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CoRE: Cooperative End-to-End Traffic
Redundancy Elimination for Reducing Cloud

Bandwidth Cost
Lei Yu, Haiying Shen, Karan Sapra, Lin Ye and Zhipeng Cai

Abstract—The pay-as-you-go service model impels cloud customers to reduce the usage cost of bandwidth. Traffic Redundancy Elimination
(TRE) has been shown to be an effective solution for reducing bandwidth costs, and thus has recently captured significant attention in the
cloud environment. By studying the TRE techniques in a trace driven approach, we found that both short-term (time span of seconds) and
long-term (time span of hours or days) data redundancy can concurrently appear in the traffic, and solely using either sender-based TRE or
receiver-based TRE cannot simultaneously capture both types of traffic redundancy. Also, the efficiency of existing receiver-based TRE
solution is susceptible to the data changes compared to the historical data in the cache. In this paper, we propose a Cooperative end-to-end
TRE solution (CoRE) that can detect and remove both short-term and long-term redundancy through a two-layer TRE design with cooperative
operations between layers. An adaptive prediction algorithm is further proposed to improve TRE efficiency through dynamically adjusting the
prediction window size based on the hit ratio of historical predictions. Besides, we enhance CoRE to adapt to different traffic redundancy
characteristics of cloud applications to improve its operation cost. Extensive evaluation with several real traces show that CoRE is capable of
effectively identifying both short-term and long-term redundancy with low additional cost while ensuring TRE efficiency from data changes.

Index Terms—traffic redundancy elimination, cloud computing, network bandwidth, bandwidth cost, end-to-end
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1 Introduction

C loud computing is an emerging IT paradigm that provides
utility computing by a pay-as-you-go service model [1].

More and more organizations are moving their businesses to the
cloud to provide services like video streaming, Web and social
networking. With modern virtualization technologies, the cloud
provides resource elasticity [2], which enables the capacity of
cloud applications to scale up and down on demand to adapt
to the changes in workloads. However, the deployment of web
and video services in cloud drive increasing egress bandwidth
demands due to data access from a large amount of users. A
well-known example is Netflix [3], which has hosted its video-
streaming service in the cloud with Amazon Web Services [4]
since 2009. The cost of cloud hosting services can vastly increase
due to the usage-based bandwidth pricing. Amazon EC2 charges
the data transfer out to Internet can be $0.155 per GB for first
10TB/month [4], and nowadays it is easy for a cloud server to
have 1TB monthly data transfer. Thus, the bandwidth cost has
become a serious concern for the cloud application deployment
and received a lot of attention [5], [6].

In order to reduce the bandwidth cost for data transfer from the
cloud, Traffic Redundancy Elimination (TRE) technologies have
being exploited [7] to reduce the bandwidth usage by eliminating
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the transmission of duplicate information. In traditional TRE
solutions [8], [9], the sender detects the duplicate content by
comparing the outgoing data with its local cache which stores
previously transmitted packets, and then sends the reference of
duplicate data to the receiver instead of raw data. The receiver
fetches the data from its local cache by the reference lookup.
These methods need to maintain fully synchronized caches at
both the sender and receiver in order to store previously transmit-
ted/received packet payload. However, the workload distribution
and migration for elasticity in the cloud can lead to frequent
changes of service points for the clients, which makes cache
synchronization difficult and may result in degraded TRE effi-
ciency. Thus, traditional TRE solutions are ill-suited to the cloud
environment, as noted in [7]. Besides, considering the usage-
based resource pricing of the cloud, the usage of computation,
storage and bandwidth resources for running TRE software may
eradicate the bandwidth cost savings obtained by TRE. Without
cloud elasticity, the load incurred by TRE at the servers may
negatively affect the performance of the cloud applications. With
the elastic capacity scaling in cloud, the overhead of TRE may
trigger the scaling up of the application’s capacity through adding
more servers, which increases the operation cost of the application.
Thus, ensuring low resource expense is necessary for TRE in the
cloud environment.

To address the above issues of TRE in cloud, a receiver-based
TRE solution named PACK [7], [10] has been proposed. In PACK,
once a client receives a data chunk that already exists in its local
cache, it is expected that the future incoming data would also
be duplicate. Thus, the client predicts the future coming data
chunks and notifies the cloud server with the signatures of the
predicted chunks. The server compares the predicted signatures
received from the client with the signatures of outgoing chunks
and confirms the correctly predicted chunks, which then do not
need to be transferred. Without maintaining the clients’ status
at the server, PACK effectively handles the cloud elasticity. By
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predicting future traffic redundancy at clients, PACK offloads most
computation and storage cost to clients, and thus greatly reduces
the TRE cost in cloud servers.

On the other hand, previous studies on network traffic redun-
dancy [11] indicate two types of redundancy, referred to as short-
term traffic redundancy (repetition in minutes) and long-term
traffic redundancy (repetition in hours or days) according to the
time scale of repetition occurrence. It is found that vast majority
of data matches between the traffic and the cache occur for data
less than 150 bytes and have high degree of temporal locality (e.g.,
60% within 100 seconds), while popular chunks can recur with a
time difference as large as 24 hours [11]. By studying real traces,
we demonstrate that the short-term and long-term redundancy may
co-exist in the network traffic, and PACK can effectively capture
long-term redundancy in the traffic between a server and a client
but fails to capture short-term redundancy. Because the clients
can cache a large amount of historical packet data on large-size
persistent storages (e.g., disks) in the long term, PACK is able
to eliminate the traffic content repeated in a long period with the
clients’ traffic redundancy predictions. However, because PACK
matches data chunks at average size of 8KB, it cannot detect the
short-term redundancy that appears at fine-granularity (e.g., the
data size about 150 bytes). Since a large portion of redundancy
is found in short-term time scale, PACK cannot exploit the full
redundancy in the network traffic. However, using a small chunk
size in PACK is not an acceptable solution to the problem, since
otherwise the bandwidth cost for transmitting chunk predictions
would eradicate the bandwidth savings from eliminating chunk
transmissions.

In this paper, we aim to design an efficient TRE solution for
services that are deployed in the cloud and dominated by the data
transfer from the cloud servers to the clients. We propose a Coop-
erative end-to-end TRE solution, named as CoRE, with capability
of removing both short-term and long-term redundancy such that
traffic redundancy can be eliminated to the highest degree. CoRE
involves two layers of cooperative TRE operations. The first-layer
TRE performs prediction-based Chunk-Match similar to PACK [7]
to capture long-term traffic redundancy. The second-layer TRE
identifies maximal duplicate substrings within an outgoing chunk
compared with the previously transmitted chunks in a local chunk
cache at the sender, referred to as In-Chunk Max-Match. If the
redundancy detection at the first-layer fails, CoRE turns to the
second-layer to identify finer-granularity redundancy, i.e., short-
term redundancy, inside chunks.

With the consideration of the requirements of cloud environ-
ment for TRE, CoRE incorporates several careful designs and
optimizations to reduce CoRE’s operation cost and improve its
TRE efficiency. First, CoRE uses a temporary small chunk cache
for each client to reduce the storage cost of In-Chunk Max-Match
at a server. It requires cache synchronization between the sender
and receiver, but it only detects the traffic redundancy in short-term
and thus cloud elasticity does not have much effect on the TRE
efficiency. Second, a single-pass scanning algorithm is used in
CoRE to determine chunk boundaries in the TCP stream while at
the same time obtaining the fingerprints within chunks used to find
maximal duplicate substrings in chunks. It efficiently integrates
two layers of TRE operations. Third, existing prediction-based
design in PACK requires that the predicted chunk exactly appears
at the expected position of TCP stream. Even a small offset of the
outgoing data at the sender, compared with the data cached at the
receiver, can invalidate the predictions and greatly degrade TRE
efficiency. To ensure prediction efficiency against data changes,

we propose an improved prediction-based TRE. In CoRE, the
sender divides the outgoing data into chunks in the same way
as the receiver, and compares the signatures of outgoing chunks
with all chunk predictions recently received from the receiver
regardless of their expected positions in the TCP stream. At
the receiver, an adaptive prediction algorithm is proposed, which
dynamically decides the prediction window size, i.e., the number
of subsequent chunks to predict based on the hit ratio of historical
chunk predictions. In this way, CoRE gains better TRE efficiency
than PACK.

The performance of CoRE is evaluated with several traffic
traces of the real-world applications. Our trace-driven evaluation
results show that the distribution of traffic redundancy at long-term
and short-term time scales varies with different applications, which
further causes different CPU costs for CoRE at the cloud servers.
Some applications may have dominant long-term redundancy
in traffic, while some have dominant short-term redundancy. In
CoRE, detecting short-term traffic redundancy has higher compu-
tation cost than detecting long-term traffic redundancy. Thus, in
order to improve the benefit-cost ratio between bandwidth savings
and TRE operation costs, we further propose an adaptive solution
to discover the dominant redundancy in the traffic and intelligently
decide which layer of TRE in CoRE to be enabled.

In summary, the contributions of this paper are listed as
follows:

1. By a real trace driven study, we identify the limitations of
existing end-to-end TRE solutions for capturing short-term and
long-term redundancy of data traffic.

2. We propose a two-layer TRE scheme, named CoRE, in
order to effectively detect both long-term and short-term traffic
redundancy.

3. Several optimizations are proposed in CoRE to reduce the
operating cost, improve the prediction efficiency and increase the
benefit-cost ratio of TRE, respectively.

4. We implement CoRE and quantify its benefits and costs
based on extensive experiments by using several real-world net-
work traffic traces.

The rest of the paper is organized as follows. Section 2
describes existing TRE solutions. Section 3 discusses TRE so-
lutions for cloud and their limitations. Section 4 presents our
end-to-end TRE solution CoRE in detail. Section 6 presents our
implementation. In Section 7, we evaluate CoRE and compare it
with PACK by extensive experiments using several traffic traces.

2 RELATED WORK

Since significant redundancy has been found in the network
traffic [8], [11], due to repeated accesses to the same or similar
data objects from the Internet end-users, several TRE techniques
have been proposed to suppress duplicate data from the network
transfers to reduce the bandwidth usage. A protocol-independent
packet-level TRE solution was first proposed in [8]. In this work,
the sender/receiver maintains a local cache respectively which
stores recently transferred/received packets. The sender computes
the Rabin fingerprints [12] for each packet by applying a hash
function to each 64 byte sub-string of the packet content, and
selects a subset of representative fingerprints as to the packet
content. For an outgoing packet, the sender checks whether its
representative fingerprints have appeared in earlier cached packets.
If yes, the sender identifies the maximal duplicate region around
each matched fingerprint and replaces the region with a fixed-size
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pointer into the cache to compress the packet. To decode com-
pressed data, the receiver replaces the pointer with the correspond-
ing referred data in its local cache. Several commercial vendors
have developed such protocol-independent TRE algorithms into
their “WAN optimization” middle-boxes [13], [14], [15] placed
at either end of a WAN link. The successful deployment of TRE
solutions in enterprise networks motivated the exploration of TRE
deployment at routers across the entire Internet [16], [17]. In [16],
redundancy-aware intra- and inter-domain routing algorithms are
proposed to further enhance network-wide TRE benefits. In [17],
an architecture for network-wide TRE is proposed, which allocates
encoding and decoding operations across network elements and
perform redundancy elimination in a coordinated manner.

The previous work on traffic redundancy [11] found that over
75% of redundancy was from intra-host traffic, which implies that
an end-to-end solution is very feasible for redundancy elimination.
Accordingly, a sender-based end-to-end TRE [9], named EndRE,
was proposed for the enterprise networks. By maintaining a fully
synchronized cache with each client at the server, EndRE offloads
most processing effort and memory cost to servers and leaves
the clients only simple pointer lookup operations. It suppresses
duplicate byte strings at the order of 32-64B.

A receiver-based end-to-end TRE, PACK, is proposed for
cloud environment [7], [10]. At the receiver, the incoming TCP
data stream is divided into chunks. The chunks are linked in
sequence, which forms a chain, and stored into a local chunk
store. The receiver compares each incoming chunk to the chunk
store. Once finding a matching chunk on a chain, it retrieves a
number of subsequent chunks along the chain as the predicted
chunks in the future incoming data. The signatures of the retrieved
chunks and their expected offsets in the incoming data stream
are sent in a PRED message to the sender as a prediction for
the sender’s subsequent outgoing data. Figure 1 briefly describes
the PACK algorithm. Once finding a match with an incoming
chunk [XYZA] in the chunk store, the receiver sends to the sender
the triples of signature, expected offset and length of following
chunks [ABCD], [BCFA] and [HIJK] in the same chain, i.e.,
(S ign.1, n, 4), (S ign.2, n+4, 4) and (S ign.3, n+8, 4) as predictions.
To match data with a prediction, the sender computes SHA-1 over
the outgoing data at the expected offset with the length given by
the prediction, and compares the result with the signature in the
prediction. Upon a signature match, the sender sends a PRED-
ACK message to the receiver to tell it to copy the matched data
from its local storage. In this way, PACK offloads the computa-
tional effort of TRE from the cloud servers to the clients, and thus
avoids the additional computational and storage costs incurred by
TRE at the cloud to outweigh the bandwidth saving gains.

The efficiency of PACK for capturing the long-term redundan-
cy is susceptible to data changes, which can happen frequently in
various cloud applications involving frequent data update such as
collaborative development [18] and data storage [19]. In PACK,
the sender determines the data chunk to match based on the po-
sition and the length both given by the prediction. The prediction
is true only if the predicted chunk exactly appears at the expected
position in the byte stream. Thus, even a small position offset in
the sender’s outgoing data due to data insertion or deletion can
invalidate all the following predictions. For example, in Figure
1, ‘E’ is inserted into the sender’s data. For the outgoing data
[ABCDBCEFAHIJK], the PACK sender matches S ign.1 with the
data chunk at the expected offset n with given length 4, which is
[ABCD]. Similarly, it will match S ign.2 with the data chunk at the
expected offset n + 4 with length 4 that is [BCEF], which causes
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Fig. 1. A brief description for PACK algorithm. s.# and sign.# are chunk
signatures. n + # is the expected offset of a predicted chunk in TCP stream.

a matching failure. Therefore, in PACK once a matching failure
occurs, the following predictions are abandoned, even though the
data chunk [HIJK] can match with the third prediction. In CoRE,
an improved prediction-based TRE is proposed. The CoRE sender
performs the content-based chunking as the receiver, and finds a
match by computing the signatures of the chunks and looking up
them in a prediction store that keeps recently received predictions.
In this way, CoRE achieves resiliency against data changes. The
further explanation can be found in Section 4.3.

Note a hybrid mode of sender-based and receiver-based TRE
is also proposed for PACK [7], but it is completely different
from two-layer design of CoRE. The hybrid solution simply
deploys two separate TRE schemes together and switches from the
receiver-based TRE to the sender-based TRE if data changes make
predictions inefficient. Since at any time only one scheme works,
the hybrid solution cannot capture the long-term and short-term
redundancy simultaneously. It also cannot adaptively and flexibly
distribute TRE effort among two separate schemes according to
the characteristics of traffic redundancy. In contrast, with joint
work of two layers of TRE, CoRE is able to simultaneously and
adaptively capture the long-term and short-term redundancy.

Besides the applications in wired networks, TRE also has been
explored in wireless and cellular networks [20]. REfactor [20]
aims to remove the traffic redundancy at the sub-packet level
by IP-layer RE with content overhearing. It leverages overheard
data by estimating the overhearing probability of data for the
receiver and removing the chunks that highly likely have been
overheard. Celleration [21] is a gateway-to-mobile TRE system
for the data-intensive cellular networks. The gateway predicts the
future chunks to a mobile device and eliminates the transmission
of the chunks whose predictions are confirmed by the mobile
devices, which indicates the chunks are cached on the device. The
measurements in [22] shows that TCP-level TRE saves significant
bandwidth consumption for 3G traffic. In [23], Zhang et al.
surveyed the existing protocol-independent TRE techniques and
systems developed for wired and wireless networks respectively.
In this paper, we focus on the TRE for wired networks in the
context of the cloud computing.

3 TRE SOLUTIONS FOR CLOUD AND LIMITA-
TIONS
In this section, with a trace-driven approach, we analyze the
limitations of the existing end-to-end TRE solutions (i.e., received-
based [7] and sender-based TRE [9]) for cloud in capturing long-
term and short-term traffic redundancy, and propose our design
goals for TRE in cloud.
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Fig. 2. Length distribution of matched data.

3.1 Limitations in Capturing Short-term and Long-term
Traffic Redundancy

3.1.1 Short-term redundancy
The real Internet traffic trace we used was captured from an access
link from a large university to the backbone. The trace is 120
seconds long and contains 1.9GB HTTP traffic between 8277
host pairs including payloads. The detailed description is given
in Table 1. For every host pair of sender and receiver, we detect
redundancy in the traffic from server to client, by received-based
approach PACK [7] and a sender-based TRE similar to EndRE’s
Max-Match [9], respectively. Our experimental results show that
PACK detected little redundancy, totaling 1.4MB in 1.9GB traffic.
In contrast, the sender-based TRE using a small cache size of
250KB detected 5% redundancy, which amounts to 114MB.

Figure 2 shows the length distribution of matched data found
by the sender-based TRE in our traffic trace. We can see that
about 70% of the matches have a size no more than 150 bytes,
while occurring in 120 seconds long trace. Such results confirm
that significant redundancy appears in short-term time scale and
mostly with size at the order of hundred bytes. The large difference
on TRE efficiency between PACK and the sender-based TRE is
due to their different ability of capturing short-term redundancy
in the traffic; PACK cannot capture short-term redundancy while
sender-based TRE can. The reason is that PACK uses a large chunk
size of 8KB for efficiency, which causes it unable to identify
finer-granularity content repetitions and hence misses the short-
term redundancy. For example, in Figure 1, the chunk [CEFA]
would be sent without any compression due to the false prediction.
However, [CEFA] has overlaps on ‘A’ and ‘C’ with the previous
sent chunk [ABCD]. PACK misses such short-term repetition at
fine-granularity.

3.1.2 Long-term redundancy
Eyal et al. [7] have found significant long-term redundancy in
YouTube traffic, online social network service traffic and some
real-life workloads, where data repetition can occur over 24 hours
or months. To study the efficiency of existing TRE solutions for
capturing long-term redundancy, we use the same approach as
in [7] to synthesize a real-life workload traffic with long-term
redundancy, by downloading 40 Linux source files one by one in
their release order.

To capture long-term traffic redundancy, the sender-based TRE
needs to synchronously maintain a large persistent cache at both
the sender and receiver. To verify this point, we investigate the
TRE efficiency of two types of sender-based TRE using temporary
cache and persistent cache, respectively. In the persistent cache
based approach, the client maintains a cache which keeps the most
recently received packets during the entire period of downloading
40 files, in order to detect data repetition across successively
downloaded files. In the temporary cache based approach, for
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Fig. 3. Detected redundancy in Linux source traffic by the sender-based
TRE.

each file downloading, the client will allocate a new cache which
just temporarily exists during the period of downloading one file.
When a file download completes, the cache is released and no
historical information is stored. Thus, such approach can only
capture the redundancy within each file itself.

Figure 3 presents the bandwidth savings, i.e., the percentage
of total redundant bytes in the workload traffic detected by the
sender-based TRE with various cache sizes. Figure 3(a) shows the
redundancy detected by the temporal cache based approach. With a
cache size of 250KB, about 7% redundancy can be detected inside
each file. Increasing cache size only yields diminishing returns,
which indicates that most data repetitions occur within the traffic
of 250KB window and they actually compose the short-term traffic
redundancy at the time scale of 250KB/(downloading rate), less
than 2 seconds in our experiment.

Figure 3(b) shows the redundancy detected by the persistent
cache based approach. Comparing Figure 3(b) with Figure 3(a),
we can see a significant difference between the temporary cache
and persistent cache approaches. As opposed to 10% redundancy
detected by using 32MB temporary cache, using 32MB persis-
tent cache can detect about 80% traffic redundancy for every
downloaded file except the first one. The reason is that, since
the sizes of Linux source files are between 21MB and 31MB,
the 32MB cache can store a whole file previously downloaded
such that data repetition across successive files can be completely
detected and thus more redundancy is eliminated. The redundancy
across different versions of Linux source actually is a long-term
redundancy, because the download of a source file most likely
occurs when a new version is released, usually in days or months.
Therefore, persistently keeping past transferred data is essential for
capturing long-term redundancy. Besides, the steep rise of detected
redundancy at 32MB in Figure 3(b) also indicates that the cache
needs to be large enough for effectively capturing long-term traffic
redundancy.
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In our experiment, PACK detected 54% traffic redundancy
in the synthesized workload, less than 80% detected by sender-
based TRE with 32MB persistent cache but much higher than
10% obtained with smaller persistent cache size. Unlike the
sender-based TRE, PACK cannot detect the significant short-
term redundancy at fine-granularity. Thus, the sender-based TRE
with 32MB persistent cache obtains much more redundancy than
PACK. However, because the cloud server has limited resources
and usually serves a large number of users, it is not practical
for the server to run sender-based TRE with a large persistent
cache for every client. But using smaller cache size, the sender-
based TRE detects much less redundancy than PACK. As a result,
the sender-based TRE is not suitable to efficiently remove the
long-term traffic redundancy for cloud environment. In contrast,
PACK can efficiently capture the long-term redundancy for cloud
by offloading large size caching and computation effort from the
server to clients.

3.2 Design goals

Based on the above analysis, we conclude that solely using either
sender-based or receiver-based solution would fail to eliminate a
large amount of redundancy. With the advance of various appli-
cations and services in clouds, significant short-term and long-
term redundancy can concurrently appear in the network traffic.
Thus, in this paper, we aim to design a TRE scheme, which is
able to eliminate more traffic redundancy than PACK by capturing
both long-term and short-term redundancy. To be apt for the cloud
environment, our scheme also needs to ensure low computation
and storage cost at servers and the changes of service points in
cloud should not have much effect on the TRE efficiency.

4 CoRE DESIGN
In this section, we describe the design of CoRE in detail and
explain how it achieves our design goals.

4.1 Overview

CoRE has two TRE modules each for capturing short-term redun-
dancy and long-term redundancy respectively. Two TRE modules
are integrated into a two-layer redundancy detection system. For
any outbound traffic from the server, CoRE first detects the long-
term redundancy by the first-layer TRE module. If no redundancy
is found, it turns to the second-layer TRE module to search for
short-term redundancy at finer granularity.

The first-layer TRE module detects long-term redundancy
by a prediction-based Chunk-Match approach like PACK [7].
Considering the inefficiency of PACK described in Section 2, we
propose an improved prediction algorithm to efficiently handle
data changes so that a small data change will not affect the TRE
efficiency. Specifically, the sender in CoRE performs the same
chunking algorithm as the receiver to divide the outgoing data into
chunks. Then, for each chunk, the sender computes its signature
(e.g., its SHA-1 hash value) and looks up the signature in the
prediction store that keeps all predictions recently received from
the receiver. If a matching signature is found, the sender sends
a prediction confirmation PRED-ACK message to the receiver
instead of the outgoing chunk, no matter whether the chunk has the
expected offset in TCP stream which is specified in the prediction.
This is in contrast to PACK. In this way, our prediction matching
does not involve data position in TCP stream, which makes CoRE
resilient against data changes.
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Fig. 4. Overview of CoRE

In the second-layer TRE module, both the server and client
maintain a temporary small local chunk cache to store most recent-
ly transmitted and received chunks during their communication re-
spectively. The server matches outgoing data with the local cache
at fine granularity to detect short-term redundancy. In particular,
the sender stores its recently transferred chunks in its local chunk
cache. For every chunk in the cache, the sender computes a set
of representative fingerprints, each of which is the hash value
of a data window of size w in the chunk. Every representative
fingerprint (along with a pointer to the corresponding chunk in the
cache) is stored into a fingerprint store. To detect the redundancy
inside an outgoing chunk, the sender performs In-Chunk Max-
Match to identify maximal sub-strings in the chunk which have
duplicates in the chunk cache. Specifically, the sender compares
each representative fingerprint of the outgoing chunk against the
fingerprint store to check whether a matching fingerprint exists. A
matching fingerprint indicates that the outgoing chunk has a data
window of size w which also appears in a previously transmitted
chunk in the cache. If a matching fingerprint is found in the
fingerprint store, the in-cache chunk which it points to is retrieved.
The data window corresponding to the matching fingerprint in
the in-cache chunk is expanded byte-by-byte in both directions
and compared with the outgoing chunk, in order to identify the
maximal overlap substring between the in-cache chunk and the
outgoing chunk. Then, the sender encodes the maximal matched
substring in the outgoing chunk with an in-chunk shim which
contains the signature of the corresponding in-cache chunk, the
offset and length of the matched substring.

For any incoming packet, the receiver first decodes in-chunk
shims if any. To decode an in-chunk shim, the receiver retrieves
the chunk in its local cache which has the same signature as that
in the shim, and replace the shim by the substring of the in-
cache chunk according to the offset and length specified by the
shim. If the packet is a PRED-ACK message, the receiver checks
the confirmed prediction in its prediction store and retrieves the
corresponding predicted chunk in its chunk store. Then, it copies
the chunk to its TCP input buffer according to its offset in TCP
stream specified by the PRED-ACK message. An overview of
CoRE is shown in Figure 4. Next, we explain the details of CoRE.

4.2 Chunking and Fingerprinting

As described above, CoRE coordinately uses prediction based
Chunk-Match and In-Chunk Max-Match to implement two-layer
TRE in order to maximally detect redundancy by capturing both
long-term and short-term redundancy. Chunk-Match identifies the
repeated chunks in a TCP stream while Max-Match identifies the
maximal repeated substrings in a chunk. Similar to PACK [7],
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CoRE uses a large chunk size, i.e., at the order of several KB, for
Chunk-Match. A larger chunk size can reduce the total number of
chunks in a TCP stream, which further results in fewer expensive
SHA-1 operations for computing signatures of chunks, less storage
cost for storing the meta-data of the chunk store at the receiver
and also fewer prediction transmissions from the receiver. With a
large chunk size, prediction based Chunk-Match identifies long-
term redundancy with low operating cost. With computing the
representative fingerprints at average interval of 32-64 bytes for
any chunk, which is referred to as fingerprinting, In-Chunk Max-
Match is able to identify redundancy inside chunks at a small
granularity. In this way, when the transmission of an outgoing
chunk cannot be eliminated by prediction based Chunk-Match, In-
Chunk Max-Match can capture the redundancy inside the chunk
to improve bandwidth savings. As we can see, chucking and
fingerprinting are basic operations in CoRE and their efficiency
is desired for CoRE to achieve low computation cost.

Chunking algorithms in previous works [7], [9], [11] deter-
mine chunk boundaries based on either byte or fingerprint. Byte
based algorithms, such as MAXP [11] and Samplebyte [9], choose
a byte that satisfies a given condition as chunk boundary. The
fingerprint-based algorithms, such as Rabin fingerprint based [9]
and PACK chunking [7], compute fingerprints by applying a
pseudo-random hash function to sliding windows of w contiguous
bytes in a data stream and select a subset of fingerprints with
a given sampling frequency. The first byte in the window of each
chosen fingerprint forms the boundaries of the chunks. As opposed
to previous works [7], [8], [9], [11], [24] which use Chunk-Match
and Max-Match exclusively, CoRE needs the sender to perform
both chunking and fingerprinting to every chunk. A straight
approach for this is to first use a chunking algorithm to divide
a data stream into chunks and then computes the fingerprints
for each chunk. However, this approach needs scanning the byte
string twice for chunking and fingerprinting respectively, which
increases the computation cost of the servers. To save the cost,
we can utilize the chunking algorithm based on the fingerprint to
generate chunks and fingerprints of chunks within one single-pass
scanning. Specifically, based on XOR-based hash in the chunking
algorithm of PACK [7], our algorithm computes fingerprints over
the byte stream and chooses a subset of them as chunk boundaries
with the remaining fingerprints as the fingerprints of chunks, as
shown in Figure 5.

In our algorithm, a XOR-based rolling hash function is used
to compute a 64-bit pseudo-random hash value over each sliding
window of w bytes of the byte stream. As shown in [7], the XOR-
based rolling hash function achieves higher speed than Rabin
fingerprinting algorithm for computing fingerprints. Therefore,
we choose the XOR-based rolling hash function to generate
fingerprints and chunk boundaries. Given k bit-positions in a 64
bit string, denoted by P f = {b1, b2, ..., bk}, if the 64-bit pseudo-
random hash has ‘1’ value at all these positions, it is chosen as a
fingerprint. For each fingerprint, given a set of n bit-positions Pc in
a 64-bit string such that |Pc| = n and P f ⊂ Pc, if the fingerprint has
‘1’ value at all positions in Pc, it is chosen as a chunk boundary.
As a result, the average sampling interval for fingerprints is 2k

bytes and the average chunk size is 2n bytes. Algorithm 1 shows
the pseudo-code of our chunking and fingerprinting algorithm
with w = 48, n = 13, k = 6, which gives the average fingerprint
sampling interval of 64B and the average chunk size of 8KB. Note
that in CoRE only the sender needs to run both chunking and
fingerprinting over the outgoing data stream while the receiver
just runs chunking over the received data.

Data

Chunk boundary Fingerprint

Fig. 5. Chunking and fingerprinting

Algorithm 1 Chunking and Fingerprinting
1: cmask ← 0x00008A3110583080; //13 1-bits, 8KB chunks
2: f mask ← 0x0000000000383080; //6 1-bits, 64B fingerprint

sampling interval
3: longval← 0; //64-bit
4: for all byte∈ stream do
5: shift left longval by 1 bit;
6: longval← longval XOR byte;
7: if processed at least 48 bytes and

(longval AND f mask) == f mask then
8: found a fingerprint f ;
9: if (longval AND cmask) == cmask then

10: f is a chunk boundary;
11: end if
12: end if
13: end for

4.3 CoRE Sender Algorithm

The sender uses a prediction store to cache the most recent
predictions received from the receiver. Each prediction contains
the SHA-1 signature of a predicted chunk and its expected offset,
i.e., TCP sequence number in the TCP byte stream. The sender
also has a chunk cache to store chunks that have been recently sent.
A fingerprint store holds the meta-data of every representative
fingerprint for each cached chunk, which includes the fingerprint
value, the address of the chunk in the cache referred by the
fingerprint, and the byte offset of the window in the chunk over
which the fingerprint is computed.

When receiving new data from the upper layer application,
the sender performs the chunking and fingerprinting algorithm.
For each outgoing chunk, if the prediction store is not empty,
the sender first computes the SHA-1 signature of the chunk and
then looks up it in the prediction store. If a matching signature is
found in a prediction p, the sender replaces the outgoing chunk
with a PRED-ACK confirmation message which carries a tuple <
offsetp, offsets > where offsetp is the expected offset in prediction
p and offsets is the actual offset of the outgoing chunk in the
TCP stream. As we explain later in Section 4.4, each prediction is
uniquely identified at the receiver by its expected offset.

In PACK, the sender simply discards previously received
predictions which predict chunks before the position of current
outgoing data in TCP stream. The chunk signature of a prediction
is compared with the outgoing data chunk which is in the TCP
sequence interval uniquely determined by the offset and length in
the prediction. However, as we pointed earlier in Section 2, PACK
suffers degraded TRE efficiency if the data offset changes due to
disperse insertions and deletions of data. With consideration of
possible data changes, the predicted chunks may actually appear
in the near future after the expected offset. Thus, we improve
the prediction-based algorithm by allowing the sender to use the
historical predictions regardless of their expected chunk offset
in TCP stream. To this end, the CoRE sender needs to divide
the outgoing data into chunks in the same way as the receiver
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does with a content-based chunking algorithm, instead of dividing
according to the chunk offset and length specified by the receiver
in the prediction. Each outgoing chunk is then compared with
all entries in the prediction store regardless of their expected
chunk positions (i.e., TCP sequences), such that the chunk can
match a prediction having an inconsistent TCP sequence but
the same signature. As a result, CoRE can achieve resiliency
against data changes and be able to leverage useful predictions
from the receiver as much as possible. As for the example in
Figure 1, because the content around chunk boundaries does not
change, CoRE divides the outgoing data at the sender into chunks
[ABCD] [BCEFA] [HIJK], given the same chunking algorithm
as at the receiver that determines chunk boundaries based on data
content. The signature of chunk [HIJK] is already received as a
prediction from the receiver. Then, CoRE would find a match and
compress the chunk. By contrast, PACK misses this opportunity
as mentioned before in Section 2.

If the prediction store is empty or the prediction-based Chunk-
Match does not find a matching prediction, the sender then
performs In-Chunk Max-Match. It checks the fingerprints of
the outgoing chunk against the fingerprint store. If a matching
fingerprint is found, the corresponding chunk is retrieved from the
chunk cache. Considering the possible collision in the fingerprint
namespace due to the same hash values for different data, the
window corresponding to the matching fingerprint in the chunk
is compared with the outgoing chunk byte-by-byte. Then, if
the window has the same data, it is expanded byte-by-byte in
both directions to obtain the maximal overlapped substring. Each
matching substring in the outgoing chunk is encoded with a shim
<signc, length, o f f setc, o f f sets> where signc is the signature of
the in-cache chunk, length is the length of the matching substring,
o f f setc is the offset of the matching substring in the in-cache
chunk, and o f f sets is the offset of the matching substring in the
outgoing TCP stream. If an in-cache chunk has multiple matching
substrings with an outgoing chunk, all corresponding shims can
be compressed together in the form of <signc, length1, o f f setc1,
o f f sets1, length2, o f f setc2, o f f sets2, . . .> where each matching
substring i is described by lengthi, o f f setci and o f f setsi.

After the sender sends out the chunk, the sender updates the
chunk cache and the fingerprint store with this chunk. Figure 6
describes the sender algorithm for processing outgoing data by
state machines. The details for the maintenance of local data
structures at the sender are described as follows.
Chunk Cache. The chunk cache is a fixed-size circular FIFO
buffer. The server maintains a chunk cache for every client. If
no further request is received from the client within a period, the
cache is released. Once receiving the request from a new client,
the server allocates a chunk cache for the client. The chunk cache
stores recently transferred chunks from the server to the client, via
either one TCP connection or multiple TCP connections. Once
the chunk cache is full, the earliest chunk is evicted and the
fingerprints pointing to it are invalidated. Each entry in the chunk
cache is a tuple < data, signature >, where data field is the chunk
data and signature field is its SHA-1 hash. Note that the signature
is not always computed for all chunks. The signature field is filled
for a chunk in two cases. First, the outgoing chunk’s signature has
to be computed for prediction matching when the prediction store
is not empty, so in this case the chunk is stored into the cache
with its signature. Second, during In-Chunk Max-Match, if the in-
cache chunk where the maximal matching substring is obtained
has empty the signature field, its signature is computed and filled.
In this way, the expensive signature computation is only performed

on demand, which avoids unnecessary SHA-1 computations to
reduce the server’s computation cost.

Since the chunk cache is used to detect short-term traffic
redundancy, a small cache size can be sufficient. As indicated
in Section 3, even with small cache size like 250KB, significant
short-term redundancy is detected by Max-Match of the sender-
based TRE. In CoRE, the server and the client also need to
maintain synchronized chunk caches for In-Chunk Max-Match.
The changes of service point in the cloud may cause the loss
of cache synchronization at the server. However, since the small
chunk cache only stores short-term historical traffic, the changes
of service point just result in the missing of traffic redundancy
in a short term, and its impact on the TRE efficiency is limited.
Besides using small chunk cache, CoRE releases the cache if no
further service request is received from the client within a period,
which further reduces the storage cost of CoRE at the server.
Prediction Store. As opposed to that a chunk cache is shared
by all TCP connections to the same client which the cache is
allocated for, a prediction store is allocated by the server for
each TCP connection with a client. The expected chunk offset
of a prediction is represented by the TCP sequence number of the
predicted chunk (i.e., the TCP sequence number of the first byte
in the chunk) in the TCP stream. Once receiving a new prediction
from the receiver, the sender inserts it into its prediction store
associated with the corresponding TCP connection. The prediction
store holds the most recent predictions. Outdated predictions need
to be identified and evicted to limit the size of the prediction store
and ensure the efficiency of prediction matching. In CoRE we
define the elapsed time of a prediction p in the store as:

Ep =

{
0, S eqc ≤seq S eqp
(S eqc − S eqp) mod 232, S eqc >seq S eqp

(1)

where S eqc is the TCP sequence number of the chunk currently
to be sent, and S eqp is the expected TCP sequence number in
the prediction p. ≤seq and >seq are comparisons of TCP sequence
number with modulo 232 [25]. We use TT Lpred to denote the
maximum elapsed time of a prediction, a system parameter. At the
time when CoRE compares the outgoing chunk having the TCP
sequence number S eqc against the prediction store, the predictions
satisfying Ep > TT Lpred are removed from the prediction store.
In this way, we use the difference of TCP sequence number
between a prediction and current outgoing data to measure the
timeliness of the prediction, given that a larger difference implies
the less relevance of the prediction with the outgoing data. By
keeping all the predictions within TT Lpred rather than only the
latest prediction as in PACK, CoRE has higher chance to find
the matches since the chunks predicted by these predictions may
appear in the near future due to their delayed appearance or
repetitive appearance in the TCP stream.

4.4 CoRE Receiver Algorithm
For each TCP connection, the receiver divides the incoming data
stream into chunks and maintains a local prediction store which
caches recent predictions for the TCP connection. To reconstruct
the raw data stream, the receiver processes incoming TCP seg-
ments according to their different types. There are three types
of TCP segments from the sender to the receiver: PRED-ACK
message, the message encoded with shims and raw data. Upon
receiving a PRED-ACK message containing <o f f setp, o f f sets>,
the receiver first checks the corresponding prediction store to
find the prediction p which has the expected offset o f f setp.
Then, the receiver retrieves the chunk predicted by prediction
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p from the chunk store and place it to the input buffer of the
corresponding TCP connection with the offset o f f sets in the TCP
stream specified by the sender. If receiving the message containing
shim <signc, o f f setc, length, o f f sets>, the receiver finds the
chunk having signature signc from its chunk store. The matching
substring in the chunk indicated by o f f setc and length is copied
to the receiver’s TCP input buffer at the position o f f sets in TCP
stream.

The chunking algorithm at the receiver is the same as Algorith-
m 1 without the fingerprint identification with f mask. The receiver
maintains a local chunk store as in PACK [7], which stores chunks
from all its TCP connections. The chunks from the same TCP
connection are linked together in the order they are received and
then stored into the chunk store. If the signature of an incoming
chunk is found in the chunk store, the receiver makes one or
multiple chunk predictions for a number of subsequent chunks
from the sender. Each chunk prediction consists of the signature of
the predicted chunk and its expected offset in the TCP stream. For
any chunk prediction, if the predicted chunk has overlapped TCP
sequence range with any previous predictions in the corresponding
prediction store, the prediction is discarded. Accordingly, within
a TCP connection, the predictions from the receiver to the sender
have no overlap with each other on the TCP sequence range for
their predicted chunks. The chunk predictions are sent within a
PRED message and in the order of their expected offsets. Figure
7 shows the receiver algorithm, in which the receiver enters
different processing procedures according to the types of incoming
messages.

Since in a TCP connection the chunk predictions have no

overlapped TCP sequence range for their predicted chunks, each
prediction for the same TCP stream can be uniquely identified by
the expected offset in it. Then, each entry in the prediction store
consists of an expected TCP sequence number and a pointer to
the corresponding predicted chunk. The receiver also periodically
removes the outdated predictions from the prediction store in the
similar way as the sender does. Each time when the receiver
receives a chunk having the TCP sequence number S eqc, any
prediction p with its elapsed time Ep (computed by (1)) greater
than TT Lpred is removed from the prediction store before the
receiver tries to make any new predictions.

5 ADAPTIVE SOLUTIONS TO TRAFFIC REDUN-
DANCY
We have described the basic operations in CoRE in previous sec-
tions. In this section, we propose adaptive enhancements for CoRE
to improve its TRE efficiency according to the characteristics of
traffic redundancy.

5.1 Adaptive Prediction For Long-term Redundancy

The prediction based Chunk-Match TRE allows the receiver to
locally obtain the sender’s data instead of through the network
when the chunk prediction is successful. When the traffic has
significant long-term redundancy and most predictions would be
successful, a lot amount of data would be obtained locally by the
receiver. In this case, the rate of data reception at the receiver
can be mainly determined by the transmission rate of chunk
predictions from the receiver. The data reception rate can be
increased by making more chunk predictions each time when the
receiver finds a matching chunk in the chunk store. On the other
hand, however, it may cause significant and unnecessary prediction
transmission cost for the receiver, especially when the prediction
fails often. Thus, an adaptive prediction method is desired to
dynamically determine the number of chunks to predict each time
with the goal to increase hit ratio of predictions.

PACK [7] proposes a virtual window scheme to control the
aggregated number of bytes of all chunks predicted in the pending
predictions. The virtual window size is doubled with each suc-
cessful prediction. Upon a mismatch, the window is reset to TCP
receiver window. The reason for such design is that in PACK the
chunk chain for prediction is constructed from the TCP stream.
The virtual window starts from the matching chunk, and moves
forward along the chain upon each prediction match with the
window size being doubled to include more subsequent chunks
for prediction, which increase the prediction transmission rate.
However, since CoRE does matching regardless of the prediction
positions in the chain, the position of the matching chunk and
thus the virtual window may move forward and backward on the
chain. Therefore, doubling the window size upon each prediction
success in CoRE would not obtain the same efficiency as in PACK.
Accordingly, a new virtual window scheme is required for CoRE.
Furthermore, PACK’s virtual window scheme is sensitive to data
changes. Scattered data changes, compared against the cached
chain, would frequently cause the window reset and force the
sender to revert to raw data transmission. Here we propose an
adaptive prediction algorithm, which adjusts the virtual window
according to the hit ratio of previous chunk predictions, to ensure
the prediction efficiency from the data changes and handle the
out-of-order prediction matching in CoRE.

For an incoming TCP stream, we assume that the receiver finds
a matching chunk M in a chunk chain. Then, the receiver uses
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a sequence of chunks following M in the chain for prediction,
denoted by PM = {pM

1 , pM
2 , . . . , pM

k } where each pM
i denotes a

predicted chunk. The size of chunk pM
i is denoted by S (pM

i ).
Suppose TPM be the set of chunks in PM that are successfully
predicted. Then, the hit ratio of prediction PM is computed by

H(PM) =

∑
pM

i ∈TPM
S (pM

i )∑k
i=1 S (pM

i )
(2)

Let NM be the next TCP sequence number after the chunk
that is matched with M. For any TCP connections, the prediction
algorithm records NM , PM and

∑k−1
i=1 S (pM

i ) where M is the most
recent matching chunk for the incoming TCP stream. These pa-
rameters are updated when a new matching chunk appears and new
predictions are made based on it. When a new chunk is received,
the prediction algorithm tries to match it for prediction only if this
chunk has a sequence number larger than NM +

∑k−1
i=1 S (pM

i ). That
is, the chunk used for prediction should not be in the previous
prediction range. The last chunk pM

k is excluded from the previous
prediction range, since we allow the algorithm to make new
predictions when the incoming chunk is matched with pM

k .
When making predictions with a new matching chunk, say M′,

the algorithm first computes the hit ratio of chunk predictions in
PM , and then accordingly adjusts the virtual window W. Suppose
Wo be the initial prediction window size. Then, we set W = Wo
if (1) NM′ − (NM +

∑k−1
i=1 S (pM

i )) ≥ dT or (2) H(PM) < HT , where
dT and HT are two thresholds to determine whether to use the
historical hit ratio for the next prediction. The first condition NM′−

(NM +
∑k−1

i=1 S (pM
i )) ≥ dT is given with the consideration that, if the

data to be predicted with M′ is far away from the data predicted
by the last prediction PM , the hit ratio of PM may be outdated for
M′ and thus we set W to the initial size; otherwise, it could be a
good estimate for the hit ratio of the prediction PM′ since the data
predicted with M′ closely follows the data predicted by PM and we
increase W. For the condition (2), if the hit ratio H(PM) is lower
than the minimum requirement HT for increasing the window size,
W also is set to the initial size. For example, we can let HT = 0.5
which indicates that the virtual window is increased only if the
historical hit ratio is at least 50%. If NM′−(NM +

∑k−1
i=1 S (pM

i )) < dT
and H(PM) > HT , we let W = Wo + H(PM)Wmax such that W
increases with the hit ratio. Here Wmax is a constant which decides
the maximum virtual window size Wo + Wmax.

5.2 Adaptive TRE Operations For Different Redundancy
Distribution

The distribution of traffic redundancy over short-term and long-
term time scales varies with different kinds of cloud applications.
According to our previous work [26], some applications may
have dominant long-term redundancy in traffic, while some have
dominant short-term redundancy. In this case, the TRE operations
on both layers to simultaneously detect both short-term and long-
term redundancy cause unnecessary cost. CoRE’s first-layer TRE
incurs the prediction transmission cost, which may decrease the
bandwidth saving attained from redundancy removal if the predic-
tions fail a lot due to little long-term redundancy. CoRE’s second-
layer TRE incurs a lot of computation cost for In-Chunk Max-
match. Thus, an adaptive solution to this issue is to discover the
layer which detects the dominant redundancy and disable another
layer TRE operation to save the TRE operation costs.

To identify the dominant redundancy, CoRE records the ag-
gregate redundant bytes detected by each layer after running
for a period with two-layer TRE for a cloud application. The

aggregate redundant bytes detected by the first-layer and second-
layer of CoRE, are denoted by RL and RS respectively. Given
a threshold α (for example, α = 0.95), if RL

RL+RS
≥ α, we say

RL is dominant and the second-layer TRE can be disabled. If
RL

RL+RS
≤ 1 − α, RS is dominant and the first-layer TRE can be

disabled. If 1− α < RL
RL+RS

< α, we say RL and RS are comparable,
and both layers can be enabled.

On the other hand, since TRE incurs additional load on
servers, the bandwidth savings may be eradicated by the increased
operation cost. To avoid that, we can measure the percentage
of redundant traffic for the targeted cloud application during the
runtime profiling. If its percentage is lower than some threshold
given by the cloud users, TRE service can be shut down for that
application.

6 IMPLEMENTATION

We implemented CoRE in JAVA based on PACK implementa-
tion [27]. The protocol is embedded in the TCP options field. The
prototype runs on Linux with Netfilter Queue [28].

The implementation of the sender component largely follows
the discussion in Section 4.3. The implementation of the prediction
store at the sender must support quick identification of matching
predictions, and efficient identification and deletion of outdated
predictions. Considering that the arrivals of predictions are in the
increasing order of the expected offset, we use LinkedHashMap
because its iteration ordering is normally the order in which keys
are inserted. The chunk cache is implemented as a circular FIFO
with a maximum of M fixed-size entries. The fingerprint store is
implemented as HashMap. When the old chunk is evicted from
the chunk cache, the associated fingerprints should be invalidated.
To efficiently perform this task, we adopted the method in [16].
We maintain a counter MaxChunkID (4 bytes) that increases by
one before a new chunk is stored. Each chunk has an unique
identifier ChunkID which is set to the value of MaxChunkID
when it is stored. The position of a chunk in the store is computed
by ChunkID%M, thus we store ChunkID instead of the position
of the chunk in meta-data of the fingerprint store. For each entry
in the fingerprint store, if ChunkID < MaxChunkID − T , the
corresponding chunk has been evicted and thus the fingerprint is
invalid. For the implementation of receiver component, we add the
in-chunk shim decoding algorithm, and the prediction store is also
implemented as LinkedHashMap.
Parameter Settings. In default, we use an average chunk size of
8KB and fingerprint sampling interval of 64B by setting n = 13
and k = 6 for the chunking and fingerprinting algorithm. We set
TT Lpred = 221 for the prediction store. The chunk cache in the
second-layer TRE can hold up to 64 chunks, about 512KB at
default. For the adaptive prediction algorithm, we let dT = 32KB,
HT = 0.6, Wo = 32KB and Wmax = 56KB.

7 EVALUATION

In this section, we evaluate CoRE and compare it with PACK
and the sender-based scheme by both trace-based and testbed
approach. Our trace-based evaluation is based on two genuine data
set of real-life workloads and two Internet HTTP traffic traces.
We deploy CoRE implementation onto our testbed consisting of
a server and client(s). Our server is 2 Ghz Dual-Core with 2 GB
RAM running Ubuntu, and clients have 2.67GHz Intel Core i5
with 4 GB RAM.
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7.1 Traffic Traces

Our evaluation uses the following trace data sets:
Linux Source Workload (2.0.x): Forty tar files of Linux kernel

source code. These files sum up to 1 GB and were released over
a period of two year. The traffic is generated by downloading all
these tar files in their release order from 2.0.1 to 2.0.40.

IMAP trace: 710MB of IMAP Gmail for past 1 year contain-
ing 7500 email messages. These emails consist of personal emails
as well as regular mail subscriptions.

Internet traffic traces: We monitored one of the access links
from a large university. The link has a 1Gbps full-duplex connec-
tion to the backbone and serves roughly 30,000 users. We captured
entire packets (including payloads) going in either direction on
the link. Due to limited disk volume compared with huge traffic
volume in our measurement architecture, we could not store all
kinds of traffic. Thus, without loss of generality, we decided to
focus on the web applications as the target traffic by using port
80 to filter them out. However, the HTTP traffic still consume
about 1.6GB-2.9GB per minute, which is not suitable for long-
term monitoring. In order to study the redundancy in traffic in
a long-term period, we adapted our capturing rules for one of
the most popular social network (SN) website. As a result, our
real Internet traffic traces include one full HTTP trace (1.9GB in
120 seconds) and one SN trace (1.3GB in 2 hours). The detailed
information is shown in Table 1.

7.2 TRE efficiency of CoRE

In this section, we first evaluate TRE efficiency of CoRE with the
traffics of Linux source files and Gmail messages as in PACK [7],
and then compare bandwidth savings of CoRE compared with
PACK and sender-based solution. The traffic of Linux source files
are resulted from the downloads of these files in the their release
order. For the traffic of Gmail, all the email messages are grouped
by month, and downloaded by their issue dates. The CoRE sender
uses a 4MB chunk cache, a size of the maximum capacity of 512
chunks with an 8KB average chunk size.

Figure 8(a) and 8(b) show the redundancy detected by
the prediction-based Chunk-Match and In-Chunk Max-Match of
CoRE, respectively. In Figure 8(a), 29 files have more than 70%
redundancy and the remaining files have at least 38% redundancy.
Total redundancy amounts to 68% in the whole traffic volume
of 40 Linux source files, about 664MB. Such a large amount of
redundancy results from the high similarity between an earlier
version and a subsequent version. When the file “Linux-2.0.1.tar”
is downloaded for the first time, there is no similar data that is
cached, so that there are no successful predictions and CoRE only
found a small redundancy inside the file itself by In-Chunk Max-
Match. As we can see, each file contains a little redundancy inside
itself and a large amount of redundancy exists across files. This
suggests that in such real-world workloads long-term redundancy
is significantly more than short-term redundancy. Because a down-
load happens only after the release of a new version and the cache
required to detect long-term redundancy has at least the size of
a file, the sender-based TRE with small temporary cache cannot
obtain bandwidth savings.

In Figure 8(b), the email traffic in each month has much less
redundancy than the Linux source files. The reason is that most
of emails are distinct and have less duplicate content. The total
redundancy detected by CoRE amounts to 11% in our Gmail
traffic volume of 12 months, about 71MB, which is less than
31.6% redundancy shown in the Gmail traffic used by PACK [7].
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Data traffic

Name
CoRE PACK

% savings
Linux source 68 54

Email 11 3.6
Univ-HTTP 4.8 0

Univ-SN 8.3 0.3
TABLE 2

Percentage bandwidth savings of CoRE and other solutions

The authors of PACK found that the redundancy arises from
large attachments from multiple sources in their Gmail messages.
However, our Gmail messages contain few attachments, which
causes less redundancy than PACK’s Gmail trace. Little redun-
dancy is detected by prediction in the Gmail traffic of several
months from April to August and from October to December,
which indicates little long-term redundancy in the Gmail trace
and confirms the distinction of our Gmail messages. We also find
that in our detected redundancy, 5% is contributed by prediction
and the remaining 6% is contributed by In-Chunk Max-Match.
As we can see, the redundancy detected by In-Chunk Max-
Match is significant compared to the redundancy detected by
prediction, which is sharp contrast to the results of Linux source
files. This indicates that Gmail traffic has a significant short-term
redundancy, and the receiver-based TRE only obtains less than
half of bandwidth savings in our Gmail traffics compared to CoRE.
The results verify the necessity of cooperative operations between
sender-based TRE and receiver-based TRE in two layers.

Table 2 compares the bandwidth savings of CoRE, PACK and
sender-based TRE with different data traffics. Each entry shows
the percentage of bandwidth savings in the total volume of the
corresponding traffic trace. From this table, we see that CoRE
performs better than PACK because CoRE captures short-term
redundancy and is also resilient to data changes. In particular, for
two HTTP traffic traces Univ-HTTP and Univ-SN, PACK detects
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Trace
Name Description Dates/

Start Times Duration Total
Volume(MB) IP Pairs Servers(IP) Clients(IP)

Univ-HTTP Inbound/outbound
http

10am on
11/05/11 120s 1900 8277 3183 1931

Univ-SN Inbound/outbound
for SN

3pm on
11/08/11 2h 1300 3237 6 894

TABLE 1
Characteristics of Internet traffic traces

little redundancy, but CoRE detects 4.8% and 8.3% redundant
traffic respectively. This indicates that these two traces exhibit
sone short-term traffic redundancy but have little long-term traffic
redundancy.

Based on the evaluation and comparison results of CORE and
PACK on TRE efficiency, we can conclude the traffic traces we
used have different traffic redundancy characteristics. They exhibit
different distributions of traffic redundancy over short-term and
long-term time scales. Linux source workload has dominant long-
term traffic redundancy, Gmail IMAP trace has comparable long-
term and short-term traffic redundancy, and Internet traffic traces
have little long-term traffic redundancy but relatively high short-
term traffic redundancy. Such results indicate the necessity of an
adaptive TRE solution for different cloud applications.

7.3 Performance Of CoRE Prediction

The difference of the prediction designs between CoRE and PACK
is that the CoRE sender performs the same chunking operation as
the receiver so that it is able to compare chunks with predictions
regardless of predicted data offsets in the data stream. As a result,
CoRE can ensure TRE efficiency from the changes of outgoing
data compared with the original data cached at the receiver. To
verify this, we disabled the low layer of In-Chunk Max-Match
in CoRE and only measured the redundancy detected by its
prediction. We compared the CoRE’s prediction solution with
PACK’s by using Linux source and Gmail traffics, with an average
chunk size 8KB for both CoRE and PACK.

Figure 9(a) shows the bandwidth savings, i.e., redundancy in
each of the downloaded versions detected by CoRE prediction and
PACK prediction, respectively. Figure 9(b) shows the redundancy
in each month of the email messages. The experimental results
show that CoRE prediction scheme can detect and eliminate more
redundancy than PACK. The amount of redundancy detected by
CoRE prediction is 21% higher than that detected by PACK in the
traffic of Linux source files, and 22% higher in Gmail traffic. The
reason for the higher performance of CoRE prediction is that it
is common that the update of the Linux source code involves the
new code insertion and old code deletion. In the Gmail traffic, the
emails usually contain short-term data repetition because when
people reply to an email, the content of this email is usually
included to the outgoing message.
Resiliency against data changes To further verify the resiliency
of CoRE prediction against data changes, we chose a 31.5MB
Linux tar file and inserted one random byte to the random
positions into the file. By changing the average distance between
two successive insert on positions in the file, we changed the
degree of data changes on the original file. We downloaded the
original file first, and then downloaded the modified file to measure
its redundancy that CoRE and PACK can detect given the cache
of the original file at the receiver. Figure 10 shows that CoRE
prediction detects more redundancy than PACK under various
degrees of data changes. “No changes” in the x-axis means that the
second file we downloaded is the same as the original file. In this
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case, CoRE and PACK detect the same amount of redundancy.
As we can see, PACK is very susceptible to data changes. It
decreases exponentially as the insertion intensity increases. In
contrast, CoRE is much more resilient against data changes. It
decreases linearly as the insertion intensity increases. The results
confirm the resiliency of CoRE prediction to data changes due
to the data chunking at the sender and the matching with the
historical predictions.
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7.4 Cost Evaluation

To measure the operation cost of CoRE at the sender and the
receiver, we monitored the average CPU utilization on the server
and the client at an interval of one second. Since the TRE operation
cost depends on the characteristics of traffic redundancy, we use
the Linux source workload, Gmail IMAP traffic and Univ-HTTP
traffic trace which have different redundancy distributions over
long-term and short-term according to Table 2.

With the Linux source workload which has significant long-
term redundancy, Table 3 compares CoRE’s server CPU utilization
ratio with PACK and sender-based approach. As we can see,
CoRE has a little higher CPU utilization ratio than PACK, and
both of them have less CPU utilization ratio than the sender-based
solution. Because the long-term traffic redundancy is dominant in
the Linux source workload, most of traffic redundancy is detected
and eliminated by the prediction-based Chunk-Match and thus
CoRE and PACK have closer CPU utilizations. Such results also
indicate that chunking and fingerprinting in CoRE incur a low
additional cost compared to PACK. As a result, CoRE is able
to efficiently achieve overall gain savings when used in cloud
environment.

Table 4 shows the CPU utilization with the Univ-HTTP traffic
trace which only has short-term redundancy. We can see that
PACK has much small CUP utilization at the server compared
with Table 3. This is because that no predictions are received in
this case and thus no TRE is conducted at the server in PACK. The
CPU cost of CoRE is much closer to the sender-based TRE than
the previous result in Table 3. This is because that most of the
Univ-HTTP traffic goes through the second-layer TRE in CoRE
due to little long-term redundancy in the Univ-HTTP traffic. In
contrast, long-term redundancy is dominant in the Linux source
workload and most redundant traffic is eliminated in the first-layer
TRE. Since prediction-based Chunk-Match has less computation
complexity than In-Chunk Max-Match, the difference of CPU cost
between CoRE and sender-based TRE will be larger if the traffic
has higher redundancy in long-term than in short-term. Table 5
shows the CPU utilization with the Gmail IMAP traffic, which
has comparable long-term and short-term redundancy. Comparing
Table 5 with Table 4, we can see that, PACK has higher server
CPU utilization with the Gmail IMAP traffic than with Univ-
HTTP traffic trace, because PACK detects and removes long-term
redundancy in the Gmail IMAP traffic. The server CPU utilization
of CoRE with the Gmail IMAP traffic is lower than that with
Unive-HTTP trace, because the detection of long-term redundancy
at the first-layer avoids the more costly operations at the second-
layer TRE.

In summary, the above results indicate that different distribu-
tions of traffic redundancy at short-term and long-term time scales
can cause different CPU costs for CoRE. When the short-term
redundancy is dominant, CoRE’s operation cost at the cloud server
is closer to sender-based TRE; when the long-term redundancy
is dominant, its operation cost is closer to receiver-based TRE
like PACK; if the traffic has comparable short-term and long-term
redundancy, the cost is between sender-based TRE and receiver-
based TRE. Previous study [7] demonstrates that the sender-based
TRE has higher operation cost in the cloud than PACK, with
considering the elastic capacity adjustment by adding or removing
servers according to the unused CPU computation power in the
server pool of the cloud application. Our evaluation results suggest
that the operation cost of CoRE in the cloud is between PACK
and sender-based TRE. Considering the two-layer design of TRE
in CoRE, if the traffic is only dominated by either long-term or

Scheme
Name

Server
CPU Utilization %

Client
CPU Utilization %

CoRE 3.41 2.75
PACK 2.92 2.29

Sender-based 5.28 -
TABLE 3

CPU cost with the Linux source workload

Scheme
Name

Server
CPU Utilization %

Client
CPU Utilization %

CoRE 4.33 2.93
PACK 1.10 2.17

Sender-based 4.72 -
TABLE 4

CPU cost with the Univ-HTTP traffic

Scheme
Name

Server
CPU Utilization %

Client
CPU Utilization %

CoRE 3.80 2.84
PACK 1.52 2.23

Sender-based 4.75 -
TABLE 5

CPU cost with the Gmail IMAP traffic

Client numbers 1 2 3 4
Server CPU Utilization% 2.2 4.3 6.1 8.7

TABLE 6
CPU cost of CoRE for Gmail traffic to multiple clients

short-term redundancy, the layer of In-Chunk Match or prediction-
based Chunk Match, respectively, does not contribute much on the
bandwidth savings but increase the operation cost. Therefore, in
order to avoid unnecessary operation cost, our adaptive solution
in Section 5.2 is necessary, which profiles the traffic redundancy
distribution of cloud applications and intelligently decides which
layer of TRE in CoRE to be enabled.
The server cost for multiple clients Our current implementation
of CoRE at the client side assumes a single TCP flow from a
server to every client. Because a server usually serve multiple
clients concurrently, we are interested in how the server cost
changes with the number of clients. From the design we can
see that the server runs an instance of CoRE for each client, the
cost of CoRE at the server should be additive and will increase
linearly with the number of clients served by the server. To
confirm this, we setup a server with Intel i7 3.40GHz and 4GB
memory, and use four clients on other machines to download
the Gmail workload from the server. We vary the number of
clients concurrently downloading the workload from 1 to 4 and
measure the corresponding average CPU utilization of CoRE at
the server. Table 6 shows the results, where the average CPU
utilization increases linearly with the number of clients. Note a
small difference of CPU utilization with one client between Table
5 and Table 6, 3.8 and 2.2 respectively, due to the different CPU
capability of servers (2.67GHz and 3.40GHz respectively) for two
experiments generating these results.

7.5 The effect of chunk cache size

We also evaluate the effect of the chunk cache size on detecting
short-term traffic redundancy. As we argued in section 3, because
chunk caching and In-Chunk Max-Match incurs additional storage
and computation cost at a server, it is critical to only use a
small chunk cache to address short-term traffic redundancy. The
effectiveness of a large chunk cache for capturing long-term
redundancy is addressed by CoRE’s first-layer prediction based
TRE. Thus, here we measure the total short-term redundancy
detected in the traffic of the Linux source workload with relatively
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small chunk cache sizes varying from 32KB to 64MB. The result
is shown in Figure 11. We can see that from 512KB to 1MB
the detected redundancy has significant increase but after that the
increasing size yields diminishing returns. It is because that CoRE
uses the chunk cache for short-term TRE, which aims at the bytes
repeated within the traffic transmitted in a recent period that a
small cache size is sufficient for caching. In our experiment we
choose 4MB as the default chunk size, which from the figure we
can see is a good trade-off between cost and saving.

At the same time, we examine the CPU utilization under
different cache sizes. Since overall CoRE incurs very small CPU
cost, the CPU utilization does not have large variances with
these cache sizes. But still, we can tell that the CPU cost of In-
Chunk Max-Match depends on the amount of detected short-term
redundancy. The average CPU utilization for cache sizes from
32KB to 512KB is around 3%, close to PACK (see Table 3),
because of very small short-term redundancy being detected, as
shown in Figure 11. For larger cache sizes from 1MB, the average
CPU utilization is around 3.5, close to CoRE with default size
4MB Table 3, because of similar amount of redundancy being
detected, as shown in the above Figure.

7.6 Efficiency of Adaptive Prediction Window

To evaluate the adaptive prediction algorithm in Section 5.1, we
study the data reception rate of two types of CoRE: one with the
adaptive prediction algorithm to adjust virtual window (CoRE-A)
and the other with fixed virtual window (CoRE-F). CoRE-F has
fixed virtual window equal to the initial window size Wo. We still
use the Linux traffic workload and compare CoRE-A and CoRE-
F. We limit the bandwidth to 200KB/s and measure the average
downloading time of each file with varying initial window size
Wo. The results are shown in Figure 12. As we can see, CoRE-A
obtained smaller average downloading time since it expands the
window size adaptively according to the hit ratio of predictions.
Since Linux traffic workload has significant long-term redundancy
and the hit ratio is higher than 0.6 at most of time, the window
size is at least Wo + 0.6Wmax. The largest gap between two curves
is at 8KB, in which case CoRE-F only has window size 8KB but
CoRE-A has window size at least 40KB. As Wo increases, both
CoRE-F and CoRE-A achieves smaller average downloading time.
The gap between two curves becomes smaller, which indicates that
the benefit of larger window size is diminishing. This is because
when the virtual window is large enough, the transmission rate of
predictions is limited by the transmission time on the path from
the receiver to the sender, not by the number of predictions each
time to be made.

According to Section 7.2, Linux source traffic has much more
redundancy in the long-term than in the short-term, Email trace has
comparable long-term and short-term redundancy, and two other
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traffic traces mainly have short-term redundancy. Thus, according
to our adaptive solution for different redundancy distribution in
Section 5.2, we can adjust TRE operations for each type of
application. For Linux source traffic, the second-layer TRE is
disabled and the CPU cost at the server is about the same as
PACK. For Email trace, both layers are required. For two other
HTTP traffic, the first-layer TRE is disabled to save unnecessary
prediction transmissions, and the CPU cost at the server remains
similar to the results obtained without disabling the first-layer
TRE, since In-Chunk Max-Match has much higher computation
cost than prediction-based Chunk-Match.

8 CONCLUSION AND FUTURE WORK
By the real trace driven study on existing end-to-end sender-side
and receiver-side TRE solutions, we identify their limitations for
capturing redundancy in short-term and long-term data redundan-
cy. Thus, we propose a Cooperative end-to-end TRE CoRE, which
integrates two-layer TRE efforts and several optimizations for
TRE efficiency. We also propose several enhancement solutions
for CoRE by adaptively adjusting the prediction window size
and decide which layer of TRE is enabled according to the
distribution of traffic redundancy of the cloud application. Through
extensive trace-driven experiments, we show that CoRE can effi-
ciently capture both short-term and long-term redundancy, and
can eliminate much more redundancy than PACK while incurring
a low additional operation cost. Our evaluation results show that
different distributions of traffic redundancy at short-term and long-
term time scales can cause different CPU costs for CoRE and
adaptive solutions for CoRE are necessary for improving TRE
efficiency and reducing the operation cost.

Note in this paper we consider the TRE for the applications
following web service model which are dominated by the cost
of egress bandwidth out of the cloud. Other types of cloud
applications, like MapReduce, most bandwidth cost occurs in the
datacenter network. According to the pricing of Amazon EC2 [4],
the data transfer within the Amazon cloud is mostly free. Reducing
their bandwidth cost inside the cloud does not save much expense
for the cloud users, but may improve the networking performance
and mitigate the bandwidth competition among cloud applications.
We will investigate TRE for such applications in our future work.
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