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Abstract—In data intensive clusters, a large amount of files are stored, processed and transferred simultaneously. To increase the

data availability, some file systems create and store three replicas for each file in randomly selected servers across different racks.

However, they neglect the file heterogeneity and server heterogeneity, which can be leveraged to further enhance data availability and

file system efficiency. As files have heterogeneous popularities, a rigid number of three replicas may not provide immediate response to

an excessive number of read requests to hot files, and waste resources (including energy) for replicas of cold files that have few read

requests. Also, servers are heterogeneous in network bandwidth, hardware configuration and capacity (i.e., the maximal number of

service requests that can be supported simultaneously), it is crucial to select replica servers to ensure low replication delay and request

response delay. In this paper, we propose an Energy-Efficient Adaptive File Replication System (EAFR), which incorporates three

components. It is adaptive to time-varying file popularities to achieve a good tradeoff between data availability and efficiency. Higher

popularity of a file leads to more replicas and vice versa. Also, to achieve energy efficiency, servers are classified into hot servers and

cold servers with different energy consumption, and cold files are stored in cold servers. EAFR then selects a server with sufficient

capacity (including network bandwidth and capacity) to hold a replica. To further improve the performance of EAFR, we propose a

dynamic transmission rate adjustment strategy to prevent potential incast congestion when replicating a file to a server, a network-

aware data node selection strategy to reduce file read latency, and a load-aware replica maintenance strategy to quickly create file

replicas under replica node failures. Experimental results on a real-world cluster show the effectiveness of EAFR and proposed

strategies in reducing file read latency, replication time, and power consumption in large clusters.

Index Terms—Data-intensive clusters, file replication, replica placement, energy-efficient

Ç

1 INTRODUCTION

DATA intensive computing has been gaining popularity
rapidly, and the storage and server demands from

computing workloads have been growing exponentially.
File storage systems are an indispensable component for
data-intensive clusters. Various file systems have been
developed, such as Hadoop Distributed File System (HDFS)
[1], Oracle’s Lustre [2], Parallel Virtual file system (PVFS)
[3], and Ceph [4]. In these file systems, concurrent I/O
requests to the same file can be spread across several servers
rather than a single one. In order to enhance data availabil-
ity, these file systems create a fixed number of replicas for
each file and store the replicas in randomly selected servers
across different racks. Then, concurrent I/O requests to the
same file are spread across several servers rather than a sin-
gle one. This uniform replication policy has three advan-
tages. First, it avoids the hazard of single point of failure;
the failure of a particular node does not make the data

stored in itself unavailable. Second, clients can read the files
from nearby servers. Third, it distributes file requests across
the replicas, and thus achieves good load balancing.

However, this replication policy neglects the file and
server heterogeneity, which can be leveraged to further
enhance data availability and file system efficiency. First,
the files in a large cluster exhibit wide disparity in popular-
ity. For example, the data in HDFS can be classified into
four categories according to their access patterns and popu-
larity [1], [5], [6]: hot data, cooled data, cold data and nor-
mal data. For cold data that is rarely requested, too many
replicas may not improve file availability, but instead lead
to unnecessary storage cost. Therefore, in order to improve
replica efficiency, we should increase the replication factor
(i.e., the number of replicas of a file) of hot data to guarantee
data availability and load balance, and reduce the replica-
tion factor of cold data to save the storage cost.

Second, energy consumption contributes a significant por-
tion of management cost for datacenters [7], [8], [9]. The
energy cost of equipment during its lifetime is comparable to
the initial equipment purchase price [10]. Existing file systems
randomly select servers in each rack to replicate data (called
replica destinations), but do not consider selecting replica des-
tinations to reduce energy consumption. The file replication
system actually can reduce energy consumption based on file
popularity heterogeneity. We can separate the cluster into
hot servers with high CPU utilization (i.e., high power
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consumption) and cold servers with low CPU utilization (i.e.,
low power consumption), and place the replicas of popular
data in hot servers, which provide high performance, and
place the replicas of cold data in cold servers as data backup.

Third, the random selection of replica destinations neglects
server heterogeneity (i.e., different servers vary in network
capacities and data request handling capacities). The writes
due to creating replicas in production clusters at Facebook
and Microsoft account for almost half of all cross-rack traffic
[11]. Though the network inside clusters is generally underu-
tilized, there exist some bottleneck links resulting from the
network usage imbalance [12], [13]. As the traffic inmulti-ten-
ant datacenters is not controlled, the traffic congestion of bot-
tleneck links leads to performance degradation inside clusters
[14], [15], [16]. If a large number of replicas are written to the
same server simultaneously, the server may run out of net-
work capacity and data request handling capacity. Thus, it is
important to choose replica destinations to steer replica trans-
fers away fromnetwork bottlenecks and overloaded servers.

A number of important challenges need to be overcome to
achieve the aforementioned goals in file replication systems.
First, the replication factor of each file should be dedicated
assigned based on the request rate and availability of the file.
Second, we need to maintain data availability when reducing
energy consumption. Third, in order to avoid network bottle-
necks, we need to effectively identify overloaded servers and
dynamically change the transmission rate to prevent network
congestion. In this paper, we propose an Energy-Efficient
Adaptive File Replication System (EAFR), which incorporates
three components. 1) It is adaptive to the time-varying file
popularities to achieve a good tradeoff between data avail-
ability and efficiency. Higher popularity of a file on over-
loaded servers leads to more replicas and vice versa. 2) To
achieve energy efficiency, servers are classified into hot serv-
ers and cold servers with different energy consumption, and
hot/cold files are stored in hot/cold servers, respectively. 3) It
selects servers with sufficient capacity (including network
bandwidth and capacity) as replica destinations. We further
propose three strategies to improve the performance of
EAFR. First, when replicating a file to a server, EAFR dynami-
cally tunes the transmission rate to prevent potential incast
congestion. Second, when a compute node needs to read a
file, EAFR uses a network-aware data node selection strategy
to reduce file read latency. Third, when replica node failure
occurs, EAFR uses a load-aware replica maintenance strategy
to quickly create file replicas in other nodes.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview on the related work. Section 3
introduces the design of EAFR and our proposed strategies.
The performance evaluation is presented in Section 4. Sec-
tion 5 concludes the paper with remarks on future work.

2 RELATED WORK

File replication is a common strategy to improve data reliabil-
ity and availability in large clusters. HDFS [1], Lustre [2] and
PVFS [3] maintain a constant number of replicas for each file,
and replicas of the same file are placed in randomly selected
servers. Many methods [17], [18], [19] have been proposed to
improve the replication policy for different purposes. CDRM
[17] adjusts the replication factor to maintain a required

reliability for each file under server failures based on the rela-
tionship between file reliability and replication factor when
servers have a certain probability to fail. Scarlett [18] aims to
speed up the jobs by increasing the replication factor in the
MapReduce systems. It is an off-line system that studies the
file access patterns, and computes a replication factor for each
file with a replication budget for load balance. In order to
improve data locality in the MapReduce systems, DARE [19]
replicates remote data into the local node when a map task
processes data from remote nodes. It also applies a replication
budge to limit the amount of replicas to save storage resource.
Unlike the above replication works, EAFR aims to improve
the data availability with the consideration of file popularity
and file storage system efficiency.

Network bottleneck [12], [13], [15], [16] is critical issues in
data-intensive clusters but are neglected in previous file rep-
lication methods. Hedera [20] aims to maximize aggregate
network utilization by collecting flow information from con-
stituent switches. It studies the traffic demands and routing
flows, and instructs switches to re-route traffic accordingly.
Orchestra [21] studies the short-term traffic, then incorpo-
rates scheduling policies such as multipath routing and
transfer priority at the transfer level to improve network per-
formance inside clusters. These schedulers are based on the
constraint that the traffic sources and destinations are
already fixed, EAFR flexibly selects the servers with avail-
able network capacity to avoid network bottlenecks.

Energy-conservation in large-scale datacenters has drawn
considerable research attention. Some studies [22], [23] aim to
reduce the power costs by dynamically transitioning the serv-
ers to a sleeping state in datacenters. Works in [24], [25], [26]
exploit the opportunities of geographical load balancing to
minimize energy cost in data centers. Recent research [27],
[28], [29] proposes maintaining a minimal subset of nodes
that are guaranteed to be on, and put other nodes to sleeping
mode. This strategy ensures that a primary replica of each file
is stored on active servers to provide service to file requests;
however, it does not consider file popularity and replicas of
popular file are also stored on inactive nodes. This generates a
large number of replicas for popular files in order to ensure
the file’s immediate availability, and it suffers from degraded
write-performance as the writes need to be executed on all
servers storing the file replicas. GreenHDFS [30], [31], [32]
trades performance for energy saving by logically separating
the Hadoop cluster into hot and cold zones. Cold zone keeps
low power consumption but provide less critical response for
file accesses (i.e., long latency); while hot zone consumes
more power and has strict performance requirements. It then
uses data classification policies to place data onto a suitable
temperature zone, that is, data that is frequently accessed by
Hadoop framework is placed in hot zone, while unpopular
data is place in cold zone. Autoplacer [33] identifies top-k
objects that generate most remote operations (i.e., hotspots)
for each node of the system, and optimizes the placement of
hotspots to minimize the inter-node communication. Schism
[34] represents a database and its workload using a graph,
where tuples are represented by nodes and transactions are
represented by edges. It then uses graph partitioning algo-
rithms to minimize the number of multi-sited transactions.
Different from these works, EAFR considers file popularity
when allocating file replicas in order to save energy.
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3 SYSTEM DESIGN

3.1 Background of File Replication

A typical cluster file system uses a hierarchical storage
architecture, as shown in Fig. 1. The bottom layer consists of
a set of storage servers, where the files (aka objects or
blocks) are stored. In order to guarantee data reliability in
face of network failure or hardware damage, cluster file sys-
tem makes multiple replicas for each file [18]. A replication
factor (ri) and a fault-tolerance factor (pi) for file (fi) are pre-
defined in the system, which ensure that each file fi has ri
replicas and the replicas are distributed in more than
(pi < ri) fault domains (i.e., racks). Typically, HDFS uses
ri ¼ 3 and pi ¼ 1, i.e., each file is stored in three servers
across at least two racks. When one rack suffers from a fail-
ure, the file is still available. The red arrows in Fig. 1 shows
an example of the distributed writes when storing a file
with ri ¼ 3 and pi ¼ 1. By creating a constant number of
replicas for each file, current replication systems neglect the
heterogeneity in file popularity. Some hot files attract a large
amount of read requests from clients, while some cold files
attract few visits. As a result, copying files to only three
servers is insufficient to meet the stringent response require-
ment for hot files but wastes resources for cold files.

On top of the servers are ToR switches, which are located
within the Ethernet to aggregate the connectivity of all servers.
The ToR switches maintain connections to the rest of network
through aggregation switches, on top of which is the core
switch. In this network architecture, the link capacity between
switches is bounded by hardware limitations (e.g., NIC
speed). Though link utilizations inside clusters are generally
low and stable, there exist network congestions due to skewed
link utilization [12]. For example, link L1 (marked in red) in
Fig. 1 may become a bottleneck if the there are many writes to
Rack 1. Current replication policy does not consider link utili-
zation when transmitting file replicas. Also, current clusters
must keep all servers running constantly to guarantee file
availability, which is very costly in power consumption. The
files are skewed in popularity, and many files rarely get
accessed during their lifetime [19]. Thus, we can save power
and management expense by putting servers storing the cold
files in a “powernap” state. We summarize the shortcomings
of current file replicationmethods as follows:

� A fixed number of replicas for each file is insufficient
to provide quick file read for hot files while wastes
resources for storing replicas of cold files.

� Random selection of replica destinations requires
keeping all servers active to ensure data availability,
which however wastes power consumption.

� As the random selection of replica destinations does
not consider destination bandwidth and request
handling capacity, network congestions may occur
due to capacity limitation of some links and server
may become overloaded by data requests.

The goal of EAFR is to cope with these problems and pro-
vide an effective and energy-efficient file replication strat-
egy. In this paper, if a file is striped into multiple blocks, we
treat each block as an independent file.

3.2 Energy-Efficient and Popularity-Adaptive File
Replication

In large data-intensive clusters, most popular files are gen-
erally small in size, while large files seldom get read [35].
Therefore, replicating and migrating popular files is rela-
tively light in storage and bandwidth cost. Taking advan-
tage of this characteristic in clusters, EAFR increases the
number of replicas of popular files in order to boost their
availability and reduces the number of replicas of cold files
in order to save resources. Fig. 2 shows an overview of
EAFR. EAFR divides servers into hot servers and cold
servers: hot servers consume more power and provides
prompt response for file requests; while cold servers stay
in sleeping mode with 0 percent CPU utilization and low
energy consumption.

Each file fi must have r replicas in all servers and � < r
replicas in hot servers, where r and � are pre-defined num-
bers to guarantee file reliability under server failures. For a
file with a high visit rate, EAFR creates an extra replica and
places it to a hot server, which is shown in step 1. The new
replica is used to balance the read requests of a hot file
among servers where the file replicas are stored. For a file
with a low visit rate (i.e., a cold file), EAFR reduces the
number of replicas of the file in the hot servers if it is larger
than �. That is, a replica in a hot server is either deleted or
migrated to a cold server in order to save the power con-
sumption, which is shown in step 2. This operation does not
affect the availability of the cold file as it rarely gets read. In
the following, we introduce how to set hot servers and cold
servers (Section 3.2.1), how to identify hot files and cold files
based on their visit rates (Section 3.2.2), and the details of
the energy-efficient and popularity-adaptive file replication
algorithm (Section 3.2.3). Table 1 shows the notations used
in this paper.

3.2.1 Different Types of Servers Based On Energy

Consumption

Transitioning servers to an inactive, low power sleep/
standby state (i.e., scale-down) is a technique to conserve
energy. It trades energy consumption with server perfor-
mance (e.g., CPU utilization). Table 2 shows the power con-
sumption characteristics of the HP ProLiant ML110 G5

Fig. 1. Architecture of hierarchical storage system.

Fig. 2. An overview of EAFR: placing cold files in servers with low power
consumption and hot files in servers with high power consumption.
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server at different server performances represented by
server CPU utilization [36]. Higher CPU utilization con-
sumesmore power, andwhen a server runs at 0 percent CPU
utilization (e.g., in sleeping state), the power consumption is
93.7 Watts. In EAFR, we define three types of servers: hot
servers, cold servers and standby servers. A hot server runs
at the active state, i.e., with CPU utilization greater than 0. A
cold server is in the sleeping state with 0 CPU utilization and
inactive DRAM and disks and it does not serve any file read
request. A standby server is a temporary hot server that will
be transitioned to a cold server. To maintain the consistency
of stored files, cold servers wake up periodically (e.g., once a
week) and check for file consistency. When there is a rack
failure or a server failure inside clusters, cold servers storing
the lost files will be turned on and become hot servers.

As a cold server runs at smaller power consumption
compared to a hot server, switching hot servers to cold
mode can save energy. A cold server stores cold files with
few read requests. Writing a file to a cold server needs to
wake up the server, which consumes more energy and may
offset the benefit of sleeping [37]. Also, it creates excessive
latency to transition a server from sleeping mode to active
mode and thus delays the write operation. Therefore, we
use a standby server to collect all cold files and turn into a
cold server when its storage is full. A standby server still
serves file requests as hot servers do.

3.2.2 Different Types of Files Based on Read Rates

In HDFS, more than 90 percent files exhibit a relatively short
hotness lifespan (i.e., less than three days) and a significant
portion of data is cold (i.e., never gets read) [31]. In order to
justify the heterogeneity of file popularity in large clusters,
we analyzed the file storage system trace data from Sandia
National Laboratories [38], which records the number of file
reads for 16,566 accessed files during 4 hour run. Fig. 3a
shows the percentage of files attracting different range of
file reads. We see that about 43 percent files receive less
than 30 reads and 4 percent files receive a large number of
reads (i.e., > 400). The results confirm that most of these
files attract a small amount of file reads and hence do not
need many replicas. Popular files constitute a small percent-
age of files, thus will not generate a large overhead by creat-
ing more replicas. We sorted the files by their number of
reads within a 4 hour period, then identified files with the
99th, 50th, and 25th percentiles and plotted their read count
over time in Fig. 3b from the top to the bottom, respectively.
These figures demonstrate the variation in file access pat-
tern for files with different popularities over time. We see
that these files tend to attract a relatively stable number of
reads within a short period of time. Thus, extra replicas can
be created to meet the frequent short-term read requests for
hot files, and then are deleted when they become cold.
Inspired by the observations of the previous works and the
above analysis, we can group files into different categories
based on popularity and perform different operations
according to their popularity. We present how to determine
hot files and cold files below.

Current replication factor of fi is ri, and the replicas of fi
is denoted by vector Ai ¼ fai1; ai2; . . . airig. The number of

reads for replica aij at time interval T is denoted by vij, and
the total number of reads for file fi is denoted by vi, and

vi ¼
Xri
j¼1

vij: (1)

First of all, a hot file should have a large number of concur-
rent reads across all its replicas. We define a hot file as a file
with average read rate per replica exceeds a pre-defined
threshold (tu):

vi=ri > tu: (2)

Second, we also consider the read rate of individual replicas.
In locality-aware file reads in large clusters, clients read
nearby replicas, so a large amount of concurrent reads for a
file may be drawn by some replicas, which also reflects the
popularity of the file. Therefore, a hot file may gain high read

TABLE 1
Table of Important Notations

fi: File i
sj: Server j
ri: # of replicas
pi: Fault-tolerance factor
aij: Replica j for fi
vi: Total # of reads for file fi
vij: # of reads for replica aij
ccj : Service capacity of server j

bj: Size of file j
fj: Remaining capacity of server j
csi : Storage capacity of server i
r: Remaining storage threshold
tu: Upper bound for total # of reads of hot file
su: Upper bound for total # of reads of hot replica
tl: Lower bound for total # of reads of cold file
sl: Lower bound for total # of reads of cold replica
Vt: Transmission speed in time window t
wtj : Weight of selecting server j based on transmission rate

wrj : Weight of selecting server based on remaining capacity

pj: Chance of selecting server j based on overall evaluation
cb: Bandwidth capacity of the destination node
Ba: Proportion of available bandwidth
h1: Highly utilized network capacity threshold
h2: Under-utilized network capacity threshold
di: Transmission rate adjust-up factor
bi: Transmission rate adjust-down factor
�: minimum # of replicas stored in hot servers

TABLE 2
Energy Consumption for Different CPU Utilizations in Watts [36]

CPU Utilization 0% 20% 40% 60% 80% 100%
HP ProLiant G5 93.7 101 110 121 129 135
Server status cold hot hot hot hot hot

Fig. 3. Trace analysis on file read pattern.
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rate in some of its replicas. Thus, ifmore than a certain fraction
(denoted by g) of a file’s replicas attract an excessive number
of reads (denoted by su), we consider this file a hot file:

Xri
j¼1

Iðvij > suÞ > rigv ð0 < gv < 1Þ; (3)

where Ið�Þ is an indication function, and IðAÞ=1 when the
assertion A is satisfied. If either Equations (2) or (3) is satis-
fied, file fi is a hot file represented byHðfiÞ ¼ 1.

Similarly, we use Equations (4) and (5) to determine if file
fi is a cold file. In the equations, tl is the lower bound of the
number of reads per replica in T

vi=ri < tl: (4)

Equation (4) shows that a cold file receives a small amount
of concurrent reads across its replicas. A cold file waste stor-
age space if the number of its replicas is large

Xri
j¼1

Iðvij < slÞ > rigv ð0 < gv < 1Þ (5)

In Equation (5), sl denotes the lower bound for the number of
reads that a file replica receives in T . If more than gv fraction
of a file’s replicas attract few reads, the file is potentially
cold. As creating a replica consumes network traffic and
CPU usage, and the cost of mistakenly deleting a file replica
is expensive, so we adopt a conservative way to determine if
a file is cold. Only when both Equations (4) and (5) are satis-
fied, file fi is considered a cold file, represented byCðfiÞ ¼ 1.

After a file is labeled with its popularity (i.e., hot file or
cold file), EAFR adjusts the number of its replicas according
to its popularity. The details are presented in Section 3.2.3.

3.2.3 Adaptive File Replication

EAFR constantly monitors file popularity and adaptively
tunes the number of replicas of a file based on whether it is
hot or cold according to Section 3.2.2. If a file is a hot file
and many of its replica servers are overloaded, EAFR cre-
ates more replicas for this file to reduce overload degree
and increase file availability. If a file is a cold file, EAFR
reduces its replicas or transfers its replicas to standby serv-
ers. We first define r to guarantee file reliability, which is
the minimum number of replicas a file needs to maintain in
all servers. We then define � to guarantee file reliability
(� < r), which is the minimum number of replicas a file
needs to maintain in hot servers.

Consider a large cluster consisting of: 1) p hot servers,
which are denoted by a set HS=(hs1, hs2,. . ., hsp); 2) q cold
servers CS=(cs1, cs2,. . ., csq); and 3) w standby servers SS=
(ss1, ss2,. . ., ssw). For a file fi with ri replicas, we use a set
Si=(s1, s2,. . ., sri ) to represent the servers that store its repli-

cas. For server sj, we define its service capacity (ccj ) as the

maximum number of concurrent file reads it can support.
We use hj to denote the concurrent reads sj receives. If
hj=ccj > tc, where tc is a threshold (e.g., 0.8), server sj is

considered as overloaded; otherwise, it is a lightly loaded
server. The remaining capacity of a lightly loaded server sj
is calculated by fj ¼ ccj � hj, which indicates the number of

additional file requests it can handle.

At time T , if file fi is hot (HðfiÞ ¼ 1), EAFR examines the
load status of all server in Si=(s1, s2,. . ., sri ). An extra replica

is needed for fi if more than gs ð0 < gs < 1Þ fraction of
these servers are overloaded, that is:

X
sj2Si

Iðhj=ccj > tcÞ > rigs ð0 < gs < 1Þ: (6)

When the inequality in Equation (6) is met, the current replica
servers of fi do not have enough capacity to handle an exces-
sive number of file reads. Then, EAFR increases the number
of replicas of fi by 1. Otherwise, the current replica servers of
fi can handle the file reads even though fi is hot, and there is
no need to increase the number of replicas of fi. The new rep-
lica will be placed in a hot server, so that it can serve new
incoming file requests. The details of selecting the replica des-
tination for the replica is presented in Section (3.3).

Algorithm 1. Pseudo-Code of EAFR

1: Determine the popularity of file fi
2: ifHðfiÞ ¼ 1: //create one replica
3: Select hsj from the hot server pool; place replica in hsi
4: end if
5: if CðfiÞ ¼ 1: //reduce number of replica by one
6: if number of replicas ri > r
7: Select sj according to Equation (7)
8: Delete the replica of fi in hsj
9: else
10: ifmore than � replicas of fi are stored in HS
11: Migrate one replica of fi from hsi to ssk
12: if Equation (8) is satisfied for ssk
13: ssk turns into a cold server
14: end if
15: end if
16: end if

If CðfiÞ ¼ 1, fi is cold and it draws few file reads. Then,
the number of fi’s replicas can be reduced in order to save
the storage. The rule of replica reduction is to delete a rep-
lica in a hot server, while still maintaining at least � replicas
in hot servers in order to guarantee file reliability. In the
replica reduction stage, EAFR first checks the number of
replicas for fi, i.e., ri. If ri > r and the number of replicas in
hot servers is larger than the threshold �, EAFR chooses the
server with the least remaining capacity and deletes the rep-
lica of fi from it. That is, the selected server sj satisfies:

sj ¼ arg min
sj2Si

ffjg: (7)

Erasure coding [39] creates redundant data pieces from the
actual data. When the actual data is lost, it enables the file
system to reconstruct data fragments by using the forward
error correction technique. Reducing the number of replicas
for cold files will decrease file reliability. In order to main-
tain file reliability while reducing storage cost, we can use
erasure coding to improve file reliability. However, erasure
coding is not the focus of this paper.

In the case of ri ¼ r, if there are � replicas in hot servers,
no action is performed; if more than � replicas are stored in
hot servers, one replica is moved from a hot server to a cold
server in order to save energy. EAFR selects a hot server sj
with the least remaining capacity according to Equation (7),
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and migrates the replica of fi from sj to a standby server.
The standby server functions like hot server (i.e., it serves
file requests) before turning to a cold server. Suppose the
storage capacity of standby server si is csi , if:

csi �
Xm
j¼1

bj < ts; (8)

a standby server is ready to turn cold. bj is the size of file j,
m is the number of cold files that are currently stored in the
standby server, and ts is the remaining storage threshold.

Algorithm 1 shows the pseudo-code of EAFR. This algo-
rithm runs periodically to adaptively tune the number of
replicas for each file. When a new replica of a file is created,
hot servers that do not store the file’s replica are candidates
to be the new replica holders. In order to reduce the replica-
tion completion time and balance server load, EAFR selects
the replica destination by considering both the expected
transmission rate and server workload status.

3.3 Replica Destination Selection

When a network link suffers from congestion, the conse-
quence is reflected in long write latency. In order to com-
plete the file replication within a short time, the connection
from source server to destination server should have high
transmission rate. For this purpose, we can use an existing
method [11] that monitors the network status (e.g., concur-
rent traffic, link utilization) and selects the links with light
traffic [11]. However, such a monitoring method is compli-
cated and requires additional monitoring overhead for large
clusters. EAFR estimates a server’s network condition based
on recent completion time of transmitting a file to the server.
This method is based on the rationale that the recent replica-
tion completion time can be an indicator of the server’s net-
work condition. To verify this rationale, we conducted an
experiment as below.

We randomly selected a server as the source and 20 desti-
nation servers in Palmetto Cluster in ClemsonUniversity [40].
The source replicated 20 files to each destination server at the
rate of once every 15 seconds. The file size is 100 MB. We
recorded the replication completion time on these servers,
and showed themaximum,median andminimum replication
completion time in Fig. 4. We can make two observations
from the figure. First, the replication completion time towards
different servers exhibits obvious variance. The replications
towards some servers (e.g., servers 1, 5 and 8) have smaller
replication completion times than those towards other serv-
ers, while replications towards some servers (e.g., servers 2, 4
and 9) generally take longer completion time. This observa-
tion justifies the necessity and motivation of allocating the

new replica to a server that has good network condition. Sec-
ond, each server shows relatively stable replication comple-
tion time with a small variance between the maximum and
minimum completion time. Thus, when multiple replicas are
transmitted to the same server within a short period, the com-
pletion time for these replications should be similar. There-
fore, a server’s recent transmission speed can be used to
predict the transmission speed in the near future. EAFR does
not need to look into the link utilization and monitor the net-
work congestion status when allocating a new file replica. It
selects the replica destination based on the transmission speed
of recent files.

To more accurately estimate the transmission delay of the
next file based on the delays of previous file transmissions, we
use an exponentially weighted moving average (EWMA) [41].
Using T as a time window size, EAFR calculates the average
file transmission speed from source server ss to destination
server sd by sliding the time window. Then the transmission
speed in the next timewindow (denoted by Vt) is calculated by:

Vt ¼ a� Yt þ ð1� aÞ � Vt�1ð0 < a < 1Þ; (9)

where Vt�1 is the estimated transmission speed in time win-
dow t� 1, and Yt represents the actual average transmission
speed at time t. a is a constant used to control the degree of
weighting decrease; a larger value of a discounts older
observations faster. The weighting for each older EWMA
data point decreases exponentially, but never reaches zero.

In addition to replica transmission latency, the replica
destination must have enough storage capacity for new rep-
licas. Also, as a new replica is created to serve an excessive
amount of file requests, the replica should be placed in a
server that has sufficient capacity to serve incoming file
requests. Then, given a file from source server ss, and a set
of hot servers HS to place the new replica, EWMA selects a
replica destination sd 2 HS such that transmitting the file
replica from ss to sd takes a short time and sd has a high ser-
vice capacity and enough storage capacity. For this purpose,
EWMA first selects candidates from all hot servers HS that
have enough storage space for this file replica.

EAFR calculates the expected transmission speed from ss
to all candidate servers, then orders the candidates based on

the decreasing order of the transmission delays IDt ¼{hs1;

hs2; . . .hsm}. EAFR also orders the candidates based on the

decreasing order of their remaining capacities IDr ¼{hs1;

hs2; . . .hsm}. A server having a faster transmission speed or a
higher remaining capacity should have a higher probability to
be selected.Weusewt andwc to denote these twoprobabilities
for a server. The probability of the jth server in these two
ordered lists can be calculated as

1

j
=
Xm
k¼1

1

k
: (10)

The probability of selecting a server in the candidates is cal-
culated by the weighted average of both of its wt and wc:

p ¼ b� wt þ ð1� bÞ � wc: (11)

We use vector P ¼(p1; p2; . . . ; pm) to record all probabili-
ties of selecting the candidate servers. Then, ss selects the
destination server based on P . The selection process first
generates a random value x within the range of [0,

Pm
k¼1 pk],

Fig. 4. Replication completion time for different servers.
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then server with order y in the list P is selected by:

y ¼ 1 if x < p1

j if pj�1 � x <
Pj

k¼1 pk and j > 1:

�
(12)

As we can see from Equation (12), the new replica is more
likely to be allocated to a server with a high p value.

3.4 Dynamic Transmission Rate Adjustment

TCP incast occurs when a number of files from multiple
storage servers are being sent to a server concurrently [42],
and network congestion is likely to arise on the receiver
side when multiple connections contend for bandwidth
resources. TCP incast congestion increases the packet drop
rate and reduces the transmission throughput, thus degrad-
ing network performance. To avoid incast congestion, while
transmitting a file replica to a new server, EAFR dynami-
cally adjusts transmission rate to prevent incast congestion.

Each server has a TCP receive window [43], which is a
limited size of buffer that prevents a fast sender from over-
flowing a slow receiver’s buffer. In EAFR, a destination
server monitors its available bandwidth by using a band-
width estimation tool [44] to detect sudden throughput
burstiness. When it notices that a congestion is likely to
occur, it reduces its receive window in proportion to the
extent of congestion and notifies senders to reduce their
transmission rates. If the destination node has enough avail-
able bandwidth to support larger transmission rates, it
increases the TCP receive window.

Algorithm 2.Pseudo-Code of Dynamic Transmission Rate
Adjustment

1: Input: set of server S sending data through the link;
2: Output: adjust-down factor bi and adjust-up factor di for

each sender in S;
3: for each si 2 S do:
4: calculate available bandwidth on the link: Rcb ¼ ðcb �

ubÞ=cb
5: if Rcb < hl //network capacity is highly utilized
6: calculate adjust-down factor bi ¼ iPp0

k¼1
k
� ðh1 �RcbÞ

7: end if
8: if Rcb > hh //enough network capacity on the receiver

side
9: calculate adjust-up factor di ¼ iPp0

k¼1
k
� ðRcb � hhÞ

10: end if
11: record bi and di for sender si
12: end for

Assume the link bandwidth capacity of the destination
node is cb (which is determined by its NIC and system set-
tings), and the total bandwidth utilized by all incoming traf-
fic is ub. We then define the proportion of available
bandwidth ub on that link as

Rcb ¼ ðcb � ubÞ=cb: (13)

Rcb is an indicator of potential oversubscribed bandwidth
for a destination node. EAFR has two thresholds hl and hh
to determine whether a network link capacity is highly uti-
lized or underutilized. When Rcb < hl (e.g., hl=0.2), the net-

work capacity is highly utilized and thus the receive

window needs to be reduced. Suppose the destination
server is receiving traffic from a number of connections
from a set of servers S ¼ ðs1; s2; . . . ; sp0 Þ. These connections

have different priorities based on the connection establish-
ment times. Since we aim to reduce the transmission latency
of each flow, the connections with older establishing times
have higher priorities. The senders are ordered in descend-
ing order of the priorities of their connections. For a sender
with priority i, its adjust-down factor bi is define as

bi ¼
iPp0
k¼1 k

� ðh1 �RcbÞ: (14)

WhenRcb > hh (e.g., hh=0.5), there is enough network capac-
ity on the receiver side, then the receive window is increased
for each connection to increase the transmission rate. The
adjust-up factor for the server with priority i is di defined by

di ¼ iPp0
k¼1 k

� ðRcb � hhÞ: (15)

After rate adjustment calculation, the destination node noti-
fies the corresponding senders about the new transmission
rates. Each sender then reduces its transmission rate by bi

times or increase its transmission rate by di times.
Algorithm 2 shows the pseudo-code of dynamic trans-

mission rate adjustment. For each sender si which estab-
lishes connection with the receiver, Algorithm 2 first
calculates the link’s available bandwidth capacity (Line 4);
when the network capacity is highly loaded, EAFR reduces
the sender’s transmission rate by bi; when the link’s net-
work capacity is lightly loaded, EAFR deliberately increases
the sender’s transmission rate by di accordingly (Lines 5-7).
The computation complexity of Algorithm 2 is OðpÞ, where
p is the number of senders in the cluster. By dynamically
adjusting the receive window in proportion to the extent of
congestion, EAFR reduces the latency for file transmission
in replications by avoiding incast congestions.

3.5 Network-Aware Data Node Selection

Inside a cluster, user requests are processed in compute
nodes and the compute nodes need to fetch files from data
nodes where the requested files are stored. The file read
latency is affected by two factors: 1) transmission delay
between a compute node and a data node, and 2) queueing
delay in a data node. As the intra-rack connection has much
higher bandwidth than the cross-rack connection, choosing
a data node in the same rack as the requester computer
node to transmit its requested file generates shorter latency
than choosing a data node in a different rack. Also, when a
cluster consists of heterogeneous servers, the service capaci-
ties of servers may vary significantly. A high-capacity data
node can finish reading a file stored in its local disk faster
than low-capacity nodes, resulting in smaller queue size
and queueing delay. Accordingly, we propose a network-
aware data node selection strategy by considering the afore-
mentioned factors, i.e., a compute node should fetch its
requested file from a data node within the same rack and
with a short queue size.

Suppose compute node sj needs to read file fi when proc-
essing a user request, and fi has ri replicas stored in a number
of servers. We use set Si=(s1, s2,. . ., sri�1

) to represent all hot

servers and standby servers that store fi’s replicas. We use hk
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to denote the queue size of file read requests on server sk,
which is the number of reads that sk has received but has not
been processed. Algorithm 3 shows the pseudo-code of select-
ing data nodes for compute node sj. For each file fi that sj
needs to read from data nodes, Algorithm 3 first identifies all
hot servers and standby servers storing fi’s replicas (Line 4).
It then selects the data nodes within the same rack as sj and

puts them in a set S1
i =(s1, s2,. . ., sr1

i�1
) (Line 5). In order to

reduce transmission delay between a compute node and a
data node, we prefer intra-rack connection over cross-rack

connection. Thus, if S1
i is not empty, Algorithm 3 selects data

node sk with the minimum queue size from S1
i :

sk ¼ argminsk2S1i
fhkg (Lines 6-7); otherwise, it chooses a data

node with the minimum queue size from Si (Lines 8-10). The
computation complexity of Algorithm 3 isOðm� r), wherem
is the number of files needed to read and r is the average num-
ber of replicas for these files.

Algorithm 3. Pseudo-Code of Network-Aware Data
Node Selection for Compute Node sj

1: Input: set of file F needed to fetch from data nodes;
2: Output: select a data node to read each file in F ;
3: for each fi 2 F do:
4: find servers storing fi’s replicas Si=(s1, s2,. . ., sri�1

)
5: select S1

i from Si that are in the same rack with sj: S
1
i =(s1,

s2,. . ., sr1
i�1

)

6: if S1
i 6¼ null //find a data node within the same rack

7: select a data node by sk ¼ argminsk2S1i
fhkg

8: else //find a data node within another rack
9: select a data node by sk ¼ argminsk2Sifhkg
10: end if
11: record sk as the data node to read file fi
12: end for

3.6 Load-Aware Replica Maintenance Under Node
Failure

As each server stores a large number of files, when a server
failure happens, we create these lost files in other servers in
order to maintain the minimum number of replicas per file.
Suppose all files stored in a failed server are represented by
F=(f1, f2,. . ., fm). For each file fi in F , we make a replica
from a non-failed server (called source server) and place it
in another non-failed server (called destination server). In
order to minimize the energy consumption and time for the
recovery process, we consider two objectives. First, we try
to avoid waking up cold servers as it consumes extra energy
and may lead to long recovery time. Second, we try to bal-
ance the incast traffic load caused by the file replications on
the destination servers, i.e., the number of replicas allocated
to destination servers, in order to avoid incast congestion in
the destination servers and hence constrain the recovery
latency.

Recall that each file has ri replicas; at least � replicas are
stored in different hot servers, other replicas are stored in
standby servers and cold servers. A hot server runs at active
state and serves file requests; a standby server is a temporary
hot server that stores cold files, and it turns to a cold server
when its storage is fully utilized; and a cold server stores cold
files, and it is in sleepingmode anddoes not serve file requests.

To achieve the first objective of avoiding rebooting the
cold servers from the sleeping mode, we first try to select
source servers from hot servers and standby servers. A cold
server is waken up and selected as the source server only
when a file stored in the failed server does not have any rep-
licas stored in hot servers or standby servers. Specifically,
for a file fi in a failed server, we first put all hot servers and
standby servers that store fi in a server set Si=(s1, s2,. . ., sp).
In order to find a server that has the maximum available ser-
vice capacity to support the file reading operation, we first
sort servers in Si in decreasing order of their available ser-
vice capacities. Then, we choose the first server as the source
server. If there are no hot servers or standby servers storing
file fi (i.e., Si is an empty set), we check the cold servers that
store file fi in the same manner and choose a cold server
with the maximum available service capacity.

Algorithm 4. Pseudo-Code of Load-Aware Replica Main-
tenance for a Failed Server

1: Input: set of files F , counter ¼ 1;
2: Output: source server and destination server for files in F ;
3: for each fi 2 F do:
4: order hot servers and standby servers storing fi’s replicas

by their remaining service capacities, Si=(s1, s2,. . ., sp)
5: select s1 as the source server
6: if Si is empty
7: choose a cold server with the maximum available ser-

vice capacity as the source server
8: end if
9: while true //select a destination server fromDS
10: choose server dsk with index equaled to counter
11: if csi �

Pm
j¼1 bj � ts; //enough storage

12: select dsk as the destination server
13: break
14: else
15: increase counter by 1
16: end if
17: end while
18: record fi’s source server and destination server
19: end for

We use DS=(ds1, ds2,. . ., dsw) to denote a set of candidate
destination servers,DS is determined based on the popular-
ity of fi. If fi is a hot file, DS is a set of non-failed hot serv-
ers; if fi is a cold file, DS is a set of non-failed standby
servers. Here, we do not choose a cold server as the destina-
tion server in order to avoid waking up the cold server for
file replication, which otherwise increases the recovery
latency. To meet the second objective of balancing the incast
traffic load of destination servers, we evenly place the repli-
cas of all files of the failed server to DS by using a round
robin [45] assignment method. We use a counter to record
the index of the destination server candidates; counter
increases from 1 to w in a circular manner, i.e., counter
restarts from 1 after it reaches w. Assume counter ¼ k and
we need to select a destination server for file fi. We first
examine the server dsk whose index in DS equals the value
of counter. If dsk has enough storage capacity calculated by
Equation (8), it is selected as the destination server for fi
where we store the replica of fi; otherwise, we increase the
value of counter by 1 until a server with enough storage
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capacity is detected. After we find a destination server for
fi, we add 1 to the counter and use it to identify the destina-
tion server for the next file fiþ1.

Algorithm 4 shows the pseudo-code of load-aware replica
maintenance for a failed server, in which we choose a source
server and a destination server for file fi stored in the failed
server. For each file fi stored in the failed server, Algorithm 4
first orders all hot servers and standby servers storing fi’s
replicas by their remaining service capacities (Line 4); it then
selects a hot server or standby server with the maximum
available service capacity as the source server (Line 5); if no
hot servers or standby servers that store file fi, it checks all
cold servers that store file fi and chooses a cold server with
the maximum available service capacity as the source server
(Lines 6-8); Algorithm 4 continues to select a destination
server for file fi by using a round robin assignment method
(Lines 9-17). The computation complexity of Algorithm 4 is
Oðmr log rÞ, where m is the number of files in the failed
server and r is the average number of replicas for these files.

4 PERFORMANCE EVALUATION

We conducted trace-driven experiments in a large-scale
HPC cluster located in Clemson University’s Palmetto Clus-
ter [40] which has 1,978 nodes. We deployed EAFR on 300
servers evenly scattered in 10 racks. The storage capacities
of these servers were randomly chosen from (250, 500, 750
GB) [46]. We compared EAFR with HDFS [1] and CDRM
[17] that are similar to our work. In HDFS, every file has a
fixed number of three replicas placed across different ran-
domly selected servers. CDRM aims to deal with server fail-
ures. In our experiment, CDRM creates two replicas for
each file initially, it increases the number of replicas to
maintain the required file reliability 0.98 for server failure
probability 0.1, and required file reliability 0.8 for server
failure probability 0.2. CDRM allocates the newly created
replica to the server with the least concurrent reads.

Unless otherwise specified, the distributions of file reads
and writes follow those in the CTH trace data [38] and each
file read request was forwarded to a randomly selected
server that owns the replica of the requested file. This trace
records 3,972,284 I/O calls on 16,566 files during about 4
hours in a large cluster with 3,300 client size. We created
50,000 files and randomly placed them on the servers. The
sizes of 16,566 files were set according to the CTH trace
data, and the sizes of other files were chosen from the range
(100 KB, 10 GB). The server capacity follows the normal dis-
tribution [1] with a mean of 15 and variance of 10. When the
number of concurrent file reads is larger than a server’s ser-
vice capacity, new coming file requests will be put into a
waiting queue until the server has available capacity. The
remaining storage threshold r was set to 10 GB; other sys-
tem parameters were set as: tu=20, tl=10, su=8, sl=1, r ¼ 2
and �=1. The power consumption for different types of serv-
ers was calculated based on Table 2. We randomly selected
70 percent of servers as hot servers, and 30 percent of serv-
ers function as standby servers. A standby server with full
storage turns into a cold server. The experiment runs two
days by repeatedly using the read rates from the trace data.
We are interested in the following performance metrics:

� File read latency: the latency from a user requests a file
until the user receives a response from the server.

� Replication latency: the latency from when a file repli-
cation is initiated until the replication operation is
finished.

� Energy cost: the server power consumption in kilo-
watt hour (kWh) in each day.

� Load balance status including: 1) server utilization,
which is defined as the ratio of the number of con-
current file requests a server is serving over the serv-
er’s capacity; and 2) percentage of overloaded servers
that are defined as the servers with more than 80 per-
cent utilization.

� Memory consumption: the storage usage to store all file
replicas (including the original copy) in the system.

� Maintenance overhead. An update’s maintenance over-
head is defined as the product of the latency of this
update and the update message size. A file’s mainte-
nance overhead is the sum of the maintenance over-
heads of the updates on all of its replicas.

� Recovery latency: the time span from when the crea-
tion of file replicas in a failed server is initiated until
all file replicas stored in the failed servers are
recovered.

4.1 Experimental Results for Overall Performance

4.1.1 File Read Response Latency

When a hot file attracts a large amount of concurrent reads,
some file requests may contend for server capacity and net-
work bandwidth, and hence suffer from response latency.

Number of Replicas. We first study the effectiveness of cre-
ating extra file replicas for hot files in reducing the file read
response time. We selected 20 random files, varied the num-
ber of replicas for each file, and generated 60 concurrent
read requests towards each file. Fig. 5a shows the 1st per-
centile, median and 99th percentile read response time
when each file has a different number of replicas. We see
that more replicas lead to decreased read response time, i.e.,
when the number of replicas for each file increases from 2 to
7, the median read response time drops from about 11 to 4
ms. This is due to the reason that when there are only three
replicas allocated in three individual servers, large numbers
of concurrent read requests are flooded to the same server,
and some read requests need to wait if the server capacity is
already fully occupied by requests. However, when more
replicas are created in different servers, more server capac-
ity can be utilized to serve the read requests. Thus, concur-
rent read requests are forwarded to different servers and
are less likely to contend for server capacity. We define
10 ms as the required latency threshold, and record the

Fig. 5. Performance under different number of replicas.
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percentage of file read requests that are served past the
required latency. Fig. 5b shows the percentage of file read
timeouts when a different number of replicas are created
for each file. We see that the percentage of read timeouts
drops gradually when more replicas are created for each file
for the same reason as in Fig. 5a. That is to say, creating
more replicas for hot files can prevent resource contention
between excessive number of synchronous requests.
Figs. 5a and 5b prove the rationale of EAFR that increasing
the replicas of hot files can shorten the read response time
and increase data availability.

Number of Concurrent Read Requests. We then varied the
number of concurrent read requests by replacing one read
in the trace data by x reads. x is varied from 10 to 60 increas-
ing by 10 in each step. Fig. 6a shows the average file read
response time with different number of concurrent reads to
the same file (i.e., x) in the system. We see that the response
latency increases as the number of concurrent reads
increases. This is because servers can serve a limited num-
ber of requests at a time and new file requests must wait in
queues until the servers have available capacity. We also
see that CDRM yields less latency than HDFS. This is
because CDRM chooses the server with the least workload
as the replica destination, then the server storing the new
file replica is likely to have enough capacity to serve file
requests. HDFS randomly selects replica destination, which
may not have enough capacity to handle requests. Thus
HDFS incurs longer latency than other two methods as read
requests are likely to wait for server response. EAFR produ-
ces the least read latency because it adaptively increases the
number of replicas for hot files, and the new replicas share
the read workload of hot files. Thus, a large number of
concurrent file requests are not likely to overload the serv-
ers and wait for response. As CDRM does not consider file
popularity in replication, file requests towards hot files
still need to contend for server capacity. Fig. 6b shows

the percentage of file read timeouts versus the number
of concurrent reads. We see that the result follows
HDFS>CDRM>EAFR for the same reasons as in Fig. 6a.

Access Arrival Rate. Access arrival rate is defined as the
number of file requests generated in the system in each sec-
ond. In order to investigate the performance of EAFR under
different workload distributions, we varied the file read
arrival rates by changing the time interval between two con-
secutive reads in the trace data (e.g., reduce the time inter-
val between two successive reads to increase the file read
rate). Fig. 7a shows the average file read response latency
with different arrival rates. We can see that as the access
arrival rate grows from 100 to 300 reads per second, HDFS
and CDRM both rise quickly. This is due to the reason that a
limited number of replicas are insufficient to serve large
number of read requests, and as the access arrival rate gets
higher, more requests are likely to stay in waiting queue.
EAFR adaptively increases the number of replicas for hot
files, thus produces less file read response latency than
HDFS and CDRM due to same reasons as in Fig. 6a. Fig. 7b
shows the percentage of read timeouts with different arrival
rates. We see that EAFR produces fewer read timeouts than
HDFS and CDRM for the same reasons as in Fig. 6b. As
applications (such as some web-based applications)
deployed on large clusters need to provide prompt service
to their clients, and the above figures show the effectiveness
of EAFR in reducing file read latency and providing high
quality support for time-sensitive applications.

4.1.2 Replication Completion Time

We grouped the files with the same size (ranging from 1 to
10,000 MB) together and calculated the average replication
latency of each group of files. Fig. 8a shows the replication
completion time for different file groups. We also set the
replication completion time of HDFS as base and plot
the ratio of other methods’ replication completion time over
the base in the embedded figure. We see that replication
operations can be completed with short latency for small
files due to the high-speed network connections on Palmetto
clusters. However, the replication completion time grows
rapidly for files with large sizes. EAFR speeds up the file
replication especially for large files, and the improvement
reaches about 30 percent when the file size is 10,000 MB.
This is because EAFR predicts the transmission speed based
on previous file transmission experience and selects the
server with a high transmission rate with high probability,
i.e., file replicas are more likely to be allocated to servers

Fig. 6. Performance under different # of concurrent accesses.

Fig. 7. Performance under different access arrival rates.

Fig. 8. Replication latency and energy consumption.
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with good network condition. Also, it dynamically adjusts
the file transmission rate during replication process in order
to prevent incast congestion on the receiver side, thus
reducing transmission latency.

4.1.3 Energy Efficiency

We examined the effectiveness of EAFR in reducing energy
consumption. We set the power consumption of different
genre of servers according to Table 2. Fig. 8b shows the total
amount of energy consumption per day for different meth-
ods when various number of servers are used in the cluster.
Due to the adoption of cold servers to store cold files that
are rarely read by clients, EAFR manages to reduce the
power consumption by more than 150 kWh per day in a
cluster consisting of 300 servers. Given a fixed number of
servers in the cluster, EAFR aims to allocate popular files to
servers that are guaranteed to be on (hot servers), and it
stores some replicas of cold files in cold servers (in sleeping
mode), which results in substantial power saving. It is
worth noting that while the adoption of cold servers can
reduce the energy consumption in large cluster, perfor-
mance of the cluster in serving file requests is not compro-
mised, which is demonstrated in the previous figures.

4.1.4 Load Balance Status

It is crucial to constrain the workloads of servers under their
capacities (i.e., achieving load balance), which help reduce
file read response latency. Server utilization is an indicator
of how balance the file requests are distributed among serv-
ers in the system. For each server, we sampled 10 utilization
values within 10 minutes at a frequency of once per minute,
then selected the highest value as the server’s utilization to
report. Fig. 9a plots the 1st percentile, median and 99th per-
centile of server utilization of different methods. We see
that EAFR achieves better load balance than CDRM and
HDFS with a smaller 99th percentile value and a larger 1st

percentile value. EAFR adaptively increases the number of
replicas for hot files to serve excessive file requests and
reduces the number of replicas for cold files. Also, it creates
new replicas in servers with the highest remaining capacity
with a high probability. As the workloads are better bal-
anced in EAFR, it can effectively prevent the servers storing
hot files from becoming overloaded, and file requests are
less likely to be blocked. We then tested the performance of
EAFR under different workload distributions by varying
the file read arrival rates using the same method as in Sec-
tion 4.1.1. Fig. 9b shows the percentage of overloaded serv-
ers during the experiment in the system. We see that the
percentage of overloaded servers rises gradually with
increased read arrival rates for all methods, as more server
capacity is consumed to serve read requests. EAFR main-
tains the least percentage of overloaded servers due to the
same reason as in Fig. 9b.

4.1.5 Overhead

Fig. 10a shows the memory consumption of different meth-
ods when a various number of original files are stored in
the system. We see that EAFR has lower memory con-
sumption than other two methods because cold files only
maintain two replicas in the system, and small amount of
extra replicas are created for hot files to meet the short-
term intensive read requests. In HDFS, keeping a fixed
number of three replicas consumes more storage resource
than EAFR. CDRM maintains two replicas for each file ini-
tially, and increases the number of replicas to meet the
required file reliability, so it demands more memory con-
sumption than EAFR.

When a file is modified, each replica of the file should
be updated in order to maintain consistency, and the
update of file is accomplished by performing a write
operation to synchronize each of its replica. In EAFR, as
cold servers do not serve file read requests, when a file
is updated, the writes need not be sent to its replicas
stored in cold servers immediately. Instead, the updates
of replicas in cold servers are postponed, until the serv-
ers are switched from sleeping mode to active mode.
More precisely, the cold servers are woken up once per
week to check for file updates. Whenever a file replica is
dirty (i.e., not updated), a write operation is performed
to synchronize the replica. We generated the updates of
files from the trace data, and defined a file’s maintenance
overhead as the product of total amount of latency (in
ms) to send writes to all its replicas multiplied by the
size of the file (in MB). Fig. 10b shows the 1st percentile,

Fig. 9. Load balance status.

Fig. 10. Overhead and file reliability.
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median and 99th percentile of maintenance overhead for
all methods. We see EAFR displays substantially smaller
median, 1st percentile and 99th percentile maintenance
overhead than the other two methods due to three rea-
sons. First of all, EAFR creates a smaller number of repli-
cas for cold files compared to CDRM and HDFS, thus,
fewer writes are needed if a cold file needs to be
updated. Second, the replicas in cold servers in EAFR do
not need updates when the servers are in sleeping
mode. Third, EAFR tries to reduce network congestions
in file replication, which may also help reduce the
updating latency. As a result, EAFR produces relatively
low maintenance overhead.

4.1.6 Server Failure Resilience

We tested EAFR’s resilience to server failures though it is
not EAFR’s objective. Each server has a failure probability �,
and when all servers storing a file’s replicas fail, requests
for this file fail. We measured the file reliability as the per-
centage of available files among all files stored in the sys-
tem, i.e., the percentage of successful read requests. A good
file system in cluster should provide high file reliability to
clients. Fig. 10d shows the percentage of successful read
requests when � ¼ 0:2 and � ¼ 0:1, and the minimum num-
ber of replicas in EAFR is 3. We see that EAFR achieves the
highest percentage of successful file requests. This is
because EAFR creates extra replicas for hot files, which in
turn increase the percentage of successful requests of hot
files in server failures. HDFS keeps a fixed number of three
replicas for each file and achieves lower percentage of suc-
cessful requests than EAFR. CDRM stops increasing the file
replicas when the percentage is higher than 0.8. Fig. 10d
shows the percentage of successful read requests when the
minimum number of replicas in EAFR is 2. We see that
EAFR provides relatively lower percentage of successful
read requests than the other two methods due to the reason
that only two replicas are maintained for most files. CDRM
increases the number of file replicas to maintain a required
file reliability, so it provides high file reliability under differ-
ent server failure probabilities.

4.2 Experimental Results for Enhancement
Strategies

In the following, we show the effectiveness of each of
our proposed strategies for enhancement: i) dynamic
transmission rate adjustment strategy, ii) network-aware
data node selection strategy and iii) load-aware replica
maintenance strategy. In the following figures, we use
EAFR/B to denote the basic EAFR without any enhance-
ment strategies.

4.2.1 Effectiveness of Dynamic Transmission Rate

Adjustment Strategy

Fig. 11 shows the replication completion time for different file
groups with and without the dynamic transmission rate
adjustment strategy (denoted by EAFR-rate and EAFR/B). We
set the replication completion time ofEAFR/B as base and plot
the ratio of EAFR-rate and EAFR/B’s replication completion
time over the base. We see that EAFR-rate effectively reduces
replication time compared to EAFR/B. The reason is that
EAFR-rate dynamically adjusts the senders’ transmission
rates based on the receiver’s bandwidth consumption, which
can prevent incast congestion on the receiver side. As a result,
the receiver is not likely to be congested and file replication
operations can be completedwithin short latency.

4.2.2 Effectiveness of Network-Aware Data Node

Selection Strategy

We denote EAFR with and without applying the proposed
network-aware data node selection strategy by EAFR-net
and EAFR/B, respectively. In EAFR/B, a compute node
fetches its requested file from a randomly selected data
node among the data nodes storing the file’s replicas.

Figs. 12a and 12b show the average file read response
time with different number of concurrent reads and differ-
ent access arrival rates, respectively. We see that the
response latency increases as the number of concurrent
reads increases due to the same reason as in Fig. 6a. We also
see that EAFR-net reduces the file read response latency. A
compute node in EAFR-net tends to fetch files from data
nodes within the same rack as the requester computer nodes
to minimize the file transmission time, and from data nodes
with small queue sizes to reduce the queueing delay. There-
fore, a compute node can finish reading a file within shorter
latency in EAFR-net than that in EAFR/B. We also notice
that the reduction in response latency becomes larger when
there are a larger number of concurrent reads and access
arrival rates in the system. This is because when the number
of concurrent reads and access arrival rates increase, servers
in EAFR/B are more likely to be overloaded as the read
requests are assigned to servers without considering their
queue sizes, which leads to file read response time increase.
On the other hand, EAFR-net aims to assign read requests to
servers with small queue sizes, which reduces the file read
latency compared to EAFR/B. Figs. 13a and 13b show the
percentage of file read timeouts with different number of
concurrent reads and different access arrival rates, respec-
tively. We see that EAFR-net reduces the percentage of file

Fig. 11. Replication latency for files of various sizes.

Fig. 12. File read response time.

1028 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 4, APRIL 2017



read timeouts due to the same reason as explained in
Figs. 12a and 12b. EAFR-net aims to minimize file read
response time by letting a compute node to fetch files from
data nodes within the same rack and from data nodes with
small queue sizes; while EAFR/B randomly assigns read
requests to data nodes, which results in high percentage of
file read timeouts. Figs. 12a, 12b, 13a, and 13b show the
effectiveness of our proposed network-aware data node
selection strategy in reducing file read response time.

4.2.3 Effectiveness of Load-Aware Replica

Maintenance Strategy

We denote EAFR with and without applying the proposed
load-aware replica maintenance strategy by EAFR-load and
EAFR/B, respectively. In this experiment, we randomly
selected a number of servers as failed servers every 30
minutes and recovered all file replicas stored in each failed
server. We then recorded the average recovery latency.
EAFR/B randomly selects a source server for a file’s replica
without considering server capacities, and also randomly
selects a destination server with enough storage capacity to
place a file’s replicawithout balancing the number of replicas
stored in each destination server to constrain the incast net-
work load. Fig. 14 shows the average replica recovery latency
for a various number of failed servers. We see that as the
number of failed servers increases, both EAFR-load and
EAFR/B generate longer replica recovery latency. The reason
lies in that more failed servers lead to the replication of a
larger number of file replicas. As more files are transmitted
from source servers to the identified destination servers,
these transmissions need to compete for limited bandwidth
capacity and thus lead to longer transmission delay. We also
see that EAFR-load improves EAFR/B by generating shorter
recovery latency. In EAFR-load, we aim to select servers with
the maximum remaining service capacity as source servers,
so file can be read from source servers with short latency.
Also, compared to EAFR/B, EAFR-load can balance the load

(i.e., the number of replicas allocated) of destination servers
as it aims to evenly allocate file replicas to all destination
servers, which effectively prevent incast congestion in desti-
nation servers and generate shorter file transmission time.
As a result, EAFR-load generates shorter recovery latency.

5 CONCLUSIONS

The popularity of data-intensive clusters places demands for
file systems such as short file read latency and lowpower con-
sumption. File replication is an effective method to enhance
data availability, reduce read latency and power consump-
tion. However, replication methods in current file systems
cannot meet these demands well. In this paper, we propose
EAFR to reduce file read latency, power consumption and
replication completion latency. EAFR adaptively increases
the number of replicas for hot files to alleviate intensive file
request loads, and thus reduce the file read latency, and also
decreases the number of replicas for cold files without
compromising their read efficiency. Some replicas of cold files
with few accesses are transferred to cold servers with 0 per-
cent CPU utilization to save power. EAFR selects servers with
sufficient capacities to place new replicas to shorten replica-
tion completion time and avoid overloading servers. EAFR
also has a transmission rate adaptation strategy to further pre-
vent potential incast congestion, a network-aware data node
selection strategy to reduce file read latency and a load-aware
replica maintenance strategy to maintain a certain number of
replicas upon server failures. Experimental results from a
real-world large cluster show the effectiveness of EAFR and
the proposed strategies in meeting the demands of file sys-
tems in large clusters. In the future, we will study increasing
data locality in replica placement, and determining the opti-
mal number of cold servers to maximize energy saving with-
out compromising the file read efficiency.
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