlike these works, SD3 focuses on deciding
whether to replicate a file. SD3 can leverage these works for
scalable consistency maintenance and high data availability
of replicas among OSNs’ datacenters.

In summary, SD3 is distinguished from the aforemen-

tioned works by considering OSN properties in data repli-
cation to reduce inter-datacenter communications while
achieving low service latency.

6 CONCLUSIONS
While a new OSN model with many small, globally dis-
tributed datacenters will result in improved service latencies
for users, a critical challenge in enabling such a model
is reducing inter-datacenter communications (i.e., network
load). Thus, we propose the Selective Data replication mech-
anism in Distributed Datacenters (SD3) to reduce inter-
datacenter communications while achieving low service
latency. We verify the advantages of the new OSN model
and present OSN properties from the analysis of our trace
datasets to show the design rationale of SD3. Some friends
may not have frequent interactions and some distant friends
may have frequent interactions. In SD3, rather than relying
on static friendship, each datacenter refers to the real user
interactions and jointly considers the update load and saved
visit load in determining replication in order to reduce inter-
datacenter communications. Also, since different atomized
data has different update rates, each datacenter only repli-
cates atomized data that saves inter-datacenter communi-
cations, rather than replicating a user’s entire dataset. SD3

also has a locality-aware multicast update tree for consis-
tency maintenance and a replica deactivation scheme to
further reduce network load. To avoid workload congestion
of datacenters in SD3, each overloaded datacenter releases
its excess load to its neighboring datacenters based on their
available capacities. Through trace-driven experiments on
PlanetLab, we prove that SD3 outperforms other replication
methods in reducing network load and service latency. In
our future work, we will investigate how to determine
parameters in design to meet different requirements on
service latency and network load.
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