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Abstract—Wireless sensor and actuator networks (WSANs) are composed of sensors and actuators to perform distributed sensing

and actuating tasks. Most WSAN applications (e.g., fire detection) demand that actuators rapidly respond to observed events.

Therefore, real-time (i.e., fast) and fault-tolerant transmission is a critical requirement in WSANs to enable sensed data to reach

actuators reliably and quickly. Due to limited power resources, energy-efficiency is another crucial requirement. Such requirements

become formidably challenging in large-scale WSANs. However, existing WSANs fall short in meeting these requirements. To this end,

we first theoretically study the Kautz graph for its applicability in WSANs to meet these requirements. We then propose a Kautz-based

REal-time, Fault-tolerant and EneRgy-efficient WSAN (REFER). REFER embeds Kautz graphs into the physical topology of a WSAN

for real-time communication and connects the Kautz graphs using distributed hash table (DHT) for high scalability. We also

theoretically study routing paths in the Kautz graph, based on which we develop an efficient fault-tolerant routing protocol. It enables a

relay node to quickly and efficiently identify the next shortest path from itself to the destination based only on node IDs upon routing

failure, rather than relying on retransmission from the source. REFER is advantageous over previous Kautz graph based works in

that it does not need an energy-consuming protocol to find the next shortest path and it preserves the consistency between the

overlay and physical topology. We further improve routing in REFER by multi-path based routing and energy-efficient multicasting

within and between Kautz graph cells, respectively. Extensive experimental results demonstrate the superior performance of

REFER in comparison with existing WSAN systems in terms of real-time communication, energy-efficiency, fault-tolerance

and scalability.

Index Terms—Wireless sensor and actuator networks (WSANs), routing, Kautz graph, real-time, energy-efficiency, fault-tolerance
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1 INTRODUCTION

Awireless sensor network (WSN) is a collection of low-
cost, low-power and multi-functionality wireless sens-

ing devices that can be densely deployed for surveillance
purpose. Traditionally, it is used for data gathering by sam-
pling surroundings and reporting to predefined data sinks.
As hardware technology advances, it is now evolving
toward service-oriented wireless sensor and actuator
networks (WSANs) [1]. A WSAN consists of sensor nodes
capable of measuring stimuli in the environment and actua-
tor nodes capable of affecting their local environment. Simi-
lar to WSNs, WSAN sensors usually are low-cost and low-
power devices with a short transmission range that are used
for the sensing a physical phenomenon. WSAN actuators
are resource-rich devices characterized by higher process-
ing and transmission capabilities and a longer battery life.
When sensors detect events, they process and transmit the
event data to their nearby actuators, which take action on
the events. WSANs can potentially be used in applications
such as real-time target tracking and surveillance, home-
land security, chemical attack detection and environment

monitoring in battlefields, factories, buildings and cities.
For example, smoke detectors (i.e., sensors) deployed in a
building report detected fire events to sprinklers (i.e., actua-
tors); Sensors deployed in a battlefield report their detected
malicious objects to actuators, which immediately takes
action accordingly. Since sensors are densely deployed to
ensure the coverage and topology connectivity usually, the
scenario we considered in this paper is a highly dense and
mobile WSAN which consists of densely populated and
possibly mobile sensors.

Actuators need to quickly and reliably respond to nearby
sensed events. Delay response may lead to disastrous conse-
quences such as a large loss of life. Therefore, real-time (i.e.,
very fast) communication is of great importance in guaran-
teeing the timely actions. Because of node mobility and
resultant routing failures, fault-tolerance is crucial to ensure
reliable node communication. In addition, energy-efficiency is
also a critical requirement for WSANs due to limited resour-
ces of sensors. Such requirements become formidably chal-
lenging in large-scale WSANs (e.g., battlefield monitoring
applications) where the number of sensors is in the order of
hundreds or thousands [2].

Most of the routing protocols for mobile ad hoc networks
(MANETs) and WSNs treat every node equally and fail to
leverage the capabilities of resource-rich devices to reduce
the communication burden on low-resource sensors. These
protocols are suboptimal for WSANs. Recently, mesh-based
[3], [4] and tree-based [5], [6] systems have been proposed
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for data transmission in WSANs. In the mesh-based meth-
ods, physically close sensors form a cluster and the cluster
head reports their sensed events to the closest actuator
through a multi-hop path. In the tree-based methods, physi-
cally close sensors form a tree for data transmission. In both
methods, a source node must retransmit a message upon a
routing failure. For example, as shown in Fig. 1, source
node 210 wants to send a packet to node 201 and the path is
210 ! 102 ! 021 ! 212 ! 120 ! 201. If node 120 fails,
source node 210 must retransmit the packet again. Also,
both methods employ either geographical routing [7] or
topological routing [8], [9], which consume large amounts
of energy by relying on position information generated
by GPS or a virtual coordination method [10], [11], [12] or
flooding to discover and update routing paths. Therefore,
both systems cannot achieve real-time, energy-efficient,
fault-tolerant transmissions simultaneously in a highly
dense and mobile WSAN.

To meet the requirements of WSANs, we propose a
Kautz-based REal-time, Fault-tolerant and EneRgy-effi-
cient WSAN (REFER). Note the “real time” here means
fast communication rather than the real time concept in
the traditional real-time systems. The contributions of this
work include:

1) A theoretical study of the Kautz graph for its applicabil-
ity in WSANs to meet the energy-efficiency and real-
time communication requirements in overlay main-
tenance and routing.

2) A Kautz graph embedding protocol that embeds Kautz
graphs to the physical topology of a WSAN and con-
nects the graphs using distributed hash table (DHT)
[13] for high scalability and real-time communica-
tion, and an energy-efficient topology maintenance
strategy.

3) A theoretical study of routing paths in the Kautz graph
and an efficient fault-tolerant routing protocol to support
fault-tolerant, real-time and energy-efficient data
transmission. The algorithm enables a relay node to
quickly and efficiently identify the next shortest path
from itself to the destination upon routing failure
without data transmission. For instance, in the afore-
mentioned example, forwarder 212 can use an alter-
native path (e.g., 212 ! 121 ! 210) to continually
forward the packet to 201. Further, a multi-path rout-
ing algorithm and an energy-efficient multicasting
algorithm are proposed for intra- and inter-Kautz
cell communication.

4) Extensive experiments to demonstrate the superior
performance of REFER in comparison with a tree-
based, a mesh-based, and a Kautz-based WSAN.

REFER is advantageous over previous Kautz-based
works in two aspects. First, REFER is the first work that
embeds a Kautz graph into the physical topology of a
MANET to maintain topology consistency. Previous works
on Kautz graphs directly build a Kautz graph overlay on
the application layer in peer-to-peer (P2P) networks [14],
[15], [16] or MANETs [17]. Thus, the overlay is not consis-
tent with the underlying physical topology and multi-hop
routing must be used for the communication between two
neighboring Kautz nodes in MANETs. This cannot provide
fault-tolerance, energy-efficiency and real-time perfor-
mance. Second, REFER can quickly and efficiently identify
the alternative paths and their lengths simply based on
node IDs upon a routing failure; however, the previous
method [18] has to depend on an energy-consuming routing
generation algorithm.

Compared to the early version of this work [19], this ver-
sion additionally presents the Kautz topology maintenance
with a sleep/wake strategy, a multi-path routing protocol to
increase the system fault tolerance when the node failure
probability is high, and an energy-efficient multicasting algo-
rithm for the transmission of sensed data betweenKautz cells.

2 RELATED WORK

WSNs can be regarded as a subcategory of MANETs with
additional constraints of security and energy-efficiency.
WSANs are a subcategory of WSNs with higher require-
ments on real-time, energy-efficient and fault-tolerant trans-
mission. MANETs use either topological routing [8], [9],
[20] or geographic routing [7]. AODV [8] and DSR [20] are
reactive routing protocols, in which a source node broad-
casts a query to find a path to the destination. DSDV [9] is a
proactive routing algorithm, in which each node maintains
and periodically updates a routing table by message flood-
ing. Keeping a complete routing table reduces route acquisi-
tion latency for data transmission. However, its correct
operation depends on its periodical global dissemination of
connectivity information, leading to low scalability. Further,
the limited battery power of the sensors makes such routing
unsuitable for WSANs. Geographical routing always choo-
ses the node closest to the destination by relying on the posi-
tion information generated by GPS or a virtual coordination
method [10], [11], [12], both consume a considerable amount
of energy, which are also not suitable for WSANs.

Many routing algorithms have been proposed for WSNs.
P€ottner et al. [21] introduced a heuristic to calculate a sched-
ule that can support the given application requirements in
terms of data delivery latency and reliability and described
methods and tools to collect the data necessary as input for
schedule calculation. He et al. [22] investigated the on-
demand scenario where data collection requests arrive at the
mobile element progressively, and modelled the data collec-
tion process as a queuing system. Based on this model, the
authors evaluated the performance of data collection
through both theoretical analysis and extensive simulation.
Ji et al. [23] introduced a more reasonable model, probabilis-
tic network model, for the network capacity of data

Fig. 1. The architecture of the REFER system.
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collection. They proposed a cell-based path scheduling (CPS)
algorithm for snapshot data collection, and proposed a zone-
based pipeline scheduling (ZPS) algorithm for continuous
data collection. Hsu et al. [24] proposed a joint design of
asynchronous sleep-wake schedules and opportunistic rout-
ing tomaximize the network lifetime.Ma et al. [25] identified
the contiguous link scheduling problem in WSNs, in which
each node is assigned consecutive time slots so that the node
can wake up only once in a scheduling period to fulfil its
data collection task, and presented efficient centralized and
distributed algorithms. Since these methods are for general
WSNs, theymay be not suitable forWSANs [3] that have dif-
ferent features on the network structure and communication
paradigms between sensors and actuators.

A number of routing protocols have been proposed spe-
cifically for WSANs. Melodia et al. [6] proposed DaTree in
which one actuator (tree root) and its physically close sen-
sors form a tree. Each sensor forwards its detected events to
its tree root using the geographical routing. Hu et al. [5] pro-
posed to build an anytree with leaves as actuators. Each
source node builds an anycast tree and sends its detected
data along the tree to the actuators using the topological
routing. The tree structure is not fault-resilient to node
mobility since a parent failure prevents its children from
sending or receiving data in time. Ngai et al. [3] and Shah
et al. [4] proposed a distributed protocol to form sensors
into clusters. The cluster heads form a backbone mesh net-
work to provide routes toward actuators. Rezgui and
Eltoweissy [26] presented reliable adaptive service-driven
efficient routing (mRACER), a routing protocol suite based
on a novel service-oriented design for sensor-actuator net-
works where nodes expose their capabilities to applications
as a service profile. Pan et al. [27] proposed a geometry-
based path-planning algorithm (GPA) to plan a route that
can navigate an aircraft to position a sensor network using
the shortest time in sensor deployment. Vazifehdan et al.
[28] proposed two energy-aware routing algorithms for
WANET, called reliable minimum energy cost routing
(RMECR) and reliable minimum energy routing (RMER).
However, the above methods need to retransmit a message
from the source to the destination upon a routing failure,
generating a certain delay. Also, most of these methods are
not energy-efficient due to their flooding-based topological
or geographical routing components. REFER is superior to
the previous WSAN routing protocols because it can simul-
taneously meet the requirements of real-time communica-
tion, fault-tolerance and energy-efficiency.

Most previous research on Kautz graphs focus on
exploiting the Kautz graph in the application layer of P2P
networks [14], [15], [16]. Zuo et al. [17] proposed to build a
Kautz graph overlay on the application layer of a MANET
in order to enhance the routing performance. However, due
to the topology inconsistency, the method uses MANET
multi-hop routing for the communication between two
neighboring Kautz nodes. Ravikumar et al. [29] and Li et al.
[16] studied the shortest and longest path routing. In BAKE
[15] and DFTR [18], a node uses the next shortest path when
it fails to forward the message along the shortest path. How-
ever, a node needs to use a routing generation algorithm
(equivalent to the process of building a tree) to find different
routes to a destination node and calculate their lengths,

which generate high energy consumption. Imase et al. [30]
identified the bounds of the three possible path lengths in
the worst case, but they did not indicate all disjoint paths,
the precise path length and the corresponding conditions,
which are identified in REFER.

3 REFER: A KAUTZ-BASED REAL-TIME

AND ENERGY-EFFICIENT WSAN

Building an overlay on a WSAN for data transmission can
avoid data flooding and hence enhance system scalability,
transmission speed and energy-efficiency [31]. A well-
designed overlay should be energy-efficient in topology
maintenance, resilient to node mobility, and enables effi-
cient and reliable routing. With this objective, we present
the applicability of the Kautz graph topology to the WSAN
overlay (Section 3.1), the Kautz graph embedding protocol
(Section 3.2) and the efficient fault-tolerant routing protocol
(Section 3.3).

3.1 Is Kautz Graph a Reasonable Topology
for WSAN Overlays?

When designing a WSAN overlay structure, we need to con-
sider the tradeoff between network degree and diameter.
The degree is the number of neighbors a node maintains
and the diameter is the maximum distance between any
two nodes. While a smaller degree generates lower mainte-
nance overhead (energy consumption), it leads to a larger
diameter and a longer transmission delay. Below, we study
whether the Kautz graph is a reasonable overlay topology
that achieves a tradeoff between degree and diameter for
WSANs.

Defination 1 [32]. In a Kautz graph Kðd; kÞ with degree d and
diameter k, nodes are labeled as (u1 . . .uk), where ui belongs to
an alphabet of dþ 1 letters ðA ¼ ð0; 1; ; dÞÞ, and ui 6¼uiþ1

(1 � i � k). The arc set of the Kautz digraph are
fðu1u2 � � �uk; u2u3 � � �ukukþ1Þj ui 2 A;ui 6¼ uiþ1g.
The left part of Fig. 1 shows an example of Kð2; 3Þ. For a

graph G, NðGÞ and EðGÞ denote the number of nodes and
edges of the graph, respectively. Graph G’s connectivity is
the minimum number of nodes whose removal results in a
disconnected graph. A d-connected graph is a graph whose
vertex connectivity is d or greater [33].

Defination 2 [33]. A graph connection optimization problem is
to find a d-connected n-vertex graph with the smallest connec-
tivity d given the number of vertices n and diameter k (k < n).

Lemma 3.1. A Kautz graph Kðd; kÞ is a d-connected k-diameter
n-vertex graph with minimum connectivity d.

Proof. Euler’s Degree-sum theorem [33] shows that for a
graph, jEðGÞj � NðGÞdminðGÞ where dminðGÞ is the mini-
mum degree d. If G is a d-connected graph with the mini-
mum degree, it must satisfy

jEðGÞj ¼ NðGÞdminðGÞ:

The Kautz graph meets this condition since its

EðGÞ¼ ðdþ 1Þdk and NðGÞ ¼ n ¼ ðdþ 1Þdk�1 [32]. tu
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It has been proved that the Kautz graph has a smaller
diameter than the de-Bruijn and hypercube topologies [29],
which have been widely studied as promising overlay
topologies [16]. Based on this finding, Definition 2 and
Lemma 3.1, we can get Proposition 3.1 below.

Proposition 3.1. A Kautz graphKðd; kÞ can help solve the graph
connection optimization problem by achieving a tradeoff
between degree and diameter with its minimum degree and rel-
atively shorter diameter.

Therefore, Kautz graph is a reasonable topology for
WSAN overlays to meet the energy-efficiency and real-time
requirements. The second issue that needs to consider in
designing a WSAN overlay involves the consistency
between the overlay topology and the underlying physical
topology, which is critical to real-time communication and
energy-efficiency. However, the limited transmission range
of sensors poses a challenge to achieving topology consis-
tency since two neighbor nodes in an overlay may be out of
the transmission range of each other, and cannot be neigh-
bors in the physical topology. Next, we study the precondi-
tion for the Kautz graph embedding to achieve topology
consistency.

Two neighbor nodes in the embedded graph overlay
must be within the transmission range of each other; other-
wise, the nodes cannot be neighbors in the underlying phys-
ical network. A Kautz graph has a Hamiltonian cycle [33], in
which a path traverses through every vertex in the graph
exactly once before returning to the starting vertex. In order
to achieve topology consistency in the Kautz graph embed-
ding, the underlying physical topology must also have a
Hamiltonian cycle. Proposition 3.2 shows the requirement
of a physical network for forming wireless nodes into a
Hamiltonian cycle.

Proposition 3.2. Assume that the nodes are uniformly distrib-
uted in a square area with space length b in a WSAN, in order
to guarantee that the selected nodes for graph embedding can
form a Hamiltonian cycle, the transmission range r of the
selected nodes should satisfy r � 0:8 � b.

Proof. d � n
2 and n � 3 are sufficient condition to guarantee

that the nodes in a graph can constitute a Hamiltonian
cycle, where d is the connectivity of a node, and n is the
total number of nodes in the graph [33]. With the
assumption that nodes are independent and identically
distributed (i.i.d.), when a node moves to the corner of

the square, it has the least coverage area (pr
2

4 ) in the

square. Then, the number of nodes in the coverage area

(i.e., the degree d of the node) is pr2

4b2
n. Thus

pr2

4b2
n � n

2
¼) b �

ffiffiffiffiffiffi
2p

p

2
r¼) r � 0:8 � b: (1)

tu
This proposition indicates that for a collection of sensors

that can form a Kautz graph, the coverage area of the sen-
sors is upper bounded by ð2 � rþ bÞ2 ¼ ð134 rÞ2. As the trans-
mission range of sensors r is limited, the coverage area of
the collection of sensors is limited. Therefore, we need a
number of Kautz graph cells with small diameter and

degree to cover a large area. Also, this proposition indicates
that the density of the sensors in a Kautz cell is high. There-
fore, a sensor awake/sleep scheme is needed, which can
save the energy of the sensors and ensure the connectivity
of Kautz cells. The awake/sleep scheme will be presented
in Section 3.2.4.

3.2 Kautz Graph Embedding Protocol

Proposition 3.2 indicates that the physically close sensors
need to be grouped into cells. Each cell is composed by
actuators and sensors. REFER embeds a Kautz graph into
each cell. It has been proved [14] that as the diameter k
decreases, the number of nodes in Kautz graph Kðd; kÞ
approaches the Moore bound [34]. That is, node density in
Kðd; kÞ increases as k decreases. Therefore, a Kautz graph
with a smaller diameter k should be a good choice for an
overlay to seamlessly cover a sensed region. The value of k
should be set to the maximum of all minimum hop distance
between any two nodes in the network. Based on the num-

ber of nodes n ¼ ðdþ 1Þdk�1 in a WSAN cell and k, the value
d can be determined. d is the smallest number that generates
the value closest to but smaller than n based on this equa-
tion. Here, we choose the Kautz graph Kð2; 3Þ as an exam-
ple to explain the REFER overlay. We assume the WSAN
meets the requirement of Proposition 3.2 and the sensors
are densely deployed in applications (e.g., habitat monitor-
ing [6], battlefield monitoring [1]).

Fig. 1 illustrates the architecture of REFER with an exam-
ple of a Kautz graph in a cell. Actuators and several selected
active sensors in each cell form a Kautz graph and the actua-
tors further constitute a DHT structure. We use resource-
rich actuators for the corner vertices of a Kautz graph
because they can directly communicate with each other
even though they are physically far apart. Although the
communication between two nodes in a WSAN is bi-
directional, we represent a WSAN as a directed graph
Gðd; kÞ in order to clearly present the routing. Communica-
tion in the other direction can be conducted by simply
reversing the direction. The DHT facilitates the information
transmission between cells. DHTs are well-known for their
scalability and dynamism-resilience. In addition, without
relying on energy-inefficient topological routing or geo-
graphic routing, the constructed DHT preserves the physi-
cal topology to enable the DHT routing algorithm to
transmit data along physically close actuators to its destina-
tion, thus leading to fast and energy-efficient routing.

Each WSAN cell has a cell ID (CID) (e.g, 1-16 in Fig. 1).
Each node in a cell with CID has ID ¼ (CID, KID), where
KID ¼ fu1 . . .ui . . .uk j ui 2 A, ui 6¼ uiþ1g (e.g, 201) is the
Kautz ID in the Kautz graph, where alphabet A contains
dþ 1 distinct symbols. For a pair of nodes U ¼ u1u2 � � �uk

and V ¼ v1v2 � � � vk, we use l ¼ LðU; V Þ to denote the length
of the longest suffix of node U that appears as a prefix of
node V. The distance between two cells is measured by the
euclidean distance between their CIDs, and the shortest dis-
tance between Kautz nodes U and V in one cell
P ðU; V Þ ¼ k� LðU; V Þ. For example, the distance between
120 and 201 is k� Lð120; 201Þ ¼ 3� 2 ¼ 1. An actuator stays
in several adjacent cells and hence has different CIDs for
different cells. In order to reduce the system complexity, we
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let each actuator have the same KID used for all Kautz
graphs it resides in.

To achieve the consistency between overlay and physi-
cal topology, we rely on node communication to deter-
mine node ID since the real node communication
distance reflects node physical distances. The process of
embedding Kautz graph to a cell is actually the process of
Kautz ID assignment. It involves two steps: actuator ID
assignment and sensor ID assignment. We present the
details of each step below.

3.2.1 Actuator ID Assignment

The actuator ID assignment process detects triangles among
the neighboring actuators and sequentially assigns IDs to
the actuators. For this purpose, we first introduce a distrib-
uted method for a large-scale network and then introduce a
centralized method for a small-scale network. Note that this
process is only conducted once right after the initial system
deployment. We use the triangulation algorithm in [35] to
construct actuators to triangles.

In the distributed method, neighboring actuators
exchange the information with each other. We first select one
node as a starting node. The starting node finds its nearest
neighbor and builds an edge to it. The two nodes connected
by this edge (edged nodes) choose a nearby node to form a
triangle (cell) so that the triangle’s circumcircle is minimized.
We call this node the nearest neighbor of the edged nodes or
the edge. To find the nearest neighbor on one side of edge eij
connecting nodes, si and sj, these edged nodes communicate
with each other to determine their shared neighbors. For
each shared neighbor skm , the perpendicular bisectors of eikm
and ejkm intersect with the perpendicular bisector of eij at a
point. Then, the shared neighbor that produces the least dis-
tance between such a point and eij is the nearest neighbor
(denoted by sk) of eij. Next, si and sj connect to sk to form tri-
angle 4sisjsk and generate CID ¼ 1 for this triangle. Then,
the edged nodes conduct the same operation by finding their
nearest neighbor to construct a new triangle with the mini-
mum circumcircle and assign the triangle CID ¼ 2. This pro-
cess repeats until the triangulation completes. Thus, closer
cells have closer CIDs. The used CIDs are propagated along
the nodes as the triangulation proceeds to ensure that the
same CIDwill not be usedmore than once.

In the centralized method, each actuator A has a value
HðAÞ; the consistent hash value [36] of the actuator’s IP
address. Neighboring actuators exchange the information
of their neighbors along with their HðAÞ, and finally each
actuator learns the global topology of actuators after a
sufficient time period. To avoid redundant information
exchanges, a node does not send out redundant information
it has received. The actuator with the minimum HðAÞ func-
tions as a starting server to assign CIDs to others. It locally
partitions the global topology to a series of triangles and
assigns a distinct CID to each triangle using the same pro-
cess explained previously.

In both distributed and centralized methods, after a tri-
angle is formed, the KIDs for the actuators in the triangle
are then determined. Neighboring actuators cannot have
the same KID since they are in the same cell. For this pur-
pose, we employ the sequential vertex-coloring algorithm
[33], in which a node is assigned with the smallest color

number not used by its neighbors. As only three actuators
are in Kautz graph Kðd; 3Þ, three colors (i.e., KID 012, 120,
201) are needed. Finally, each actuator is assigned with an
ID ¼ (CID, KID). For example, in Fig. 1, the IDs of the actua-
tors in cell 5 are ð5; 201Þ, ð5; 120Þ and ð5; 012Þ. For simplicity,
we can also use a traditional way in sensor networks to
assign IDs to actuators; that is, the IDs of actuators are pre-
defined before they are deployed.

3.2.2 Sensor ID Assignment

After the actuators in each cell receive their IDs, they select
active sensors in the cell to be Kautz nodes to form a com-
plete Kðd; 3Þ graph. Algorithm 1 shows the KID assignment
algorithm to select Kautz nodes to construct a Kautz graph.
It has three steps:

1) the Kautz nodes connecting the actuators in a Kautz
graph are selected (Lines 1-8),

2) the Kautz nodes connecting these selected Kautz
nodes are selected (Lines 9-16), and

3) the remaining Kautz nodes in the Kautz graph are
selected (Lines 17-18).

For KID ¼ kid, we use kidl to denote the KID after left
rotating kid once. The successor actuator of actuator kid,
denoted by sucðkidÞ, is the actuator that has KID ¼ kidl in
the same Kautz graph. For example, in Fig. 1, ð5; 120Þ *
ð5; 201Þ* ð5; 012Þ* ð5; 120Þ, where* here means successor
actuator.

Algorithm 1. Pseudo-code for (CID, KID) assignment on
sensors (i.e., Kautz graph construction)

1: /*Executed by an actuator for selecting the Kautz nodes to
connect to its successor actuators*/

2: if no Kautz nodes have been selected to connect to the
successor actuator with the same CID then

3: Broadcast a path query to its neighbors with TTL ¼ 2
4: end if
5: if received a path query then
6: Choose the sensors on the path with the highest

aggregated power as Kautz nodes
7: Notify the selected Kautz nodes of their assigned

(CID, KID); KID is sequentially assigned to them
8: end if
9: /*Executed by Kautz node sensor si for selecting Kautz nodes to

connect to other selected Kautz nodes*/
10: if si is the successor of an actuator and

HðsiÞ ¼ minðHðs 2 KÞÞ then
11: Send a query to the Kautz node sj that is the

predecessor of the actuator and
HðsjÞ ¼ maxðHðs 2 KÞÞwith TTL ¼ 2

12: end if
13: if received a query then
14: Choose the sensors on the path that has not been built

and has the highest aggregated power as Kautz nodes
15: Notify the selected Kautz nodes of their assigned

(CID, KID); KID is sequentially assigned to them
16: end if
17: //Select the remaining Kautz nodes in the Kautz graph
18: Build the connectivity to its successor Kautz node

In the first step, each actuator selects sensors with high
energy to connect to its successor actuator. For example,
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actuator ð5; 201Þ finds sensors to connect itself to its succes-
sor actuator ð5; 012Þ. Actuator kid (e.g., ð5; 201Þ) broadcasts
a path query message towards actuator sucðkidÞ (e.g.,
ð5; 012Þ) in the same cell with TTL (Time to live) ¼ 2,
which ensures the diameter k ¼ 3 for Kðd; 3Þ. Each for-
warding sensor includes the information of itself and its
energy level into the routing message. Finally, actuator
sucðkidÞ (e.g., ð5; 012Þ) receives a number of messages dur-
ing a certain time period. It selects a path with the highest
accumulated energy, and assigns (CID, KID) to the sensors
in the path. Each sensor’s CID equals to the actuator’s CID.
The KID is sequentially assigned to the sensors. If a
sensor’s predecessor in the path has KID ¼ (u1u2u3), its
KID is then (u2u3uk) where uk makes u2u3uk close to kidl.
For example, actuator ð5; 012Þ assigns IDs ð5; 010Þ and
ð5; 101Þ to the two sensors in the path from actuator
ð5; 201Þ to itself. Similarly, the other two paths are built:
ð5; 120Þ ! ð5; 202Þ ! ð5; 020Þ ! ð5; 201Þ and ð5; 012Þ !
ð5; 121Þ ! ð5; 212Þ ! ð5; 120Þ. In Fig. 1, we mark these
identified sensors connecting actuators in green color. To
avoid the case that a sensor is selected for different paths
connecting different pairs of actuators, the selected sensors
must be approved by the two end actuators and one sensor
can only be selected once. If an actuator receives two
approval requests simultaneously, it will handle one
request first to avoid the collision.

An actuator’s successor or predecessor is the sensor that
succeeding or proceeding itself in the path. For example,
the successor of actuator ð5; 012Þ is sensor ð5; 121Þ, and the
predecessor of actuator ð5; 201Þ is sensor ð5; 020Þ. In the
second step, we select sensors (orange nodes in Fig. 1) to
ensure that a message can traverse the path between each
pair of Kautz nodes. Specifically, we first choose the suc-
cessor of the actuator with the smallest KID¼ u1u2u3 ¼ 012
(i.e., Si ¼ u2u3u2 ¼ 121), and the predecessor of the
actuator with the largest KID ¼ u3u1u2¼201 (i.e.,
Sj ¼ u1u3u1 ¼ 020). Then, Si broadcasts a path query mes-
sage with TTL ¼ 2 towards Sj. Sj selects the path with the
highest accumulated energy and assigns KID ¼ u3u2u1
(i.e., 210) and KID ¼ u2u1u3 (i.e., 102) to the sensors in the
path. In the third step, using the same method, each
selected Kautz node selects other Kautz nodes to build the
connectivity to its successor Kautz node. For example,
Kautz nodes 210 and 102 find the node with the highest
battery power (the brown node in Fig. 1) to connect them-
selves, and assign it with KID ¼ u1u3u2 ¼ 021. Finally, all
the Kautz nodes are selected to construct a Kautz graph.

3.2.3 DHT-Based Upper Tier Structure

CAN [13] is a mesh-based structured P2P network, in
which nodes in a virtual multi-dimensional coordinate
space are dynamically partitioned and every node owns
a distinct zone. Each node maintains a neighbor set
including those nodes that hold coordinate zones adjoin-
ing its own zone. Using its neighbor set, a node routes a
message by simply forwarding it to the neighbor with
coordinates closest to the destination coordinates. REFER
builds actuators into a CAN by directly using CID as
CAN ID. Basically, each actuator exchanges its CID with
its neighbors and establishes its neighbor set. When an
actuator receives a message destined to a cell, it

forwards the message to its neighboring actuator with
the CID closest to the cell’s CID.

3.2.4 Energy-Efficient Topology Maintenance

In a large-scale WSAN where the number of low-price sen-
sors deployed in a target area is in the order of hundreds or
thousands, it is not necessary for all sensors to be active and
involved in data transmission. The sensors are usually oper-
ated in duty-cycle with awake and sleeping periods to save
energy [2]. As shown in Fig. 2, REFER sets three functional
states for sensors to maintain the Kautz overlay: active, wait
and sleep. Active nodes form a Kautz graph, and they peri-
odically exchange “Hello” messages to check the connectiv-
ity with their neighboring active nodes. Like other wireless
networks, the frequency for the “Hello” message exchanges
is determined by the application needs. A higher frequency
can ensure the connectivity of the network but generates a
high overhead and vice versa. The sleep scheduling in
REFER is based on sensor energy level and the connectivity
to other Kautz nodes. Each node in the sleeping mode peri-
odically wakes up to see if it can be a backup candidate for
a Kautz node. The selected candidate nodes stay in the wait
state. A candidate node should meet three requirements.
First, it must be able to communicate with a Kautz node.
Second, it has at least one neighboring Kautz node with bat-
tery power below a safety threshold or with a link weaker
than a threshold. Third, it can build connections with the
neighboring Kautz nodes of this Kautz node. Otherwise, it
cannot replace this node for an intact Kautz graph. A node
can check if it meets these requirements by contacting its
neighbors. When a Kautz node notices that its links to its
current neighbors are about to break or its battery power is
below a safety threshold, it selects one of its current candi-
date nodes to replace itself by passing its (CID, KID) to the
candidate and then goes to sleep. The candidate then noti-
fies its predecessor and successor in the Kautz graph, and
functions as a Kautz node and provides data forwarding
service. A node may be disconnected with its neighbors or
out of power before it is replaced. To handle this case, if a
node notices that its connectivity with another node is bro-
ken, it uses the previously introduced method to re-estab-
lish its failed neighbor. This ensures the connectivity of the
Kautz graph.

3.3 Efficient Fault-Tolerant Routing Protocol

Communication between sensors consumes high energy [2].
A tradeoff exists between fault-tolerance/real-time and
energy consumption in routing. A Kautz graph can help to
achieve a reasonable tradeoff. A Kautz graph with degree d
has d disjoint paths between any two nodes [29]. This topol-
ogy feature supports fault-tolerant routing protocols [15],
[18], in which if a node fails to forward a message along the

Fig. 2. Three states of sensors.
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shortest path, it can choose the successor in the second-
shortest path, then third-shortest path, and so on. For exam-
ple, Fig. 3a illustrates the 4 paths between node 0123 and
node 2301 in Kautz graph Kð4; 4Þ. After node 0123 initiates
or receives a message destined to node 2301, if node 1230 in
the shortest path fails to forward the message, 0123 chooses
the successor in the next shortest path, say node 1232. In
Fig. 1, node 102 locally chooses an alternative path from
itself to node 201 with 021 as the next hop (links with solid
arrows) when node 020 fails. However, in the previous
Kautz-based routing protocols, a node needs to use a rout-
ing generation protocol to find the d disjoint paths to a desti-
nation node and their lengths [18], which consumes
enormous amount of computing resources. To overcome
this shortcoming, REFER aims to develop a routing protocol
that can find successors quickly based only on node IDs
with low energy consumption.

3.3.1 Analysis of Kautz Graph Properties for Routing

In the U-V path, the next hop’s label is generated by left
shifting U one digit and appending a new digit vi at the
right side of U. Thus, in the routing along the shortest path,
node U0 greedily forwards data to the next hop U1 whose
suffix shares the maximum identical digits with the destina-
tion V, i.e., maxðLðU1; V ÞÞ. We call this routing protocol
greedy shortest protocol. An example of the shortest routing
path is: 12345 ! 23450 ! 34501. For any pair of nodes U-V,
there exists only a single shortest path, and its length is
k� l.

In the d U-V disjoint paths, U’s successors are the next
hops of U in the paths denoted by u2u3u4 . . .ukaiðuk 6¼ aiÞ.
Similarly, V’s predecessors are the previous hops of V in the
paths denoted by biv1v2:::vk�1ðv1 6¼ biÞ. In this paper, we
use ai � ½0; d	 to mean that ai are all different values in the
range of ½0; d	, and use ai 2 ½0; d	 to mean that ai is one value
in ½0; d	.
Defination 3. For a U-V pair (Fig. 4), the last digit of the succes-

sor of U in a path is called the out-digit of the path
(ai 2 ½0; d	), and the first digit of the predecessor in a path of V
is called the in-digit of the path (bi 2 ½0; d	).

In a U-V routing, if U’s successor fails to forward data,
simply choosing another successor may lead to an intersec-
tion between this U-V path and another U-V path, leading
to traffic congestion in the intersection node. To avoid the
congestion, a key question is how to proactively find the
intersection nodes and avoid these nodes in routing.

Seeking the answer is also the process of exploring the d-dis-
joint U-V paths. We show the process of our exploration in
below. We finally reach Theorem 3.8, which allows a node
to directly discover d-disjoint paths and their lengths by
simply comparing its own KID and the destination KID.

Proposition 3.3. In a U-V path, if U’s successor u2u3u4 . . .ukai

ðai 2 ½0; d	 & ai 6¼ ukÞ uses the greedy shortest protocol, the
generated in-digit are

b ¼
uk�l if ai ¼ vlþ1 ðshortest pathÞ
uk if ai ¼ v1
ai if ai 6¼ v1:

�
if ai 6¼ vlþ1 (non-shortest path)

8<
:

Proof. For a U-V path with u2u3u4 . . .ukaiðai 2 ½0; d	 &
ai 6¼ ukÞ as U’s successors, if ai ¼ vlþ1, the U-V path is the
shortest path and uk�lþ1 ¼ v1. Thus, the in-digit of this
path is uk�l. In the non-shortest U-V paths, if ai ¼ v1, the
in-digit is uk. If ai 6¼ v1, the in-digit of the path equals ai,
since the next hop is u3u4 . . .ukaiv1 tu

Example for Proposition 3.3. In Fig. 3a, because U and V
share digits 23, l ¼ LðU; V Þ ¼ 2. For the shortest path tra-
versing successor 1230, the in-digit of the path is
uk�l ¼ 1. For the successor with ai ¼ v1, i.e., 1232, the in-
digit is uk ¼ 3. For other successors, 1231’s in-digit is
ai ¼ 1 and 1234’s in-digit is ai ¼ 4.

Proposition 3.4. For a U-V pair, paths traversing nodes having
the same in-digit b will intersect at bv1v2 . . . vk�1 using the
greedy shortest protocol.

Proof. For a U-V pair, data in a node with in-digit b will be
forwarded to the predecessor of V bv1v2 . . . vk�1 using the
greedy shortest protocol. tu

Example for Proposition 3.4. Considering the U-V pair in
Fig. 3a, we can see that the successor 1230 of the shortest
path shares the same in-digit (i.e., 1) as successor 1231 if
both of these successors forward data with the greedy
shortest protocol. The two paths will intersect at 1230 as
shown by the dotted line.

Proposition 3.5. The non-shortest paths with different out-digits
will not intersect with each other.

Proof. Suppose two non-shortest paths with different out-
digits have an intersection. Using the greedy shortest
protocol, the paths will have the same in-digit. It conflicts
with Proposition 3.3, which shows that the non-shortest
paths with different out-digits have different in-digits. tu

Proposition 3.6. For a U-V pair, when U’s successors use the
greedy shortest protocol, only when uk�l 6¼ vlþ1, the shortest
path intersects with the non-shortest path which has ai ¼ uk�l.

Proof. According to Proposition 3.3, we know that the out-
digit and in-digit of the shortest path are ai ¼ vlþ1 and

Fig. 3. Examples of routing paths in a Kautz graph.

Fig. 4. An example of a path between a pair of nodes.
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bi ¼ uk�l, respectively. The in-digits of other non-shortest
paths are bi ¼ ðai � ½0; d	 & ai 6¼ vlþ1Þ. If uk�l ¼ vlþ1, then
ai 6¼ uk�l. Then, none of the in-digits of non-shortest
paths equal to the in-digit of the shortest path. Therefore,
the in-digits of all d disjoint U-V paths (shortest and non-
shortest paths) are different, i.e., bi � ½0; d	. If uk�l 6¼ vlþ1,
one non-shortest path’s in-digit is uk�l, which is also the
in-digit of the shortest path. Thus, the in-digit of two of d
disjoint paths is uk�l. Based on Proposition 3.4 and Prop-
osition 3.5, the proof is completed. tu

Example for Proposition 3.6. In Fig. 3a, the U-V pair satis-
fies uk�lðu2¼1Þ6¼ vlþ1ðv3 ¼ 0Þ. There are four successors
for the total d ¼ 4 disjoint paths of the U-V pair: nodes
1230, 1231, 1232 and 1234. Node 1230 is in the shortest
path (when a ¼ 0) and its in-digit is uk�l ¼ 1. The in-dig-
its of the remaining paths (when a 6¼ 0) are 1, 3, and 4.
Thus, the in-digit of two of the d disjoint paths is
uk�l ¼ 1. Nodes 1230 and 1231 have the same in-digit 1,
the paths traversing them using the greedy shortest pro-
tocol intersect at 1230. In Fig. 3b, the U-V1 pair does not
satisfy uk�lðu2 ¼ 1Þ 6¼ vlþ1ðv3 ¼ 1Þ. It has four successors
for U in the total d ¼ 4 disjoint paths: nodes 1230, 1231,
1232 and 1234. Since node 1231 is in the shortest path, its
in-digit is uk�l ¼ 1. The in-digits of the non-shortest paths
are 0, 3 and 4, i.e., bi ¼ ðai � ½0; 4	&ai 6¼ vlþ1 ¼ 1Þ. Thus,
the in-digits of total d disjoint paths are different, i.e.,
bi � ½0; 4	. As shown in the figure, the paths do not
intersect.

Defination 4. For a U-V pair with uk�l 6¼ vlþ1, the U’s successor
u2u3 . . .ukuk�l with ai ¼ uk�l is called a conflict node that
leads to an intersection with the shortest path.

Proposition 3.7. For a U-V pair, the conflict node u2u3 . . .
ukuk�l should forward data to node u3u4 . . .ukuk�lvlþ1 in
order to avoid intersection with the shortest path.

Proof. In addition to the conflict node u2u3 . . .ukuk�l, other
successors of U are u2u3uk�lukaiðai � ½0; d	 & ai 6¼ vlþ1Þ
and their in-digits are bi ¼ ðai � ½0; d	 & ai 6¼ vlþ1Þ. Thus,
having vlþ1 as the in-digit of the path for the conflict
node results in different in-digits for different d paths,
i.e., bi � ½0; d	. That is, no paths exist with the same in-
digit. Based on Proposition 3.5, the proof is completed. tu

Example for Proposition 3.7. In Fig. 3a, the in-digits of non-
shortest paths are 1, 3, 4, i.e., bi ¼ ðai � ½0; 4	 & ai 6¼
vlþ1 ¼ 0), respectively. The conflict node is 1231 (uk�l ¼
u2 ¼ 1). To avoid intersection with the shortest path,
node 1231 uses vlþ1 ¼ 0 as its in-digit by forwarding data
to 2310. Thusly, the d-disjoint paths with bi � ½0; 4	 for
the U-V pair are built.

Theorem 3.8. When node U ¼ u1u2 . . .uk forwards data to node
V ¼ v1v2 . . . vk, the successor, path length and corresponding
condition of the d disjoint U-V paths are

ð1Þ u2 . . .ukuk�l; kþ 2; when uk�l 6¼ vlþ1;
ð2Þ u2 . . .uk�l . . .ukvlþ1; k� l; the shortest path;
ð3Þ u2 . . .ukv1; k; when uk 6¼ v1;
ð4Þ u2 . . .ukai; kþ 1; otherwise,

8>><
>>:

where ai 6¼ ðv1; vlþ1; uk�lÞ.

Proof. (1) According to Proposition 3.6, when uk�l 6¼ vlþ1,
there is one non-shortest path that intersects with the
shortest path. According to Proposition 3.7, this path
enters a path with in-digit vlþ1. The shortest length of
this path to V is k. Therefore, the entire path length is
kþ 2; (2) For a U-V pair, the maximum length of the
shortest path is k� l; (3) When uk 6¼ v1, there exists a suc-
cessor of U with an out-digit of v1. The path length of the
path starting from this successor is k� 1. Therefore, the
path length of the U-V pair through this successor is k;
(4) For all other cases, each successor starts with out-digit
v1. The path length from the successor to the destination
is k. Then, the lengths of the U-V paths are kþ 1. tu

3.3.2 REFER Routing Protocol

The REFER routing protocol consists of intra-cell communi-
cation and inter-cell communication. The intra-cell commu-
nication is developed based on Theorem 3.8. The theorem
incorporating Proposition 3.7 enables a node to quickly and
efficiently determine the different successors of the d-dis-
joint paths from itself to the destination node and corre-
sponding path lengths simply based on node IDs without
relying on an energy-consuming method (e.g., tree [18]).
Algorithm 2 shows the fault-tolerant routing algorithm in a
Kautz graph in the intra-cell communication. When node U
initiates or receives a message destined to node V, it initially
chooses its successor in the shortest path to V (as in the
greedy shortest protocol). If the successor is congested/
failed or the link to the successor is broken down, based on
Theorem 3.8, without the need to notify the source node, U
locally chooses the second shortest path, third shortest path,
and so on until a successor capable of forwarding data is
found. If a number of paths with the same path length exist,
U randomly chooses a successor among these paths. To for-
ward the message to the successor, the node chooses a path
with the lowest delay [8], which could be either a multi-hop
path or direct path. After a node receives U’s message, it
repeats the same process in choosing its successor for mes-
sage routing. For example, in Fig. 3a, node 0123 wants to
send a message to 2301. It first uses the greedy shortest pro-
tocol to forward the message to node 1230. If node 1230 is
congested/failed or the link between 0123 and 1230 is bro-
ken, node 0123 chooses the successor in the second shortest
path. It compares its own KID with 2301’s KID based on
Theorem 3.8. Since uk 6¼ v1 and uk�2 6¼ v3, the successors
and path lengths of the remaining 3 disjoint paths are (node
1231, k þ 2 ¼ 6), (node 1232, k ¼ 4), and (node 1234, k þ 1 ¼
5). Then, node 0123 chooses the successor 1232 in the second
shortest path (i.e., 4). If node 1232 has failed to forward the
message, the successor 1234 in the third shortest path (i.e.,
5) is chosen. After node 2342 receives the message, it repeats
the same process by executing the routing protocol. Note
that the routing is based on the Kautz node indices on the
Kautz graph, a routing hole in which a node does not have
a neighbor to forward a message will not occur as long as
the Kautz graph topology is maintained.

In REFER, when a node sends out data with destination
(cid, kid), it forwards the data to its actuator by intra-cell
transmission. The data is then forwarded to its destination
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cell identified by cid via inter-cell transmission, and subse-
quently forwarded to the destination node identified by kid
via intra-cell transmission. In the inter-cell transmission,
data is routed based on the CAN P2P routing protocol, in
which a node forwards the data to its neighbor closest to the
destination. For example, in Fig. 1, the actuator with CID ¼
14 wants to send a message to node ð5; 201Þ, the actuator for-
wards the message to its neighbor actuator with CID ¼ 7,
which is the closest to 5 in its neighbor set. Then, the mes-
sage receiver forwards the message to its neighbor actuator
with CID = 4, which further forwards the data to its neigh-
bor actuator in cell 5. Lastly, intra-cell transmission is used
to forward the data to node ð5; 201Þ. Because the REFER
overlay preserves the consistency between overlay topology
and underlying physical topology, nodes with virtually
close IDs are also physically close. Thus, the data is trans-
mitted between physically close nodes, enhancing the real-
time performance and energy-efficiency.

Algorithm 2. Pseudo-code for the fault-tolerant routing
algorithm in a Kautz graph

1: /*Executed by every node in the network*/
2: while initiate or receive data to forward do
3: Identify the multiple paths to the destination based on

Theorem 3.8
4: Order the successors of the paths in the ascending order

of the path length
5: Select the successor in the ordered list that is capable of

forwarding the data
6: Transmit the data to the selected successor
7: end while

Since the alternative paths are not as short as the shortest
path length, taking alternative paths with more sensors
would consume more sensor energy. In the Kautz graph,
the maximum path length is kþ 2 and the minimum path
length is k� l, and there are at least d� 3 paths with trans-
mission lengths equal to kþ 1. Using the longest path
increases the length of the shortest path by
ðkþ 2Þ � ðk� lÞ ¼ ð2þ lÞ 2 ½2; 5	 hops for the Kðd; 3Þ Kautz
graph. We see that the path increase and hence the addi-
tional energy consumption are not significant.

3.3.3 Multi-Path Based Routing Within a Kautz Cell

Although the Kautz-based routing algorithm provides high
fault tolerance, if the failure probability of the mobile nodes
is high, an alternative path will always be used, which
greatly increases the transmission delay. With the assump-
tion of the i.i.d. distribution, suppose the failure probability
of each node is p, then the transmission success probability
of a path between ðU; V Þ with length c hops is
P ð1Þ ¼ ð1� pÞc. Given a constant c, as p increases, P ð1Þ
decreases polynomially. Given a constant p, as c increases,
P ð1Þ also decreases exponentially. In the Kautz-based rout-
ing, as p increases, c also increases because an alternative
path with a longer path is used, then P ð1Þ decreases
extremely fast, leading to a high packet transmission drop-
ping rate. To enhance the routing fault tolerance of the
Kautz routing protocol when the node failure probability is
high, the source node can use all the shortest paths to all the

actuators in its cell for the packet routing. If this method is
still not sufficient to handle the problem, the source node
can use a multi-path routing protocol. Recall that a Kautz
graph with degree d has d disjoint paths between any two
nodes. When a source node suffers a large packet dropping
rate or long packet transmission delay, it chooses to use
multiple top-shortest paths for packet routing. The other
packet receivers still follow Algorithm 2 in packet forward-
ing. Let’s use �c to denote the average path length of the d
disjoint paths of a routing. Then, given the average success

probability of a single path routing �P ð1Þ ¼ ð1� pÞ�c, the suc-
cess probability of the multi-path based routing protocol
with bmultiple paths is

P ðbÞ ¼ 1� ð1� �P ð1ÞÞb ¼ 1� ð1� ð1� pÞ�cÞb: (2)

The equation shows that given a constant �P ð1Þ, as b

increases, P ðbÞ increases. When b ¼ 2, P ð2Þ ¼ 1� ð1� ð1�
pÞ�cÞ2 ¼ ð2ð1� pÞ�c � ð1� pÞ2�cÞ ¼ ð1� pÞ�cð2� ð1� pÞ�cÞ. When
p ¼ 0:5 and �c ¼ 4, the success probability of P ð2Þ is almost
twice of P ð1Þ. Though larger b enhances the fault tolerance
more, the value of b cannot be too large because transmitting
more packets will generate more interference and hence
reduce the throughput and increase delay. It also leads to
more energy consumption. Thus, it is important to deter-
mine b that achieves an optimal tradeoff between through-
put, delay, energy consumption and transmission cost.

3.3.4 Energy-Efficient Multicasting between Kautz Cells

In a WSAN, when a sensor detects an event, it may need to
notify a number of actuators to collaboratively handle the
event. It is indicated that the energy consumed by forward-
ing sensed data between two nodes is twice the energy con-
sumed for communication overhead (such as hello
messages and control messages) between two nodes [37].
Thus, when there are many destinations, using CAN rout-
ing algorithm to send sensed data to multiple destinations
may consume much energy.

When the actuator of a source sensor (i.e., source actua-
tor) multicasts sensed data to multiple destination nodes, in
order to reduce the energy consumption in data forwarding,
it can use multicasting and reduce the number of data for-
warding operations between nodes. Thus, we propose a
multicasting algorithm, in which each actuator builds a tree
and multicasts data to the destinations using the minimum
number of forwarding operations.

As we mentioned in Section 3.2, neighboring actuators
exchange the information of their neighbors to build and
maintain the Kautz-based topology. Finally, each actuator
can learn the global topology of actuators and the hop dis-
tance between actuators. Based on the global topology, each
node treats itself as root node and builds a minimum span-
ning tree (as shown in Fig. 5) using the Prim’s algorithm
[38]. In the tree, the weight of an edge between two actua-
tors equals their hop distance. The process of building such
a tree is the process for a node to iteratively find the closest
nodes to itself and connects to the nodes. The minimum
spanning tree is characterized by the feature that the sum of
the weights from all other nodes to the root node is the
minimum. This means that a node sending sensed data
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to all other nodes along the tree minimizes the energy con-
sumption. Algorithm 3 shows the pseudo-code of building
the minimum spanning tree and the multicasting algorithm.
Before an actuator forwards sensed data to several destina-
tion actuators, based on its minimum spanning tree, the
actuator figures out the routes to forward the message that
leads to the minimum forwarding operations. It first finds
the forwarding path for each destination and then combines
the common paths of different destinations. The source
actuator piggybacks the path information on the data, so
the data receivers forward data based the path information.
That is, the data is forwarded along one path and is repli-
cated when it must be forwarded along different paths to
the destination nodes in the tree.

Algorithm 3. Pseudo-code for minimum spanning tree
construction and the multicasting algorithm

1: /*Executed by every actuator vi in the network*/
2: Learn the global topology of actuators ðV;EÞ by

information exchange
3: Initialize its minimum spanning tree ðVmin; EminÞ

(Vmin ¼ f;g; Emin ¼ f;g)
4: for each vertex u in graph ðV;EÞ do
5: u:key ¼ 1 and u:minV ¼ null
6: end for
7: vi:key ¼ 0
8: Enqueue all v 2 V to minimum-heap Q sorted by the key
9: while Q is not empty do
10: //find (v 2 Q, u =2 Q) with minimal weightðv; uÞ and add v

and Eðu; vÞ to (Vmin; Emin)
11: Dequeue vertex vwith the minimal key from Q
12: Add v and Eðv; v:minV Þ to (Vmin; Emin)
13: for each adjacent vertex u of v do
14: u:key ¼ weightðv; uÞ
15: if (u 2 Q) and (weightðv; uÞ<u:key) then
16: u:key ¼ weightðv; uÞ, u:minV ¼ v
17: end if
18: end for
19: end while
20: /* Executed by actuator vi in sending sensed data*/
21: //Calculate paths to the destination nodes
22: Find the forwarding path for each destination
23: Combine the common forwarding path of different

destinations
24: Send the data to the next hops in the paths along with the

calculated paths
25: /* Executed by actuator vi in forwarding sensed data*/
26: Forward received data to the next hops specified in the

received data

Fig. 6 shows an example of the comparison of the P2P
routing versus the multicasting algorithm. We see that to

forward data to three different destination nodes, the P2P
routing needs 8 forwarding operations while the multicast-
ing only needs five forwarding operations, which greatly
reduces the energy consumption for transmission overhead
in the system. If there is a change in the global topology,
affected nodes update their minimum spanning trees
accordingly. Since the actuators are comparably stable in
our study model, the trees would not be updated fre-
quently. For urgent events that need to quickly notify the
destination actuators, we can use flooding instead of
multicasting.

4 PERFORMANCE EVALUATION

We used NS-2 [39] to evaluate the performance of REFER in
comparison with the DaTree [6] tree-based system, the D-
DEAR [4] mesh-based system, and the Kautz-based overlay
[17] (denoted by Kautz-overlay) for WSANs. To make the
systems comparable, we use the topological routing in [40]
for node communication. In DaTree, one actuator (tree root)
and its physically close sensors form a tree. Each sensor
belongs to only one tree and forwards its detected events to
its tree root. If a sensor’s link to its parent breaks in routing,
the sensor broadcasts a message to the root in order to
update its parent. In D-DEAR, physically close sensors are
clustered together and a sensor with more energy is selected
as the cluster head, which maintains a multi-hop path to a
close actuator. Messages are sent from sensors to their clus-
ter head, and then further forwarded to the close actuator.
The cluster heads also use broadcast to update the paths to
the actuator upon a routing failure. We used REFER’s rout-
ing protocol in Kautz-overlay to have a fair comparison. In
Kautz-overlay, when a node fails to forward a message to
another node, it uses broadcasting to re-establish a path to
the node.

Unless otherwise specified, five actuators were uniformly
distributed in a 500 
 500 m area and 200 sensors were i.i.d.
distributed around the actuators, which form 4 Kð2; 3Þ
Kautz cells. Such simulation scenario is similar to that in
[41]. The transmission ranges of sensors and actuators were
set to 100 and 250 m, respectively. Every 10 seconds, we ran-
domly chose five source nodes to transmit data to their
nearby actuators.

Sensors communicate with each other using the IEEE
802.11 protocol. In the simulation, each sensor randomly
selects a destination point and moves to that point with a
speed randomly selected from [0, 3] m/s, unless otherwise
specified. The warmup time and simulation time were set to
100 and 1000 s, respectively. Since most packets can arrive
at the destinations within 1s, we only counted those arriving
at the destination within 0:6 s into the throughput in order

Fig. 5. A minimum spanning tree.
Fig. 6. Forwarding sensed data between Kautz cells.
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to show the real-time transmission performance. We call
these packages QoS-guaranteed data. The amounts of
energy consumed in the transmission and receiving modes
were set to 2 and 0.75 Joules/packet [42], respectively. All
experimental results report the 95 percent confidence inter-
vals. We use the following metrics for the performance eval-
uation: (1) Throughput. The size of received data by all
actuators per second. A high throughput implies higher
fault-tolerance and real-time performance. (2) Delay. The
average latency for the transmission of QoS-guaranteed
data. Shorter delay indicates higher real-time performance.
(3) Energy consumed in topology construction/communication.
The total consumed energy of all sensors in topology con-
struction and in node communication for data forwarding
and topology maintenance, respectively. Less consumed
energy indicates higher energy-efficiency of a system.

4.1 Mobility Resilience

In this experiment, a node’s speed was randomly selected
from [0, 5] m/s. Fig. 7a shows the throughput of each system
versus the average node mobility speed x=2. It demonstrates
that higher node mobility leads to a slight throughput
decrease in REFER, moderate throughput decrease in
DaTree and D-DEAR, and a sharp throughput decrease in
Kautz-overlay. REFER directly embeds Kautz graphs into
the physical topology in order to keep the topology consis-
tency. Therefore, messages are quickly forwarded along
physically close nodes. Higher mobility leads to more mes-
sage forwarding failures. With REFER’s routing protocol, a
node can quickly use an alternative path from itself to the
destination upon a forwarding failure. Thus, REFER can for-
ward more messages in a limited time, leading to a high
throughput. REFER’s slight decrease in throughput is caused
by the slightly longer lengths of the alternative paths. In D-
DEAR, only cluster heads need to maintain long multi-hop
paths to actuators, and all other sensors can directly reach
their cluster heads. When a multi-hop path breaks, a cluster
head uses broadcasting to find a new path to an actuator.
The delay for the multi-hop path recovery and message
retransmission results in the decrease in throughput. In
DaTree, if a sensor fails to forward a message to its parent, it
uses broadcasting destined to the root for link reestablish-
ment with a new parent, leading to a long delay and low
throughput. Since DaTree has more nodes being affected by
the mobility, its overall throughput is much smaller than D-
DEAR in a highlymobile environment.

Fig. 7b shows the energy consumed in communication
for each system versus node mobility. The figure illustrates
that the consumed energy of all systems increases as node

mobility increases. This is because higher mobility triggers
more path updates. The figure also shows that REFER
consumes significantly less energy than others, and Kautz-
overlay and DaTree consume much more energy than
D-DEAR. By avoiding message retransmission and main-
taining topology consistency, REFER consumes low energy
in message transmission. In REFER’s topology mainte-
nance, nodes only need to periodically probe their nearby
neighbors and replace them if they cannot continue to be
the Kautz nodes. Therefore, REFER’s consumed energy
exhibits a slight increase when node mobility increases. In
D-DEAR, upon a forwarding failure, a cluster head needs
to use broadcasting to rebuild the routing path to its actua-
tor, so its consumed energy increases rapidly as the node
mobility increases. In DaTree, upon a forwarding failure, a
node needs to use broadcasting to find a new parent and
retransmit the message. Since DaTree needs all nodes to
update links rather than partial nodes as in D-DEAR,
DaTree consumes more energy than D-DEAR, especially in
a highly mobile environment. In Kautz-overlay, the multi-
hop paths between the neighboring overlay nodes are
more likely to break up with high mobility, consuming
more energy in path updates. Because Kautz-overlay needs
to maintain multiple consecutive multi-hop paths, it con-
sumes much more energy than DaTree in a highly mobile
environment. It is interesting to see that when mobility is
0.5 m/s, Kautz-overlay consumes less energy than DaTree.
Since fewer path updates and message retransmissions
occur in a low mobile environment, Kautz-overlay con-
sumes less energy than DaTree.

4.2 Fault-Tolerant Routing

We define faulty nodes as broken-down nodes that cannot
function normally. We randomly chose a set of faulty nodes
in the system every 10 s and recovered the previous set of
faulty nodes. The number of faulty nodes was set to 2x,
where x is randomly chosen from ½1; 5	. Fig. 8a plots the
average transmission delay versus the number of faulty
nodes. We notice that as the number of faulty nodes
increases, the delays of DaTree and D-DEAR grow faster
than REFER and Kautz-overlay. This is because of the fault-
tolerant routing in REFER and Kautz-overlay which enables
a node to use an alternative path upon a forwarding failure.
Their slight delay growth is caused by the lengthened rout-
ing path of an alternative path. However, Kautz-overlay’s
multi-hop transmission between two neighboring Kautz
nodes leads to long transmission delay. In contrast, REFER
keeps the topology consistency and enables neighboring

Fig. 7. Performance of mobility resilience. Fig. 8. Performance of fault-tolerant routing.
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Kautz nodes in a Kautz routing path to directly communi-
cate with each other, resulting in the least delay.

In DaTree, every node needs to use broadcasting to send
a message to its actuator to rebuild a link to a new parent
upon a forwarding failure. More faulty nodes generate
more link re-establishments, leading to higher transmission
delay. In D-DEAR, as only cluster heads rather than all
nodes need to update the transmission paths to the actua-
tors, it generates less transmission delay than DaTree. It is
intriguing to see that DaTree has lower delay than Kautz-
overlay when the number of faulty nodes is less than 6, but
it has higher delay thereafter. DaTree usually has one multi-
hop path while Kautz-overlay has a number of consecutive
multi-hop paths in one routing. When there are only a few
faulty nodes, most messages can be transmitted success-
fully. Consequently, DaTree generates lower delay due to
its shorter path length. More faulty nodes trigger more for-
warding failures, for which DaTree needs message retrans-
mission while Kautz-overlay does not. Therefore, DaTree
produces higher delay than Kautz-overlay.

Fig. 8b shows the throughput of systems versus the
number of faulty nodes. It shows that the throughput of
all systems decreases as the number of faulty nodes
grows. This is because more faulty nodes trigger more
message drops and delayed transmission. We can also see
that the throughput of REFER and Kautz-overlay
decreases slower than that of DaTree and D-DEAR due to
their fault-tolerant routing as explained in Fig. 8a. In
DaTree and D-DEAR, upon a routing failure due to faulty
nodes, the delay from path re-establishment reduces the
throughput during the simulation time. Faulty nodes
only affect the paths between the cluster heads and actua-
tors in D-DEAR, but affect the paths between all sensors
and the actuators in DaTree. Therefore, D-DEAR gener-
ates higher throughput than DaTree. Because Kautz-over-
lay produces a much longer transmission path for one
message transmission than all other systems, it produces
the least throughput during the limited simulation time.

4.3 Real-Time Transmission

Fig. 9a shows the delay of each systemwhen the network size
was varied from 100 to 400. As the number of nodes in the
system increases, the delay remains nearly constant in
REFER, moderately increases in D-DEAR, while sharply
increases in DaTree and Kautz-overlay. Also, DaTree and
Kautz-overlay generate much higher delay than D-DEAR
and REFER when the number of nodes is larger than 100. In
REFER, messages are always forwarded between physically
close nodes. Also, since the number of nodes in a basic cell is

fixed, the distances of message transmission do not change
as the network size increases. Further, REFER’s routing pro-
tocol can reliably forward messages without retransmission.
Consequently, its transmission delay remains nearly con-
stant. In D-DEAR, only the transmission path lengths
between cluster heads and actuators increase as network
size grows, thus its overall transmission delay slightly
increases. The reason for the sharp increase in DaTree and
Kautz-overlay is because the path lengths between all sen-
sors and their actuators increase as network size increases,
since all sensors in the system function as relay nodes for
message forwarding. It is intriguing to see that when the
number of nodes is 100, DaTree generates approximately the
same delay as REFER, which is less than that of D-DEAR.
This is because when the network scale is small, many nodes
are close to the actuators. In DaTree, many sensors can
directly send messages to actuators. In D-DEAR, even if a
sensor is close to an actuator, it still needs to send its mes-
sages to its cluster head, which further forwards themessage
to the actuator, resulting in longer delay.

4.4 Scalability and Energy-Efficiency

Fig. 9b demonstrates the energy consumed in communica-
tion for each system versus network size. Here, as the net-
work size increases, the consumed energy of REFER shows
a marginal increase while that of DaTree, Kautz-overlay
and D-DEAR exhibits a rapid increase. The result verifies
the high energy-efficiency and scalability of REFER. Recall
that REFER chooses a multi-hop path rather than a direct
path for routing between neighboring Kautz nodes if the
multi-hop path leads to lower delay. Therefore, as the net-
work size increases, REFER has higher probability of having
a slightly longer multi-hop with lower delay, resulting in a
slight increase in the consumed energy. In D-DEAR, DaTree
and Kautz-overlay, the path length increases as the network
size increases. This increases the probability that a path is
broken and hence triggers more path updates. Thus, the
consumed energy of these systems increases quickly. We
also observe that DaTree consumes more energy than
D-DEAR and Kautz-overlay. The consumed energy in com-
munication is for message transmission and topology
updates. The routing paths between all sensors and actua-
tors increase in DaTree, while only those between the clus-
ter heads and actuators increase in D-DEAR. Thus, DaTree
needs more energy than D-DEAR. In a moderately mobile
environment, message transmission dominates the influ-
ence on the energy consumed due to fewer topology
updates. Kautz-overlay does not need message retransmis-
sion upon routing failure due to its fault-tolerant routing
protocol, while DaTree needs message retransmission. Con-
sequently, DaTree consumes more energy than Kautz-over-
lay, which is consistent with the result in a low mobile
environment in Fig. 7b.

Fig. 10a shows the energy consumed in topology con-
struction for each system versus the network size. We can
see that Kautz-overlay consumes the most energy for over-
lay construction. The reason is that every node in Kautz-
overlay needs to use broadcasting to build a multi-hop
path to each of its overlay neighbor. As the overlay in both
D-DEAR and REFER are formed by physically close nodes,

Fig. 9. Performance in real-time and scalable transmission.
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they consume less energy. In D-DEAR, since every node
locally contacts neighbors within two hops to select its
cluster head, it consumes less energy than Kautz-overlay.
In REFER, actuators need to exchange information and
broadcast messages to all nodes in the cells for actuator ID
assignment. Also, communications between actuators and
sensors are needed for selecting Kautz nodes. Therefore, it
consumes more energy in topology construction than
D-DEAR. In DaTree, each actuator broadcasts one message
to the sensors in the system. After receiving the message, a
sensor sets the message forwarder as its parent. Therefore,
it consumes the least energy in overlay construction.
Fig. 10b combines the energy consumed for communica-
tion and topology construction. We notice that topology
construction consumes negligible energy compared to that
of communication (0.1 percent). Thus, the result confirms
that REFER is energy-efficient in terms of total energy
consumption.

4.5 Evaluation of Topology Maintenance

In this section, we further evaluate the effectiveness of
topology management in Kautz cells. We define the state
switch interval as the time period a node stays in one state
before it changes to another state. A node can change its
state from “active” to “wait”, “wait” to “sleep” or “sleep” to
“active”. Fig. 11a shows the consumed energy in topology
maintenance versus the state switch interval. We see that as
the state switch interval increases, the topology manage-
ment overhead decreases, leading to an energy consump-
tion decrease in topology management. When the state
switch interval is small, the nodes periodically become
active with a high frequency and exchange “Hello” mes-
sages with neighboring nodes, which consumes high
energy. When the state switch interval becomes larger, the
nodes are in the sleep states for a longer time period to save
energy, leading to less energy consumption.

Fig. 11b further shows the consumed energy in topology
maintenance in Kautz cells with and without the awake/
sleep strategy, respectively. As the number of nodes in the
system increases, more energy is consumed in node com-
munication for topology maintenance. The reason is that
more nodes in the system generate more “Hello” messages
exchanged between neighbors in the system, which con-
sumes high energy. The figure also shows that with the
awake/sleep strategy, the consumed energy decreases. This
is because with the asleep/wake strategy, some nodes can
stay in the sleep state without “Hello” message exchanges
to save their energy.

4.6 Evaluation of Multi-Path Based Routing

In this section, we evaluate the performance of the multi-
path based routing protocol of REFER. If all alternative
paths fail to deliver a packet, the packet is dropped. Here,
we define the throughput as the size of successfully delivered
unique packets during the simulation time. A packet with
multiple successfully delivered copies was only counted
once. We varied the failure probability of Kautz nodes from
0.1 to 0.4. Fig. 12a shows the throughput of the unique pack-
ets versus failure probability of the Kautz nodes. We see
that as the failure probability increases, the throughput
decreases. When the nodes fail with a high probability,
even though a packet can use an alternative path for rout-
ing, the packet still has a high probability to be dropped.
The figure also shows that when the failure probability is
small, single-path routing produces higher throughput than
multi-path routing. This is because nodes in multi-path
routing suffer high transmission interference with each
other when nodes in different paths forward the packets at
the same time. However, we see that multi-path routing has
much lower throughput decreasing rate. Also, when the
packet failure probability is larger than 0.3 and 0.4,

Fig. 11. Performance of topology maintenance.

Fig. 12. Performance of the multi-path based routing.

Fig. 10. Performance in energy-efficiency.
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two-path and three-path routing produce higher through-
put than single path routing, respectively. This result con-
firms the effectiveness of multi-path routing in increasing
the probability of successfully delivering a copy of a packet
to its destination according to Equation (2). Because of the
highest interference in three-path routing, it produces the
longest delay and hence the lowest throughput in most
cases. These experimental results imply that two-path rout-
ing is the best routing algorithm in terms of throughput
when the failure probability is larger than 0.3.

We then define the delay of a packet as the delay of the
first successfully delivered copy among all copies of the
packet. We do not consider the unsuccessfully delivered
packets in calculating delay. Fig. 12b shows the delay per
unique packet versus failure probability of the Kautz
nodes. We see that as the failure probability of the nodes
increases, the delay of the unique packet increases. This is
because routing along an alternative path for a dropped
packet leads to longer transmission delay. Similar to
Fig. 12a, because of the transmission interference between
nodes and resultant alternative path usage in multi-path
routing, multi-path routing has longer delay than single-
path routing when failure probability is small, but it has
a much smaller delay increase rate as failure probability
increases. This is due to the reason that in multi-path
routing, a copy of a packet has higher probability to be
delivered to the destination according to Equation (2).
This is also why when failure probability is larger than
0.3, two-path routing has lower delay than single-path
routing. Although three-path routing is the most fault-tol-
erant, the higher interference in transmission and more
nodes competing for channel resources lead to higher
transmission delay. These experimental results imply that
two-path routing is the best routing algorithm in terms of
delay when the failure probability is larger than 0.3.

Fig. 12c illustrates the energy consumption during
packet transmission versus failure probability of Kautz
nodes. We see that as the failure probability increases, the
energy consumption of packet transmission increases. A
higher Kautz node failure probability increases the proba-
bility of transmission along alternative paths, leading to
more energy consumed for transmission. In multi-path
routing, the source node sends redundant copies of pack-
ets, which consumes higher energy with more copies.
However, as multi-path routing can save energy in packet
retransmission of the dropped packets in alternative
paths, two-path routing leads to less energy consumption
than single-path routing when the failure probability of
the nodes is larger than 0:4. Three-path routing consumes

the highest energy in most cases due to its much more
packets in routing and much more retransmissions
caused by interference.

A source node buffers its initiated packets until its chan-
nel is idle. Fig. 12d shows the number of all packets and
unique packets initiated from and successfully sent out
from source nodes during the simulation time. Because
two- and three-path routing make two and three copies of
an initiated packet, respectively, the number of all packets
initiated from source nodes follows 1-path < 2-path < 3-
path though their number of unique packets is the same.
Because a source uses multiple forwarders in the multi-path
routing algorithm, the number of total packets successfully
sent out from source nodes follows 1-path < 2-path < 3-
path. Since transmitting more packets leads to longer packet
buffering time, the number of unique packets successfully
sent out from source nodes follows 1-path > 2-path > 3-
path. This result implies that if the number of multiple
paths is too high, the initiated unique packets will be
delayed at source nodes.

In conclusion, for the Kð2; 3Þ Kautz graph, from
Figs. 12a, 12b and 12c, we can find that two-path routing
can achieve an optimal tradeoff between throughput, delay
and energy consumption of transmission in our experimen-
tal environment.

4.7 Evaluation of the Energy-Efficient Multicasting

In this section, we evaluate the performance of the energy-
efficient multicasting algorithm for inter-Kautz cell commu-
nication. In every 10 seconds, we randomly chose 1 source
sensor node to transmit data to m randomly selected actua-
tors from 6 actuators, and m was varied from 3 to 6 with 1
increase in each step.

Fig. 13a shows the number of forwarding operations
between two nodes occurred in transmitting the data from
the source actuator to the destination actuators using P2P
routing and multicasting, respectively. We see that as the
number of destination actuators increases, the number of
forwarding operations increases. We also see that multi-
casting produces fewer forwarding operations than P2P
routing. This is because in P2P routing, the source node
generates one message for each destination actuator. Each
message is independently forwarded to the destination
actuator according to the P2P routing algorithm. In multi-
casting, fewer forwarding operations are generated in the
system based on the minimum spanning tree. Also, only
one message is forwarded along the common path towards
different destinations. Fig. 13b further shows the compari-
son results of the energy consumed in the P2P routing

Fig. 13. Performance of the energy-efficient multicasting algorithm for inter-Kautz cell communication.
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algorithm and the multicasting algorithm. We see that
multicasting leads to less energy consumed than P2P rout-
ing because multicasting leads to fewer forwarding opera-
tions as shown in Fig. 13a.

Fig. 13c shows the comparison results of the total
throughput of actuators in P2P routing and multicasting,
respectively. The throughput is calculated as the average
packet size per second received by all destination actua-
tors. The figure shows that the throughput increases as the
number of actuators increases because more actuators lead
to more messages received by them. We also see that mul-
ticasting produces higher transmission throughput than
the P2P routing. In the P2P routing, multiple messages are
independently forwarded to the actuator destinations. The
interference between the transmission of many messages
reduces the throughput. Due to the same reason in
Fig. 13a, multicasting produces fewer message forwarding
operations, which produces less interference hence higher
throughput.

5 CONCLUSION

Real-time, energy-efficiency and fault-tolerance are criti-
cal requirements for WSAN applications. Current routing
protocols proposed for WSANs fall short in meeting these
requirements. In this paper, we theoretically studied the
properties of the Kautz graph, which shows that it is an
optimal topology for WSANs to meet the requirements.
Thus, we propose REFER, which incorporates a Kautz
graph embedding protocol and an efficient fault-tolerant
routing protocol. REFER’s embedded Kautz topology is
consistent with the physical topology, facilitating real-
time communication. Further, REFER leverages DHT for
the communication between Kautz-based cells for high
scalability.

Our theoretical analysis on the Kautz paths serve as
the cornerstone for REFER’s routing protocol. It is
advantageous over previous Kautz-based routing algo-
rithms by enabling a node to directly determine different
routing paths and path lengths simply based on node
IDs without relying on an energy-consuming method. To
tackle the problem of high node failure rate, we further
investigate the multi-path routing in a Kautz cell. We
also studied an energy-efficient multicasting algorithm to
further reduce energy consumption in communication
between Kautz cells.

Extensive experimental results show the high perfor-
mance of REFER compared with other WSAN systems and
previous Kautz-based overlay, and the effectiveness of the
multi-path routing and energy-efficient multicasting algo-
rithms. In the future, we will investigate the performance of
REFER in a sparse WSAN and using Kautz graph Kðd; kÞ
with various d and k values.
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