
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 1

Stochastic Load Balancing for Virtual Resource
Management in Datacenters

Lei Yu, Student Member, IEEE, Liuhua Chen, Student Member, IEEE, Zhipeng Cai, Senior
Member, IEEE, Haiying Shen, Senior Member, IEEE, Yi Liang, Student Member, IEEE, Yi Pan, Senior

Member, IEEE

Abstract—Cloud computing offers a cost-effective and elastic computing paradigm that facilitates large scale data storage and
analytics. By deploying virtualization technologies in the datacenter, cloud enables efficient resource management and isolation for
various big data applications. Since the hotspots (i.e., overloaded machines) can degrade the performance of these applications,
virtual machine migration has been utilized to perform load balancing in the datacenters to eliminate hotspots and guarantee Service
Level Agreements (SLAs). However, the previous load balancing schemes make migration decisions based on deterministic resource
demand estimation and workload characterization, without considering their stochastic properties. By studying real world traces, we
show that the resource demand and workload of virtual machines are highly dynamic and bursty, which can cause these schemes to
make inefficient migrations for load balancing. To address this problem, in this paper we propose a stochastic load balancing scheme
which aims to provide probabilistic guarantee against the resource overloading with virtual machine migration, while minimizing the
total migration overhead. Our scheme effectively addresses the prediction of the distribution of resource demand and the
multidimensional resource requirements with stochastic characterization. Moreover, as opposed to the previous works that measure
the migration cost without considering the network topology, our scheme explicitly takes into account the distance between the source
physical machine and the destination physical machine for a virtual machine migration. The trace-driven experiments show that our
scheme outperforms the previous schemes in terms of SLA violation and the migration cost.

Index Terms—datacenter, virtual machine migration, load balance, stochastic load balancing, resource management.

F

1 INTRODUCTION

RECENTLY virtualization technologies have been
widely deployed in data centers by the cloud providers

to provide Infrastructure as a Service (IaaS), such as Amazon
Elastic Compute Cloud (EC2) [3] and Microsoft Azure [1].
The virtual computation environment provides large scale
on-demand and elastic computation and storage capabili-
ties, which significantly facilitate large-scale data analytics
and spur big data innovation. Through virtualization, the
resources on Physical Machines (PMs) are partitioned into
Virtual Machines (VMs), which host application compu-
tation and data while enabling application isolation from
applications in other VMs. In the virtual machine environ-
ments, multiple VMs share the resources on the same physi-
cal machine. Each VM can run one or more applications and
an application can distributedly run in multiple VMs.

Due to the dynamic workload of applications and the
resource multiplex sharing of data center networks, guar-
anteeing the Service Level Agreement (SLA) of cloud ap-
plications, especially large-scale big data applications, is
a complex task. The resource virtualization in the cloud
facilitates such task. It enables elastic resource scaling that
dynamically adjusts the resource allocation for a VM to

• Lei Yu, Zhipeng Cai, Yi Liang and Yi Pan are with the Department of
Computer Science, Georgia State University, Atlanta, GA, 30302. E-mail:
{lyu13,yliang5}@student.gsu.edu, {zcai, yipan}@gsu.edu

• Liuhua Chen and Haiying Shen are with the Department of Electrical and
Computer Engineering, Clemson University, Clemson, SC, 29634.
E-mail: {liuhuac, shenh}@clemson.edu

Manuscript received April 19, 2005; revised September 17, 2014.

accommodate the application resource demands [28]. It also
enables virtual machine migration [36] for load balancing
to eliminate hotspots and consolidation [40] to improve
resource utilization and energy efficiency.

Load balancing is critical for guaranteeing the SLAs of
applications in cloud. The workload increase of applications
in the virtual machines may cause one or multiple resources
including CPU, memory, I/O and network bandwidth on
the physical machines overloaded. An overloaded physical
machine often degrades the application performance of all
the VMs on it, increasing the job completion time for batch
data processing and the response time of interactive applica-
tions. In order to eliminate such hotspots, excess load must
be migrated from the overloaded physical machines to un-
derutilized ones. However, this load balancing through VM
migration is a complicated and challenging problem. First,
it needs to consider multiple resources (e.g., CPU, memory,
I/O and network) for each VM and physical machine. The
applications have diverse resource demands, so the VMs
running these applications can be CPU-intensive, memory-
intensive or network-intensive. Thus, to decide which PM a
VM should be migrated to, the multidimensional resource
requirement of the VM has to be considered and matched
with the multidimensional available resources on the PMs.
Second, the overhead of VM migrations for load balancing
(i.e., the amount of data transferred) should be minimized.
The VM migration can adversely affect the application
performance in the VM [15], and incur severe performance
interference to other running VMs on both migration source
and destination PMs [38]. Reducing the overhead of VM

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 2

migrations alleviates the performance degradation caused
by VM migrations for load balancing. Third, due to the
dynamic changes of application workload in VMs, it is
not efficient to make the migration decision only based on
the current state of the system. Accurate load prediction is
necessary for load balancing but difficult.

To address this load balancing problem, a number of
methods [4], [6], [8], [10], [12], [18], [28], [30], [36] have been
proposed which can be divided into two categories: reactive
and proactive load balancing. The reactive methods [4],
[12], [30], [36] determine load imbalance and hotspots by
comparing the current resource utilization measurements
with the given thresholds, and decide where the VM should
be migrated based on the current load states of the PMs.
The common issues of these reactive methods are the time
delay to respond the load imbalances and inefficient load
balancing actions due to the dynamic load changes. In order
to address these disadvantages, proactive methods [6], [8],
[10], [18], [28], [37] are proposed, which make VM migration
decisions based on the predictions of resource utilizations
of VMs and PMs. However, for highly dynamic workloads,
the prediction-driven load balancing can be inefficient due
to the inaccuracy of predicted resource demand and usage.
Over-estimation predictions may cause wasteful resource
allocation and under-estimation predictions can cause sig-
nificant SLA violations. Previous work [28] uses adaptive
padding to avoid under-estimation errors and fast correc-
tion after detecting under-estimation errors. Still, it makes
VM migration decisions based on deterministic estimations
of VM resource demands and current load states of PMs,
without considering their stochastic variances. This may
lead to inefficient load balancing for highly dynamic work-
loads, increasing the risk of SLA violations and the times of
VM migrations.

To address demand uncertainty and dynamic workloads,
in this paper we consider stochastic load balancing through
VM migration. As opposed to the previous works, the
stochastic load balancing problem characterizes the resource
demand of VMs and load states of PMs probabilistically,
and aims to ensure the aggregate utilization of each type
of resources on each PM not exceeding its capacity with a
high probability 1 − ε. The probability ε is determined by
the SLA agreement and indicates the risk of SLA violations
on each PM. The stochastic workload characterization is
able to capture the uncertainty and dynamic changes of
resource utilizations. With the probabilistic guarantee for
handling overloads, the load balancing decision can en-
sure the resulted application performance is more resilient
against highly dynamic workloads while achieving efficient
statistical multiplexing of resources. However, the stochastic
load balancing poses new challenging problems including
how to estimate stochastic resource demand, how to de-
tect hotspots and how to make VM migrations while cap-
turing multidimensional stochastic resource requirements.
Although the existing work [8] also aims to provide the
same probabilistic guarantee, it just regards the demand
prediction error as stochastic variables and does not fully
address these problems in the context of stochastic de-
mands. Its VM migration algorithm considers each resource
separately, without combining all the dimensions to evalu-
ate the overall load status of PMs. Furthermore, it does not

consider the migration cost. In contrast, our paper proposes
a stochastic load balancing scheme which effectively and
efficiently addresses these problems.

Our scheme aims to minimize the transmission overhead
incurred by VM migration. Previous methods [28], [36] de-
cide VM migrations with the consideration of VMs’ memory
footprint. However, they measure the migration cost with-
out considering the network topology. In contrast, the VM
migration algorithm in our scheme takes into account the
transmission distance (hops) for the migration cost. Further-
more, compared with the previous methods, our migration
algorithm is able to improve the worst performance the
system could experience from the hotspots.

The rest of the paper is organized as follows. Section 2
presents the related works. Section 3 identifies and formally
defines our stochastic load balancing problem. Section 4
presents the overview and the detailed design of our load
balancing scheme. Section 5 presents the performance eval-
uation of our scheme compared with other load balancing
schemes in trace driven simulations. Finally, Section 6 con-
cludes this paper and indicates our future work.

2 RELATED WORKS

Load balancing is a well-studied problem in distributed
computer systems. Previous works [23], [31] consider the
problem of statically balancing the load in order to minimize
the mean job response time. For cloud, many works [4],
[11], [12], [26], [29], [30], [32], [33], [36], [39] have been
proposed to preform load balancing by VM migration from
overloaded PMs to underloaded PMs.

Arzuaga et al. [4] present a load balancing VM migra-
tion framework based on a new metric for quantifying
virtualized server load. The new metric is based on the
variation in load measured on the PMs. In the framework,
the load balancing algorithm chooses the VM migration
that achieves the greatest improvement on this imbalance
metric. Sallam et al. [26] consider the migration process as
a multi-objective problem and propose a novel migration
policy which utilizes a new elastic multi-objective optimiza-
tion strategy to evaluate different objectives simultaneously.
Tarighi et al. [32] propose a multi criteria decision method
to migrate VMs between nodes. To reduce the time and
cost to achieve load balance, Chen et al. propose RIAL [12],
in which different weights are dynamically assigned to
different resources based on their usage intensity in the PMs
for determining which VM to migrate and where.

Singh et al. [30] propose a load balancing algorithm
called VectorDot that takes into account the hierarchi-
cal and multi-dimensional resource constrains. It utilizes
vectors to represent multi-dimensional resource demands.
ItemPathLoadFracV ec(u) is the resource requirements
of a virtual item on each node along u’s flow path and
PathLoadFracV ec(u) is the resource usage fraction of each
node along the path. VectorDot migrates a VM u from an
overloaded PM to the PM that has the lowest dot product
of ItemPathLoadFracV ec(u) and PathLoadFracV ec(u).
It attempts to avoid the node that is highly loaded on the re-
source for which the item requirements are also high. Wood

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 3

et al. [36] propose a system named Sandpiper which auto-
mates the hotspot detection and VM migration. Sandpiper
predicts the resource utilization on the PMs and compares
it with a threshold to determine a hotspot. It uses the vol-
ume defined as the product of CPU, network and memory
loads to capture the combined load on multidimensional
resources. Each VM has volume-to-size ratio (VSR) where
size is the memory footprint of the VM, to measure the
volume per unit byte moved. The VM migration algorithm
attempts to migrate the VM with the maximum VSR.

Ye et al. [39] consider the live migration strategy of
multiple virtual machines with different resource reserva-
tion methods. Shrivastava et al. [29] propose an application-
aware virtual machine migration scheme, which takes into
account the communication dependencies among VMs of a
multi-tier enterprise application, the underlying data center
network topology, as well as the capacity limits of the
physical servers in datacenters. Chen et al. [11] propose a
parallel migration to speed up the load balancing process,
which migrates multiple VMs in parallel from overloaded
hosts to under utilized hosts through solving the minimum
weighted matching problem on a weighted bipartite graph.

Besides, many schemes [6], [8], [10], [16], [18], [20],
[27], [28] balance load based on the prediction of future
workloads of PMs or VMs. Chandra et al. [10] consider
the problem of dynamic resource allocation for web appli-
cations running on the shared data centers. The resource
allocation is based on a resource model whose parameters
are continuously updated through an online monitoring and
prediction framework. Gong et al. [18] use the signal pro-
cessing techniques and statistical state-driven approaches
to unobtrusively capture the patterns of the dynamic re-
source requirement and predict resource demands in the
near future. Based on the previous work [18], Shen et al.
[28] propose CloudScale, a system that elastically scales
the resources of VMs according to their predicted demands
and resolve scaling conflicts using VM migrations. Based
on a Markov Chain model, Beloglazov [6] proposes an
algorithm for host overload detection under the specified
QoS goal which aims to maximize the mean intermigra-
tion time. Sharma et al. [27] present a cost-aware system
for dynamically provisioning virtual server capacity, which
combines the replication and migration mechanisms and the
pricing model to select resource configuration and transition
strategies to optimize the incurred cost. VirtualRank [16] ob-
serves multiple future load values to predict load tendency
in the upcoming time slot and selects the potential migration
target node using the Markov stochastic process.

Most aforementioned schemes make load balancing de-
cisions based on deterministic estimations/predictions of
resource usage. However, due to the dynamic workloads
and the estimation/prediction errors, the resulted resource
demand estimation may deviate significantly from the pre-
diction, which can lead to SLA violations and requires fur-
ther VM migrations. To address this issue, CloudScale [28]
proposes adaptive padding and fast underestimation cor-
rection to handle the prediction error. But it still makes mi-
gration decisions based on deterministic estimation without
considering the stochastic variances of resource usages of
VMs and PMs. Our work [8] also aims to provide statis-
tical guarantees of service quality taking into account the

probability distribution of prediction errors. However, for
multiple resources, it determines the destination PM for a
VM migration by only checking whether the PM can accom-
modate the VM along each resource dimension separately.
However, it may lead to improper migrations. Because a
PM can be overloaded along one or more dimensions of
resources, it is necessary to combine all resource dimensions
together to consider the overall overload probability of a
PM. Besides, it does not consider the hotspot detection in
the context of statistical guarantees and the migration cost.

Compared with these works, in this paper we consider
the stochastic characteristics of resource usages and propose
a set of solutions for stochastic load balancing, including the
prediction of probability distribution of resource demand,
hotspot detection and VM migration algorithm considering
the overall load status on multi-dimensional resources for
PMs. In addition, our VM migration algorithm aims to
minimize the migration cost that takes into account the
network topology and improves the worst performance the
system could experience from the hotspots.

3 STOCHASTIC LOAD BALANCING PROBLEM

In this section, we study the workload uncertainty of VMs
with a real world trace, formally define the problem of
stochastic load balancing using VM migration, and discuss
its hardness.

3.1 Workload Dynamics
In our stochastic load balancing problem, the resource de-
mands and workloads are represented by random variables.
Recent studies [7], [13], [22] show that VM’s demands for
certain resources are highly bursty and can be characterized
by stochastic models. Previous works [14], [21], [35] assume
the normal distribution for resource demands of VMs. In
this paper we begin with a trace study to look into the VMs’
workload dynamics and their probability distributions.

We use two traces: PlanetLab trace [2] and Google cluster
trace [19]. The PlanetLab trace records the CPU utilization
of VMs in PlanetLab platform every five minutes in 10
random days in March and April 2011. The Google Cluster
trace records the CPU utilizations of tasks in about 11000
machines in a cluster in May 2011 for 29 days. We study
the variance of CPU utilization and its empirical probability
distribution during a short period in a day.

First, we examined the mean, 95th percentile, 5th per-
centile of CPU utilizations and its distribution for each VM
in the PlanetLab trace. We chose 6 VMs that have typical
workload distributions among all the examined VMs. Figure
1 and Figure 2 demonstrate the results of 6 VMs during
2.5 hours which are typical in our observations. Figure 1
shows the mean and percentile results of CPU utilizations.
As we can see, although these VMs have different average
CPU utilizations, their variances indicated by the error
bars are quite large. For example, the CPU utilization of
virtual machine 4 has mean 16% and varies from 7% to
25%. For each single virtual machine, we further looked
into its distribution of CPU utilization within eight hours
using the histogram of CPU utilization. We found that it
approximately follows normal distribution, as exemplified
by Figure 2.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 4

We further examined the CPU utilization in the Google
Cluster trace. Although the records in the trace are the
resource usage of tasks instead of VMs, they reflect the
workload dynamics in the real world applications and affect
the virtual resource allocation when running in VMs. In fact,
we observed the similar results as in the PlantLab trace.
Furthermore, the CPU utilizations of 6 typical VMs within
2.5 hours are shown in Figure 3. As we can see, the CPU
utilization has a large variance. For VM 6, its mean CPU
utilization is 20% and 95-th percentile is up to about 30%.
The probability distributions of CPU is also exemplified by
Figure 4, similar to normal distribution.

The above trace study indicates the highly dynamic re-
source demands of VMs in real world. Without considering
the variance, only using deterministic estimation like mean
value for VM migration could lead to resource overload
and increase SLA violations. We analyze the adverse impact
of such dynamic workloads on the performance of the
load balancing schemes based on deterministic demand
characterization in Section 4.4 and validate it in Section 5.
Here we use the example shown in Figure 5 to illustrate
the issue of the deterministic load balancing scheme for
dynamic workloads. Suppose a cluster with four PMs and
only CPU resource is considered for load balancing. PM
1 is determined as a hotspot and we choose to migrate
VM 1 to other PMs to eliminate this hotspot. The CPU
demand (in percentage) of VM 1 follows normal distribution
N (40, 4). The CPU usage on PM 4 follows distribution
N (40, 225) where the standard deviation is 15 which is
quite common for highly dynamic workload according to
our trace study. The CPU usages on PM 2 and 3 follow
the distribution N (50, 25). If the load balancing scheme
migrates VMs from the hotspot to the least loaded PM
decided by the average CPU demand estimation as [36],
VM 1 is migrated to PM 4 since it has the smallest mean
CPU usage among the under-utilized PMs. However, if
the VM is placed on PM 4, the probability of PM4 being
overloaded is Pr(Agg > 100) where the aggregate CPU
demand Agg ∼ N (40 + 40, 4 + 225), which is equal to 10%.
If VM 1 is placed on PM 2 or PM 3, the probability that they
get overloaded is only 3% . We can see that the migration to
PM 2 or PM 3 is a better choice for load balancing, which
can reduce the SLA violations and possibly the number
of the subsequent migrations. This simple example shows
the impact of highly dynamic resource demands on the
efficiency of load balancing.

Therefore, a load balancing scheme considering the
stochastic resource demands is required to address this is-
sue. According to our observation, in this paper we assume
the resource demands follow the normal distribution for
simplicity. Note that our stochastic load balancing scheme
can be also used with other probability distributions.

3.2 Problem Description

Generally, a load balancing algorithm using VM migration
needs to decide when to migrate VMs, which VM to migrate
and where to migrate. In addition, the algorithm should
minimize the total migration overhead. Since VMs can be
migrated over multiple hops in the network, the migra-
tion overhead not only depends on the total amount of

1 2 3 4 5 6
0

10

20

30

40

Virtual Machine ID

C
P

U
 u

til
iz

at
io

n

Figure 1. The variance of VM CPU utilization in PlanetLab trace.

0 10 20 30 40
0

5

10

15

20

25

CPU utilization

F
re

qu
en

cy

Figure 2. The probability distribution of VM CPU utilization in PlanetLab
trace.

data transferred for VM migration, but also the number of
hops the data being forwarded. As indicated in previous
works [36], [38], the total migration overhead can signifi-
cantly affect the performance of the applications inside the
VMs, not only for migrated VMs but also for other VMs
on the source PM and destination PM of the migration. By
minimizing the data transmission cost of migration over the
network, the load balancing algorithm can reduce the total
migration time and thus the adverse impact on applications.

Therefore, our stochastic load balancing problem aims
to make efficient VM migration decisions such that for each
resource the total demand of VMs on each PM does not
exceed the capacity of the resource of the PM with a high
probability, while the migration overhead is minimized. We
formally define this problem with the following analytical
model. Table 1 describes the notations used in this paper.

Table 1
Notations

Notation Description
M The total number of PMs
N The total number of VMs
cri The capacity of resource r on a PM i
Dr

j The stochastic demand of VM j for re-
source r

sj The memory footprint of VM j
Iij The indicator variable. Iij = 1 if VM j

is placed on PM i
hik The distance (hops) between PM i and

PM k in the data center
ε The threshold of the probability of a PM

being overloaded

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 5

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Virtual Machine ID

C
P

U
 u

til
iz

at
io

n

Figure 3. The variance of task CPU utilization in Google cluster trace.

20 25 30 35 40
0

5

10

15

20

25

30

CPU utilization

F
re

qu
en

cy

Figure 4. The probability distribution of task CPU utilization in Google
cluster trace.

PM 1(Hotspot) PM 2 PM 3

N(50, 25)

N(40,4)

PM 4

N(40, 225)

VM1

VM2 VM3 VM4 VM5N(50, 25)90

Figure 5. An example of load balancing with dynamic workloads.

We consider a data center consisting of M PMs and N
VMs. We consider multiple types of resources including
CPU, memory, disk I/O bandwidth and network band-
width. For each resource r, its capacity on a PM i is denoted
as cri . The demand of a VM j for resource r is denoted as
a random variable Dr

j following a probability distribution
that can be estimated from runtime measurement. Let Iij
be an indicator variable that is 1 if VM j is placed on
PM i; otherwise Iij = 0. Matrix I = [Iij]N×M is the VM
placement matrix. The load balancing using VM migration
is to compute an updated placement matrix I∗ = [I∗ij]N×M ,
with the constraint that on each PM i the total demand of
VMs for each resource r does not exceed the capacity of that
resource cri with a high probability 1− ε, i.e.,

Pr

∑
j

I∗ijD
r
j ≤ cri

 ≥ 1− ε,∀i, r (1)

Here, ε is the threshold of the probability of a PM being
overloaded. It indicates the risk of SLA violations on each

PM and can be determined by SLA agreement.
The overhead of VM migration depends on the memory

footprint of the VM to migrate and the distance between the
source PM and the destination PM of the migration. Let sj
be the memory footprint (i.e., the number of bytes in MB
or GB) of VM j, and hik (hik ≥ 1) be the distance (i.e., the
number of hops) between PM i and PM k. The overhead of
a VM migration is measured by the product of the memory
footprint of the migrated VM and the distance between the
migration source and destination, in bytes × hops. Then,
the total overhead of VM migrations needed to achieve the
updated placement I∗ can be computed by∑

j

∑
i

∑
k

IijI
∗
kjhiksj (2)

where IijI∗kj = 1 if VM j is migrated from PM i to PM k,
otherwise IijI∗kj = 0.

Thus, the analytical formulation of our stochastic load
balancing problem is

minimize
∑
j

∑
i

∑
k

IijI
∗
kjhiksj (3)

subject to Pr

∑
j

I∗ijD
r
j ≤ cri

 ≥ 1− ε,∀i, r

I∗ij = 0 or 1,∀i, j

(4)

This problem definition is not limited to any specific
probability distribution for Dr

j , in order to provide a general
stochastic framework to address the load balancing prob-
lem. To solve the problem, specific probability distribution
functions need to be defined for the distribution estimation
of resource demands and the calculation of Formula (1).
Example: Here we show an example of the above problem
based on the Figure 5 with 5 VMs and 4 PMs. According to
our above definition, we have

I =

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

The distance hik between PMs can be represented by

H = [hik]4×4 =

0 2 4 4
2 0 4 4
4 4 0 2
4 4 2 0

Suppose ε = 0.05. Then, based on the calculation in

Section 3.1, PM 2 and PM 3 are appropriate candidates of
migration destination for VM 1 since the probability that
they get overloaded after VM 1 is migrated to either of
them is 3%, less than ε. To minimize the migration cost that
depends on the distance between the source PM and the
destination PM, the best choice is to migrate VM 1 to PM 2
because PM 2 is closer to PM 1. Thus, the optimal solution,
described by the new placement matrix, is

I∗ =

0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 6

PM

Stochastic
demand

prediction

Hotspot
detection

VM migration controller

Load balancer

PM

VM

VM

VM

VM VM

VM

PM PM PM

Resource usage collector Migration enforcement

Figure 6. The overview of the stochastic load balancing scheme.

Generally, this problem is NP-hard, since it can be re-
garded as a variant of the stochastic knapsack problem [17].
In addition, due to the large numbers of VMs and PMs in
a data center, the problem size is also significant. Consider-
ing such computational complexity, in practice, the cluster
load balancers deployed in the data center mostly rely on
heuristics to solve the problem. Thus, we develop a heuristic
algorithm to solve our stochastic load balancing problem.

4 LOAD BALANCING SCHEME

In this section, we describe our load balancing scheme. Our
scheme has common components as other previous load
balancing schemes [4], [6], [8], [10], [12], [18], [28], [30],
[36], including the profiling of resource demand, hotspot
detection and hotspot migration. But as opposed to these
previous works, in our load balancing scheme, the goal of
the profiling is to generate the stochastic characterization,
i.e., the probability distribution of the resource demand
and usage. Previous load balancing schemes give determin-
istic estimations which cannot capture the uncertainty of
workloads. For hotspot detection, we propose to examine
the probabilistic guarantee in Formula (1) based on the
probability distribution of resource demands of VMs. For
hotspot migration, a heuristic algorithm is proposed to solve
the problem formulated in Section 3.2 to decide efficient VM
migrations.

Figure 6 shows an overview of our load balancing
scheme and the information flow among different compo-
nents. The scheme is centralized. A load balancer runs in
a central server. In each PM the monitor tracks the CPU,
memory and network usage of each VM and PM, and peri-
odically sends the usage statistics to the resource usage col-
lector of the load balancer. The resource usage information
is used by the stochastic demand prediction component to
estimate the distribution of resource demand for each VM.
The distribution estimations are then used for the hotspot
detection and the VM migration. The migration enforcement
receives the instructions from the VM migration controller
to do the migrations.

The load balancing scheme proposed here assumes the
normal distributions for resource demands, according to

the results of our previous trace study in Section 3.1. The
distribution estimation of stochastic resource demands and
the computation of overloading probability of PMs are
based on the normal distribution. Nevertheless, our scheme
can be easily extended to other types of distributions of
resource demands, with specific distribution estimation and
probability computation for the given type of distribution
functions.

4.1 The Profiling of Stochastic Resource Demand

For the profiling, each VM’s resource usages on CPU, mem-
ory, network bandwidth and disk I/O are monitored. The
load balancer receives periodic reports of resource usages
from each PM, and repeatedly estimates the probability dis-
tributions of resource demands of VMs in a sliding window.

According to our trace study in Section 3.1, we assume
that the demands of the VMs for each resource r follow
normal distribution. For VM j, supposing that its demand
for resource r follows N (µr

j , σ
r
j
2), the problem is how to

estimate parameters µr
j and σr

j
2 based on the previous usage

observations. A straightforward way is to compute the sam-
ple mean and the sample variance of the observations in the
window and use them as the estimations of the parameters
of the normal distribution. However, using the statistics of
the historical observations are not good predictions for the
resource demand in the future because they cannot capture
the increasing or decreasing trends of resource utilizations.
Therefore, we propose a method which integrates the time
series prediction techniques into the estimations of the dis-
tribution parameters of resource demands, while not relying
on any specific time-series prediction technique.

Suppose that a time-series prediction function makes a
prediction to the demand in the next time interval based
on n prior resource utilization observations or1, or2, . . . orn for
resource r, as in [8], [36], [37]. The function can be any of
Auto Regressive (AR) models, exponentially weighted mov-
ing average or any other time-series prediction technique.
The function output is the prediction of ôrn+1, which is a
constant.

In addition, we evaluate the estimation errors for most
recent n observations, that is, εr1 = or1 − ôr1, εr2 = or2 − ôr2,
. . ., εrn = orn − ôrn. We calculate the sample mean µε and the
sample variance σ2

ε of these estimation errors εr1, . . . , ε
r
n as

follows:

µε =
1

n

n∑
i=1

εi (5)

σ2
ε =

1

n

n∑
i=1

(εi − µε)
2 (6)

Then, we estimate the statistics µr
j and σr

j
2 of the re-

source demand in the time interval n+ 1 as

µr
j = ôrn+1 + µε (7)

σr
j
2 = σ2

ε (8)

Taking into account the constant prediction ôrn+1, the above
estimation to the distribution of the resource demand cap-
tures both the changing trend of the resource demand and
the uncertainty (variance). Besides, considering that the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 7

distribution of VMs’ workload can change with the time
frequently, continuous estimation of workload distribution
for the next time interval can capture such changes timely
and help to effectively detect and avoid hotspots.

4.2 Hotspot Detection

To detect hopspots, our scheme periodically evaluates the
resource allocation status of each PM based on the predicted
distribution of resource demands of VMs on the PM. Previ-
ous works with deterministic demand prediction determine
a hotspot PM by checking whether the aggregate resource
demand of VMs on the PM exceeds a threshold. Instead,
our stochastic load balancing scheme determines a hotspot
by checking whether the probability of overloading is no
larger than ε for each resource r, i.e., whether Formula (1)
holds.

Let V be the set of VMs running on a PM i. For each VM
j, the demand for resource r Dr

j follows the distribution
N (µr

j , σ
r
j
2) which is predicted by the profiling in Section

4.1. Then, because we assume that each VM’s demand
is independent of others, the aggregate demand

∑
j∈V

Dr
j

follows the distributionN (
∑
j∈V

µr
j ,
∑
j∈V

σr
j
2) according to the

property of normal distribution. Then, it is easy to show that
Pr(

∑
j∈V

Dr
j ≤ cri) ≥ 1− ε is equal to

cri −
∑
j∈V

µr
j√∑

j∈V
σr
j
2
≥ Φ−1(1− ε) (9)

where Φ(∗) is the inverse of the cumulative distribution
function of the standard normal distribution. PM i is de-
termined as a hotspot, if there is any resource r for which
Inequality (9) does not hold. Alternatively, to avoid un-
necessary migrations caused by small transient spikes of
workload, similar to previous work [36], we can determine
a hotspot only if the above probabilistic guarantee for any
resource is violated for a sustained time. That is, a PM is
determined as a hotspot if Inequality (9) does not hold in at
least k out of the n most recent checks with the predicted
demands as well as in the current check.

4.3 Hotspot Migration

After hotspots are identified, the load balancer needs to
solve the problem of which VMs to migrate and where in
order to dissipate the hotspots. This problem is formulated
in Section 3.2 and its hardness is shown. In this section, a
heuristic hotspot migration algorithm is proposed.

For each hotspot PM i, based on the estimated re-
source demands of VM set V on i, we can obtain∑
j∈V

Dr
j ∼ N (

∑
j∈V

µr
j ,
∑
j∈V

σr
j
2) and then compute the prob-

ability Pr(
∑
j∈V

Dr
j > cri) for each resource r, denoted by

P r
i,V . Because i is a hotspot, there must exist one or more

resources for which P r
i,V > ε. Such resources are called

tense resources. We define the overload risk of a hotspot i

as the probability of at least one of tense resources being
overloaded.

overloadrisk(i) = 1−
∏
r∈R

(1− P r
i,V) (10)

where R is the set of tense resources. As we can see, the
higher overload risk indicates the higher probability of PM
i being overloaded on any of tense resource. Note that, For-
mula (10) assumes that the utilizations of different resources
are independent. This could be not true if, for example, an
application can be both CPU intensive and I/O intensive
and in this case the overloading probabilities of these two
resources are correlated. Because the correlations between
multiple resources vary with the applications and are hard
to characterize, we assume the independency among differ-
ent resources and simply regard overloadrisk as a metric to
measure the overall resource tensity in a PM.

4.3.1 Algorithm Overview

In our hotspot migration algorithm, the hotspots are sorted
in decreasing order of their overload risks and stored in
a list. The algorithm starts from the PM with the largest
overload risk among the hotspots, selects the VM whose
removal can most efficiently reduce the PM’s overload risk,
and determines which PM this VM is migrated to. If no VMs
can be migrated from the hotspot PM with the largest over-
load risk, the algorithm examines the next hotspot in the
list. The algorithm hypothetically conducts VM migration,
updates the resource allocations of source PM and destina-
tion PM, and recomputes the overload risk of the remaining
hotspots. The algorithm iteratively runs over the remaining
hotspots, and terminates until there are no hotspots left. The
determination of the destination PM for a VM migration
needs to ensure the constraint (4) while minimizing the total
migration cost given in (3). For a VM to be migrated, we
perform a hypothetical migration to every under-utilized
PM, and select a PM as a destination candidate if at this PM
the resources still satisfy constraint (4) after the migration.
The PM with the minimum migration cost among all the
candidates is chosen as the final destination PM in order to
minimize the total migration cost (3).

The algorithm records all the hypothetical VM migra-
tions (which VM is selected and where to migrate) deter-
mined in the way described above and the final output is
a list of VMs and their destination PMs. Note that during
the iteration, the algorithm may not find any feasible VM
migration to reduce the load for any hotspot when all the
PMs become heavily loaded. In this case, to avoid infinite
loop, the algorithm also ends and outputs the VM migra-
tions obtained before termination. Next, we explain how the
algorithm determines which VM to migrate and where.

4.3.2 Which VM to migrate and where

To decide which VM to migrate, we introduce a new met-
ric for a VM which indicates the degree of overload risk
reduction caused by its removal, denoted by ORreduction.
Suppose that a hotspot PM i has the VM set V on it. Given
the estimations of VMs’ demand distributions for resource

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 8

r, we can compute the aggregate demand distribution after
the removal of VM j ∈ V , and thus the following probability

P r
i,V \{j} = Pr

 ∑
k∈V \{j}

Dr
k > cri

 (11)

We define

Sr
i,V \{j} =

{
P r
i,V \{j} if P r

i,V \{j} > ε

ε if P r
i,V \{j} ≤ ε

(12)

Then, the ORreduction for the removal of VM j from PM
i is computed as

ORreductioni(j) =

overloadrisk(i)−

(
1−

∏
r∈R

(1− Sr
i,V \{j})

)
(13)

Let Sr
i,V \{j} = ε when P r

i,V \{j} ≤ ε. The reason for that
is, for two VMs j and k, if either one of their removals
can ensure resource r satisfies the probabilistic guarantee
for overloading in Formula (1), they contribute the same to
the overload risk reduction along the dimension of resource
r. In this way, if either one of their removals can have
all tense resources to achieve the probabilistic guarantee,
VM j and k have the same overload risk reduction, i.e.,
ORreductioni(j) = ORreductioni(k). From the definition
we can see ORreduction captures the load along each
resource dimension and measures the benefit of a VM
migration for alleviating the tensity of resources.

The VMs on the currently considered hotspot PM are
sorted in a list in the decreasing order of ORreduction.
Furthermore, the VMs in the list are divided into dif-
ferent groups by different intervals of ORreduction.
Given Formula (12) and Formula (13), the maximum
value of ORreduction in the list is MaxORreduction =
overloadrisk(i) − (1 −

∏
r∈R

(1 − ε)). Then, the VMs having

the maximum value of ORreduction form the first group,
denoted by VG1. Starting from MaxORreduction, the range
of ORreduction is divided into intervals of equal width
α (α > 0), and the VMs with their ORreduction in the
same interval form a group. For example, the VMs in the
second group VG2 have their ORreduction falling to the
interval (MaxORreduction,MaxORreduction − α]. The last
group VGn falls into the interval (MaxORreduction − (n −
2)α,MaxORreduction − (n− 1)α] where MaxORreduction −
(n − 2)α > 0. By dividing the VM list in terms of different
ORreduction intervals, the VMs with the similar gain for
overload reduction are classified into a same group. Note
that the removal of any VM in VG1 would let the PM achieve
probabilistic guarantee (1) for each resource r. Thus, VG1 is
considered at first.

In this way, to choose a VM to migrate, the VM groups
are examined in the descending order of ORreduction
intervals and in each group the VM which can achieve
the smallest migrate overhead is preferred for migration.
In a same group, for every VM j, we check all other PMs
and determine a destination PM Mj that can accommodate
VM j’s resource demand while having the smallest migra-
tion overhead for the VM among all the PMs, denoted by
Cost(j,Mj). Given a PM l and the VM set Vl on it, the PM

l can accommodate a VM j with resource demand Dr
j from

another PM i if and only if Pr(Dr
j +

∑
k∈Vl

Dr
k ≤ crl) ≥ 1− ε.

The migration overhead is the product of the VM’s memory
footprint sj and the distance hli between the destination PM
l and the source PM i, that is, sjhli. Finally, the VM j with
the smallest Cost(j,Mj) among all the VMs in the group is
selected to migrate and Mj is its destination PM.

Here, α controls the degree of ORreduction similarity in
a group. In the extreme case that α is small enough and each
single VM forms a group, the VM selection actually is the
largest ORreduction first strategy regardless of the migra-
tion cost. Oppositely, if α is large enough and all the VMs
are in one group, the VM selection becomes the smallest
migration cost first strategy. Therefore, α indicates the trade-
off between the optimality of the overload risk reduction
and the optimality of the migration cost. Appropriate value
of α can be determined through experiments. Algorithm 1
shows the pseudo code of the hotspot migration algorithm.

As we can see, each time our algorithm determines one
VM migration for the most overloaded hotspot, and then
resorts all the hotspots in the order of their overload risks
“after this migration” to find the next possible migration on
the possibly new most overloaded hotspot. Previous works
either continuously find VM migrations for the most over-
loaded hotspot until it is not overloaded or determine one
VM migration for each hotspot in order of their overload
degree but without resorting the hotspots after determining
a migration. In contrast, our algorithm always tries to im-
prove the worst hotspot after each migration and thus can
fairly reduce the loads on all the hotspots to the same level
of load status. With such fairness, even when not all the
hotspots can be eliminated, our algorithm is able to improve
the worst performance the system could experience from the
hotspots.

4.3.3 Time complexity analysis

We assume that the number of resource types is bounded
by a constant, which is true in practice. Let vmax be the
maximum number of VMs a PM can run. According to our
algorithm, each iteration on the while loop of line 2 has to
find a new VM migration otherwise the loop ends. This indi-
cates the number of iterations on the while loop of line 2 is at
most vmax|H| where |H| is the number of hotspots initially
detected. In each iteration, line 4 ∼ 10 have time complexity
O(|H| log |H|). Line 11 ∼ 39 iterate over |H| hotspots.
During each iteration in them, line 12 ∼ 14 have time
complexity O(vmax log vmax) for each VM the algorithm
searches the PM that can accommodate it and has the mini-
mum migration cost, which totally incur vmax|U | running
time where |U | is the total number of PMs. Thus, line
11 ∼ 39 have total time complexity O(|H|vmax(log vmax +
|U |)). Then, the time complexity of the total algorithm is
O(vmax|H|2(log |H|+ vmax(log vmax + |U |))). Considering
that log |H| and log vmax is much smaller than other items,
the time complexity can be simplified as O(v2max|H|2|U |).
Because vmax is usually a small limited number and the
set of the hotspots detected simultaneously is only a small
part of the PMs in the datacenter, the running time is
proportional to the size of the datacenter. This indicates the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 9

Algorithm 1 Hotspot Migration Algorithm.
Input: U -the set of all PMs, H-the set of hotspot PMs, Vi-the

set of VMs on every PM i, the demand distributions of all
VMs,

Output: Sm-the set of mappings between the VMs to be mi-
grated and the destination PMs

1: Sm ← ∅;
2: while H 6= ∅ do
3: bool newVMmigration← false;
4: for all PM i ∈ H do
5: Ri ← ∅;{Ri is the set of tense resources on PM i}
6: for all resource r do
7: if Pr(

∑
j∈V

Dr
j > cri) > ε then

8: Add r to Ri

9: Compute overloadrisk(i);
10: Sort H in decreasing order of overloadrisk;
11: for PM i=1,2,...in H do
12: for all j ∈ Vi do
13: Compute ORreductioni(j) based on Ri;
14: Sort Vi in decreasing order of ORreduction
15: Divide Vi into groups VG1, VG2, . . ., VGn by

ORreduction intervals of width α;
16: for X = VG1, VG2, . . ., VGn do
17: jmin ← ∅; mincost← +∞;
18: for all j ∈ X do
19: Cj ← ∅; {Cj stores the candidate PMs that can

accommodate VM j}
20: for all l ∈ U \H do
21: if ∀r Pr(Dr

j +
∑

k∈Vl

Dr
k ≤ crl) ≥ 1− ε then

22: Cj ← Cj ∪ {l};
23: if Cj 6= ∅ then
24: for all l ∈ Cj do
25: Compute Cost(j, l) = sjhil;
26: Mj ← argmin

l
Cost(j, l); { find the PM that has

minimum migration cost for VM j}
27: if mincost > Cost(j,Mj) then
28: jmin ← j; mincost← Cost(j,Mj);
29: if jmin 6= ∅ then
30: Add migration mapping (jmin,Mjmin) to Sm;
31: newVMmigration← true;
32: Update the resource allocation status on PM i and

the destination PM with the hypothetical migra-
tion;

33: if PM i achieves the probabilistic guarantee on
every resource then

34: H ← H \ i;
35: Break;
36: if newVMmigration = true then
37: break;
38: else
39: Return Sm;
40: Return Sm;

computation efficiency of our heuristic algorithm, which is
important for a load balancer to make timely decisions.

4.4 Performance analysis and comparison
Most previous works [6], [10], [18], [28], [37] decide VM
migrations for load balancing based on deterministic predic-
tion of resource demands of VMs. To simplify our analysis,
we assume a deterministic load balancing scheme making
decisions based on the deterministic estimation of demand
for resource r by µr

j in Formula (7). This load balancing
scheme tries to migrate VMs on the hotspot until it is not
overloaded.

Suppose a PM i has x VMs with demand Dr
j ∼

N (µr
j , σ

r
j
2) (1 ≤ j ≤ x) for resource r ∈ R (R is the

set of resource types in a PM). The goal of a determin-

istic scheme is to ensure
x∑

i=1

µr
j < cri . In the case of

x∑
i=1

µr
j < cri , we are interested in the conditional proba-

bility Pr(
∑

j D
r
j < cri |

x∑
i=1

µr
j < cri), which indicates the

efficiency of the deterministic load balancing scheme. Be-
cause

∑
j D

r
j ∼ N (

∑
j µ

r
j ,
∑

j σ
r
j
2), we can easily know

Pr(
∑

j D
r
j < cri |

x∑
i=1

µr
j < cri) > 0.5. It also indicates that

with the deterministic scheme, the upper bound of the prob-
ability of resource r being overloaded is 0.5, which is rather
high. According to Formula (10), the overload probability
for the PM is 1−

∏
r∈R

(1−P r
i,V) where P r

i,V is the probability

of resource r being overloaded. Suppose |R| = 4, then the
upper bound of overload risk for the PM is as high as 0.93.
It indicates that the PM can be still overloaded with a high
probability even if the load balancer achieves its goal based
on its deterministic estimation. It also reflects the adverse
impact of highly dynamic resource demand on the efficiency
of the load balancing.

In contrast, our stochastic load balancing scheme can
limit the upper bound of overload risk by the probabilistic
guarantee against the overloading for each resource. Given
ε, according to Formula (1), the upper bound of overload
probability for the PM is 1− (1− ε)|R|. When ε = 0.05, the
upper bound is 0.185, which is much smaller than 0.93.

The value of parameter ε controls the overload prob-
ability, and also affects the resource utilization. Smaller ε
requires a PM to reserve more resources to accommodate
the possible variances of resource demands, which may
lead to less resource multiplexing efficiency. It can be easily
illustrated by the following inequality which is equivalent
to Formula (1).

cri ≥
∑
j∈V

µr
j + Φ−1(1− ε)

√∑
j∈V

σr
j
2 (14)

where Φ−1(1− ε) increases with ε. To ensure this inequality
with a smaller ε, some VMs may have to be migrated out
from the PM. Then, fewer VMs share the PM and thus the
resource utilization decreases. The previous deterministic
schemes do not involve the variance (the second term) on
the right side of the above inequality.

5 PERFORMANCE EVALUATION

We conducted trace-driven experiments on CloudSim [9] to
evaluate the performance of our proposed stochastic load
balancing algorithm in a three-resource environment (i.e.,
CPU, memory and bandwidth). We used the VM utiliza-
tion trace from PlanetLab [2] and Google Cluster [19] to
generate VM workload. We implemented our stochastic
load balancing algorithm in the simulator, represented by
SLB. We study the performance in terms of the number
of VM migrations, the number of overloaded PMs, the PM
resource consumptions, the speed of load balancing and the
total performance degradations. We use Sandpiper [36] to

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 10

0

200

400

600

800

1.5 2 2.5

To
tl

a
l
n

u
m

b
e

r
o

f
m

ig
ra

ti
o

n
s

Load (x original load in trace)

SLB Sandpiper

CloudScale

Figure 7. The number of VM migrations using PlanetLab trace.

represent the reactive load balancing algorithms and use
CloudScale [28] to represent the proactive load balancing
algorithms.

We simulated the cloud datacenter with 1000 PMs
hosting 5000 VMs. The PMs are modeled from commer-
cial product HP ProLiant ML110 G4 servers (1860 MIPS
CPU, 4GB memory) and the VMs are modeled from EC2
micro instance (0.5 EC2 compute unit, 0.633 GB mem-
ory, which is equivalent to 500 MIPS CPU and 613 MB
memory). The CPU utilization trace from PlanetLab VMs
and Google Cluster VMs, and memory utilization trace
from Google Cluster VMs are used to drive the VM CPU
and memory utilizations in the simulation. To simulate
bandwidth usage, as in [29], we generated 5 different
groups of (mean, variance range) for bandwidth utiliza-
tion, (0.2,0.05),(0.2,0.15),(0.3,0.05),(0.6,0.10),(0.6,0.15), and set
each VM’s bandwidth utilization to a value generated by a
randomly chosen group. We increased the VM’s workload
to 1.5, 2 and 2.5 times of its original workload in the
trace to study the performance under various workload
levels. At the beginning, the VMs are randomly allocated
to the PMs. We used this VM-PM mapping for different
load blanching algorithms in each experiment to have fair
comparison. When the simulation is started, the simulator
updates the resource utilization status of all the PMs in
the datacenter every 5 minutes according to the traces,
and records the number of VM migrations, the number of
overloaded PMs (the occurrence of overloaded PMs) and
the resource utilization of all PMs and VMs during that
period. We used 0.75 as the resource utilization threshold for
CPU memory and bandwidth usage to determine whether
the PM is overloaded. Sandpiper and CloudScale perform
VM migrations whenever a PM is detected overloaded (i.e.,
either CPU, memory or bandwidth utilization exceeds 0.75)
and select the destination PM based on their corresponding
PM selection algorithms. In SLB, an overloaded PM chooses
the VM based on the stochastic model, and the migrating
VM chooses the destination PM based on the stochastic
model and network topology. The profiling of stochastic
resource demand in SLB uses n = 30 most recent measure-
ments.

5.1 The number of VM migrations
Figure 7 and Figure 8 show the total number of VM
migrations with varying workload ratios. Figure 7 and
Figure 8 show the experimental results with the Planet-
Lab trace and Google Cluster trace, respectively. For each

0

150

300

450

600

1.5 2 2.5

To
tl

a
l

n
u

m
b

e
r

o
f

m
ig

ra
ti

o
n

s

Load (x original load in trace)

SLB Sandpiper
CloudScale

Figure 8. The number of VM migrations using Google Cluster trace.

0

150

300

450

600

1.5 2 2.5

To
ta

l
n

u
m

b
e

r
o

f
o

v
e

rl
o

a
d

e
d

 P
M

s

Load (x original load in trace)

SLB Sandpiper
CloudScale

Figure 9. The number of overloaded PMs using PlanetLab trace.

workload ratio, the number of VM migrations follows
SLB<Sandpiper<CloudScale. SLB outperforms Sandpiper
and CloudScale because each PM can find the VM that is ex-
pected to effectively release PM workload with the highest
probability, and also can find the most suitable destination
PM to host the migrating VM, resulting in a reduced need
of VM migrations in a long run. That is, SLB is able to keep
a long-term load balance state while triggering a smaller
number of VM migrations than the alternative methods.
Also, SLB proactively avoids overloading the destination
PMs in the future. Thus, it keeps the system in a balanced
state for a relatively longer period of time, resulting in
fewer VM migrations than Sandpiper and CloudScale in the
same period of time. CloudScale generates a larger number
of VM migrations than Sandpiper in each round because
CloudScale migrates VMs not only for a correctly predicted
overloaded PM but also for an incorrectly predicted over-
loaded PM, but Sandpiper only migrates VMs for occurred
overloaded PMs. The results under the PlanetLab trace have
higher numbers of VM migrations than the results under
the Google Cluster trace for two reasons. First, the Planet-
Lab trace has a relatively higher workload level than the
Google Cluster trace, meaning that the average utilization
of the PMs is more close to 0.75. Second, the workload in
PlanetLab is more fluctuant and tends to lead to inaccurate
predictions of the load balancing algorithms.

5.2 The number of overloaded PMs
In this experiment, each PM checks its load status every
5 minutes during the simulation. A PM is regarded as
overloaded if the utilization of either its CPU, memory
or bandwidth resource exceeds the predefined threshold.
Figure 9 and Figure 10 show the cumulative number of
overloaded PMs detected in the system during the 24 hour

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 11

0

100

200

300

400

500

1.5 2 2.5

To
ta

l
n

u
m

b
e

r
o

f
o

v
e

rl
o

a
d

e
d

 P
M

s

Load (x original load in trace)

SLB Sandpiper
CloudScale

Figure 10. The number of overloaded PMs using Google Cluster trace.

simulation, with respect to the PlanetLab trace and Google
Cluster trace. The number of overloaded PMs increases with
workload ratio, and follows SLB<CloudScale<Sandpiper
for each workload ratio. SLB outperforms the other two with
fewer overloaded PMs since it uses the stochastic model
for both the migrating VM selection and the destination
PM selection, to maintain a long-term load balance state.
CloudScale produces fewer overloaded PMs than Sandpiper
because its predicted overloaded PMs migrate VMs out be-
fore they become overloaded, while Sandpiper conducts VM
migrations upon the PM overload occurrence. The numbers
for the PlanetLab trace are higher than those for the Google
Cluster trace due to the same reasons mentioned in Section
5.1.

5.3 PM resource utilizations

Figure 11 and Figure 12 present the cumulative distribution
function (CDF) of the number of PMs versus the CPU and
memory utilizations, after the first load balancing with the
PlanetLab trace in the three methods. The figures show
that SLB results in a similar resource utilization distribution
across the PMs and they keep the CPU and memory uti-
lizations of all the PMs under the threshold. Due to a long-
term load balance state maintenance caused by stochastic
model based hotspot detection and hotspot migration, SLB
is able to keep all the PMs in a medium resource utilization
of around 50%. The CDF show that SLB achieves a more
balanced status for the system than the other two methods.
Due to the fluctuation of VM loads and inappropriate VM
migrations, Sandpiper and CloudScale sometimes fail to
achieve this goal. For Sandpiper, around 20% of the PMs
exceed CPU utilization threshold and around 10% of the
PMs exceed memory utilization threshold. For CloudScale,
around 10% of the PMs exceed CPU utilization threshold
and around 10% of the PMs exceed memory utilization
threshold.

5.4 The speed of load balancing

We then measure the temporal distributions of the cumula-
tive number of overloaded PMs in the system to measure the
capability of the load balancing methods in preventing over-
loading PMs in the long-term. Figure 13, Figure 14 and Fig-
ure 15 show the CDF of the number of overloads over time
with the workload ratio of 1.5, 2 and 2.5, respectively. Since
we used the same random initial placement, the numbers of
overloaded PMs in the beginning are exactly the same for

0

20

40

60

80

100

0 20 40 60 80 100

C
D

F
 o

f
th

e
 n

u
m

b
e

r
o

f
P

M
s

(%
)

CPU utilization (%)

SLB

Sandpiper

CloudScale

Figure 11. CDF of PM CPU utilization after load balancing.

0

20

40

60

80

100

0 20 40 60 80 100

C
D

F
 o

f
th

e
 n

u
m

b
e

r
o

f
P

M
s

(%
)

Memory utilization (%)

SLB

Sandpiper

CloudScale

Figure 12. CDF of PM memory utilization after load balancing.

0

20

40

60

80

100

0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

o
v
e

rl
o

a
d

e
d

 P
M

s

Time (min)

SLB

Sandpiper

CloudScale

Figure 13. The number of overload PMs under workload of ratio 1.5.

0

30

60

90

120

150

0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

o
v
e

rl
o

a
d

e
d

 P
M

s

Time (min)

SLB

Sandpiper

CloudScale

Figure 14. The number of overload PMs under workload of ratio 2.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 12

0

30

60

90

120

150

0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

o
v
e

rl
o

a
d

e
d

 P
M

s

Time (min)

SLB

Sandpiper

CloudScale

Figure 15. The number of overload PMs under workload of ratio 2.5.

the three balancing methods. When the workload is low, as
Figure 13 shows, the number of overloaded PMs generated
initially accounts for 20% of the total number of overloaded
PMs in Sandpiper. The CDF curve of Sandpiper indicates
that PM overload can happen at any moment during the
simulation time. This is because Sandpiper only focuses on
eliminating current overloads, which tends to generate fu-
ture overloaded PMs due to the dynamically varying work-
load requests from the VMs. CloudScale and SLB not only
eliminate the overloaded PMs generated initially but also
prevent overloading PMs. We see that the number of over-
loaded PMs generated initially accounts for 80% of the total
number of overloaded PMs in CloudScale, and only 20%
are generated during the subsequent time in the 1 hour. SLB
outperforms CloudScale due to its more accurate stochastic
model with sophisticated mathematical tools. Figure 14 and
Figure 15 show similar distribution as in Figure 13 due to
the same reasons. The results confirm that SLB is effective in
preventing overloading PMs with different workload levels.

5.5 The VM performance degradation
When a VM is being migrated to another PM, its per-
formance (response time) is degraded [34]. We also aim
to minimize the VM performance degradation caused by
migrations. We calculate the performance degradation D of
a VM that migrates to PM based on a method introduced
in [5], [34]. D =

∑
d ·
∫ t+M

B

t
u(t)dt, where t is the time

when migration starts, M is the amount of memory used by
V , B is the available network bandwidth, M

B indicates the
time to complete the migration, u(t) is the CPU utilization
of V , and d is the migration distance from the source PM
to the destination PM. The distance between PMs can be
determined by the cloud architecture and the number of
switches across the communication path [24], [25].

Figure 16 and Figure 17 show the total performance
degradation

∑
D of the three methods for the Planet-

Lab and Google Cluster traces, under 1.5x, 2x and 2.5x of
workload, respectively. We see that the total performance
degradation of SLB is lower than that of CloudScale and
Sandpiper in both traces. This is caused by the distinguish-
ing features of SLB. First, SLB triggers fewer VM migrations.
Second, SLB tries to minimize performance degradation in
destination PM selection by considering network topology.
Third, SLB chooses VMs with lower utilizations. Sandpiper
generates lower performance degradation than CloudScale
because it generates fewer VM migrations as shown in
Figure 7 and Figure 8. We also see that in both traces,

0.0

2.0

4.0

6.0

8.0

10.0

1.5 2 2.5

P
e

rf
o

rm
a

n
ce

d

e
g

ra
d

a
ti

o
n

 (
x1

0
6
)

Load (x original load in trace)

SLB Sandpiper

CloudScale

Figure 16. Total VM performance degradation using PlanetLab trace.

0.0

2.0

4.0

6.0

8.0

1.5 2 2.5

P
e

rf
o

rm
a

n
ce

d

e
g

ra
d

a
ti

o
n

 (
x1

0
5
)

Load (x original load in trace)

SLB Sandpiper

CloudScale

Figure 17. Total VM performance degradation using Google Cluster
trace.

the performance degradation of the three methods follows
SLB<Sandpiper<CloudScale, and the difference is small in
the Google Cluster trace.

6 CONCLUSION

In this paper, we consider the VM migration based load
balancing problem with highly dynamic resource demands.
By our trace study, we demonstrate that in real world the
resource utilization of VMs are highly dynamic and bursty.
The previous load balancing schemes detect hotspots and
decide VM migrations based on deterministic resource de-
mand prediction, which can lead to poor performance and
severe SLA violations. To address this issue, we propose a
stochastic load balancing scheme. With characterizing the
resource demands of VMs as random variables, our scheme
provides the probabilistic guarantee against resource over-
loading, that is, the aggregate VM demand for any resource
in a PM does not exceed its capacity with a high probability.
To this end, it addresses the prediction of the probability
distribution of resource demands, and determines hotspots
and VM migrations with stochastic characterizations of re-
source demands. The VM migration algorithm in the scheme
aims to minimize the migration cost for load balancing
considering the network topology and improves the worst
performance the system could experience from the hotspots.
Our trace-driven experiments demonstrate the efficiency
and the advantages of our scheme compared with the
previous deterministic load balancing schemes.

In the future, we will investigate the distribution of VM
demands in a large-scale, and evaluate the impact of differ-
ent distributions of workloads on the performance of load
balancing. Specifically, we will look into the exponential
distribution and its impact on the efficiency of deterministic

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 13

load balancing schemes. We will extend the stochastic load
balancing scheme considering different probability distribu-
tions. In addition, although our VM migration algorithm
considers the network topology by taking into account
the distance from the source to the destination PM for a
VM migration, it does not consider the bandwidth usages
on the links of the migration path. In practice, the link
congestion on a path can prolong migration time. On the
other hand, many applications run on multiple VMs in a
distributed manner. To ensure application performance, the
bandwidth demand among these VMs have to be satisfied.
Thus, determining the destination of VM migrations need
to consider the available bandwidth on the paths between
the destinations and other VMs used by the application.

ACKNOWLEDGMENT

This work is partly supported by the NSF of US under
grant No CNS-1252292, NSF-1404981, IIS-1354123, CNS-
1254006, 1303359, 1244665, IBM Faculty Award 5501145 and
Microsoft Research Faculty Fellowship 8300751.

REFERENCES

[1] Microsoft Azure. http://www.windowsazure.com.
[2] planetlab workload traces. https://github.com/beloglazov/planetlab-

workload-traces.
[3] Amazon Web Service. http://aws.amazon.com/.
[4] E. Arzuaga and D. R. Kaeli. Quantifying load imbalance on

virtualized enterprise servers. In Proceedings of the first joint
WOSP/SIPEW international conference on Performance engineering,
pages 235–242. ACM, 2010.

[5] A. Beloglazov and R. Buyya. Optimal online deterministic al-
gorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers. CCPE, 24(13):1397–1420, 2011.

[6] A. Beloglazov and R. Buyya. Managing overloaded hosts for
dynamic consolidation of virtual machines in cloud data centers
under quality of service constraints. Parallel and Distributed Sys-
tems, IEEE Transactions on, 24(7):1366–1379, 2013.

[7] T. Benson, A. Akella, and D. A. Maltz. Network traffic character-
istics of data centers in the wild. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, IMC ’10, pages 267–
280, New York, NY, USA, 2010. ACM.

[8] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of
virtual machines for managing sla violations. In Integrated Network
Management, 2007. IM’07. 10th IFIP/IEEE International Symposium
on, pages 119–128. IEEE, 2007.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya. Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms. Softw., Pract. Exper., 2011.

[10] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation
for shared data centers using online measurements. pages 381–
398. Springer, 2003.

[11] K.-T. Chen, C. Chen, and P.-H. Wang. Network aware load-
balancing via parallel vm migration for data centers. In Computer
Communication and Networks (ICCCN), 2014 23rd International Con-
ference on, pages 1–8. IEEE, 2014.

[12] L. Chen, H. Shen, and K. Sapra. Rial: Resource intensity aware
load balancing in clouds. In INFOCOM, 2014 Proceedings IEEE,
pages 1294–1302. IEEE, 2014.

[13] M. Chen, H. Zhang, Y.-Y. Su, X. Wang, G. Jiang, and K. Yoshihira.
Effective vm sizing in virtualized data centers. In Integrated
Network Management (IM), 2011 IFIP/IEEE International Symposium
on, pages 594–601, May 2011.

[14] M. Chen, H. Zhang, Y.-Y. Su, X. Wang, G. Jiang, and K. Yoshihira.
Effective vm sizing in virtualized data centers. In Integrated
Network Management (IM), 2011 IFIP/IEEE International Symposium
on, pages 594–601, May 2011.

[15] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In Proceedings of the 2Nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2, NSDI’05, pages 273–
286, Berkeley, CA, USA, 2005. USENIX Association.

[16] Q. Gao, P. Tang, T. Deng, and T. Wo. Virtualrank: A prediction
based load balancing technique in virtual computing environ-
ment. In Services (SERVICES), 2011 IEEE World Congress on, pages
247–256. IEEE, 2011.

[17] A. Goel and P. Indyk. Stochastic load balancing and related
problems. In Foundations of Computer Science, 1999. 40th Annual
Symposium on, pages 579–586, 1999.

[18] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource
scaling for cloud systems. In Network and Service Management
(CNSM), 2010 International Conference on, pages 9–16. IEEE, 2010.

[19] Google cluster data. https://code.google.com/p/googleclusterdata/.
[20] J. Hu, J. Gu, G. Sun, and T. Zhao. A scheduling strategy on

load balancing of virtual machine resources in cloud computing
environment. In Parallel Architectures, Algorithms and Programming
(PAAP), 2010 Third International Symposium on, pages 89–96. IEEE,
2010.

[21] H. Jin, D. Pan, J. Xu, and N. Pissinou. Efficient vm placement with
multiple deterministic and stochastic resources in data centers. In
Global Communications Conference (GLOBECOM), 2012 IEEE, pages
2505–2510, Dec 2012.

[22] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken.
The nature of data center traffic: Measurements & analysis. In
Proceedings of the 9th ACM SIGCOMM Conference on Internet Mea-
surement Conference, IMC ’09, pages 202–208, New York, NY, USA,
2009. ACM.

[23] J. Li and H. Kameda. Load balancing problems for multiclass
jobs in distributed/parallel computer systems. Computers, IEEE
Transactions on, 47(3):322–332, Mar 1998.

[24] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of
data center networks with traffic-aware virtual machine place-
ment. In Proc. of INFOCOM, 2010.

[25] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Rat-
nasamy, and I. Stoica. Faircloud: sharing the network in cloud
computing. In Proc. of SIGCOMM, 2012.

[26] A. Sallam and K. Li. A multi-objective virtual machine migration
policy in cloud systems. The Computer Journal, 57(2):195–204, 2014.

[27] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elas-
ticity provisioning system for the cloud. In Distributed Computing
Systems (ICDCS), 2011 31st International Conference on, pages 559–
570. IEEE, 2011.

[28] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic
resource scaling for multi-tenant cloud systems. In Proceedings of
the 2nd ACM Symposium on Cloud Computing, page 5. ACM, 2011.

[29] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu, and
S. Banerjee. Application-aware virtual machine migration in data
centers. In INFOCOM, 2011 Proceedings IEEE, pages 66–70. IEEE,
2011.

[30] A. Singh, M. Korupolu, and D. Mohapatra. Server-storage vir-
tualization: integration and load balancing in data centers. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
page 53. IEEE Press, 2008.

[31] A. N. Tantawi and D. Towsley. Optimal static load balancing in
distributed computer systems. J. ACM, 32(2):445–465, Apr. 1985.

[32] M. Tarighi, S. A. Motamedi, and S. Sharifian. A new model for
virtual machine migration in virtualized cluster server based on
fuzzy decision making. arXiv preprint arXiv:1002.3329, 2010.

[33] P. Venkata Krishna. Honey bee behavior inspired load balancing
of tasks in cloud computing environments. Applied Soft Computing,
13(5):2292–2303, 2013.

[34] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. Cost of
virtual machine live migration in clouds: A performance evalua-
tion. In M. Jaatun, G. Zhao, and C. Rong, editors, Cloud Computing,
volume 5931 of Lecture Notes in Computer Science, pages 254–265.
Springer Berlin Heidelberg, 2009.

[35] M. Wang, X. Meng, and L. Zhang. Consolidating virtual machines
with dynamic bandwidth demand in data centers. In INFOCOM,
2011 Proceedings IEEE, pages 71–75, April 2011.

[36] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Sand-
piper: Black-box and gray-box resource management for virtual
machines. Computer Networks, 53(17):2923–2938, 2009.

[37] Z. Xiao, W. Song, and Q. Chen. Dynamic resource allocation
using virtual machines for cloud computing environment. Parallel

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , FEBRUARY 2016 14

and Distributed Systems, IEEE Transactions on, 24(6):1107–1117, June
2013.

[38] F. Xu, F. Liu, L. Liu, H. Jin, B. Li, and B. Li. iaware: Making
live migration of virtual machines interference-aware in the cloud.
Computers, IEEE Transactions on, PP(99):1–1, 2013.

[39] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang. Live migration
of multiple virtual machines with resource reservation in cloud
computing environments. In Cloud Computing (CLOUD), 2011
IEEE International Conference on, pages 267–274. IEEE, 2011.

[40] Q. Zhu, J. Zhu, and G. Agrawal. Power-aware consolidation of
scientific workflows in virtualized environments. In Proceedings
of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pages 1–12,
Washington, DC, USA, 2010. IEEE Computer Society.

Lei Yu received his BS degree and MS degree in
computer science from Harbin Institute of Tech-
nology, China. He is currently working towards
the PhD degree in the Department of Computer
Science at Georgia State University, USA. His
research interests include cloud computing, sen-
sor networks, wireless networks, and network
security.

Liuhua Chen received both his BS degree and
MS degree from Zhejiang University, in 2008 and
2011, and is currently working toward the PhD
degree in the Department of Electrical and Com-
puter Engineering at Clemson University. His re-
search interests include distributed and parallel
computer systems, and cloud computing. He is
a student member of the IEEE.

Zhipeng Cai received his PhD and MS degrees
from the Department of Computing Science at
University of Alberta, and BS degree from the
Department of Computer Science and Engineer-
ing at Beijing Institute of Technology. He is cur-
rently an Assistant Professor in the Department
of Computer Science at Georgia State Univer-
sity. Prior to joining GSU, Dr. Cai was a research
faculty in the School of Electrical and Computer
Engineering at Georgia Institute of Technology.
Dr. Cai’s research areas focus on Networking

and Big data. Dr. Cai is the recipient of an NSF CAREER Award.

Haiying Shen received the BS degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Associate Professor in the
Department of Electrical and Computer Engi-
neering at Clemson University. Her research
interests include distributed computer systems
and computer networks, with an emphasis on
peer-to-peer and content delivery networks, mo-

bile computing, wireless sensor networks, and grid and cloud com-
puting. She was the Program Co-Chair for a number of international
conferences and member of the Program Committees of many leading
conferences. She is a Microsoft Faculty Fellow of 2010, a senior member
of the IEEE and a member of the ACM.

Yi Liang received his MS degree from the De-
partment of of Computer Science at University
of Science and Technology of China (USTC) in
2014, and is currently working towards the PhD
degree in the Department of Computer Science
at Georgia State University, USA. His research
interests include cloud computing, big data and
networking.

Yi Pan received the BEng and MEng degrees in
computer engineering from Tsinghua University,
China, and the PhD degree in computer science
from the University of Pittsburgh, USA. He is the
chair and a professor in the Department of Com-
puter Science at Georgia State University, and
a Changjiang chair professor in the Department
of Computer Science at Central South Univer-
sity, China. His research interests include par-
allel and distributed computing, networks, and
bioinformatics. He has published more than 100

journal papers with 50 papers published in various IEEE/ACM jour-
nals. In addition, he has published more than 100 papers in refereed
conferences. He has authored/edited 34 books (including proceedings)
and contributed many book chapters. He has served as the editor in
chief or an editorial board member for 15 journals, including six IEEE
Transactions. He is a senior member of the IEEE.

