
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

CloudFog: Leveraging Fog to Extend Cloud Gaming for
Thin-Client MMOG with High Quality of Service

Yuhua Lin, Member, IEEE and Haiying Shen, Senior Member, IEEE

Abstract—With the increasing popularity of Massively Multiplayer Online Game (MMOG) and fast growth of mobile gaming, cloud
gaming exhibits great promises over the conventional MMOG gaming model as it frees players from the requirement of hardware and
game installation on their local computers. However, as the graphics rendering is offloaded to the cloud, the data transmission between
the end-users and the cloud significantly increases the response latency and limits the user coverage, thus preventing cloud gaming to
achieve high user Quality of Service (QoS). To solve this problem, previous research suggested deploying more datacenters, but it
comes at a prohibitive cost. We propose a lightweight system called CloudFog, which incorporates “fog” consisting of supernodes that
are responsible for rendering game videos and streaming them to their nearby players. Fog enables the cloud to be only responsible for
the intensive game state computation and sending update information to supernodes, which significantly reduce the traffic hence the
latency and bandwidth consumption. To further enhance QoS, we propose the reputation based supernode selection strategy to assign
each player with a suitable supernode that can provide satisfactory game video streaming service, the receiver-driven encoding rate
adaptation strategy to increase the playback continuity, the social network based server assignment strategy to avoid the
communication interaction between servers in a datacenter to reduce latency, and the dynamic supernode provisioning strategy to deal
with user churns. Experimental results from PeerSim and PlanetLab show the effectiveness and efficiency of CloudFog and our
individual strategies in increasing user coverage, reducing response latency and bandwidth consumption.

Index Terms—Cloud gaming; P2P network; Online gaming; Quality of Service

F

1 INTRODUCTION

Massively Multiplayer Online Game (MMOG) (e.g., World
of Warcraft, Second Life) allows users to inhabit in the same
virtual world and interact with each other. It is characterized
by a huge number of simultaneous players. At the height of
its popularity, World of Warcraft had over 12 million users.
Generally, MMOG uses the centralized client/server infras-
tructure, in which players need to install games, receive the
game information from the servers, update game status and
render new game videos [1]. MMOG requires players to
have sufficiently powerful computers, which excludes users
with thin clients such as tablets and smartphones. Buying
and maintaining servers to support the tremendous number
of players is cost-prohibitive to the game service provider.
Nowadays, the number of smartphone users has been in-
creasing rapidly and mobile gaming is also seeing the fastest
growth among the gaming models [2]. The number of
smartphones in use worldwide reached one billion during
the third quarter of 2012, and will increase by another billion
by 2015 [3]. Thus, thin-client MMOG is an inevitable trend
of current MMOG and a cost-efficient system to support
thin-client MMOG is desirable for game service providers.

Cloud gaming, as a flourishing gaming model, is a
solution for thin-client MMOG, which frees players (we
use players, clients, nodes and users interchangeably in this
paper) from the requirement of hardware and game installa-
tion on their local computers. Nowadays, the cloud gaming
is becoming a flourishing gaming model, with OnLive [4]

• Yuhua Lin and Haiying Shen are with the Department of Electrical and
Computer Engineering, Clemson University, Clemson, South Carolina
29634.
E-mail: {yuhual, shenh}@clemson.edu

Manuscript received April 19, 2005; revised September 17, 2014.

and Gaikai [5] as two pioneers in cloud gaming. In cloud
gaming, games are stored and run on remote servers, and
game videos are streamed to end-users through broadband
Internet connections. Cloud gaming also saves the cost of
game service providers. They can buy cloud resource based
on the actual demands in the large-scale system. Also, game
service providers do not have to develop multiple versions
of the same game to meet different operating systems
(e.g., Linux, Windows, Mac), and spend money on software
piracy protection.

Mobile gaming is seeing the fastest growth [2] in the
gaming area. The advantages of cloud gaming makes it a
very promising model to cater to the dramatically rapid
growth of MMOG and online mobile gaming considering
their very large user scale and thin clients. Though the ad-
vantages of cloud gaming makes it a very promising model
to cater to thin-client MMOG, it currently faces severe chal-
lenges (i.e., latency, network connection, user coverage and
bandwidth cost) that prevent it from becoming a leading
gaming model. First, response latency is a critical factor in
user quality of service (QoS). By offloading computation to a
remote host, cloud gaming suffers from long response latency;
the delay in sending the user action information and game
video between the end-user and the cloud. Second, cloud
gaming services post a strict requirements of high-speed
network connection for a relatively high constant downlink
bandwidth (e.g., 5Mbit/s recommended by OnLive). Third,
the shortage of datacenters limits user coverage. Players
begin to notice a response delay of 100ms [6]; 20ms at-
tributed to playout delay on client side and processing delay
on the cloud, 80ms attributed to the network latency. The
playout delay of a client includes the time to send action
information, receive and play the game video. Choy et al. [7]
found that Amazon’s EC2 (with 13 datacenters) can provide

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

a median latency of 80ms or less to only fewer than 70% of
their 2500 tested end-users in the US. They also found that
substantial increase in the total number of datacenters is re-
quired to significantly increase user coverage. Existing cloud
infrastructure is not sufficient for hosting cloud gaming,
as a sizeable portion of the population would experience
significantly degraded QoS. Fourth, besides server time,
bandwidth costs represent a major expense when renting
on-demand resources. An average traffic of 27TB per 12
hours leads to about $130k monthly fee for bandwidth with
Amazon EC2’s price (i.e., $0.085 per GB) [8]. Considering
the MMOG’s huge user scale, these costs can significantly
affect the feasibility of thin-client MMOG [9] on the cloud.

The great promises of cloud gaming and the obstacles it
faces motivate us to explore approaches to efficiently handle
the challenges. Though previous study suggested deploying
more datacenters [6], building and maintaining a large
number of datacenters is cost-prohibitive. In this paper, we
propose a lightweight system called CloudFog. We introduce
a concept called “fog”, formed by powerful supernodes
that are close to end-users and connected to the cloud.
Considering that desktops, being idle for about 12 hours per
day [10], [11], are underutilized in most organizations, the
supernodes can be from these idle resources or from players’
computers. In CloudFog, the intensive computation [1] of
the new game state of the virtual world is conducted in the
cloud. The cloud sends update messages to supernodes, the
supernodes update the virtual world, render game videos
for different players and stream videos to the players. Thus,
users without high speed network connection to cloud or
out of the coverage of the cloud can be supported by nearby
supernodes, and the cloud does not need to transmit entire
game videos to far-away users. This strategy can increase
user coverage, shorten response latency, ensure relatively
high-speed network connection for high QoS and reduce
bandwidth cost. Specifically, CloudFog incorporates the fol-
lowing strategies to handle the challenges and enhance QoS.

(1) Fog-assisted cloud gaming infrastructure. We lever-
age the hardware and bandwidth capacity of some
idle machines from players and organizations, and
deploy them as supernodes. These supernodes con-
stitutes the “fog”, which are responsible to stream
game videos for nearby players.

(2) Reputation based supernode selection. In order to
assign each player with a suitable supernode that can
provide satisfactory game video streaming service,
each player calculates reputation scores for all candi-
date supernodes according to previous interactions,
and selects a supernode that has high reputation
score, available capacity and low transmission delay.

(3) Receiver-driven encoding rate adaptation. In order
to ensure the playback continuity even in network
congestion, when a supernode streams a game video
to a player, it adaptively changes the encoding rate of
the video based on the segment size in the player’s
buffer according to the game’s tolerance on delay and
packet loss.

(4) Social network based server assignment. The com-
munication between servers in a datacenter for
generating game videos leads to latency. As social

friends always play together [12], we assign social
friends who usually play together to the same server,
so their interaction will not trigger communication
between different servers, thus reducing response
latency.

(6) Dynamic supernode provisioning. When a large
number of players join a game within a short time
during peak hours, the cloud servers face a heavy
burden. In order to deal with user churns and reduce
server loads, we dynamically predict the number
of players and then determine the number of pre-
deployed supernodes based on the predicted value.

This is the first work that uses lightweight approaches
to handle the aforementioned challenges for cloud gaming
to support thin-client MMOG. The remainder of the paper
is organized as follows. Section 2 and presents an overview
on the related work. Section 3 describes the detailed design
of CloudFog. The performance evaluation is presented in
Section 4. Section 5 concludes this paper with remarks on
our future work.

2 RELATED WORK

MMOG on the client-server architectures has gained
much attention in the research communities in recent
years. Common approaches of MMOG divide the virtual
environment into regions and assign each region to different
servers [1]. Bezerra et al. [13] proposed a kd-tree mechanism
to partition the game environment into regions, and
perform load balancing among multiple servers based on
the distribution of avatars in the virtual world. Many works
proposed to leverage the bandwidth contribution of peer-
to-peer (P2P) networks to reduce server load [14]. Ahmad
et al. [14] presents a P2P live video system to help players
share screen-captured video of their games. Chen et al. [15]
proposed a content-oriented pub/sub system that exploits
the network condition and end-systems to enable efficient
player management and decentralized information dissem-
ination. These P2P and information dissemination methods
cannot be directly applied to the context of cloud gaming, in
which each player receives its own game video that cannot
be shared with other players. Also, the players with thin
clients may not be able to conduct rendering, computation
and storage [7], which are offloaded to the cloud.

Previous works developed different cloud gaming sys-
tems. GamingAnywhere [16] is the first open cloud gaming
system with high extensibility, portability, and reconfig-
urability. Zhao et al. [17] designed a game cloud with a
visualized cluster of CPU/GPU servers to reduce game
latency of thin computers. Wang et al. [18] proposed to shift
the burden of executing gaming engine from mobile devices
to cloud servers. Hemmati et al. [19] presented a content
adaptation encoding scheme, in which only the most impor-
tant objects from the perspective of the player’s activity are
encoded in the scene and irrelevant or less important objects
are omitted. To reduce the bandwidth consumption from
the cloud to players, LiveRender [20] incorporates intra-
frame compression, inter-frame compression and caching to
achieve compressed graphics streaming in a cloud gaming
system. This system only reduces the bandwidth when
streaming game videos to players, while CloudFog aims to

2

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

offload the streaming burden from the cloud to supernodes.
EdgeCloud [21] augments the cloud infrastructure with a
number of content delivery network (CDN) servers. These
CDN servers have specialized resources and are located
near end-users to increase user coverage; they are respon-
sible for computing new game state and rendering game
video for players. Compared to using stable but expensive
CDN servers in EdgeCloud, CloudFog aims to deploy cheap
idle resources from individual players and organizations.
Given the same amount of revenue, CloudFog can deploy
more servers than EdgeCloud by using proper incentives to
motivate players or organizations to contribute their spare
machines. Also, we have proposed several strategies to
enhance the performance of CloudFog.

Early works also studied user experience in cloud gam-
ing. Hobfeld et al. [22] discussed some technical challenges
emerging from shifting gaming services to the cloud, and
studied impacts caused by this change on user Quality of
Experience (QoE). Jarschel et al. [6] conducted user studies
to measure and model the QoS of OnLive during game play.
Studies [6], [23] investigated how the response latency in
cloud gaming affects QoS in various online games. There
are also plenty of works on analyzing the challenges and
benefits of system design in cloud gaming. Claypool et
al. [24] studied detailed measurements of motion and scene
complexity for a wide variety of video games, and measured
the efficiency of streaming video games for thin clients.
Choy et al. [7] demonstrated that the expansion of potential
users for an on-demand gaming service is hindered by strict
latency requirements, and indicated that the addition of a
small number of servers can increase user coverage. Ojala et
al. [25] studied a successful cloud gaming business model.
They pointed out that deploying the games on cloud makes
illegal copying practically impossible.

In spite of the previous research efforts on cloud gam-
ing, except deploying more datacenters which is costly, no
other approaches have been proposed to handle its critical
challenges. We propose light-weight strategies to tackle the
challenges to support thin-client MMOG.

3 SYSTEM DESIGN OF CLOUDFOG
3.1 Fog-assisted Cloud Gaming Infrastructure
Previous studies [6], [7] revealed that the uploading from
the players to the cloud does not seriously affect the re-
sponse latency, and downstream latency is an important
factor for QoS [6], which is affected by the game video
streaming rate. Thus, we aim to reduce the downstream
latency by reducing the traffic transmitted from the cloud. In
our design, game videos are streamed from nearby supern-
odes to players, instead of from remote game servers. As
the computation of a virtual world for MMOG has a very
high demand on server capacities [1], cloud is responsible
for this task. Figure 1 shows our fog-assisted cloud gaming
infrastructure. The fog is formed by supernodes, and nor-
mal nodes are connecting to their nearby supernodes. The
normal nodes that cannot find nearby supernodes directly
connect to the cloud.

We use ni to denote a normal node, and snj to de-
note a supernode in the system. When each supernode is
initially deployed, it is pre-installed with the game client.
During the game playing, when node ni makes an action

Cloud

Fog
1. User
input

2. Game
video

Packets of view‐
independent work

Packets of
view‐dependent

work

3. Game
video

1. User input

…

…...

…...

2. Update information

…

Supernode
Normal node

Fig. 1: Fog-assisted cloud gaming infrastructure.

(e.g., launching a strike or moving to a new place), this
information is sent to the cloud server. The server collects
action information from all involved players in the system
and performs the computation of the new game state of
the virtual world (including the new shape and position
of objects and states of avatars). The cloud then sends the
update information to the supernode of ni (snj), which
updates its virtual world accordingly. snj then renders
game video for ni based on n′is viewing position and angle.
snj finally encodes the game video and stream it to ni. As
a player is close to its supernode in network distance, and
the traffic from the cloud is significantly reduced, so the
game video transmission delay is much shorter than that of
downloading game video directly from the cloud as in the
current cloud computing systems. Important notations used
in this paper are listed in Table 1.

TABLE 1: Table of important notations.

ni a normal node
snj a supernode
cs reward for one unit of bandwidth contributed by snj

Ps(j) profit gained by supernode snj

cj supernode snj ’s upload capacity
uj snj ’s bandwidth utilization
costj cost paid by snj ’s contributor in the same unit of cs
N(t) number of existing users at time t
n number of normal nodes
m number of supernodes
Λ bandwidth usage for the cloud to send update informa-

tion to one supernode
Gs(j) game service provider’s revenue gain by deploying snj

sij overall reputation score of supernode snj evaluated by
player ni

rk kth rating that ni gives to snj

Nr total number of ratings
λ aging factor of ratings
dk age of rating rk in days
qi game video quality for quality level i
bqi game video bitrate for quality level i
s(tk) size of the video buffered at time tk
r number of video segments in the buffer
τ game video segment size
β game video bitrate adjust-up factor
θ game video bitrate adjust-down threshold
ρ latency tolerance degree
Γ modularity of network communities

3.1.1 Requirements and Incentives for Supernodes
Rendering game video is relatively less hardware demand-
ing than computation and communication in MMOG [21];
most modern computers with discrete graphics cards are
sufficient to meet the rendering requirement. The nodes
with sufficient hardware are chosen as supernodes, and the
emerging technique of rendering multiple videos makes it
possible for a supernode to suport multiple players simul-
taneously [26], [27]. As shown in [10], [11], desktop PCs in

3

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

office are idle for about 12 hours per day, and 67% of desktop
PCs remain powered on outside work hours (including
nighttime). On the other hand, the number of players in
online games reaches a peak during the nighttime [28],
which matches the idle time of office desktop PCs. So the
supernodes can be contributed by different organizations
that have idle computer resources, and game players that
have powerful computers can also be selected as supernode
candidates. Besides, game service providers can deploy their
own supernodes by placing servers in different areas or
rent on-demand resources from existing cloud providers
like Amazon EC2. A game client of MMOG usually takes
about 5-6GB storage space, and it is pre-installed in the
supernode. The supernodes are required to be: 1) reliable,
as malicious supernodes may distribute spam or virus that
may degrade player experience or harm players’ machines;
2) stable, supernodes need to provide stable support and
notify the central server of game service providers before
leaving the system; and 3) superior network connection, as
supernodes need to stream game videos to players within
short latency. To satisfy these requirements, organizations
and individual players need to provide credentials to game
service providers, game service providers will verify the
information of supernode contributors and have contracts
with them. The purpose of this contract is to ensure that
supernodes can provide high QoS for players and will
not leave the system abruptly during their service time.
Contributing a machine as a supernode generates costs
of running the machine (e.g., electricity and maintenance
costs). Therefore, to incentivize other organizations and
players to contribute supernodes, an incentive mechanism
is needed to reward supernodes based on the amount of
upload bandwidth they contribute. The reward can be in
the form of real money or virtual money for online games,
and we use cs to denote the reward for each bandwidth unit
contributed by a supernode. An organization or a player
considers to contribute a supernode only when it brings
about certain profit, which is calculated by subtracting its
running costs from its earned rewards. We use Ps(j) to
denote the profit gained by supernode snj :

Ps(j) = cs × cj × uj − costj , (1)

where cj represents snj ’s upload capacity, uj denotes snj ’s
bandwidth utilization, and costj denotes the cost paid by
snj ’s contributor in the same unit of cs. Ps(j) quantifies the
profit of contributing a supernode. Contributing a supern-
ode is lucrative when Ps(j) is greater than a certain thresh-
old (different contributors set their own thresholds based on
their expectations on profits). Then, the supernode’s owner
is motivated to contribute this supernode. Also, studies
in [10], [11] found that 67% of desktop PCs remain powered
on when they are idle, so there are powered idle PCs avail-
able to serve as supernodes. Companies and organizations
are motivated to earn rewards by contributing these idle
resources. Though some desktop PCs do not always serve
players, as long as they function as supernodes in Cloud-
Fog, they can still receive a small amount of monthly sign
up bonus. When they contribute bandwidth and support
players, they can receive more credits. We will evaluate the
effectiveness of this incentive mechanism in Section 4.

3.1.2 Economic Benefits for Game Service Providers
The game service provider needs to guarantee that the
money spent on rewarding supernodes is smaller than the
bandwidth costs saved by the contribution of supernodes.
We use N(t) to denote the number of existing users at
time t. For simplicity, we omit t in the notations. Given the
streaming rate of game videoR, the total system demand for
bandwidth equals N ×R. Suppose there are m supernodes,
each having cj upload capacity with utilization uj . Then, su-
pernode bandwidth contribution equals Bs =

∑m
j=1 cj×uj .

We use Λ to denote the bandwidth usage for the cloud to
send update information to one supernode, and use n to
denote the number of users that supernodes support. Then,
in CloudFog, the bandwidth consumption for one player
action for nodes connecting to supernodes equals Λ × m,
and that for users directly connecting to the cloud equals
(N − n)R. The bandwidth reduction (B−r) of CloudFog
compared to current cloud computing system equals:

B−r = N ×R− Λ×m− (N − n)R

= n×R− Λ×m
(2)

Suppose cc is the revenue gained by saving each server
bandwidth unit, the goal of the game service provider is
to maximize the saved cost by leveraging supernode band-
width contribution, which can be formulated as below.

Cg = max(cc ×B−r − cs ×Bs)

= max{cc[n×R− Λ×m]− cs ×Bs} (3)

s.t.
m∑
j=1

cj × uj ≥ n×R (4)

uj ≤ 1, ∀j ∈ {1, 2, ...m} (5)

Equation (4) guarantees that the total supernode bandwidth
contribution must reach the required node support band-
width, while Equation (5) restricts the utilization of a su-
pernode’s upload bandwidth within its bandwidth capacity.
In Equation (3), we see that given a specific number of n (i.e.
the coverage of normal nodes is determined), saved cost
Cg increases when m decreases; that is, a smaller number
of supernodes lead to higher cost saving. For the game
service provider, it should consider the pay and gain before
deploying a supernode. Suppose a new supernode snj is
deployed in an area; as a result, the coverage of players
supported by supernodes is increased by ν new players. We
use Gs(j) to denote the game service provider’s revenue
gain by deploying snj , and Gs(j) is estimated by:

Gs(j) = cc[ν ×R− Λ]− cs × cj × uj . (6)

If Gs(j) > 0, the cost of deploying supernode snj is
surpassed by the benefit of bandwidth saved from the ν
new players supported by snj .

3.2 Reputation Based Supernode Selection
3.2.1 Supernode Reputation Management
We define supernode snj ’s capacity as the maximum num-
ber of normal nodes that snj can support. Though su-
pernodes are encouraged to contribute their computation
and bandwidth resources to support other players’ gam-
ing activities, a supernode’s quality of service to a given

4

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

player is affective by three factors. First, there exits capacity
heterogeneity among supernodes due to different upload
bandwidth and computation power. A supernode may not
be able to support all game video streaming requests with
satisfactory QoS due to its limited available capacity. Sec-
ond, different supernodes have different physical distances
and transmission delays to a given player. Third, a supern-
ode may not be willing to support players and deliberately
throttles its upload bandwidth under certain circumstances.
For example, when a supernode’s owner runs many appli-
cations on the supernode, the owner may not be willing to
support many players. Thus, jointly considering these three
factors in selecting reliable supernodes is crucial to provide
players with high QoS during gaming activities. To consider
the third factor, we use a reputation system, which is an
effective tool to guide the selection of supernodes that are
willing to be cooperative in providing game video streaming
service. In the reputation system, a player evaluates its su-
pernode’s reputation based on its performance in providing
fluent game video streaming (i.e., playback continuity).

To facilitate the first two factors, the cloud stores the
information of supernodes in the system in a table including
their IP addresses and available capacities. When a newly
joined node ni requests a supernode, the cloud returns a
number of supernodes that have available capacities and
are physically close to player ni by referring to the table.
To do this, it first identifies the supernodes with available
capacities. It then calculates the distance between each of the
supernode candidates and the player, and selects a certain
number of physically close supernodes. To calculate the
distance, the cloud uses a supernode’s IP address [29], [30]
to determine its coordinate, and then uses the coordinate to
calculate its distance from a player.

A physically close supernode may not guarantee a short
transmission delay. Therefore, after the newly joined node
ni receives its close supernode candidates from the cloud,
it tests the transmission delay to all of them. It then re-
moves candidates with transmission delay greater than its
thresholdLmaxi

, which is determined based on the response
latency requirement of the genre of its game [31]. This
threshold is used to ensure that its supernode is capable
of providing quick streaming support. From the remaining
supernode candidates, node ni then chooses the supernode
with the highest reputation score. If there are no remaining
supernode candidates, ni directly connects to the cloud.
Below, we describe the details of the reputation system.

To evaluate a supernode’s willingness to be coopera-
tive, a straightforward scheme is to evaluate a supernode’s
overall reputation by gathering opinions from all players
interacted with this supernode [32]. However, this scheme is
vulnerable to sybil attack [33], where a malicious supernode
forges multiple identities and gains advantage by receiving
high ratings from these identities. Also, it cannot prevent
collusion in which a collective of nodes intentionally rate
each other with high scores. To circumvent these problems,
we let each player use its own evaluation without gathering
opinions from other players.

Specifically, a player evaluates its supernode’s perfor-
mance in providing fluent game video streaming service
after each game. It periodically calculates the overall rep-
utation scores of its supernodes that provided it game video

streaming service. As recent interactions between players
and supernodes can more accurately reflect the supernodes’
future performance than earlier interactions, we weight the
ratings according to their ages when calculating a supern-
ode’s overall reputation score. Each rating is associated with
an age measured by the number of days that have passed
since the rating is given. We use sij to represent the overall
reputation score of supernode snj evaluated by player ni. It
is computed as the weighted average of all ratings that snj
receives from ni:

sij =
Nr∑
k=1

rkλ
dk , (0 < λ < 1), (7)

in which rk is the kth rating that ni gives to snj , Nr is
the total number of ratings, λ is the aging factor used to
control the weights of ratings according to their ages, and
dk is the age of rating rk in days. The reputation scores of
the supernodes that have no previous interactions with the
player equal to 0. The computation complexity of calculating
reputation scores for all supernodes is O(mnNr), where m
and n are numbers of supernodes and normal nodes.

3.2.2 Player and Supernode Churns Management
Recall that player ni receives a number of supernode can-
didates from the cloud when it joins the system. In order
to select supernodes with high reputations, it orders these
candidates in descending order of their reputation scores.
During the time when a player selects a supernode, a
supernode candidate may be connected by more players
and no longer has available capacity. To ensure that the
selected supernode has available capacity, the player se-
quentially asks the supernodes in the ordered list whether
it has available capacity. Once a supernode has available
capacity, the player selects this supernode to connect to.
If no supernode is selected after the player examines all
supernode candidates, the player connects to the cloud for
game video streaming.

Normal nodes probe their supernodes periodically for
connection maintenance. When a normal node disconnects
from its supernode, it first tries to find qualified supernode
from its candidate supernode list by choosing the one with
high preference ranking and available capacity. If it fails to
find a new supernode from the candidate list, it contacts the
cloud to find a new supernode using the method introduced
above. When a new supernode is deployed, that is, a player
or organization devotes a spare machine to earn rewards,
the machine’s location is identified based on the IP address.
The cloud then notifies the normal nodes that are physically
close to the new supernode, and these normal nodes will test
the transmission delay to the newly deployed supernode.
Finally, the suppernode will be added to the normal node’s
supernode candidate list if the transmission delay is less
than Lmaxi

.

3.3 Receiver-driven Encoding Rate Adaptation
A player stores its received segments into its buffer while
playing the game video. To guarantee the continuity of
the video playback, the player needs to continuously fetch
segments from the buffer and play. Game video bitrate
affects the number of video segments received by a player

5

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

TABLE 2: Video parameters for different quality levels.

Quality
level

Video
resolution Video bitrate Latency

requirement

Latency
tolerance

degree
5 1280x720 1800 kbps 110 ms 1
4 720x486 1200 kbps 90 ms 0.9
3 640x480 800 kbps 70 ms 0.8
2 384x216 500 kbps 50 ms 0.7
1 288x216 300 kbps 30 ms 0.6

during a unit time period, hence the player’s playback
continuity. Thus, we can adjust game video bitrate based
on the size of buffered segments. The game video can be
encoded to different bitrates based on the requirements on
pixel size (resolution), hence the video quality level. A video
segment with a higher quality level (i.e., a higher bitrate)
leads to longer transmission latency. In order to illustrate the
differences in video resolution, bitrate, latency requirement
and tolerance degree for videos with different quality levels,
we generate Table 2 as an example of parameter settings.
Note that the parameter values in Table 2 are not precise,
and the game service providers can set the parameters based
on actual needs. As shown in Table 2, 500kbps corresponds
to 384x216 resolution, and such a segment leads to 50ms
latency. We use qi (i ∈ [1, ..., Q]) to denote the video quality
for quality level i and use bqi to denote the corresponding
bitrate.

Different genres of games have different requirements on
response latency [23]. Based on Table 2, if a game video has
a latency requirement of 90ms, the supernode should use
1200kbps encoding bitrate, corresponding to a quality level
of 4. To reduce the latency of the game video under unfavor-
able network condition, the supernode can choose encoding
bitrates corresponding to quality level lower than 4; that
is, sacrificing quality for lower latency. Due to unexpected
network condition (e.g., network congestion), packets may
be transmitted at a lower speed. Users may prefer fluent
play of the game though the game video gets a bit blur when
the encoding rate is reduced. To provide flexible options,
users can also disable the encoding rate adaptation strategy
before they start the game. In this case, the game video rate
is fixed to the game’s default video rate.

We aim to ensure that the playback rate is always lower
than or equal to the segment downloading rate. When this
condition cannot be satisfied, the video quality needs to
be reduced by one level. When the size of buffered video
at current quality level qi is expected to reach the size of
buffered video at quality level qi+1 (i.e., the downloading
rate is faster than the playback rate), the current encoding
bitrate bqi can be increased to bqi+1

to increase the video
quality to qi+1. Below, we explain the details of the adjust-
ment operation. The estimated size of the video buffered at
time tk (denoted by s(tk)) is calculated by:

s(tk) = s(tk−1) + (tk − tk−1)(d(tk)− bp(tk)), (8)

where d(tk) and bp(tk) denotes the downloading rate and
video playback rate at time tk. We use r to denote the
number of segments in the buffer:

r =
s(tk)

τ
=
s(tk−1) + (tk − tk−1)(d(tk)− bq(tk))

τ
, (9)

Video quality 	ݍ
Encoding bitrate = 800 kbps

Client buffer Supernode/cloud

Segment Segment

Played

Increase 	ݍ to ݍାଵ
Encoding bitrate = 1200 kbpsr>1+ߚ

Decrease	ݍ to ݍିଵ
Encoding bitrate = 500 kbpsr<θ

r=1

.ିଵFigݍ 2: Receiver-driven encoding rate adaptation.

where τ denotes video segment size. If

r > 1 + β, (10)

the video bitrate adjusts up. β is an adjust-up factor, and

β = max{(bqi+1
− bqi)/bqi ,∀i ∈ [1, 2, ..., Q]}. (11)

β guarantees that the size of the buffered segments reaches
that of the incremented quality level. When the video bitrate
adjusts up, the user will not suffer from playback delay
during the game. The adjust-down operation is performed
if

r < θ (θ ≤ 1), (12)

where θ denotes adjust-down threshold. Formula (12) en-
ables to proactively adjust down video bitrate to ensure the
playback continuity in network congestion, in which the
segment transmission time is typically much longer than
usual. In order to prevent the fluctuation of the video bitrate
for a client, the client can conduct the calculations of r for a
number of times consecutively. The video bitrate is adjusted
only when all results satisfy Formula (10) or Formula (12).
Figure 2 shows an example of the encoding rate adaptation.
When r > 1 + β for several consecutive estimations, the
supernode increases the video encoding quality by one
level; from 800kbps to 1200kbps for the player. When r < θ,
the supernode decreases the video quality by one level; from
800kbps to 500kbps.

Different games have different latency-tolerant degree
[23]. We consider this property to further enhancing the
probability of meeting the response latency requirement
for different games. Specifically, we require higher latency-
sensitive games to have larger buffered video size for the
encoding rate adjustment. We use ρ ∈ [0, 1] to denote the
latency tolerance degree; higher ρ means higher latency tol-
erance degree. We then change Formula (10) to r > (1+β)/ρ
and change Formula (12) to r < θ/ρ for triggering encod-
ing bitrate adjustment. As a result, latency-sensitive (lower
latency-tolerant) games have a higher r threshold while
latency-tolerant games have a lower threshold for adjusting
the encoding bitrate.

3.4 Social Network Based Server Assignment
A cloud datacenter consists of many servers, which cooper-
ate to accomplish the computation and storage function of
the datacenter. Therefore, when multiple players assigned
to different servers interact with each other in the game
(e.g., fighting each other in a battle), their servers need to
communicate with each other in order to receive game states
of all players and compute the game state of the virtual
world. Online games involve intensive player interactions,
if two players are assigned to different servers within data-
centers, the interactions among these two players will lead
to communications between the two servers. For example,

6

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

Cloud

Server
A

ni njnk

Server
B

Player group W Player group V

Fig. 3: Server assignment based on social networks.

in Figure 3, when player ni is playing with player nj , it
will result in communication between server A and server
B. Such server communications contribute to the response
latency and degrade QoS. Thus, we propose the social
network based server assignment strategy to reduce the
interactions between servers by assigning players who are
likely to play games together to the same server. In Figure
3, if ni is playing with nk, their interactions will not lead to
server interactions.

When a new player signs up in CloudFog, if it builds
friendships with other players, this new player is assigned
to a server that most of its friends are allocated to; otherwise,
it is randomly assigned to a server. To improve the accuracy
of friend clustering and reduce the interactions between
servers, we propose the social network based server as-
signment strategy that runs periodically (e.g., weekly) to
reassign players to servers.

The players in the system can be represented by an
undirected graph G = (V,E); V is the set of players and
E is the set of edges between the players. eij = 1 if player
ni is a friend of player nj . We use a set F (i) to store all
friends of ni. The friendship relationship can be determined
by two schemes: explicit friendship and implicit friendship.
1) Studies in [12] show that players tend to build friendship
with each other in online computer games and players tend
to play with their friends. By “friends” we mean that players
who build friendship in the game. 2) CloudFog keeps record
of each user’s playing activities (e.g., who they are playing
with, how long do they play), when the number of times
that two players play together within the recent week CPij

is larger than a threshold υ, we regard it as an implicit
friendship. Thus, given z servers, this problem turns to
finding z network communities (also sometimes referred to
as modules or clusters), and the game information of each
community is allocated in a distinguished server.

Modularity Γ is commonly used to evaluate the quality
of resultant network communities [34]. It first defines a
z× z symmetric matrix Q, whose element qab is the fraction
of edges connecting community A and B over |E|, then
calculates Γ by:

Γ =
z∑

b=1

(qab − p2a) = tr(Q)− ||Q2||. (13)

tr(Q) is the trace of matrix Q; pa =
∑z

b=1 qab; and ||X|| is
the sum of elements of matrixX . High value of Γ indicates a
good community clustering, in which the game information
of friends are likely to be allocated to the same server.
Existing works generally partition a user and its friends to
the same server by using replication [35], that is, a user’s
data is copied to multiple servers. These approaches are

not applicable in the gaming area where a single copy of
each player’s data (e.g., profile data and game status data)
is kept on a server to avoid the synchronization of user data
on different servers. CloudFog first greedily assigns a player
and its friends to the same community; then in order to opti-
mize the community structure (i.e., increase the value of Γ),
it repeatedly selects some players and switches their com-
munities. The performance of community clustering and
computation overhead can be controlled by setting different
number of repetitions. We present the detailed steps below.

At first, all players are assigned to one community g1,
then we divide it into z communities using the following
steps. 1) Randomly select a player ni and put it and all its
friends into a new community g2. 2) Select a random play
nj from g2, and put F (j) (nj ’s friends) into g2. 3) Repeat
step 2 until the number of player in g2 is larger or equal
to |V |/z. 4) Repeat step 2 and 3 to assign all players into z
communities. 5) Calculate the modularity Γpre for current
communities. Randomly select player ni and nj from 2
random communities, swap the communities of ni + F (i)
and nj +F (j), and calculate the current modularity Γcur. If
Γcur > Γpre, swapping communities for players ni + F (i)
and nj + F (j) leads to a better communities structure, so
we keep the current structure; otherwise, we call it a Miss
and rollback the swapping operation. 6) Repeat step 5 by
h1 times or until there are h2 consecutive Miss (h2 < h1).
Assuming z2 > |E|, the computation complexity of calcu-
lating Γcur and Γpre is O(z2). Therefore, the computation
complexity of this server assignment method is O(h1z

2).

3.5 Dynamic Supernode Provisioning
In MMOGs, the number of online players generally varies
with a diurnal pattern [36], [37]. When a large number of
players join a game within a short time during peak hours,
the surge in player arrival rate places a heavy burden on
the cloud servers. MMOG designs should take into account
the dynamicity of players and minimize the overhead of the
cloud servers during peak hours. Provisioning supernodes
to assist the cloud in game video streaming is an effective
way to deal with player dynamicity.

In our dynamic supernode provisioning algorithm, the
cloud pre-deploys a sufficient number of supernodes be-
fore the peak time to support players and removes these
supernodes after the peak time. These supernodes serve
newly-arrived players’ requests and thus mitigate the peak
bandwidth demand towards the cloud. A key challenge in
our algorithm is to determine the number of supernodes
that should be pre-deployed. If the game service provider
reserves an excessive number of supernodes from players
and organizations, some of them may be idle. If an insuf-
ficient number of supernodes are reserved, most requests
for game video streaming will still be served by the cloud
during peak hours.

We predict the number of players and then determine the
number of pre-deployed supernodes based on the predicted
value. Accurate prediction of online players is possible
since previous works [36], [37] show that the workload of
MMOGs has a regular weekly pattern and week-to-week
load variations of players are less than 10%, for example,
the trend of this Friday’s online players mirrors that of
last Friday. Thus, we can forecast the number of online

7

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

players based on the data from previous weeks and re-
serve sufficient supernodes in advance. This forecasting and
reservation process can be carried out at a frequency of
every m-hour time window. Then, each week is divided
into 24 ∗ 7/m (denoted by T) time windows. We use N̂t

to denote the expected number of players in time window t.
N̂t can be predicted from the number of players at the same
time of last week, i.e., Nt−T . We use the seasonal ARIMA
model [38], which is widely used to forecast time series
with seasonal patterns, to forecast the number of players.
It predicts N̂t based on the data of the current time window
(i.e., t− 1) and data of the same time windows of last week
(i.e., t− T and t− T − 1),

N̂t = Nt−T +Nt−1−Nt−T−1−θWt−1−θWt−T +θΘWt−T−1,
(14)

in which θ is the moving average MA(1) coefficient and Θ
is the seasonal moving average SMA(1) coefficient. {Wt} ∼
WN(0, σ2) is a sequence of white noise with zero mean and
variance σ2. To support N̂t number of players, the number
of supernodes that need to deploy (denoted by Nst) is
calculated by:

Nst = (1 + ε)N̂t/Ĉ, (15)

where Ĉ is the average capacity of supernodes, and ε is the
scale factor for the number of supernodes.

After determining the number of supernodes, the game
service provider needs to select supernodes from available
candidates. In order to maximize the number of players
supported by the supernodes and utilization of supernodes’
capacities, we need to select supernodes that are likely to
receive a large number of service requests considering its
location. Since the density of players in each area tends to
be stable [39], a supernode that supports a large number of
players previously has a high probability to attract a large
number of players in the future. We leverage this intuition
and select supernodes based on the number of players they
support in the previous time slot. We use Ni to denote
the number of players supported by supernode sni in the
previous time slot. We then rank all supernode candidates
by Ni in descending order. Finally, we create a supernode
preference vector V =< sn1, sn2, ..., snNs >. We select a
supernode with rank j with probability Pj calculated by:

Pj =
1/j∑Ns

n=1 1/n
, (16)

where Np is the number of supernodes. Finally, the pre-
deployed supernodes have sufficient capacities to handle
the request surge in their areas.

3.6 Discussion on Security Issues of CloudFog

As supernodes can be contributed by players and orga-
nizations, attackers can control supernodes to reach their
malicious goals such as gaining undeserved rewards and
destroying normal functionality of the gaming system. For
example, some supernodes may generate a large amount of
junk files and send them to players so as to earn rewards
from the game service provider; some supernodes can in-
tercept or wiretap users’ personal information; some su-
pernodes may deliberately delay the transmission of game
videos in order to destroy user satisfactions. These issues

are critical but beyond the scope of this paper, and we will
study them in our future work.

4 PERFORMANCE EVALUATION
4.1 Experimental Settings
We conducted experiments on the PeerSim [40] simula-
tor and the PlanetLab [41] real-world testbed to evaluate
the performance of CloudFog in comparison with other
systems. We measured the performance in response la-
tency, playback continuity and user coverage. Basic CloudFog
(CloudFog/B) denotes the fog-assisted cloud gaming infras-
tructure without applying our proposed strategies; Advanced
CloudFog (CloudFog/A) denotes our system with all proposed
strategies. We compared CloudFog with the current cloud
gaming model [16] (denoted by Cloud) and CDN [21]. In
CDN, a number of powerful CDN nodes are deployed to
increase user coverage, which take over all the cloud’s
tasks (including storing and computing game status and
rendering new game videos). The default number of main
datacenters is 5 and 2 for all systems in simulation and
PlanetLab, respectively. The number of servers within each
datacenter is 5. As shown in Figure 16(b), the cost of renting
a cloud server is twice as much as deploying a supernode,
so the number of servers in CDN is set to 1/2 of the number
of supernodes in CloudFog. We also conducted additional
experiments for CDN with 45 and 8 randomly distributed
servers in simulation and PlanetLab (denoted by CDN-45
and CDN-8). Other default settings are: θ = 0.5, λ = 1,
h1 = 100 and h2 = 10. We used the statistics in [42], [43]
for the distribution of download bandwidth in the simula-
tion. To simulate real-world internet connections, a node’s
upload bandwidth capacity was set to 1/3 of its download
bandwidth [44], [45]. In order to simulate a system with
supernodes of various capacities, the capacity of supernodes
(i.e., maximum number of normal nodes that can support)
in the system follows a Pareto distribution [46], [47] with
parameter α = 2.

The experiment is divided into 28 cycles with each
cycle representing one day’s gaming activities; each cycle
is further divided into 24 one-hour subcycles. According to
[36], [37], we assume that 8pm-12am (i.e., subcycle 20 to 24)
are peak hours when large number of online players are
playing games. According to studies in [48], we randomly
selected 50% nodes and 30% nodes to play for a period
randomly selected from (0, 2] and (2, 5] hours a day, and
let the remaining 20% nodes to play for a period randomly
selected from (5, 24] hours a day. Inside one cycle, the
game start time of each player is randomly selected from
subcycle [1,19] with a probability of 30%, and randomly
selected from subcycle [20,24] with a probability of 70%.
To simulate supernodes’ willingness in providing satisfac-
tory streaming service, we randomly chose 1/5 and 1/10
supernodes that set their upload bandwidth at 80% and
50% of their capacities, respectively, with 50% probability
in each cycle. After each experiment cycle, each player rates
the supernode using the value of its game video playback
continuity during this gaming activity. As defined in Figures
8(a) and 8(b), continuity is measured by the proportion of
packets arrived within the required response latency over
all packets in a game video. We use the first 21 cycles
(i.e., 3 weeks divided into 126 time windows) as a warmup

8

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

period to accumulate reputation scores for all supernodes.
We record the number of online players for each subcycle
and used this data to predict the number of online players.
We then record the experimental results of the last 7 cycles
and report the average value of these cycles.

Simulation settings. In the simulation, there were 10,000
game players (including online and offline players), 10% of
which have the capacity to be supernodes. We randomly
selected 600 supernodes for CloudFog. This is reasonable as
the hardware requirement of servers in CDN is much more
demanded than that of supernodes in CloudFog, thus, given
the same amount of revenue, CloudFog can deploy more
supernodes than the number of servers. The number of
friends for each player follows power-law distribution with
skew factor of 0.5 [49]. In order to simulate the dynamics
of supernodes and players, the players join the system
following the Poison distribution with an average rate of 5
players per second [50]. Each node leaves the system after it
finishes playing and joins the system for the next experiment
cycle. As in [51]–[53], the capacities of nodes follow Pareto
distribution with a mean of 5 and shape parameter α = 1.

We defined 5 games, their quality levels and latency
requirements are shown in Table 2. When a player joins the
system, if none of its friends is playing, it randomly chooses
a game to play; otherwise, it chooses the game that has
the largest number of its friends playing. OnLive provides
gaming service at a frame rate of 30fps [4]. Thus, the frame
rate of game videos in our experiment is set to 30fps. The
communication latency between each pair of nodes was
randomly selected from the ping latency traces from the
League of Legends [54] based on each latency’s occurrence
frequency.

PlanetLab experiment settings. We used 750 distributed
nodes nationwide, and 300 of them have the capacity to be
supernodes. The nodes with IP 128.112.139.43 in Princeton
University and IP 131.179.150.72 in the University of Califor-
nia, Los Angeles were set as cloud datacenters, due to their
stable connection during the experiment. All other settings
are the same as in the simulation.

4.2 Experimental Results for Overall Performance
We first tested the effectiveness of building datacenters
in increasing user coverage in CloudFog/B. Recall that the
general response latency requirement is 100ms [6]; 20ms is
attributed to playout and processing delay and 80ms is the
network latency. A user is covered by a datacenter or a su-
pernode if the response latency is no more than the latency
requirement of the user’s game, and we measured the ratio
of covered players as the number of players covered by a
datacenter or a supernode over all players in the system.

Figure 4(a) and Figure 5(a) show the ratio of covered
players with different number of deployed datacenters and
different network latency requirements of games on Peersim
and PlanetLab, respectively. The figures illustrate that more
datacenters lead to increased user coverage, as users are
more likely to connect to close datacenters. Also, given a
certain number of datacenters, stricter latency requirement
leads to a smaller user coverage. In order to guarantee a
better coverage of the user population, previous research
suggested deploying more datacenters nationwide [21]. If
OnLive chooses to build its own datacenters and building

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 10 15 20 25

of datacenters

30 ms 50 ms 70 ms
90 ms 110 msR

a
ti
o
 o
f
c
o
v
e
r
e
d

P
la
y
e
r
s

(a) User coverage VS # of datacenters.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

100 200 300 400 500 600

of supernodes

30 ms 50 ms
70 ms 90 ms
110 msR

a
ti
o
 o
f
c
o
v
e
r
e
d

P
la
y
e
rs

(b) User coverage VS # of super nodes.

Fig. 4: Impact of # of datacenters and supernodes on Peer-
Sim.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

2 4 6 8 10
of datacenters

30 ms 50 ms
70 ms 90 ms
110 msR

a
ti
o
 o
f
co
v
e
re
d

P
la
y
e
rs

(a) User coverage VS # of datacenters.

0

0.2

0.4

0.6

0.8

10 20 30 40 50 60
of supernodes

30 ms 50 ms
70 ms 90 ms
110 msR

a
ti
o
 o
f
co
v
e
re
d

P
la
y
e
rs

(b) User coverage VS # of supernodes.

Fig. 5: Impact of # of datacenters and supernodes on Planet-
Lab.

a medium size datacenter of approximately 300,000 gross
square feet costs around 400 million dollars [55], [56], it
would cost OnLive around 8 billion dollars to build 20
more datacenters; however, 25 datacenters can only cover
60% players with the general response latency require-
ment. Thus, increasing user coverage by deploying more
datacenters is cost-prohibitive for game service providers.
bandwidth costs represent In CloudFog, a game service
provider can offer a small amount of monetary rewards as
incentives to encourage supernodes, and user coverage can
be increased by deploying supernodes.

We then examined the effectiveness of supernodes in
increasing user coverage in CloudFog/B using 5 datacenters
on PeerSim and 2 datacenters on PlanetLab. We see from
Figure 4(a) that when the network latency requirement is
90ms, deploying 10 datacenters can increase about 10%
user coverage than deploying 5 datacenters in PeerSim.
Figure 5(a) reflects a similar trend as that in Figure 4(a), the
two figures show that the effectiveness of increasing user
coverage by deploying more datacenters weakens when
the number of datacenters reaches a specific value. Figure
4(b) and Figure 5(b) show the ratio of covered players
with different number of randomly selected supernodes and
network latency requirements, Figure 4(b) shows that 100
supernodes can increase user coverage from 0.25 to 0.65
when the network latency requirement ranges from 110ms
to 30ms. 200 supernodes can help achieve user coverage of
deploying 25 datacenters. Figure 4(b) and Figure 5(b) show
that instead of building datacenters, deploying supernodes
is an effective alternative in increasing user coverage.

As players do not need to pay for bandwidth usage
when they subscribe for internet services, we measure
bandwidth consumption of different gaming systems from
the side of cloud servers. Figures 6(a) and 6(b) show the
bandwidth consumption of the cloud versus the number

9

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

1
5001
10001
15001
20001
25001
30001
35001
40001

5000 6000 7000 8000 9000 10000
of players

Cloud
CloudFog/B
CDN
CDN‐45

B
a
n
d
w
id
th

co
n
su
m
p
ti
o
n
 (
M
b
p
s)

(a) The PeerSim simulator.

0

500

1000

1500

2000

2500

3000

150 300 450 600 750
of players

Cloud
CloudFog/B
CDN
CDN‐8

B
a
n
d
w
id
th

co
n
su
m
p
ti
o
n
 (
M
b
p
s)

(b) The PlanetLab real-world testbed.

Fig. 6: Server bandwidth consumption.

50

55

60

65

70

75

80

85

90

5000 6000 7000 8000 9000 10000

of players

Cloud CloudFog/B
CloudFog/A CDN
CDN‐45A

v
e
r
a
g
e
 r
e
s
p
o
n
s
e

la
te
n
c
y
 (
m
s
)

(a) The PeerSim simulator.

65
70
75
80
85
90
95
100

150 300 450 600 750
of players

Cloud CloudFog/B
CloudFog/A CDN
CDN‐8A

v
e
ra
g
e
 r
e
sp
o
n
se

la
te
n
cy
 (
m
s)

(b) The PlanetLab real-world testbed.

Fig. 7: Response latency.

of players in the system. As CloudFog/A does not influ-
ent the bandwidth consumption of CloudFog, thus we use
CloudFog/B to represent the bandwidth consumption of both
CloudFog/A and CloudFog/B. We see that the result follows
Cloud>CDN>CDN-45/CDN-8>CloudFog/B. The bandwidth
consumption of CDN does not include those of additional
servers. If we include them, CDN’s bandwidth consumption
is similar to that of Cloud’s. CDN generates less bandwidth
consumption than CDN-45 and CDN-8 as more servers are
deployed to stream game videos to the players. CloudFog/B
saves significant bandwidth consumption cost due to its
employment of supernodes to stream game videos to the
players. The cloud only needs to send update information
rather than the entire game video to the supernodes.

Figures 7(a) and Figure 7(b) show the average response
latency per player in different systems in PeerSim and
PlanetLab, respectively. We see that CDN-45 and CDN-8
generate slight shorter response latency than Cloud due to
the use of scattered servers, and users are more likely to
connect to servers within a short distance. CDN further
reduces the response latency as more servers are deployed.
However, the improvement is not significant because the
servers need to cooperate with each other to compute new
game status, which lead to relatively long latency. Cloud-
Fog/B shows a slight reduction in response latency than
that of CDN, which indicates the effectiveness of our fog-
assisted infrastructure in reducing the latency. In CloudFog,
users are supported by supernodes that are physically close
to them. As the game video is streamed from supernodes
to the users, instead of from servers that are physically
far away. Thus, CloudFog is able to reduce the response
latency for users. This result shows that our system not only
reduces the response latency of the system of deploying
many datacenters but also saves the prohibitive cost of
building more datacenters. CloudFog/A further reduces the
latency, which indicates the effectiveness of our proposed
strategies in reducing response latency.

0.5

0.6

0.7

0.8

0.9

1

1.1

5000 6000 7000 8000 9000 10000

of players

Cloud CloudFog/B
CloudFog/A CDN
CDN‐45

C
o
n
ti
n
u
it
y

(a) The PeerSim simulator.

0.6

0.7

0.8

0.9

1

150 300 450 600 750
of players

Cloud CloudFog/A
CloudFog/B CDN

C
o
n
ti
n
u
it
y

(b) The PlanetLab real-world testbed.

Fig. 8: Playback continuity.

0
2
4
6
8
10
12
14

10000 20000 30000 40000 50000 60000
of players

Supernode join
Player join
Server assignment
MigrationLa

te
n
cy
 (
s)

(a) The PeerSim simulator.

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60
of supernodes

Supernode join
Player join
Server assignment
MigrationLa

te
n
cy
 (
s)

(b) The PlanetLab real-world testbed.

Fig. 9: System setup latency and player join latency.

Video playback continuity is an important metric for
QoS. We measured continuity by the proportion of pack-
ets arrived within the required response latency over all
packets in a game video. Figures 8(a) and 8(b) show the
average playback continuity of game videos when different
number of players are playing games concurrently, which
is a metric to measure weather a player can enjoy smooth
video playback. We see that Cloud yields the lowest playback
continuity because there are only a small number of cloud
servers, which may locate far away from some players.
So most game videos need to be transmitted from remote
servers to clients, thus large portion of packets cannot be
received within the required response latency. CDN-45 and
CDN-8 produce higher continuity than Cloud because play-
ers are supported by their nearby servers. CDN increases
the playback continuity of CDN-45 and CDN-8 as players
are more likely to find nearby servers when more servers
are deployed. CDN generates smaller continuity than Cloud-
Fog/B and CloudFog/A, because not all users in CDN are able
to connect to a nearby server due to the shortage of servers.
So game video packets need to travel longer distance than
that in CloudFog. CloudFog/B increases the continuity of CDN
due to the effectiveness of the fog-assisted infrastructure, a
large portion of users are supported by supernodes that are
close to them. CloudFog/A provides an average of more than
90% continuity, with the contribution of all other proposed
strategies.

We further tested: 1) server assignment latency, which is
the time needed to allocate all players to cloud servers based
on the social network based server assignment strategy; 2)
average supernode join latency, which is average time from
the time a supernode joins CloudFog until the time when it is
connected to the cloud; 3) average player join latency, which
is the average time from the time a player joins CloudFog
until the time that it is connected to a supported supernode;
4) average migration latency, which is the average time
needed for a player to connect to a new supernode when

10

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

P
e
rc
e
n
ta
ge
 o
f

sa
ti
sf
ie
d
 p
la
ye
rs

of suporting players of a supernode

CloudFog/B
CloudFog‐reputation

(a) The PeerSim simulator.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

P
e
rc
e
n
ta
ge
 o
f

sa
ti
sf
ie
d
 p
la
ye
rs

of suporting players of a supernode

CloudFog/B
CloudFog‐reputation

(b) The PlanetLab real-world testbed.

Fig. 10: Effectiveness of reputation based supernode selec-
tion.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

P
e
rc
e
n
ta
ge
 o
f

sa
ti
sf
ie
d
 p
la
ye
rs

of suporting players of a supernode

CloudFog/B
CloudFog‐adapt

(a) The PeerSim simulator.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

P
e
rc
e
n
ta
ge
 o
f

sa
ti
sf
ie
d
 p
la
ye
rs

of suporting players of a supernode

CloudFog/B
CloudFog‐adapt

(b) The PlanetLab real-world testbed.

Fig. 11: Effectiveness of encoding rate adaptation.

its supported supernode fails. When a player’s supported
supernode is out of service, the player needs to connect
to a new supernode. We call the process of connecting to
a new supernode a migration. In this experiment, we ran-
domly chose 100 supernodes on PeerSim and 10 supernodes
on PlanetLab, we then simulated supernode failures by
disconnecting all players from these supernodes. In order
to test the scalability of CloudFog on PeerSim, we varied
the numbers of players from 10,000 to 60,000 and set the
numbers of supernodes to 6/100 of players. Figure 9(a)
shows the latency results on PeerSim. We see that when the
numbers of players increase, the server assignment latency
rises because the cloud needs to assign more players to
servers, however, the server assignment latency does not
increase rapidly. As the server assignment operation is con-
ducted periodically (e.g., weekly), so the assignment latency
does not compromise the QoS of CloudFog. The average
supernode join latency remains low because supernodes
only need to connect to the cloud; the the average player
join latency remains constant since each player only needs
to select a supernode from a small number of candidates. We
also see that the migration latency is around 0.08 second,
which is low. Because the game status is calculated on
the cloud and supernodes do not need to store players’
gaming information, there is no information transfer from
the disconnected supernode to the new supernode. Thus,
the migration overhead is small. During the migration, a
player does not need to restart the game, and the game
will resume after around 0.08 second. Figure 9(b) shows the
latency performance when different numbers of supernodes
are deployed on PlanetLab. We see that server assignment
latency keeps stable as it is not affected by the number of
supernodes. We also see that supernode and player join
latency and migration latency stay low due to the same
reason as in Figure 9(a). Figure 9(a) and Figure 9(b) indicate
that the setup and dynamical reconfiguration of CloudFog
can be completed within a short time.

0

20

40

60

80

100

120

50
w/o

50
w/

100
w/o

100
w/

150
w/o

150
w/

200
w/o

200
w/

250
w/o

250
w/

A
v
e
ra
g
e
 r
e
s
p
o
n
s
e

la
te
n
c
y
 (
m
s
)

of servers within a datacenter

Server latency Other latency

(a) The PeerSim simulator.

0

20

40

60

80

100

120

50
w/o

50
w/

100
w/o

100
w/

150
w/o

150
w/

200
w/o

200
w/

250
w/o

250
w/

A
ve
ra
g
e
 r
e
sp
o
n
se

la
te
n
cy
 (
m
s)

of servers within a datacenter

Server latency Other latency

(b) The PlanetLab real-world testbed.

Fig. 12: Effectiveness of social network based server assign-
ment.

4.3 Experimental Results for Proposed Strategies

In the following, we show the effectiveness of each of our
proposed strategies: i) reputation based supernode selec-
tion, ii) encoding rate adaptation, iii) social network based
server assignment, and iv) dynamic supernode provision-
ing.

4.3.1 Performance of Reputation Based Supernode Selec-
tion Strategy

QoS is determined by packet loss rate and response delay.
Thus, if a user can receive 95% of its game packets within the
game’s response latency, we consider this user as a satisfied
player, and this definition is adopted in all figures within
the paper. Figures 10(a) and 10(b) show the percentage of
satisfied players with and without the reputation based su-
pernode selection strategy, denoted by CloudFog-reputation
and CloudFog/B, respectively. In CloudFog/B, among the final
selected supernode candidates (introduced in Section 3.2), a
player randomly selects a supernode from this set. We see
that CloudFog-reputation significantly increases the percent-
age of satisfied players due to the reason that players are
prone to select supernodes that can provide high QoS in
streaming game videos. In CloudFog-reputation, each player
evaluates supernodes’ quality of service from previous in-
teractions and selects the supernode that provides high
QoS with high probability. Thus, the selected supernode is
likely to support the player with high QoS in game video
streaming. On the other hand, CloudFog/B randomly assigns
supernodes to players. Though the assigned supernode is
within the player’s transmission delay threshold, the su-
pernode may not be willing to provide all connected players
with satisfactory streaming services.

4.3.2 Performance of Encoding Rate Adaptation Strategy

Figure 11(a) and Figure 11(b) show the percentage of satis-
fied players with and without (denoted by CloudFog-adapt
and CloudFog/B) the encoding rate adaptation strategy, in
PeerSim and PlanetLab, respectively. We see that CloudFog-
adapt increases the percentage of satisfied users in Cloud-
Fog/B. The increase rate reaches 27% when the number of
supported players of a supernode is 25 in the simulation.
When the network condition is not good enough to support
high quality streaming of game videos, this strategy de-
creases the video quality level to meet the response latency
based on loss rate tolerance, thus increasing the number of
satisfied players.

11

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

2500

3000

3500

4000

4500

5000

5500

6000

10 20 30 40 50 60

 CloudFog/B
CloudFog-provision

User arrival rate

Ba
nd

w
id
th

co
ns
um

pt
io
n
(M

bp
s)

(a) The PeerSim simulator.

200

250

300

350

400

450

500

2 3 4 5 6 7

 CloudFog/B
CloudFog-provision

User arrival rate

Ba
nd

w
id
th

co
ns
um

pt
io
n
(M

bp
s)

(b) The PlanetLab real-world testbed.

Fig. 13: Effectiveness of the dynamic supernode provision-
ing strategy in reducing cloud bandwidth consumption.

50

55

60

65

70

75

80

85

90

10 20 30 40 50 60

A
ve

ra
ge

 re
sp

on
se

la

te
nc

y
(m

s)

 CloudFog/B
CloudFog-provision

User arrival rate

(a) The PeerSim simulator.

70

75

80

85

90

95

100

105

110

2 3 4 5 6 7

A
ve

ra
ge

 r
es

po
ns

e
la

te
nc

y
(m

s)
 CloudFog/B
CloudFog-provision

User arrival rate

(b) The PlanetLab real-world testbed.

Fig. 14: Effectiveness of the dynamic supernode provision-
ing strategy in reducing response delay.

4.3.3 Performance of Social Network Based Server Assign-
ment Strategy
Figures 12(a) and 12(b) show the average response latency
with (w/) and without (w/o) the social network based server
assignment strategy on PeerSim and PlanetLab, respectively.
In w/o, the users are randomly assigned to servers in a
datacenter. We decompose the response latency to server
latency (the communication latency among servers) and other
latency. We see that w/ produces about 20ms reduction
in server latency, which leads to the reduction of overall
response latency. This is because with this strategy, users
that interact with each other in a game are more likely to be
assigned to the same server within a datacenter, thus their
interaction is less likely to involve communication among
servers.

4.3.4 Performance of Dynamic Supernode Provisioning
Strategy
In order to test the performance of CloudFog under user
churns, we manually set different player arrival rates for
peak hours and off-peak hours. In PeerSim simulation, we
set the average player arrival rates during off-peak hours
(subcycles 1-19) at 5 players/minute, and varied the av-
erage user arrival rate during peak hours (subcycles 20-
24) from 10 to 60 players/minute with 10 players/minute
increase in each step. In PlanetLab experiment, we set the
average player arrival rates during off-peak hours at 1
players/minute, and varied the average user arrival rate
during peak hours from 2 to 7 players/minute with 1
player/minute increase in each step. In CloudFog/B, the
game service provider reserves a constant amount of su-
pernodes, i.e., 400 supernodes in PeerSim simulation and 40
in PlanetLab experiments, while in CloudFog-provision, we
dynamically set the number of supernodes according to the
method in Section 3.5. The game service provider predicts
the number of online players every 4 hours (subcycles) and

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

10 20 30 40 50 60

 CloudFog/B
CloudFog-provision

User arrival rate

C
o
n
ti
n
u
ir
y

(a) The PeerSim simulator.

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

2 3 4 5 6 7

 CloudFog/B
CloudFog-provision

User arrival rate

Co
nt
in
ui
ry

(b) The PlanetLab real-world testbed.

Fig. 15: Effectiveness of the dynamic supernode provision-
ing strategy in increasing continuity.

reserves supernodes based on the prediction. Figures 13(a)
and 13(b) show the cloud bandwidth consumption with
and without the proposed dynamic supernode provisioning
strategy. We see that as user arrival rate increases in Cloud-
Fog/B, cloud bandwidth consumption drastically rises in
both PeerSim and PlanetLab experiments. This is due to the
reason that CloudFog/B reserves a fixed number of supern-
odes regardless of the online player population. Then, when
a large number of players are crowded into the system,
most players cannot find support from supernodes and need
to resort to the cloud for game video streaming. CloudFog-
provision greatly reduces the cloud bandwidth consumption
because it forecasts the potential rise in player population
and reserve a sufficient number of supernodes in advance.

Figures 14(a) and 14(b) show the average response la-
tency for CloudFog/B and CloudFog-provision in PeerSim and
PlanetLab experiments, respectively. We see that CloudFog-
provision can reduce the average response latency due to the
reason that it reserves a sufficient number of supernodes in
advance. When there are a large number of concurrent on-
line players, these players can find support from supernodes
that are physically close to them, so the response latency is
reduced compared to downloading game videos from the
cloud. While in CloudFog/B, a large portion of players rely on
the cloud for game videos due to lack of supernodes, which
generates long response latency as the cloud is physically
far from the players.

Figures 15(a) and 15(b) show the average continuity for
CloudFog/B and CloudFog-provision in PeerSim and PlanetLab
experiments, respectively. We see that when user arrival rate
increases, CloudFog/B leads to deteriorated average continu-
ity for players. This is because when there are insufficient
supernodes for an excessive number of concurrent players,
the cloud needs to stream game videos to most players.
As the video packets need to travel a long distance to
the players, game interruption occurs when the packets
cannot arrive within the game’s required response latency.
CloudFog-provision manages to sustain a high average conti-
nuity due to the same reason as in Figures 14(a) and 14(b).

These results verify that CloudFog is resilient to user
churns. That is, when user arrival rate increases, the per-
formance of CloudFog in providing high QoS in gaming
activities will not be degraded.

4.4 Analysis of Incentives for Supernodes and Savings
for Game Service Providers
As supernodes play important roles in CloudFog, we also
evaluate the incentives for supernodes and the costs of

12

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

0

5

10

15

20

25

30

4 8 12 16 20 24

D
o
lla
r

of hours a supernodes runs per day

Rewards
Costs
Profits

(a) Rewards, costs and profits for supern-
odes.

0
10
20
30
40
50
60
70

4 8 12 16 20 24

D
o
lla
r

of hours renting an EC2 instance

Renting fees
Rewards to SNs
Savings

(b) Renting fees and savings for a game
service provider.

Fig. 16: Economical incentives for supernodes and game
service providers.

deploying supernodes for game service providers. We se-
lect a random supernode and depict the profits earned by
its owner. Assume that a supernode is a typical server
that uses approximately 0.25kW electric power [57], and
it is located in a region where the electricity cost is 10.8
cents/kWh, which is the US average price of electricity [58].
The hourly electricity cost of running the server is then
0.25 × 0.108 cents = 0.027 dollar. We also assume that
the game service provider pays 1 dollar for 1GB bandwidth
a supernode contributes. Figure 16(a) shows the mone-
tary rewards the supernode’s owner earns from the game
service provider, the costs of running the supernode and
the owner’s profits (calculate by Equation (1)) when the
supernode runs for different number of hours. We see that
the costs are trivial comparing to the rewards, so players and
organizations are motivated to contribute their machines to
earn profits.

For a game service provider, if it deploys 300 supernodes
and all supernodes run 24 hours a day for a full year,
it needs to spend about 2.9 million dollars on rewarding
the supernodes each year. While building a medium size
datacenter costs around 400 million dollars, deploying su-
pernodes rather than building extra datacenters is a more
economical strategy for game service providers, and pre-
vious experimental results already show that supernodes
are effective in providing high quality of service to users.
Instead of building data centers, game service providers
can rent instance resources from existing cloud providers.
Assuming a game service provider rents a “g2.8xlarge”
GPU instance from Amazon EC2 with 2.6 dollar per hour
[59], we first plot the renting fees (denoted by Renting fees)
in Figure 16(b). Compared to deploying a supernode with
rewards (denoted by Rewards to SNs), we then plot the
savings (denoted by Savings) for the game service provider
by subtracting the Rewards to SNs from Renting fees. From
Figure 16(b), we see that CloudFog is able to save game
service providers’ expenses.

5 CONCLUSIONS

Cloud gaming is a very promising model for thin-client
MMOG since it frees players from this requirement, but it
faces formidable challenges that prevents it from achieving
high QoS and low cost. We propose CloudFog, which lever-
ages supernodes functioning as “fog” to connect the cloud
to users. The cloud conducts the intensive computation
for producing game state and sends update information
to supernodes. The supernodes then generate game videos

to stream to players. To select a suitable supernode that
can provide satisfactory game video streaming service, we
propose a reputation based supernode selection strategy.
Considering that different games have different degrees of
response latency tolerance and packet loss tolerance, we
propose a receiver-driven encoding rate adaption strategy to
balance these two factors in guaranteeing QoS. Since social
friends in online games tend to play game together, we
assign these players to the same server in a datacenter to re-
duce the interactions of servers to further reduce the latency.
We also propose a dynamic supernode provisioning strategy
to deal with user churns and relieve server loads. As a
result, CloudFog reduces response latency and bandwidth
consumption and increases user coverage. These advantages
are verified by our experiments on the PeerSim simulator
and the PlanetLab real-world testbed. In our future work,
we will study the security issues such as dealing with
malicious supernodes and preventing cheating behaviors in
CloudFog; we will study how to evaluate the user Quality
of Experience (QoE) when using the CloudFog system; we
will also study deploying cloud servers as supernodes and
determining the optimal number of cloud servers so that
players can perceive the best QoE.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, CNS-1249603, and
Microsoft Research Faculty Fellowship 8300751. An early
version of this work was presented in the Proceedings of
ICPP 2015 [60].

REFERENCES

[1] C. Bezerra and C. Geyer. A load balancing scheme for massively
multiplayer online games. Multimedia Tools Appl, 2009.

[2] N. Bilton. Video Game Industry Continues Major Growth, Gartner
Says. The New York Times, 2011.

[3] CBS News. Study: Number of smartphone users tops 1 billion.
http://www.cbsnews.com/8301-205 162-57534583/study-number-of-
smartphone-users-tops-1-billion/, 2012.

[4] Onlive. Inc. http://www.onlive.com/, [Accessed in Nov 2014].
[5] Gaikai. Inc. http://www.gaikai.com/, [accessed in nov 2014].
[6] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hobfeld. An

Evaluation of QoE in Cloud Gaming Based on Subjective Tests.
In Proc. of IMIS, 2011.

[7] S. Choy, B. Wong, G. Simon, and C. Rosenberg. The brewing
storm in cloud gaming: A measurement study on cloud to end-
user latency. In Proc. of NetGames, 2012.

[8] K. Chen, P. Huang, and C. Lei. Game Traffic Analysis: An
MMORPG Perspective. Computer Networks, 50(16):3002–3023,
2006.

[9] E. Carlini, M. Coppola, and L. Ricci. Integration of P2P and Clouds
to support Massively Multiuser Virtual Environments. In Proc. of
NetGames, 2010.

[10] N. Bila, E. de Lara, K. Joshi, A. Lagar-Cavilla, M. Hiltunen, and
M. Satyanarayanan. Jettison: efficient idle desktop consolidation
with partial vm migration. In Proc. of EuroSys, 2012.

[11] S. Nedevschi, J. Chandrashekar, J. Liu, B. Nordman, S. Ratnasamy,
and N. Taf. Skilled in the art of being idle: Reducing energy waste
in networked systems. In Proc. of NSDI, 2009.

[12] J. Blackburn, R. Simha, N. Kourtellis, X. Zuo, M. Ripeanu,
J. Skvoretz, and A. Iamnitchi. Branded with a scarlet ”C”: cheaters
in a gaming social network. In Proc. of WWW, 2012.

[13] C. Bezerra, J. Comba, and C. Geyer. Adaptive load-balancing for
MMOG servers using KD-trees. CIE, 10(3):5, 2012.

[14] S. Ahmad, C. Bouras, E. Buyukkaya, R. Hamzaoui, A. Papazois,
A. Shani, G. Simon, and F. Zhou. Peer-to-peer live streaming for
Massively Multiplayer Online Games. In Proc. of P2P, 2012.

13

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2563428, IEEE
Transactions on Parallel and Distributed Systems

[15] J. Chen, M. Arumaithurai, X. Fu, and K. Ramakrishnan. Gaming
over COPS: A Content Centric Communication Infrastructure for
Gaming Applications. In Proc. of ICDCS, 2012.

[16] C. Huang, C. Hsu, Y. Chang, and K. Chen. GamingAnywhere: An
Open Cloud Gaming System. In Proc. of MMSys, 2013.

[17] Z. Zhao, K. Hwang, and J. Villeta. Game cloud design with
virtualized CPU/GPU servers and initial performance results. In
Proc. of ScienceCloud, 2012.

[18] S. Wang and S. Dey. Cloud mobile gaming: modeling and mea-
suring user experience in mobile wireless networks. In Proc. of
SIGMOBILE, 2012.

[19] M. Hemmati, A. Javadtalab, A. Shirehjini, S. Shimohammadi, and
T. Arici. Game as Video: Bit Rate Reduction through Adaptive
Object Encoding. In Proc. of NOSSDAV, 2013.

[20] L. Lin, X. Liao, G. Tan, H. Jin, X. Yang, W. Zhang, and B. Li. Liv-
eRender: A Cloud Gaming System Based on Compressed Graphics
Streaming. In Proc. of ACM Multimedia, 2014.

[21] S. Choy, B. Wong, G. Simon, and C. Rosenberg. A hybrid edge-
cloud architecture for reducing on-demand gaming latency. Mul-
timedia Systems, 20(5):503–519, 2014.

[22] T. Hobfeld, R. Schatz, M. Varela, and C. Timmerer. Challenges
of QoE management for cloud applications. IEEE Communications
Magazine, 50(4):28–36, 2012.

[23] Y. Lee, K. Chen, H. Su, and C. Lei. Are all games equally cloud-
gaming-friendly? An electromyographic approach. In Proc. of
NetGames, 2012.

[24] M. Claypool. Motion and scene complexity for streaming video
games. In Proc. of FDG, 2009.

[25] A. Ojala and P. Tyrvainen. Developing Cloud Business Models: A
Case Study on Cloud Gaming. IEEE Software, 28(4):42–47, 2011.

[26] How to batch render in Sony Vegas. http://sony-
vegas.wonderhowto.com/how-to/batch-render-sony-vegas-
329667/, [Accessed in Dec, 2015].

[27] H. Sawhney, A. Arpa, R. Kumar, S. Samarasekera, M. Aggarwal,
S. Hsu, D. Nister, and K. Hanna. Video flashlights: real time
rendering of multiple videos for immersive model visualization.
In ACM International Conference Proceeding Series, volume 28, pages
157–168, 2002.

[28] B. Van De Bovenkamp, S. Shen, A. Iosup, and F. Kuipers. Under-
standing and recommending play relationships in online social
gaming. In Proc. of COMSNETS, 2013.

[29] P. Salvador and A. Nogueira. Study on geographical distribution
and availability of bittorrent peers sharing video files. In Proc. of
ISCE, 2008.

[30] H. Shen and G. Liu. A lightweight and cooperative multi-factor
considered file replication method in structured P2P systems. TC,
2012.

[31] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hobfeld. Gaming
in the clouds: QoE and the users’ perspective. Mathematical and
Computer Modelling, 2011.

[32] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Repu-
tation systems. Communications of the ACM, 43(12):45–48, 2000.

[33] K. Hoffman, D. Zage, and C. Nita-Rotaru. A survey of attack and
defense techniques for reputation systems. CSUR, 42(1):1, 2009.

[34] M. Newman and M. Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69(2):026113, 2004.

[35] J. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez. The little engine(s) that could: Scaling online
social networks. In Proc. of SIGCOMM, 2010.

[36] A. Patro, S. Rayanchu, M. Griepentrog, Y. Ma, and S. Banerjee.
The anatomy of a large mobile massively multiplayer online game.
SIGCOMM Computer Communication Review, 42(4):479–484, 2012.

[37] D. Pittman and C. GauthierDickey. Characterizing virtual pop-
ulations in massively multiplayer online role-playing games. In
Advances in Multimedia Modeling, pages 87–97. 2010.

[38] M. Kendall and J. Ord. Time-series, volume 296. Edward Arnold
London, 1990.

[39] X. Zhuang, A. Bharambe, J. Pang, and S. Seshan. Player dynamics
in massively multiplayer online games. Carnegie Mellon University,
Pittsburgh, Tech. Rep. CMU-CS-07-158, 2007.

[40] The PeerSim simulator. http://peersim.sf.net, [Accessed in Nov
2014].

[41] PlanetLab. http://www.planet-lab.org/, [Accessed in Nov 2014].
[42] C. Huang, J. Li, and K. W. Ross. Can internet video-on-demand be

profitable? In Proc. of SIGCOMM, 2007.
[43] Xu Cheng and Jiangchuan Liu. Nettube: Exploring social networks

for peer-to-peer short video sharing. In Proc. of INFOCOM, 2009.

[44] The difference between upload and download speed for broad-
band DSL. http://fetchsoftworks.com/fetch/help/Contents/Tu
torial/SlowUploads.html, [Accessed in Dec, 2015].

[45] H. Shen, Y. Lin, and J. Li. A social-network-aided efficient peer-to-
peer live streaming system. TON, 23(3):987–1000, 2015.

[46] K. Psounis, P. M. Fernandez, B. Prabhakar, and F. Papadopoulos.
Systems with multiple servers under heavy-tailed workloads.
Performance Evaluation, 2005.

[47] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-
similarity through high-variability: statistical analysis of ethernet
lan traffic at the source level. IEEE/ACM Trans. Network, 1997.

[48] C. Hellstrom, K. Nilsson, J. Leppert, and C. Aslund. Influences
of motives to play and time spent gaming on the negative con-
sequences of adolescent online computer gaming. Computers in
Human Behavior, 28(4):1379–1387, 2012.

[49] S. Raza A. Nazir and C. Chuah. Unveiling dacebook: a mea-
surement study of social network based applications. In Proc. of
SIGCOMM, 2008.

[50] D. Wu, Y. Liu, and K. W. Ross. Modeling and Analysis of
Multichannel P2P Live Video Systems. TON, 18(4):1248–1260,
2010.

[51] H. Shen and C. Xu. Locality-aware and churn-resilient load
balancing algorithms in structured peer-to-peer networks. TPDS,
18(6):849–862, 2007.

[52] N. Bansal and M. Harchol-Balter. Analysis of srpt scheduling:
investigating unfairness. In Proc. of SIGMETRICS/Performance,
2001.

[53] R. Subrata and A. Y. Zomaya. Game-theoretic approach for load
balancing in computational grids. TPDS, 19(1):66–76, 2008.

[54] Latency (lag) vs win rate in League of Legends.
https://www.reddit.com/r/dataisbeautiful/comments/1t23a0/
latency lag vs win rate in league of legends oc/, [Accessed in
Mar, 2016].

[55] I. Goiri, J. Guitart, and J. Torres. Economic model of a Cloud
provider operating in a federated Cloud. Information Systems
Frontiers, 14(4):827–843, 2012.

[56] L. Barroso and U. Holzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture. 2009.

[57] P. Gao, A. Curtis, B. Wong, and S. Keshav. It’s not easy being green.
ACM SIGCOMM Computer Communication Review, 42(4):211–222,
2012.

[58] U.S. Energy Information Administration. http://www.eia.gov,
[accessed in nov 2014].

[59] Amazon EC2 Pricing. https://aws.amazon.com/ec2/pricing/,
[Accessed in Dec, 2015].

[60] Y. Lin and H. Shen. Leveraging fog to extend cloud gaming for
thin-client mmog with high quality of experience. In Proc. of ICPP,
2005.

Yuhua Lin

Yuhua Lin received both his BS degree in Software Engineering and MS degree in
Computer science from Sun Yat-sen University, China in 2009 and 2012
respectively. He is currently a Ph.D student in the Department of Electrical and
Computer Engineering of Clemson University. His research interests include social
networks and reputation system.

Yuhua Lin Yuhua Lin received both his BS de-
gree in Software Engineering and MS degree
in Computer science from Sun Yat-sen Univer-
sity, China in 2009 and 2012 respectively. He is
currently a Ph.D student in the Department of
Electrical and Computer Engineering of Clem-
son University. His research interests include
social networks and reputation systems.

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineer-
ing from Wayne State University in 2004 and
2006, respectively. She is currently an Associate
Professor in the Department of Electrical and
Computer Engineering at Clemson University.
Her research interests include distributed com-
puter systems and computer networks, with an
emphasis on P2P and content delivery networks,

mobile computing, wireless sensor networks, and grid and cloud com-
puting. She was the Program Co-Chair for a number of international
conferences and member of the Program Committees of many leading
conferences. She is a Microsoft Faculty Fellow of 2010 and a member
of the IEEE and ACM.

14

