
1

Exploiting Efficient Densest Subgraph Discovering
Methods for Big Data

Bo Wu� and Haiying Shen]
�Electrical and Computer Engineering, Clemson University, Clemson, SC 29634

]Department of Computer Science, University of Virginia, Charlottesville, VA 400740
�bwu2@clemson.edu,]hs6ms@eservices.virginia.edu

Abstract—Discovering the densest subgraph is important in
graph analysis, which has wide-ranging applications from so-
cial network community mining to the discovery of biological
network modules. However, the previous algorithms neglect the
connectivity of the dense subgraph since it is a challenge to give
consideration to both subgraph structure and time efficiency.
As a result, it may lead to isolated subgraphs in the output
though they aim to find one connected dense subgraph. Also,
there are lack of efficient algorithms for big natural graphs,
especially considering datasets become increasingly larger in this
era of Big Data. Furthermore, previous algorithms fail to take
advantage of various features of natural graphs (e.g., power-
law degree distribution, homophyly of vertices, and power-law
community size) which can be applied to improve the efficiency
and precision of the densest subgraph discovery. To handle these
problems, in this paper, we study the densest subgraph problem
by designing two different algorithms based on different features
that natural graphs have. First, by analyzing the features of
natural graphs, we design a heuristic algorithm for discovering
the connected densest subgraph for massive undirected graphs
in a MapReduce framework by taking advantage of the features
of natural graphs. Second, we propose an exact algorithm for
big data for the problem of discovering the densest subgraph.
Experimental results show that our algorithms are more time-
efficient and precise than other algorithms.

I. INTRODUCTION

A challenge in the analysis of complex networks is to
discover densest subgraph. Densest subgraph is a subgraph
of the entire graph in which the nodes have largest average
degree. The densest subgraph is often interpreted as “commu-
nities” which have a lot of real applications [1? –6]. Various
algorithms [7–10] are proposed for solving the densest sub-
graph problem. The most important problem in the previous
algorithms [7–9] is that they ignore the connectivity of the
returned densest subgraph. It means that the returned subgraph
may consist of several isolated connected components that
maximize its density. For example, previous algorithms [7–
9] may correctly find the two isolated components as one
community that are not connected to each other in Figure 1.
Also, in spite of many proposed densest subgraph discovery
algorithm, there are lacking of efficient algorithms for massive
graphs, especially considering datasets become increasingly
larger in this era of Big Data. Actually, natural graphs are
completely different from random graphs. They are uniquely
featured by small world phenomenon [11], power-law degree
distribution [12], high clustering coefficient [13], power-law
community size distribution [14], assortativity of vertices [15]
and so on. Actually, these features can help us improve the

Expected Actual

Fig. 1. An example of failing to find
connected densest subgraph.

 L=1

L=2

 Another small partition

Fig. 2. An example of components
when L = 1 and L = 2, respectively.

precision and efficiency of the densest subgraph discovery.
However, previous algorithms [7–9] rarely take advantages
of these unique features of natural graphs. Therefore, it is a
challenge to take advantages of the unique features in densest
subgraph discovery. Another problem is that all the exact
algorithms [3, 7] are in-memory algorithms which are not
suitable for big data. Furthermore, the applicability of current
algorithms to different kinds of graphs has not been discussed.
Different kinds of natural graphs have different structure
features. For example, some of the natural graphs [13] have
community structures and some others do not have community
structures [12]. Actually, the densest subgraph discovery is
only meaningful when the natural graphs have community
structure. For the graphs without community structure, the
densities of different subgraphs are close to each other and
the densest subgraph loses its representativeness. However,
current works on exact and approximate algorithms [3, 8, 9]
fail to discuss the applicability of their algorithms on different
kinds of natural graphs. All the exact algorithms are in-
memory algorithm which are not suitable for big data. To
handle these problems, in this paper, we study the densest
subgraph problem by designing two different algorithms based
on different features that natural graphs have.

First, Guided by some useful theorems derived from the
unique features of natural graphs, we design a heuristic densest
subgraph discovery algorithm that is more advantageous than
the previous algorithms in that it is more time and space effi-
cient and its outcomes are more precise. In the experiments, we
apply our algorithm for massive natural graphs and compare
the performance with previous algorithms [8, 9] to show its
superior performance.

Second, we design an exact algorithm for big data for
discovering the densest connected subgraph for undirected
massive graphs in a MapReduce framework. Our algorithm

has two phases. In the first phase, it carefully reduces the
dataset in a MapReduce framework without loss of any nodes
existing in the exact densest subgraph. In the second phase, the
reduced dataset can be handled in-memory in one computer by
an exact densest subgraph discovery algorithm [3]. Therefore,
we can find the exact densest subgraph for big data by taking
advantage of both MapReduce and in-memory computing
on one computer. Furthermore, we theoretically prove the
correctness of our algorithm and analyze its applicability
on different complex network models [12, 16]. Finally, we
conduct extensive experimental evaluations in a MapReduce
framework on both massive real-world graphs and simulated
graphs to test our algorithm in comparison with other algo-
rithms. Experimental results show that our algorithm is capable
of discovering the connected densest subgraph for big data.
This algorithm can be used to find the exact densest subgraph
with losing some time efficiencies.

The rest of this paper is organized as follows. Section II
presents the related work. Section III describes the design
of our heuristic densest subgraph discovery algorithm, the
analysis of the algorithm and extensive experimental eval-
uation on massive real-world graphs and simulated graphs.
Section IV describes the design of our exact densest subgraph
discovery algorithm for big data, the analysis of the algorithm
and extensive experimental evaluation on massive real-world
graphs and simulated graphs. Section VI summarizes the paper
with remarks on our future work.

II. RELATED WORK

Dense subgraph: Goldberg [3] formally introduced the
original problem of discovering the densest subgraph in an
undirected graph and gave an algorithm that requires O(log n)
running time (n is the number of vertexes in the graph) to
find the optimal solution based on the min-cut technique.
Khuller et al. [17] proposed a similar polynomial time complex
algorithm for discovering densest subgraph in a directed graph.
Several subproblems were derived from the traditional densest
subgraph problem. Feige et al. [18] defined and studied the
dense k-subgraph maximization problem, which is applied
to find a set of k vertices with maximum average degree
in the subgraph. Asahiro et al. [19] defined and studied the
problem of discovering a k-vertex subgraph of a given graph
G that has at least f(k) edges. Saha et al. [7] defined the
densest subgraph problems with distance (i.e., the diameter of
output subgraph) restrictions and specific subset restrictions (a
specific subset must be in the output), and provided algorithms
for them. Also, they studied the problem of discovering the
multiple almost densest subgraphs [7]. When it comes to big
data era, due to the complexity of dense subgraph problem,
various approximate and heuristic algorithms were designed to
meet the computing time and space challenges. Charikar [8]
described a simple greedy algorithm and showed that it leads
to a 2-approximation to the optimum. This algorithm was
improved by Bahmani et al. [9], which leads to within a factor
2(1+ε) of the optimum in a MapReduce framework. Samir et
al. [17] developed fast polynomial time algorithms for several
variations of dense subgraph problems for both directed and
undirected graphs. Some heuristic algorithms [20, 21] were

also designed based on different techniques. Gibson et al. [20]
solved the discovering dense subgraphs problem based on a
shingling technique, while Chen et al. [21] solved the same
problem by the matrix blocking technique.

Features of natural graphs: Psychologist Stanley Milgram
conducted a series of experiments that indicated the average
path length of peoples in human society is short [11], which is
called small world phenomenon. Besides the small world phe-
nomenon, evidences suggest that in most real-world networks,
and particular social networks, nodes tend to create tightly
knit groups characterized by a relatively high density of ties;
this likelihood tends to be greater than the average probability
of a tie randomly established between two nodes [13]. A
community is a cohesive subset of nodes with denser inner
links, relatively to the rest of the network [1]. Previous studies
have shown that the degree distribution of many real-world
networks follow a power-law [12]. Also, not only the degrees
follow a power-law, but also there is a scale-free distribution
of communities [14].

However, the previous dense subgraph discovery algorithms
neglect the connectivity, which may lead to isolated sever
components in the output subgraph, which are deviated from
the original goal of connected subgraph discovery. Also, the
previous algorithms are not efficient enough and scalable to
handle massive datasets, which is very common in this Big
Data era. Also, they fail to leverage the unique features of
natural graphs, which otherwise can be used to improve the
efficiency and precision of the algorithms. Another problem is
that all the exact algorithms are in-memory algorithms which
are not suitable for big data. Unlike these previous algorithms,
our work can handle these problems. We study the densest
subgraph problem by designing two different algorithms based
on different features that natural graphs have. First, by ana-
lyzing the features of natural graphs, we design a heuristic
algorithm for discovering the connected densest subgraph for
massive undirected graphs in a MapReduce framework by
taking advantage of the features of natural graphs. Second,
we propose an exact algorithm for big data for the problem
of discovering the densest subgraph.

III. HEURISTIC DENSE SUBGRAPH DISCOVERY
ALGORITHM

In this section, we design a heuristic densest subgraph
discovery algorithm for undirected natural graphs. Our aim
is not only to design the algorithm itself, but also to verify
the unique features of natural graph structures. To be more
specific, if our heuristic algorithm performs better, it can be
used as an evidence to verify our theorems, and further the
unique features of natural graph structure.

A. Theoretical Analysis

We list the previously observed features of natural graph
structures which can benefit our algorithm design later as
follows: i) The degree of vertices follows a power-law distri-
bution in natural graphs [12]; ii) The community size follows a
power-law distribution in natural graphs [14]; iii) The vertices

2

tend to build connection with other vertices which have similar
degree [15], which we call assortativity.

Then, based on these features, we propose two theorems,
which lay the foundation of our proposed dense subgraph
discovery algorithm.

Suppose the vertices in the same dense subgraph strictly
have the same degree, and the size of the dense subgraphs fol-
lows a power-law distribution [16], then we have Theorem 3.1
as follows.

Theorem 3.1: Suppose a graph G = (V,E) with a degree
power-law Xd ∝ d−γ , where Xd is the number of vertices of
degree d and γ is the power-law exponent, then we have the
maximum dense subgraph size s = n

1
γ+1 , where n = |V |.

Proof 1: Suppose there is a dense subgraph with size s∗,
then we have Xs∗ = ns∗

−γ . Since the vertices in same
dense subgraph strictly have the same degree, then it requires
ns∗
−γ ≥ s∗. Therefore, we have ns∗−(γ+1) ≥ 1. Finally, we

have the maximum dense subgraph size s = n
1
γ+1 .

Based on Theorem 3.1, we can estimate that for a graph with
a million vertices and a power-law exponent γ = 2, the dense
subgraph with maximum size is with about 100 vertices, which
is quite small. Based on Theorem 3.1, we derive Lemma 3.1
as follows.

Lemma 3.1: For a maximum dense subgraph with size s =
n

1
γ+1 , the diameter of the dense subgraph equals 1.
Proof 2: When size s = n

1
γ+1 , we have Xs = nsγ = s.

Therefore, each pair of the vertices are connected. Therefore,
we have the diameter of the dense subgraph equals 1.

All the above analysis is based on the assortativity feature
of natural graphs. Not all the natural graphs are assortative
and there are some disassortative natural graphs in which the
vertices tend to connect with other vertices have different
degree. However, when it comes to the community, all of the
natural graphs which have community structure are assortative
natural graphs [22, 21, 20, 7]. Disassortative natural graphs
usually do not have the community feature since the commu-
nity itself is based on the effect of assortativity. Therefore,
disassortative natural graphs are not in our consideration. To
be more specific, in this paper, the natural graphs indicate
disassortative natural graphs.

B. A High-Level Description

Intuitively, we assume that we can get all the vertices from
one vertex in the dense subgraph by traversing on the edges
in a small number of steps since dense subgraphs have very
small diameters. The start points of the traversing should be
the centers of the dense subgraphs. Although the subgraphs
retrieved by traversing may contain some vertices that do not
belong to the dense subgraphs, we can still easily eliminate
it by the traditional method in [3] if the size of the subgraph
is small enough. In other words, this method partitions the
intractable big dataset to many small components, which still
contain the dense subgraphs, but can be processed easily by
traditional method [3], which assume that the memory is large
enough to hold all the data.

Based on this rationale, we present a densest subgraph
discovery algorithm. The algorithm partitions the graphs into

overlapping small components, which contain the dense sub-
graphs. An example is shown in Figure 2. We then use tra-
ditional densest subgraph discovery algorithm [3] to discover
the dense subgraphs in the small components very quickly
since each entire small component can be stored in memory.
Next, we measure the densities of the dense subgraphs which
have been found in each small component to discover the
densest subgraph and top dense subgraphs. We prove that this
algorithm achieves high efficiency for the densest subgraph
and dense subgraphs problems in the experiment section.
Besides, our algorithm can guarantee the connectivity of the
output subgraph since it considers structure of the graphs.

C. Parameter Determination

We need to determine three parameters for our algorithm: i)
the number of traversing steps, ii) the criteria of seed selection
(The seeds are the vertices chosen for further partition), and
iii) the number of seeds. Below, we explain the details of the
parameter determination.

The number of traversing steps (denoted by L): The quality
of a subgraph is measured by the density of the subgraph;
higher density means higher quality. If L is too large, then
the size of each component will be too large; if L is too
small, then we may not discover high-quality dense subgraphs.
However, Theorem 3.1 shows that the densest subgraph of a
natural graph should have a very small diameter. Therefore,
we infer that setting L to 1 is enough to discover qualified
densest subgraphs since we can traverse all the vertices from
any vertex within at most 2 steps in these subgraphs. Figure 2
shows an example of the components when L = 1 and L = 2,
respectively.

Criteria of seed selection: Suppose we can properly set the
value L, then the selected seeds are the main factor for the
effectiveness of the algorithm in discovering dense subgraphs.
An ideal method is to select the most highly connected vertex
from each dense subgraph so that we can discover each dense
subgraph non-repeatedly. However, this task is non-trivial
since we do not know the places of the dense subgraphs in the
graph, or whether two vertices are in the same dense subgraph.
Therefore, we use a heuristic method which chooses vertices
with higher degrees as seeds since high-degree vertices are
more likely to be in dense subgraphs than low-degree vertices.
However, for a large graph, choosing a vertex with the highest
degree may lead to a memory overload, considering the small
world feature of natural graphs. Also, based on Theorem 3.1,
we know that the densest subgraph should be small and we
only need components with a size of order of 100 even for
a graph with a million vertices as the previous example in
Section IV-C. Therefore, we select the seeds which have the
suitable degrees as Theorem 3.1 indicated so that it will be
with high probability to find the densest subgraph. For the
degree power law exponent γ for each natural graph, it can be
easily estimated by a Kolmogorov-Smirnov (K-S) test which
is used to determine if two datasets differ significantly.

The number of seeds (denoted by m): If the theoretical
analysis is absolutely true, then we only need to choose one
vertex to get the densest subgraph since we can exactly find a

3

vertex in the densest subgraph. However, we should recognize
that there must be a randomness in the real world. Therefore,
we may need to choose more than one vertex, and compute
the densest subgraph from multiple component candidates.
Fortunately, for a graph in which the degree follows a power-
law, Theorem 3.1 guarantees that even if the graph is large,
there are a limited number of qualified seeds since the densest
subgraph is small and each vertex in the densest subgraph has
a narrow range of degree. For example, for a graph with a
million vertices and has a degree power-law exponent γ = 2,
there are only about 100 vertices with degree about 100. Also,
for the MapReduce framework, a limited number of parallel
processes do not influence the time efficiency. Therefore, we
can select multiple seeds without at the cost of degraded
algorithm efficiency by taking advantage of the MapReduce
framework.

Since our algorithm is heuristic, in Section V-C, we ex-
perimentally study the influence of the parameters on the
effectiveness of the densest subgraph discovery algorithm, and
find that a floor level of parameters, i.e., setting L to 1, and m
to 0.01% of all the vertices, can guarantee a good performance.

D. Process of the Algorithm

Our dense subgraph discovery algorithm has two phases: 1)
graph partition, and 2) densest subgraph discovery. Step 1 has
the following two sub-phases: i) Sub-phase 1: we measure the
degree of each vertex, and select the top m suitable degree
vertices as seeds; ii) Sub-phase 2: we partition the large graph
to the small components, which are generated by traversing
the graph from the seeds for L steps. Then we can discover
the densest subgraph in the small components. In Step 2, we
can apply any traditional algorithms to discover the densest
subgraph contained in the small components.

Our algorithm can be easily implemented in parallel com-
puting frameworks such as MapReduce. Below, we introduce
the details of phase 1: graph partition.

Algorithm 1: Seed selection in a MapReduce program
1: Mapper

Input: < u, v >
emit < u, v >;
end
Reducer
Input: < u, neighbor list >
if |neighbor list| > threshold then

emit < u, $ >;
end
end

Figure 3 illustrates the flowchart of the graph partition.
Algorithm 1 shows the process of seed selection in the first
step in Figure 3. The input of this MapReduce program is
the edge list, which records each edge (u, v) in the graph
twice by (u, v) and (v, u) (u and v are the two endpoints of
the edge). If vertex u is selected as a seed, then we add an
output < u, $ >, which will be used in the later part of the
algorithm. The parameter m can be determined by different
realistic demands.

Algorithm 2 shows the process of tagging seeds in each edge
in the initial edge list, and it outputs the dataset with seeds

tagged with *. Then, in Algorithm 3, we use two MapReduce
rounds to traverse one more hop from the seeds, and tag all
the edges whose two endpoints both belong to the vertex set in
the traversal. In the first MapReduce round, we tag the edges
in the traversal path. In the second MapReduce round, we tag
the remaining edges whose both two endpoints belong to the
vertex set in the traversal.

E. Densest Subgraph Discovery

After we partition the large graph to small components,
discovering the densest subgraph has become easy since each
small component can be stored in memory and handled easily
by traditional algorithms. In this paper, we can simply use
ExactAlg [3] which is a classic polynomial algorithm to find
the exact densest subgraph. ExactAlg is an exact polynomial
time algorithm for discovering the densest subgraph for an
undirected graph based on a min-cut max-flow technique.
The algorithm transfers the densest subgraph problem to a
series of min-cut problems and finds the densest subgraph by
recursively constructs a new graph based on the initial graph
and find the min-cut (S, T) on the new graph. Finally, the
densest subgraph can be derived from the min-cut (S, T). The
detailed design is presented in [3].

Algorithm 2: Tag seeds in each edge
1: Mapper

Input: < u, v > and < u, $ >
emit Input;
end
Reducer
Input: < u, neighbor list >
if $ ∈ |neighbor list| then

neighbor list = neighbor list\$;
foreach v in neighbor list do

emit < u∗, v >;
end

else
foreach v in neighbor list do

emit < u, v >;
end

end
end

Algorithm 3: Traverse 1 more hop based on current component
1: Mapper

Tag the edges in the traversal path.
end
Reducer
Generate the edge list.
end

2: Mapper
Tag the remaining edges whose two endpoints both belong the
vertex set in the traversal.
end
Reducer
Generate the edge list.
end

Since the small components are data independent from each
other, we can process them in parallel in MapReduce. To sum
up, the entire algorithm for the densest subgraph discovery in
each small component is shown in Algorithm 4. The key of
the data in the MapReduce framework is the small component

4

ID, and the value of the data in the MapReduce framework
is the edge list of the corresponding small component. In the
Reduce function of MapReduce, we discover the candidates
of the densest subgraph in each small component by ExactAlg
in order to guarantee connectivity and improve the accuracy.
Finally, we select the densest subgraph from the candidates.

Algorithm 4: Densest subgraph discovery
1: Mapper

Input: < seedID, edge list >
emit Input;
end
Reducer
Input: < seedID, edge list >
use ExactAlg to discover the densest subgraph in edge list;
end

IV. EXACT DENSEST SUBGRAPH DISCOVERY ALGORITHM

In this section, we design an exact algorithm for discovering
the densest connected subgraph for big data for undirected
massive graphs in a MapReduce framework. Our algorithm
has two phases. In the first phase, it carefully reduces the
dataset in a MapReduce framework without loss of any nodes
existing in the exact densest subgraph. In the second phase, the
reduced dataset can be handled in-memory in one computer by
an exact densest subgraph discovery algorithm [3]. Therefore,
we can find the exact densest subgraph for big data by taking
advantage of both MapReduce and in-memory computing on
one computer. As a result, the first and second problems
mentioned above can be resolved. Furthermore, we theoret-
ically prove the correctness of our algorithm and analyze its
applicability on different complex network models [12, 16].
Finally, we conduct extensive experimental evaluations in a
MapReduce framework on both massive real-world graphs and
simulated graphs to test our algorithm in comparison with
other algorithms. Experimental results show that our algorithm
is capable of discovering the connected densest subgraph for
big data.

A. The Design of the Algorithm

The natural graphs usually follow a power-law degree dis-
tribution [12]. Intuitively, for graphs with such a feature, most
of the vertices with low degrees have very small probabilities
to be in the densest subgraph. Therefore, the basic idea of the
M-O algorithm is trying to reduce the initial size of the dataset
by deleting the vertices with very low degrees in order to fit
the reduced dataset in the memory of one computer. Then,
the algorithm applies the min-cut max-flow technique [3] to
find the densest subgraph in the remaining graph on one
computer. With only one round of the MapReduce process
and in-memory computing on one computer without the data
transfer between computers, the M-O algorithm achieves high
time-efficiency.

Based on this intuition, the M-O algorithm has two phases:
1) the graph reduction phase, and 2) densest subgraph dis-
covery phase. Figure 3 illustrates the flowchart of the M-
O algorithm. Algorithm 5 presents the pseudocode of the

Algorithm 5: The pseudocode of the M-O algorithm.
1: Given: G = (V,E);
2: S ← V , ρmax ← ρ(S);
3: while S > threshold do

Sc ← {vi ∈ S|degS(vi) ≤ ρmax};
S ← S\Sc;
if ρ(S) > ρmax then

ρmax ← ρ(S);
end
end

4: G0 = (S0, E(S0))← GS = (S,E(S));
5: Given: G = (V,E);
6: l← 0, u← n;
7: while (l − u) ≥ 1

n(n−1)
do

g ← l+u
2

;
Construct N = (VN , E(VN));
Find min-cut (S, T);
if S = {s} then

u← g
end
if S 6= {s} then

l← g;
V1 ← S − {s};

end
end

8: return subgraph of G derived by c(S, T);

M-O algorithm. For a given G = (V,E), we first delete
all the vertices, which have degrees equal or smaller than
the maximum density of remaining graph during the deleting
process streamingly (blocks 1-3). After the size of the datasets
is reduced to a suitable size (i.e., threshold in Figure 3)
that can fit into the memory of a computer for the densest
subgraph discovery phase, we apply min-cut max-flow tech-
nique to find the densest subgraph in the remaining graph
(blocks 5-7). Block 8 returns the results. In Section IV-C, we
prove the correctness and applicability of the M-O algorithm.

If s < threshold

Y

N

In memory

algorithm

Output densest

subgraph

Graph

reduction

Fig. 3. Flowchart of the M-O
algorithm

Next, we introduce the min-cut
max-flow based exact densest sub-
graph discovering algorithm. The
edges in the initial graph are as-
signed with capacity 1. A min-cut
of a graph is a cut (a partition of
the vertices of a graph into two
disjoint subsets) whose cut edge
set (consisting of edges that cross
the two disjoint subsets) has the
smallest sum of capacities. We use
c(S, T) to denote the min-cut of a
graph that splits the graph to two
partitions, S and T . The capacity
of min-cut c(S, T) is the sum of
the capacities of the cut edge set.
Then, the densest subgraph can be
found by recursively constructing
a new graph based on the current graph and finding the min-
cut c(S, T) on the new graph. In each iteration of the recursion,
we first construct a new graph by adding two vertices, s and
t. We build an edge between each vertex vi and s and assign
each edge with capacity e, where e is the number of edges in
the initial graph. We also build an edge between each vertex vi

5

and t and assign each edge with capacity e+2g−dvi where g is
an estimated value of the density of the densest subgraph and
dvi is the degree of vi in the initial graph. Second, we update
the upper bound p of g by the current value of g if S = {s}
and update the lower bound l of g by the current value of g
if T = {t}. Third, we assign g with value p+l

2 and start the
next iteration. The recursion is stopped when (l−p) < 1

n(n−1)
where n is the number of vertices in the new graph. Then, the
partition S−{s} is the densest subgraph. For more details of
the min-cut max-flow technique, please refer to [3].

B. Implementation on MapReduce

In the graph reduction phase, we delete a batch of vertices
every time, which can be implemented in parallel computing
frameworks such as MapReduce [23]. MapReduce is running
based on the data structure in < key; value > pairs. Current
densest subgraph algorithm [9] takes two rounds of MapRe-
duce processes for deleting the vertices with degrees smaller
than a certain value. In the first round, it tags all the vertices
that need to be deleted. Then, in the second round, it deletes
all the tagged vertices. Our algorithm is more time-efficient
in that it can delete the vertices with degrees smaller than a
certain value in one round of MapReduce process as shown
in Algorithm 6.

Algorithm 6: MapReduce implementation of the graph
reduction

1: Mapper
Input: < v;u > and (or) < v; ũ >
emit Input;
end
Reducer
Input: < v;neighborlist >
clean the neighbor list;
calculate the degree of v;
if degree(v) > threshold then

foreach v in neighborlist do
emit < v;ui >;

end
else

foreach v in neighborlist do
emit < ui; ṽ >;

end
end
end

The input of the first round of our MapReduce program is
the edge list, which records each edge connecting vertices u
and v in the graph twice; that is, < u; v > and < v;u >.
The Map function outputs the neighbor list of each vertex
in the form of < v;u1, u2, ..., un >, where v is an arbitrary
vertex and u1, u2, ..., un are the other ends in the neighbor
list of vertex v (block 1). The Reduce function outputs edges
in the form of < v;u1 >,< v;u2 >, ..., < v;un > if the
degree of v is larger than the threshold, which is ρmax in
Algorithm 5. Otherwise, it outputs edges in the form of <
u1; ṽ >,< u2; ṽ >, ..., < un; ṽ >. ṽ indicates that vertex v
should be deleted later on in the neighbor list of each node
ui (i = 1, 2, ..., n) (block 2).

This output of the Reduce function is the input of the next
round of our MapReduce program, which consists of the edge
list and the edges that should be deleted recorded as < u; ṽ >.

In the next round, the Map function outputs the neighbor list
of each vertex in the form of < v;u1, u2, ..., un, ũi >, where
ũi indicates that vertex ui should be deleted (block 1). In the
Reduce function, for an input of neighbor list of a vertex v,
we first delete the vertices which have been tagged as ũ in
last round in the neighbor list of vertex v and reproduce its
neighbor list in the remaining graph. Then, we output edges in
the form of < v, u1 >,< v, u2 >, ..., < v, un > if the degree
of v is larger than the threshold. Otherwise, we output edges
in the form of < u1; ṽ >,< u2; ṽ >, ..., < un; ṽ > (block 2).
This process of the round repeats until the size of the data is
suitable for in-memory computing.

Our MapReduce strategy only uses one MapReduce round
for deleting the vertices tagged in the previous round and
tagging the vertices that should be deleted in the next round
at the same time. Therefore, our algorithm only uses one
MapReduce round for one recursion of data reduction.

The M-O algorithm applies advanced MapReduce strategy
for the graph reduction phase, so that it can further improve
the time efficiency.

C. Theoretical Analysis

In this section, we analyze the correctness and applicability
of the M-O algorithm. There are a number of requirements that
the M-O algorithm needs to meet to verify its correctness and
applicability. The requirement 1 of the correctness is that the
process of the graph reduction cannot delete any vertices in the
densest subgraph; the requirement 2 of the correctness is that
the final densest subgraph discovered by the M-O algorithm
must be connected. The requirement 1 of the applicability is
that the graph size must be reduced to a suitable size that can
fit in the memory of one computer for in-memory computing;
the requirement 2 of the applicability is that the number of
rounds of the graph reduction should be as small as possible
to achieve high time-efficient. Furthermore, the performance
of the M-O algorithm is dependent on the graph topology.
Therefore, we further discuss the applicability of the M-O
algorithm to different kinds of natural graphs.

1) Correctness of the reduction: First, we prove that the
strategy of the graph reduction of the M-O algorithm does not
delete any vertices in the densest subgraph.

Lemma 4.1: Suppose GS = (VS , E(VS)) is the densest
subgraph of graph G, then we have degVS (vi) ≥ ρ(VS) for
any vertex vi ∈ VS .

Proof 3: We prove it by contradiction. Suppose there is
at least one vertex vi ∈ VS and degVS (vi) < ρ(VS),
then we delete vertex vi from GS , and get graph GS− =
(VS\{vi}, E(VS\vi)). The density of graph GS− is:

ρ(VS\{vi}) =
|E(VS\vi)|
|VS\{vi}|

=
ρ(VS)|VS | − degVS (vi)

|VS | − 1

Since degVS (vi) < ρ(VS), we have:

ρ(VS\{vi}) >
ρ(VS)(|VS | − 1)

|VS | − 1
> ρ(VS)

6

This contradicts with the precondition. Therefore, we have
degVS (vi) ≥ ρ(VS) for any vertex vi ∈ VS .

Theorem 4.1: After we delete all the vertices with degrees
no more than the maximum density of the remaining graph
of G in block 3 of Algorithm 5 to obtain GS , the densest
subgraph of G is in GS .

Proof 4: We prove it by contradiction. Suppose there is one
densest subgraph Gx = (Vx, E(Vx)), where Gx 6⊂ GS , then
there is a vertex subset I where I ⊂ Vx and I 6⊂ Vs. There
is a time in the deleting process that the first vertex vi in I is
deleted from the current Vs (denoted by Vs+). Therefore, we
have:

ρ(Vx) ≤ degVx(vi) ≤ degVs+(vi) < ρ(Vs
+)

This implies that ρ(Vx) < ρ(Vs
+), and at this moment, we

have Vx ⊂ Vs
+. Hence, from the definition of the densest

subgraph, we know that Gx is not a densest subgraph of
G. This contradicts with the assumption. Therefore, for any
densest subgraph Gx of G, we have Vx ⊂ VS .

Theorem 4.1 guarantees that the graph reduction in the M-O
algorithm cannot delete any vertices in the densest subgraph.

2) Connectivity of the solution:
Theorem 4.2: Suppose G1 = (V1, E(V1)) is the densest

subgraph of graph G discovered by the M-O algorithm where
G could be a connected or disconnected graph, then we can
get that G1 = (V1, E(V1)) is a connected graph.

Proof 5: We prove it by contradiction. Suppose G1 =
(V1, E(V1)) is a disconnected graph which consists of two
isolated subgraphs, G3 = (V3, E(V3)) and G4 = (V4, E(V4)),
then we have the capacity of the min-cut from which we
derived G1 equals:,

c(S, T) =
∑

i∈S,j∈T
cij

= m|V2|+ (m|V1|+ 2g|V1| −
∑
i∈V1

di) +
∑

i∈V1,j∈V2

cij

= m|V |+ 2|V3|(g −

∑
i∈V3

di −
∑

i∈V3,j∈V2

1

2|V3|
)

+2|V3|(g −

∑
i∈V4

di −
∑

i∈V4,j∈V2

1

2|V4|
)

where V2 is the other part of the min-cut. Since g is the density
of ρ(V1), suppose ρ(V3) ≤ ρ(V4), then we have:

c(S, T ∪ V3) = m|V |+ 2|V3|(g −

∑
i∈V3

di −
∑

i∈V3,j∈V2

1

2|V3|
)

< c(S, T)

Since the min-cut from which we derived G1 should be a
min-cut in the densest subgraph discovery phase of the M-O
algorithm, this contradicts with the precondition. Therefore,
G1 = (V1, E(V1)) is a connected graph.

Theorem 4.2 guarantees that the densest subgraph discov-
ered by the M-O algorithm is connected.

(a) Unsuitable for reduction

(b) Suitable for reduction

Fig. 4. Examples of different graph topologies

3) Applicability of the M-O algorithm: There are two main
factors that influence the time efficiency of the M-O algorithm.
One is the number of rounds required for the graph reduction.
The other is the remaining graph size after the graph reduction.
These two factors are closely related to the topology of the
initial graph. For example, the graph in Figure 4(a) cannot
be reduced, while the graph in Figure 4(b) only takes one
round for a great size reduction. In this section, we analyze the
relationship between the performance of the M-O algorithm
and the topologies of natural graphs. In order to study the rela-
tionship, we use the BA network [12] and BTER network [16]
(which are two typical complex networks) for our study. The
BA network has the feature of power law degree distribution
but has no community structures. The BTER network not
only has the feature of power law degree distribution, but
also has the community structures. We theoretically analyze
the performance of the M-O algorithm on the BA network
and BTER network to show its performance on the complex
networks with or without community structures.

Theorem 4.3: Suppose G = (V,E(V)) is a BA network and
GS = (VS , E(VS)) is the densest subgraph of BA network G,
then we have

ρ(VS) = ρ(V) = m.
where m is the number of edges each vertex created when the
vertex first joined the network.

Proof 6: Suppose there is a process that we can get the
densest subgraph GS = (VS , E(VS)) by deleting vertex set
Vd = {v1, v2, v3, v4, ..., vn}, then we have:

ρ(VS) =
|E(VS)|
|VS |

=

|E(V)| −
∑

vi∈Vd
degd(vi)

|V | − |Vd|
where degd(vi) is the degree of vi when vi is deleted from
the remaining graph.

Since each vertex created m edges with other vertices when
the vertex first joins the network, we have

∑
vi∈Vd

degd(vi) ≥

m|Vd|. Therefore, we have:

ρ(VS) =
|E(VS)|
|VS |

≤ m

Also, when the network tends to be very large, we have:

ρ(V) =
|E(V)|
|V |

=
m|V |
|V |

= m

Therefore, we have:

ρ(V) = ρ(VS) = m

7

Since the density of the densest subgraph is equal to the
density of the whole network, there are no denser subgraphs
in the network. Therefore, Theorem 4.3 indicates that BA
network has no communities based on the density criteria.
Then, it is meaningless to discover the densest subgraph in
a BA network. Also, from the definition of BA network, we
know that each vertex has a degree at least m since each
vertex created m edges once it participates in the network.
Therefore, the graph reduction in the M-O algorithm is useless
for reducing the size of a BA network since all the vertices
have a degree equal or larger than the density of the densest
subgraph. Therefore, in Section V-C, we only evaluate our
algorithms on the graphs which contain densest subgraph.
For BA networks, we can directly return the whole graph
as the densest subgraph without any computation based on
Theorem 4.3.

Lemma 4.2: Suppose G = (V,E(V)) is a BTER network
which approximately satisfies log y = β − γ log x, where x
is the degree of the vertices with the same degree and y is
the number of vertices with degree x, then we can delete∑ ζ(γ−1)

ζ(γ)
x=1

1
xγ

ζ(γ) of the total vertices in the first round of the
graph reduction. Here, γ is the exponent parameter of degree
distribution of the BTER network and ζ(γ) is the Riemann
zeta function [24] of γ.

Proof 7: Since 0 ≤ log y = β − γ log x, we have x ≤ e
β
γ .

Then, we have:

ρ(V) =
|E(V)|
|V |

=

∑e
β
γ

x=1
eβ

xγ × x

2
∑e

β
γ

x=1
eβ

xγ

=

∑e
β
γ

x=1
1

xγ−1

2
∑e

β
γ

x=1
1
xγ

When e
β
γ → +∞, according to the Riemann zeta func-

tion [24], we have:

ρ(V) =
ζ(γ − 1)

2ζ(γ)

The number of the vertices with degrees smaller than ρ(V)

equals
∑e

β
γ

x=1
eβ

xγ ×x. Therefore, the percent of deleted vertices
in V equals: ∑ ζ(γ−1)

2ζ(γ)
x=1

eβ

xγ∑e

β
γ

x=1

eβ

xγ

=

∑ ζ(γ−1)
2ζ(γ)

x=1
1
xγ

ζ(γ)

Theorem 4.4: Suppose G = (V,E(V)) is a BTER network
which approximately satisfies log y = β − γ log x, where x
is the degree of the vertices and y is the number of vertices,
then we can delete∑(ζ(γ−1)−

∑ρ−1(V)

x=1
x1−γ)/(ζ(γ)−

∑ρ−1(V)

x=1
x−γ)

x=1 x−γ

ζ(γ)−
∑ρ−1(V)
x=1 x−γ

of the total vertices in the ith round of the graph reduction
where ρ−1(V) is the ρ(V) in the (i− 1)th round.

Proof 8: Since vertices with a same degree form into an
isolated subgraph in a BTER network, then we can consider

that the deleted vertices do not influence the degrees of the
remaining vertices. Therefore, we have:

ρ(V) =

∑e
β
γ

x=1
eβ

xγ × x−
∑ε
x=1

eβ

xγ × x

2(
∑e

β
γ

x=1
eβ

xγ −
∑ε
x=1

eβ

xγ)

=
ζ(γ − 1)−

∑ε
x=1 x

1−γ

2(ζ(γ)−
∑ε
x=1 x

−γ)

where ρ(V) is the current density.
Therefore, the percent of deleted vertices in V equals:

∑(ζ(γ−1)−
∑ε

x=1
x1−γ)/(ζ(γ)−

∑ε

x=1
x−γ)

x=1 x−γ

ζ(γ)−
∑ε
x=1 x

−γ

In the real-world graphs, γ is usually around 2 [1]. There-
fore, ζ(γ−1)2ζ(γ) is very large since ζ(1) = +∞ and ζ(2) ≈ 1.645.
Theorem 4.4 indicates that a great percentage of vertices can
be deleted in the first few rounds of the graph reduction
and also the graph reduction is decreasingly efficient as the
percentage of deleted vertices increases. For example, when
γ = 1.2, about

1+ 1
22.2

1.49 ≈ 0.82 of the vertices are deleted in the
first round of the graph reduction. This result is also consistent
with the experiment result in Section V-C.

From our analysis, we have the following conclusions:
i)The complex network without community structures (e.g.,
BA networks) is uniformly distributed, which makes the
densest subgraph discovery meaningless since the density of
the densest subgraph equals the density of the whole network
in such kind of complex networks; ii) For the complex network
with community structures (e.g., BTER networks), the M-O
algorithm not only can reduce such kind of complex networks
to a suitable size that can be fitted in memory, but also can
reduce it to a suitable size in only a few rounds.

V. PERFORMANCE EVALUATION

A. Experiment Configurations

1) Environment: We run the M-O algorithm on
Hadoop [25] with 4 PCs; each PC is equipped with
2.1GHz Intel core i3 processor with 2 cores, and a 2GB
memory. The M-O algorithm was implemented in Python.
We used the datasets in Table I in the experiments, which are
from the SNAP library [26].

2) Datasets: We classify the datasets to two different types
(small and large); small datasets can be fitted in the memory
of one computer and large datasets are too large to be fitted
in memory. We would like to see the different performances
of the M-O algorithm on small datasets and large datasets.
The table lists the name, the description, the number of
vertices (|V |), the number of edges (|E|) and the type of each
dataset. In the datasets, Wiki-Vote is the only directed graph.
However, directed graphs have similar natural graph features
as undirected graphs [27]. Therefore, we just treat Wiki-Vote
as an undirected graph in order to enrich our datasets as the
current work [28].

8

3) Algorithms for comparison: The other algorithms used
for comparing with our algorithms in the following evaluation
part are Approx (greedy algorithm) and ApproxMR (parallel
greedy algorithm). Approx [8] is a sequential greedy algorithm
for discovering the densest subgraph for an undirected graph
G. It greedily deletes the vertex with the smallest degree one
by one and records the density of the remaining graph until
the remaining graph is empty. The densest remaining graph in
this deleting process is the discovered densest subgraph. It has
been proved that ApproxMR can guarantee a 2-approximation
for ρ∗(S). ApproxMR [9] is an extension of Approx which
is implemented for parallelism in MapReduce. Instead of
deleting the vertex one by one, ApproxMR deletes a batch
of vertices with degrees smaller than (2 + ε) times of the
current density of the remaining graph in every two rounds
of MapReduce process and records the current density of the
remaining graph. After all the vertices are deleted from the
initial graph, we obtain the densest subgraph from the records.
It has been proved that ApproxMR can guarantee a (2 + ε)-
approximation for ρ∗(S).

B. Performance of Heuristic Dense Subgraph Discovery Al-
gorithm

The heuristic dense subgraph discovery algorithm is imple-
mented in Python. The numbers of Mappers and Reducers in
MapReduce are set manually. We use the datasets in Table I
in the experiments. Since we tag the vertices with small
component ID, there is an extra external memory for storing
them in hard disk. Therefore, we need to evaluate the extra
external memory for our algorithm. We evaluate our algorithm
with focuses on two aspects. We first evaluate the extra
external memory, running time, the densities of the discovered
subgraphs of our algorithm with different parameters. We then
compare these performance metrics of our algorithm with
Approx and ApproxMR.

1) Effect of parameters on performance: External memory
is not a bottleneck nowadays for computing environment.
However, the linearly producing extra data produced increases
the I/O costs, which is a core consideration for a MapReduce
algorithm. The efficiency of an algorithm is determined by
the running time, extra external memory usage, the number of
discovered qualified dense subgraphs. In this section, we study
the following problems: i) How does the number of traversing
steps (L) influences the efficiency of the algorithm? ii) How
does the number of the seeds (m) influences the efficiency of
the algorithm?

Recall we select top suitable degree vertices as seeds. This
process can guarantee that the components found by seeds
have suitable sizes. We first used the top 0.01% of suitable
degree vertices as the seed and measured the extra external
memory with the increasing of parameter L. We define extra
memory ratio as the ratio of the extra external memory divided
by the memory used to store the initial datasets. Figure 5 shows
the extra memory ratio versus L. As the figure shows, the extra
external memory increases sharply with the increasing of L
in the beginning due to the small world phenomenon [11],
in which any two vertices can reach each other in a limited
steps along the edges. The increasing speed of individual extra

0

0.2

0.4

0.6

0.8

1

1 2 3 4

E
x
tr

a
 m

e
m

o
ry

 r
a

ti
o

of steps

wiki-Vote CA-GrQc

Email-Enron CA-HepPh

slash com-youtube

com-lj com-orkut

Fig. 5. Extra memory ratio vs. # of
transverse steps

0

0.2

0.4

0.6

0.8

1

5.E-03 2.E-02

E
x
tr

a
 m

e
m

o
ry

 r
a

ti
o

Percentage of seeds

wiki-Vote

CA-GrQc

Email-Enron

CA-HepPh

slash

com-youtube

com-lj

com-orkut

Fig. 6. Extra memory ratio vs. # of
seeds selected

external memory depends on the diameter of the dataset. For
example, for com-lj, the extra external memory needed is
almost equal to the initial data size when L = 2, while for
Dataset 4, the extra external memory needed increases much
slower.

In addition to the parameter L, the size of extra external
memory is also influenced by the number of seeds selected.
Therefore, we set L = 1, and study the influence of the number
of seeds on the size of extra external memory used. Figure 6
shows the extra memory ratio versus the percentage of number
of seeds selected. We see that the external memory usage
approximately increases linearly as the percentage of number
of seeds increases.

Then, we study the influence of parameter L on the density
of the densest subgraph. We set the number of seeds as 0.01%
of the number of all vertices, and measure the density of the
densest subgraph discovered with different values of parameter
L. We define density ratio of L of a certain value of L as
the ratio of the density of the densest subgraph found by
the current value of L divided by the density of the densest
subgraph discovered by setting L from 1 to the diameter of
the initial graph. Figure 7 shows the density/densest density
value versus the value of L. As the figure shows, for some
of the datasets, it is intriguing to see that the quality of
the subgraphs does not always increase as L increases. As
L increases, the qualities slightly decrease in Dataset 2,
Dataset 4 and Dataset 10, remain nearly constant in CA-GrQc
and Dataset 3, but slightly increase in com-lj, Email-Enron,
Wiki-Vote, slash and CA-HepPh. We can conclude that the
qualities of the discovered subgraphs are relatively constant
with increasing of L. Considering that L increase will not
significantly improve performance, we just set L = 1 for
measuring the extra external memory. As Figure 5 shows, the
extra external memory is far less than the dataset itself when
L = 1, and the data can be handled efficiently.

Then, we define the density ratio of m of a certain value of
m as the ratio of the density of the densest subgraph found by
the current value of L divided by the density of the densest
subgraph found by setting m from 1 to the number of vertices
in initial graph. Figure 8 shows the density ratio of m versus
the number of seeds selected when L = 1. As the figure shows,
for most of the datasets, we can get the best results using the
top 0.01% suitable degree seeds. For Dataset 10 that performs
slightly worse, it achieves relatively higher performance with
top 0.01% suitable degree seeds, which are still far less than
0.01% of all the vertices. Therefore, we conclude that using
less than 0.01% vertices as seeds is sufficient for all the

9

TABLE I
DESCRIPTION OF REAL-WORLD DATASETS

ID Name Description |V | |E| Type
Dataset 1 Wiki-Vote [29] Wikipedia who votes on whom network 7,115 207,378 small
Dataset 2 CA-GrQc [30] Collaboration network of Arxiv General Relativity 12,008 237,010 small
Dataset 3 Email-Enron [31] Enron company email list 36,692 367,662 small
Dataset 4 CA-HepPh [30] Arxiv High Energy Physics paper citation network 34,546 421,578 small
Dataset 5 slash [14] Slashdot social network from November 2008 77,360 905,468 small
Dataset 6 com-youtube [32] Youtube online social network 1,134,890 2,987,624 large
Dataset 7 com-lj [32] LiveJournal online social network 3,997,962 34,681,189 large
Dataset 8 com-orkut [32] Orkut online social network 3,072,441 117,185,083 large

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

D
e

n
s
it

y
 r

a
ti

o
 o

f
L

of steps

wiki-Vote CA-GrQc

Email-Enron CA-HepPh

slash com-youtube

com-lj com-orkut

Fig. 7. The density ratio vs. # of
transverse steps

0

0.2

0.4

0.6

0.8

1

5.E-03 1.E-02 2.E-02 2.E-02

D
e

n
s
it

y
 r

a
ti

o
 o

f
m

Percentage of seeds

wiki-Vote CA-GrQc

Email-Enron CA-HepPh

slash com-youtube

com-lj com-orkut

Fig. 8. The density ratio vs. # of
seeds selected

datasets for the densest subgraph discovery.
Based on the experimental results of Figure 5, Figure 6,

Figure 7 and Figure 8, we can conclude that for all the datasets,
we only need to set L = 1 and use less than 0.01% of all
the vertices to get almost the best results with the different
parameter values. Since the number of seeds is small and L =
1, the extra external memory is less than 0.01% of the size of
the initial dataset.

2) Algorithm efficiency and effectiveness on real-world
dataSets: In this section, we evaluate the precision of the
dentest subgraph discovery of our algorithm, and compare
it with GreedyAlg and PGreedyAlg for discovering densest
subgraph. First, we set the number of seeds as 0.01% of the
number of all the vertices, L = 1, and run our algorithms on
the datasets in Table I. Then, we compare the density of the
densest subgraph discovered by our algorithm, GreedyAlg and
PGreedyAlg. In PGreedyAlg, we set parameter ε = 0 for this
algorithm to reach its best performance. Table II shows the
comparison of the final results, where ρ2(G) presents the re-
sults of PGreedyAlg, ρ1(G) presents the results of GreedyAlg,
and ρ(G) presents the results of our algorithm. As shown in
the table, our algorithm has the best performance on CA-GrQc,
Dataset 2, Dataset 3, Dataset 4 and Dataset 10. GreedyAlg
has the best performance in CA-GrQc, Dataset 2, and from
com-lj, Email-Enron, Wiki-Vote, slash and CA-HepPh. We can
see that our algorithm performs the best in 50% of the real
datasets. Although our algorithm performs the worst in Email-
Enron, Wiki-Vote and CA-HepPh, it still reaches at least 80%
of the best results. GreedyAlg can achieve higher precision
sometimes at the cost of low efficiency. However, GreedyAlg is
not suitable for massive datasets due to the memory limitation,
which is a critical requirement for Big Data. We emphasize
the best performances with bold type in all the tables in the
evaluation.

Another consideration for the comparison between our
algorithm and other algorithms is the time efficiency. Since
GreedyAlg cannot be parallelized and is not suitable for big

0
0.2
0.4
0.6
0.8

1

P
e

rc
e

n
ta

g
e

Datasets

Initial size Size after reduction

(a) The # of vertices

0
0.2
0.4
0.6
0.8

1

P
e

rc
e

n
ta

g
e

Datasets

Initial size Size after reduction

(b) The # of edges

Fig. 9. The size of the datasets before and after the reduction

datasets, we only compared the time efficiency between our
algorithm and PGreedyAlg in the same situation. For the
metrics, we not only compared the iteration times of the
MapReduce process, but also compared the running time.
Table IV shows the comparison of the number of MapRe-
duce iterations and the execution time, where i2(G) presents
the number of MapReduce iterations of PGreedyAlg, i(G)
presents the number of MapReduce iterations of our algorithm,
t2(G) presents the execution time of PGreedyAlg and t(G)
presents the execution time of our algorithm. As shown in the
table, our algorithm is terminated by 4 iterations since L = 1,
while PGreedyAlg is terminated in at least 7 iterations. Also,
our algorithm is much faster than PGreedyAlg. Therefore,
we can conclude our algorithm is more time-efficient than
PGreedyAlg. On average, we reduce the running time by 62%.

C. Performance of Exact Densest Subgraph Discovery Algo-
rithm

In this section, we evaluate the performance of the M-
O algorithm in comparison with ApproxMR by datasets in
Table I. First, we evaluated the graph reduction phase, which
focuses on two aspects: i) how many percent of vertices
can be reduced from the initial graph size, and ii) how
many MapReduce rounds are needed to reach a suitable size
for the densest subgraph discovery phase. The first aspect
evaluates the effectiveness of the graph reduction phase, which
determines the feasibility of the densest subgraph discovery
phase. If the dataset size after reduction is still big, the
M-O algorithm cannot handle it in the second phase. The
second aspect evaluates the efficiency of the M-O algorithm
since one round of MapReduce process is time consuming.
Second, we evaluated the density and the running time of the
discovered densest subgraph. In Section V-C4, we measured
the connectivity of the discovered densest subgraph. Finally,
we used simulated datasets to evaluate the M-O algorithm in
comparison with ApproxMR.

1) Comparison of sizes before and after reduction: Table III
shows the comparisons of the number of vertices and the

10

TABLE II
THE DENSITY OF THE DENSEST SUBGRAPH FOUND BY DIFFERENT ALGORITHMS

Datasets ApproxMR Approx Heuristic M-O HHeuristic
Wiki-Vote 43.91 46.25 38.00 49.2 46.91
CA-GrQc 22.39 22.39 22.39 22.39 22.39

Email-Enron 35.31 37.33 32.09 37.33 37.12
CA-HepPh 30.05 30.17 25.42 30.17 30.17

slash 38.65 42.27 40.74 42.27 41.57
com-youtube 34.4 37.00 35.2 38.6 37.41

com-lj 35.31 37.33 36.26 47.4 42.38
com-orkut 176.2 182.5 184.00 189.1 185.73

TABLE III
COMPARISON OF DATASETS BEFORE AND AFTER REDUCTION

Datasets # of vertices # of edges
Before After After/Before Before After After/Before

wiki-vote 7,115 727 10% 207,378 71,518 34%
CA-GrQc 12,008 123 1% 237,010 4,812 2%

Email-Eron 36,692 592 1% 367,662 44,182 12%
CA-HepTh 34,546 77 0.2% 421,578 1,964 0.4%

slash 77,360 1,417 1% 905,468 98,556 10%
com-youtube 1,134,890 1,685 0.1% 2,987,624 130,062 3%

com-lj 3,997,962 4,136 0.1% 34,681,189 650,724 1%
com-orkut 3,072,441 25,776 0.8% 117,185,083 9,800,872 8%

TABLE IV
THE COMPARISON OF THE NUMBER OF ITERATIONS AND EXECUTION TIME (UNIT/SECOND)

Datasets Iterations Time (second)
ApproxMR Heuristic M-O HHeuristic ApproxMR Heuristic M-O HHeuristic

Wiki-Vote 9 4 7 5 367 82 187 102
CA-GrQc 8 4 7 5 482 81 172 117

Email-Enron 11 4 7 5 312 84 192 95
CA-HepPh 11 4 7 5 423 88 183 121

slash 11 4 7 5 514 90 207 153
com-youtube 14 4 7 5 740 245 310 289

com-lj 10 4 7 5 4014 905 2756 1485
com-orkut 12 4 7 5 26175 9175 11126 10754

0

0.2

0.4

0.6

0.8

1

com-youtube com-lj com-orkut

P
e

rc
e

n
ta

g
e

Big datasets

Initial size Size after reduction

(a) The # of vertices

0

0.2

0.4

0.6

0.8

1

com-youtube com-lj com-orkut

P
e

rc
e

n
ta

g
e

Big datasets

Initial size Size after reduction

(b) The # of edges

Fig. 10. The size of the datasets before and after the reduction for large
datasets

number of edges of the datasets before and after the graph
reduction phase by the M-O algorithm. In order to show the
reduction performances clearly, we also show Figure 9 and
Figure 10, which plot the ratio of the number of vertices and
the number of edges before and after the reduction for the
small datasets and large datasets, respectively. From Table III,
Figure 9 and Figure 10, we see that the number of vertices after
reduction is less than 1% of the initial number of vertices on
average. Especially, for the large datasets (e.g., com-youtube
and com-lj), the number of vertices after reduction is only
about 0.1% of the initial number of vertices on average. The
number of edges is also reduced to an average of 18% of the
initial size for the small datasets. For the large datasets, the
number of edges is only about 1% of the initial size. The
reduction performance is even better for the large datasets.

This large size reduction makes it possible to run the densest
subgraph discovery phase in one computer, since the time
complexity of this phase is determined by the number of
vertices and edges.

Take the large dataset com-youtube as an example, after the
reduction, the number of vertices is 0.1% of the initial dataset
and the number of edges is 3% of the initial dataset. If we
use the push-relabel algorithm [33] for the densest subgraph
discovery phase, which is the fastest algorithm for the min-
cut max-flow problem with time complexity O(|V ||E|2),
then discovering the densest subgraph only takes 0.00009%
(|V ||E|2 = 0.1% × 3% × 3%) of the time for discovering
the densest subgraph in the initial graph which can be easily
calculated based on the time complexity. For the memory
consumption, we only use about 3% of the memory for the
initial graph since 97% (1 − 3% = 97%) of the edges have
been deleted. Therefore, the large dataset reduction in the first
graph reduction phase makes the dataset possible to be handled
in the second densest subgraph discovery phase in the M-O
algorithm.

2) The number of MapReduce rounds vs. data size: Fig-
ure 11 shows the percentage of the vertex size and the edge
size of the remaining graph versus the number of MapReduce
rounds in the graph reduction phase. It is interesting to see that
the huge reductions only happened in the first a few rounds
(5 rounds for most of the datasets). Also most of the datasets

11

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60

P
e

rc
e

n
ta

g
e

Datasets

wiki-Vote CA-GrQc

Email-eron CA-HepTh

slash com-youtube

com-lj com-orkut

(a) The size of reduced vertices

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60

P
e

rc
e

n
ta

g
e

Datasets

wiki-Vote CA-GrQc

Email-eron CA-HepTh

slash com-youtube

com-lj com-orkut

(b) The size of reduced edges

Fig. 11. The size of reduced vertices and edges vs. the # of rounds

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60

P
e

rc
e

n
ta

g
e

Big datasets

com-youtube

com-lj

com-orkut

(a) The size of reduced vertices

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60

P
e

rc
e

n
ta

g
e

Big datasets

com-youtube

com-lj

com-orkut

(b) The size of reduced edges

Fig. 12. The size of reduced vertices and edges vs. the # of rounds for large
datasets

tend to be stable after 10 rounds of MapReduce processes.
Figure 12 further shows the results for large datasets. After
about 10 rounds of reductions, we can reduce the number of
vertices to around 0.1% of the initial number of vertices and
reduce the number of edges to around 1% of the initial number
of edges. Although we can continue the graph reduction for
more rounds for large datasets, the extra graph reduction does
not help much in reducing the size of the dataset. Figure 12
indicates that the reduction performance is even better for
the large datasets in which the data size can be reduced to
less than 1% of the initial size in less than 10 rounds. This
result indicates that the M-O algorithm is efficient in the graph
reduction phase since the data can be reduced to the suitable
size in only a few rounds.

3) Density of the discovered densest subgraph: In this sec-
tion, we evaluate the performance of discovering the densest
subgraph of the M-O algorithm in comparison with ApproxM-
R in terms of the density of the discovered densest subgraph.
In ApproxMR, parameter ε is a slack variable for controlling
the tradeoff between precision and efficiency. We set ε = 0
as in paper [9] to reach its best performance. Table II shows
the density of the discovered densest subgraph in the M-O
algorithm and ApproxMR. We bold the result for the better
performance in comparison in all tables in the evaluation. As
shown in the table, the M-O algorithm performs better almost
for all the datasets while ApproxMR only performs as well
as M-O algorithm on very small datasets (e.g., CA-GrQc and
CA-HepTh). However, for small datasets, we do not need to
apply the approximate algorithm since the exact algorithm can
achieve both high efficiency and accuracy.

Table IV shows the comparison of the number of MapRe-
duce iterations and the execution time, where i2(G) presents
the number of MapReduce iterations of PGreedyAlg, i(G)
presents the number of MapReduce iterations of our algorithm,
t2(G) presents the execution time of PGreedyAlg and t(G)
presents the execution time of our algorithm. As shown in the

table, our algorithm is terminated by 4 iterations since L = 1,
while PGreedyAlg is terminated in at least 7 iterations. Also,
our algorithm is much faster than PGreedyAlg. Therefore,
we can conclude our algorithm is more time-efficient than
PGreedyAlg. On average, we reduce the running time by 62%.

4) Connectivity of the discovered densest subgraph: In this
section, we measure the connectivity of the densest subgraph
discovered by the M-O algorithm and ApproxMR. Figure 13
shows the percentage of connected subgraphs among the 8 dis-
covered densest subgraphs from the 8 real-world datasets in the
M-O algorithm compared to ApproxMR. Only 87.5% of the
densest subgraph discovered by ApproxMR in all the datasets
are connected. Although most of the densest subgraphs dis-
covered by ApproxMR are connected, the lack of connectivity
guarantee still influences its application. All the densest sub-
graphs discovered by the M-O algorithm are connected. This
experimental result is consistent with our proved conclusion in
Section IV-C. This result confirms that the M-O algorithm can
guarantee the connectivity of the discovered densest subgraph.

0

0.2

0.4

0.6

0.8

1

Real datasets Simulated datasets

P
e

rc
e

n
ta

g
e

Datasets

MPhases ApproxMR

Fig. 13. Connectivity comparison

5) Efficiency of graph
reduction on simulated
natural graphs: Natural
graphs usually follows
a power law degree
distribution with exponent
parameter γ ∈ (1, 3) [1].
Therefore, we show the
percentage of the size of
vertices in the remaining graph versus the number of rounds
with different value of γ in (1, 3) and different numbers of
vertices separately in Figure 14.

Figure 14(a) shows the results of the simulated datasets
with different degree power law parameter γ when we set the
number of vertices in the datasets (denoted by n) to 1000. As
γ increases, the required number of rounds for reducing the
dataset to a suitable size for in-memory computing slightly
increases. Figure 14(b) shows the results of the simulated
datasets with different number of vertices n when we set
γ = 2.5 which is a most common value for the normal natural
graphs [1]. For all the simulated datasets with different sizes,
the size of the dataset reduces quickly at the beginning and
reaches less than 1% of the initial size only in 10 rounds. The
sizes are reduced even faster for the datasets with bigger n.
These phenomena are consistent with the phenomena in real-
world datasets as in Figure 11 and Figure 12. Therefore, we
conclude that the M-O algorithm is suitable for the big natural
graphs with power law degree distribution and community
features (which is different from the BA network introduced
in section IV-C).

6) Density of the discovered densest subgraph on simulated
natural graphs: Figure 15 shows the density of the discovered
densest subgraph of the M-O algorithm and ApproxMR on
each of the 50 randomly simulated graphs. As shown in the
figure, we can see clearly that our algorithm can find denser
subgraph comparing with ApproxMR. These results match
the experimental results on real-world datasets in Table II.

12

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

The # of rounds

ϒ=2.5

ϒ=2

ϒ=1.7

(a) With different γ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
e

rc
e

n
ta

g
e

The # of rounds

n=1.0e+03

n=1.0e+04

n=1.0e+05

n=1.0e+06

(b) With different n

Fig. 14. Performance of the graph reduction on simulated datasets

0

0.2

0.4

0.6

0.8

1

<0.1 0.1-0.2 0.2-0.3 0.4-0.5 >0.5

P
e

rc
e

n
ta

g
e

 o
f

p
re

c
is

io
n

Percentage of small degree nodes

Fig. 16. The correlation of the preci-
sion of final results and the percentage
of neighbors which are small-degree
nodes.

0.657

0.45

0.71

0.421

0.711 0.7
0.59

0.443

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

Dataset ID

Fig. 17. The percentage of small-
degree nodes deleted in first round.

0 10 20 30 40 50
0

10

20

30

40

50

60

Simulated dataset ID

D
en

si
ty

 o
f d

en
se

st
 s

ub
gr

ap
h

ApproxMR MPhases

Fig. 15. The density of the discov-
ered densest subgraph in 50 simulated
datasets

7) Connectivity of
the discovered densest
subgraph on simulated
natural graphs: We
compare the connectivity
of 50 densest subgraphs
discovered by the M-O
algorithm and ApproxMR
in Figure 13. All of
the densest subgraphs
discovered by the M-O algorithm are connected, but there
are 22% of the densest subgraphs discovered by ApproxMR
which are disconnected.

D. A Hybrid Heuristic Algorithm

In this section, we compare the performances of heuristic
algorithm and exact algorithm comprehensively. Then, we
discuss the possibility of combining these two algorithms
together to make a tradeoff between the performance of time
efficiency and precision. Based on the discussion, we propose a
Hybrid Heuristic (HHeuristic) algorithm. Finally, we evaluate
the performance of HHeuristic and compare it with heuristic
and M-O algorithms.

1) Heuristic algorithm vs. exact algorithm: As shown in
Table II, although our proposed heuristic algorithm is as
precise as the approximate algorithms like ApproxMR, the
heuristic algorithm is still not competitive with the exact
algorithm or even Approx. While at the same time, as shown
as in Table IV, although the M-O algorithm is faster than
ApproxMR, it is still not much slower and needs much more
rounds of MapReduce process than the heuristic algorithm.

To sum up, the heuristic algorithm is fast but not pre-
cise enough, while M-O algorithm is precise but still need
many rounds of MapReduce processes. In order to design
an algorithm which can make a tradeoff between the time
efficiency and the precision of the final results, we further

Fig. 18. An example of HHeuristic algorithm

analyze the reason that leads to the lower precision of heuristic
algorithm. In Section IV-C, we proved that nodes with very
few degrees are impossible to be in the densest subgraph.
Intuitively, we assume that the lower precision of heuristic
algorithm is caused by involving seeds with many neighbors
with small degree. In order to verify our assumption, we define
nodes with degree smaller than the average degree of the graph
as small-degree nodes. Then, we measure the correlation of the
precision of final results and the percentage of neighbors which
are small-degree nodes as shown in Figure 16. As we can see
from Figure 16, seeds with a larger percentage of neighbors
which are small-degree nodes are related to low precisions.
On the other hand, from the experiment of the M-O algorithm,
we find that in the first round of the data reduction, more than
half of the nodes with low degrees can be removed. In order to
verify this assumption, we compare the percentage of small-
degree nodes before and after the first round of data reduction
as shown in Figure 17. As shown in Figure 17, the percentage
of small-degree nodes can be decreased sharply in the first
round of data reduction.

2) The Design of hybrid heuristic algorithm (HHeuristic):
Based on the above analysis, we propose a hybrid heuristic
algorithm for discovering densest subgraph with a tradeoff
between time efficiency and precision. The basic idea is to
delete all those nodes with few degrees by the data reduction
process of the M-O algorithm. As shown in the left part of
Figure 18, we can achieve it fast since more than half of the
nodes can be deleted in the first round of the MapReduce
process. Then, instead of keeping reducing the data in many
rounds, we select eligible seeds and use the heuristic algorithm
to find the dense subgraphs efficiently. As shown in the right
part of Figure 18, we can get better results since the percentage
of neighbors with one degree for each seed node has been
significantly decreased.

3) The performance of hybrid heuristic algorithm: Table II
shows the density of the discovered densest subgraph in the
heuristic, HHeuristic and M-O algorithms. As shown in the ta-
ble, the densities of densest subgraph discovered by HHeuristic
is close to the densities of the densest subgraphs discovered by
the M-O algorithm, which is much higher than the densities
of densest subgraph discovered by the heuristic algorithm.
Table IV shows the density of the discovered densest subgraph
in the heuristic, HHeuristic and M-O algorithms. As shown in
the table, the densities of the densest subgraph discovered by
HHeuristic is close to the densities of the densest subgraphs
discovered by the M-O algorithm, which is much higher than
the densities of the densest subgraph discovered by heuristic
algorithm.

13

VI. CONCLUSION

In this paper, we studied the densest subgraph problem by
designing two different algorithms based on different features
that natural graphs have. First, by analyzing the features of
natural graphs, we designed a heuristic algorithm for discov-
ering the connected densest subgraph for massive undirected
graphs in a MapReduce framework by taking advantage of the
features of natural graphs. Second, we proposed an exact algo-
rithm for big data for the problem of discovering the densest
subgraph. Experimental results show that our algorithms are
more time-efficient and precise than other algorithms. In the
future, we will explore taking advantages of the features of
natural graphs to efficiently discover multiple dense subgraphs,
overlapping dense subgraphs, dense subgraphs in different
scales according to the necessities of different applications.

VII. ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty
Award 5501145 and Microsoft Research Faculty Fellowship
8300751. Early versions of this work were presented in the
Proceedings of ICCCN [34] and the Proceedings of NAS [35].

REFERENCES
[1] M. E. J. Newman and M. Girvan, “Finding and evaluating community

structure in networks,” Physical Review, vol. E 69, 2004.
[2] L. Wan, B. Wu, N. Du, Q. Ye, and P. Chen, “A new algorithm

for enumerating all maximal cliques in complex network.,” ADMA,
vol. 4093, 2006.

[3] A. V. Goldberg, “Finding a maximum subgraph,” Technical report, 1984.
[4] L. Yan, H. Shen, and K. Chen, “TSearch: Target-oriented low-delay

node searching in dtns with social network properties.,” in Proc. of
INFOCOM, 2015.

[5] M. Han, M. Yan, J. Li, S. Ji, and Y. Li, “Neighborhood-based uncertainty
generation in social networks.,” Journal of Combinatorial Optimization.,
vol. 28, pp. 561–576.

[6] M. Han, M. Yan, Z. Cai, Y. Li, X. Cai, and J. Yu, “Influence maximiza-
tion by probing partial communities in dynamic online social networks.,”
Transactions on Emerging Telecommunications Technologies, pp. 561–
576.

[7] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang, “Dense
subgraphs with restrictions and applications to gene annotation graphs,”
in RECOMB, vol. 6044, pp. 456–472, Springer, 2010.

[8] M. Charikar, “Greedy approximation algorithms for finding dense
components in a graph.,” in APPROX, vol. 1913 of Lecture Notes in
Computer Science, pp. 84–95, Springer, 2000.

[9] B. Bahmani, R. Kumar, and S. Vassilvitskii, “Densest subgraph in
streaming and mapreduce,” CoRR, vol. abs/1201.6567, 2012.

[10] M. Han, J. Li, and Z. Zou, “K-close: Algorithm for finding the close
regions in wireless sensor networks based uncertain graph mining
technology.,” Journal of Software, vol. 22, pp. 131–141, 2011.

[11] S. Milgram, “The small world problem,” Psychology Today, vol. 61,
pp. 60–67, 1967.

[12] A. L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, pp. 509–512, 1999.

[13] D. Watts and S. Strogatz, “Collective dynamics of ’small-world’ net-
works,” Nature, no. 393, pp. 440–442, 1998.

[14] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters.,” Internet Mathematics, vol. 6, pp. 29–123, 2009.

[15] S. Zhou and R. J. Mondragn, “The rich-club phenomenon in the internet
topology.,” IEEE Communications Letters, vol. 8, pp. 180–182, 2004.

[16] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community structure and
scale-free collections of er graphs,” CoRR, vol. abs/1112.3644, 2011.

[17] S. Khuller and B. Saha, “On finding dense subgraphs,” ICALP, vol. 14,
2009.

[18] U. Feige, G. Kortsarz, and D. Peleg, “The dense k-subgraph problem.,”
Algorithmica, vol. 29, pp. 410–421, 2001.

[19] Y. Asahiro, R. Hassin, and K. Iwama, “Complexity of finding dense
subgraphs,” Discrete Applied Mathematics, vol. 121, pp. 15–26, 2002.

[20] D. Gibson, R. Kumar, and A. Tomkins, “Discovering large dense
subgraphs in massive graphs,” in in Proc. of VLDB, pp. 721–732, 2005.

[21] J. Chen and Y. Saad, “Dense subgraph extraction with application
to community detection,” IEEE Trans. Knowl. Data Eng., vol. 24,
pp. 1216–1230, 2012.

[22] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Trawling the
web for emerging cyber-communities,” in Proc. of WWW, pp. 1481–
1493, 1999.

[23] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun ACM, vol. 51, pp. 107–113, 2008.

[24] V. Adamchik and H. M. Srivastava, “Some series of the zeta and related
functions,” Analysis, vol. 18, pp. 131–144, 1998.

[25] “Apache hadoop,” 2015. http://hadoop.apache.org/.
[26] “Stanford network analysis project,” 2013. https://snap.stanford.edu/.
[27] M. Newman, “The structure and function of complex networks,” Review,

SIAM, 2003.
[28] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion:

counting triangles in massive graphs with a coin,” in Proc. of KDD,
pp. 837–846, ACM, 2009.

[29] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, “Signed networks
in social media,” CoRR, vol. abs/1003.2424, 2010.

[30] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Laws of graph evolution:
densification and shrinking diameters,” Knowledge Discovery, vol. 1,
pp. 1–40, 2006.

[31] B. Klimt and Y. Yang, “Introducing the enron corpus,” in CEAS, 2004.
[32] J. Yang and J. Leskovec, “Defining and evaluating network communities

based on ground-truth,” CoRR, vol. abs/1205.6233, 2012.
[33] B. V. Cherkassky and A. V. Goldberg, “On implementing the push-

relabel method for the maximum flow problem.,” Algorithmica, vol. 19,
no. 4, pp. 390–410, 1997.

[34] B. Wu and H. Shen, “Discovering the densest subgraph in mapreduce
for assortative big natural graphs.,” in Proc. of ICCCN Workshop on
BDeHS, pp. 35–41, 2015.

[35] B. Wu and H. Shen, “A time-efficient connected densest subgraph
discovery algorithm for big data.,” in Proc. of NAS, pp. 55–59, 2015.

Bo Wu received both his BS and MS degree in
Computer science from Northwestern Polytechnic
University, China in 2009 and 2011 respectively.
He is currently a Ph.D student in the Department
of Electrical and Computer Engineering of Clemson
University. His research interests include social net-
works and big graph data analysis.

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen received the BS degree in Computer
Science and Engineering from Tongji University,
China in 2000, and the MS and Ph.D. degrees in
Computer Engineering from Wayne State University
in 2004 and 2006, respectively. She is currently
an associate professor in the Department of Com-
puter Science, University of Virginia. Her research
interests include distributed computer systems and
computer networks, with an emphasis on P2P and
content delivery networks, mobile computing, wire-
less sensor networks, and grid and cloud computing.

She was the Program Co-Chair for a number of international conferences and
member of the Program Committees of many leading conferences. She is a
Microsoft Faculty Fellow of 2010 and a member of the IEEE and ACM.

14

