
1

An Economical and SLO-Guaranteed Cloud
Storage Service across Multiple Cloud Service

Providers
Haiying Shen* Senior Member IEEE , Guoxin Liu and Haoyu Wang, Student Member IEEE

Abstract—It is important for cloud service brokers to provide a multi-cloud storage service to minimize their payment cost to cloud
service providers (CSPs) while providing service level objective (SLO) guarantee to their customers. Many multi-cloud storage services
have been proposed or payment cost minimization or SLO guarantee. However, no previous works fully leverage the current cloud
pricing policies (such as resource reservation pricing) to reduce the payment cost. Also, few works achieve both cost minimization and
SLO guarantee. In this paper, we propose a multi-cloud Economical and SLO-guaranteed Storage Service (ES3), which determines
data allocation and resource reservation schedules with payment cost minimization and SLO guarantee. ES3 incorporates (1) a
coordinated data allocation and resource reservation method, which allocates each data item to a datacenter and determines the
resource reservation amount on datacenters by leveraging all the pricing policies; (2) a genetic algorithm based data allocation
adjustment method, which reduce data Get/Put rate variance in each datacenter to maximize the reservation benefit. We also propose
several algorithms to enhance the cost efficient and SLO guarantee performance of ES3 including i) dynamic request redirection, ii)
grouped Gets for cost reduction, iii) lazy update for cost-efficient Puts, and iv) concurrent requests for rigid Get SLO guarantee. Our
trace-driven experiments on a supercomputing cluster and on real clouds (i.e., Amazon S3, Windows Azure Storage and Google Cloud
Storage) show the superior performance of ES3 in payment cost minimization and SLO guarantee in comparison with previous
methods.

Keywords: Cloud storage, SLO, Data availability, Payment cost minimization.

F

1 INTRODUCTION

Cloud storage (e.g., Amazon S3 [1], Microsoft Azure [2]
and Google Cloud Storage [3]), as an emerging commercial
service, is becoming increasingly popular. This service is
used by many current web applications, such as online
social networks and web portals, to serve geographically
distributed clients worldwide. In order to maximize profits,
cloud customers must provide low data Get/Put latency
and high availability to their clients while minimizing the
total payment cost to the Cloud Service Providers (CSPs).
Since different CSPs provide different storage service prices,
customers tend to use services from different CSPs instead
of a single CSP to minimize their payment cost (cost in
short). However, the technical complexity of this task makes
it non-trivial to customers, which calls for the assistance
from a third-party organization. Under this circumstance,
cloud service brokers [4] have emerged. A broker collects
resource usage requirements from many customers, gener-
ates data allocation (including data storage and Get request
allocation) over multiple clouds, and then makes resource
requests to multiple clouds. It pays the CSPs for the ac-
tually consumed resources as a customer and charges its
customers as a CSP. Cloud service brokers usually offer

• * Corresponding Author. Email: hs6ms@virginia.edu; Phone: (434) 924-
8271; Fax: (434) 982-2214.

• Haiying Shen and Haoyu Wang are with the Department of Computer Sci-
ence, University of Virginia, Charlottesville, VA, 22904. E-mail: {hs6ms,
hw8c}@virginia.edu, guoxinl@clemson.edu

prices lower than CSPs’ prices to attract more customers,
which in turn helps reduce the brokers’ cost by leveraging
different pricing policies as explained below.

 Storage
<dm,dj,…,dn>

 Storage
<dx,di,…,dk> Storage

<dy,dz,…,dk>

Amazon US East Azure US East
Amazon Asia Tokyo

Get (di)

Get (dj) Put (dk)
Put (dk)

Customer

Input: Customer data
information and SLO

Output: Data allocation and resource reservation
for cost minimization and SLO guarantee

Fig. 1: An example of multi-cloud storage service.

First, datacenters in different areas of a CSP and dat-
acenters of different CSPs in the same area offer different
prices for resource usages including data Get/Put, Storage
and Transfer. Second, the Storage/Transfer pricing follows
a tiered model, which supplies a cheaper unit price for a
larger size of data stored/transferred and vice versa. For
example, in Amazon S3 US East, the unit price per GB
decreases to $0.0275 when the data size is larger than 500TB.
Third, the data transfer prices are different depending on
whether the destination datacenter belongs to the same
CSP or the same location as the source datacenter. Fourth,
besides the pay-as-you-go pricing model, in which the
consumer pays the CSPs based on resources actually used,
CSPs also offer reservation pricing model [5], in which a
consumer reserves its resource usage for a certain time in
advance with much lower price (e.g., 53%-76% lower in
Amazon DynamoDB [5]).

It is important for cloud service brokers to provide a
multi-cloud storage service that leverages all these pricing
policies to minimize their payment cost to CSPs while pro-

2

viding Service Level Objective (SLO, which is the deadline
for GET/PUT requests) guarantee to their customers. As
shown in Figure 1, the cloud storage service determines the
data allocation and resource reservation schedules among
datacenters over clouds given customers’ data information
(i.e., data sizes and request rates) and their SLO require-
ments.

In spite of many previous research efforts devoted to
minimizing the payment cost (or resource usage) or en-
suring data retrieval SLOs in creating a cloud storage ser-
vice [6], [7], [8], [9], [10], there are no previous works that
fully utilize all the aforementioned pricing policies (such
as resource reservation pricing and tiered pricing policies)
or consider request rate variance for cost minimization and
SLO guarantee. Also, most works aim to either minimize
cost [6], [7] or provide SLO guarantee [8], [9] but not
both. To handle these problems, in this paper, we pro-
pose a multi-cloud Economical and SLO-guaranteed Storage
Service (ES3) for brokers to automatically generate data
allocation and resource reservation schedules for cost mini-
mization and SLO guarantee. As far as we know, this is the
first work to build a multi-cloud storage service that fully
leverages all aforementioned pricing policies (especially the
resource reservation pricing policy) for cost minimization,
and also simultaneously provides SLO-guaranteed service.

To minimize the payment cost, a broker needs to maxi-
mize reservation benefit (i.e., cost savings from reservation
compared to the pay-as-you-go pricing), which however is a
formidable challenge. A broker reserves a certain amount of
Gets/Puts during a reservation time (denoted by T). For
each billing period (denoted by tk) in T , the amount of
Gets/Puts under reservation is charged by the reservation
price, and the amount of overhang of the reservations is
charged by the pay-as-you-go price. Reserving the exact
usage amount leads to the maximum reservation benefit
while a reserved amount higher or lower than the exact
usage amount leads to lower reservation benefit. However,
the Get/Put rates on a datacenter may vary among different
tks during T , which reduces the reservation benefit on
the datacenter. For example, in Facebook, data is usually
read heavily soon after its creation, and then is accessed
rarely [11].

Therefore, ES3 needs to handle three problems arisen in
leveraging the reservation pricing policy to minimize cost:
(1) how to make the resource reservation schedule so that
the reservation benefit can be maximized? (2) how to further
reduce the variance of the Get/Put rates in different tks over
T in each datacenter to maximize its reservation benefit?
(3) how to dynamically balance the Get/Put rates among
datacenters to maximize the total reservation benefit?

To handle problem (1), ES3 smartly relies on the data
allocation. Through analysis, we find that increasing the
minimum resource usage in a tk during T on a datacenter
(denoted by A1) can increase the reservation benefit on the
datacenter. Thus, when selecting a datacenter to allocate
each data item, ES3 selects the datacenter that increases A1

the most as an option. Then, based on the determined data
allocation schedule, ES3 determines the resource reserva-
tion schedule that maximizes the reservation benefit of each
datacenter. To handle problem (2), ES3 uses the Genetic
Algorithm (GA) [12] that is routinely used to generate

useful solutions to optimization problems by mimicking the
process of natural selection. It conducts crossover between
different data allocation schedules to find a schedule that
generates the minimum payment cost. To handle prob-
lem (3), ES3 uses data request redirection that forwards
a data request from a reservation-overutilized datacenter
to a reservation-underutilized datacenter. Accordingly, we
summarize our contribution below:
(1) A coordinated data allocation and reservation method,
which proactively helps to maximize reservation benefit in
data allocation scheduling and then determines the resource
reservation schedule. Moreover, this method leverages all
the aforementioned pricing policies to reduce cost and also
provides SLO guarantee.
(2) A GA-based data allocation adjustment method, which
further adjusts the data allocation to reduce the variance of
data Get/Put rates over time between different billing peri-
ods in each datacenter in order to maximize the reservation
benefit.
(3) Cost efficient and SLO guarantee enhancements.

• Dynamic request redirection. By dynamic request
redirection between storage datacenters considering
their reserved Gets, the Get SLO guaranteed service
is enhanced and the reserved Gets are more fully
utilized.

• Grouped Gets for cost reduction. By aggregating
multiple Gets for objects that are often concurrently
requested into one unit Get, the Get cost is further
reduced.

• Lazy update for cost-efficient Puts. By aggregating
multiple sequential Puts into one unit Put, the Put cost
is further reduced. Also, by deactivating the replicas
not serving Gets, the Put and storage costs are saved
during the period with low workload (number of Get
requests).

• Concurrent requests for rigid Get SLO guarantee. By
sending concurrent requests to multiple storage data-
centers, the Get SLO guaranteed service is enhanced.

(4) We conduct extensive trace-driven experiments on a
supercomputing cluster and real clouds (i.e., Amazon S3,
Windows Azure Storage and Google Cloud Storage) to
show the effectiveness ofES3 in cost minimization and SLO
guarantee in comparison with previous methods.

Note that in addition to brokers, ES3 can also be directly
used by a cloud customer for the same objective. We also
assume cloud providers notify their available computing
resources, which is currently not available in this paper.
The rest of this paper is organized as follows. Section 2
formulates the data allocation and reservation problem for
cost minimization and SLO guarantee. Sections 3.2 and 3.3
present a data allocation and reservation method, and a
genetic algorithm based data allocation adjustment to en-
hance the cost savings by reservation. Section 4 presents the
methods for cost efficient and SLO guarantee enhancements
in detail. In ES3, respectively. Section 5 presents the trace-
driven experimental results on a supercomputing cluster
and real-world clouds. Section 6 presents the related work.
Section 7 concludes this work with remarks on our future
work.

3

TABLE 1: Notations of inputs and outputs.

Input Description Input Description
Dc set of customer dci ith customer

datacenters datacenter
Ds set of storage dpj jth storage

datacenters datacenter
cgdpj

Get capacity of dpj cpdpj
Put capacity of dpj

psdpj
(x) unit storage price pt(dpj) smallest unit

of dpj under x GB transfer price
storage size to dpj

pgdpj
unit Get price of dpj ppdpj

unit Put price of dpj
F g(x) CDF of Get latency F p(x) CDF of Put latency
αdpj reservation price ratio D entire data set
dl/sdl data l and dl’s size Lg(dl) Get deadline to dl
β number of replicas Lp(dl) Put deadline to dl

εg(dl) allowed % of Gets/ v
dl,tk
dci

Get/Put rates

/εp(dl) Puts on dl beyond /u
dl,tk
dci

targeting dl gene-
deadlines rated by dci in tk

T reservation time tk kth billing period
Output Description Output Description
Ct total cost for storing X

dl,tk
dpj

existence of dl’s
D and serving replica in dpj
requests during tk

H
dl,tk
dci,dpj

whether dpj serves Rg
dpj

optimal reserved
requests on dl /Rp

dpj
number of

from dci Gets/Puts

2 PROBLEM STATEMENT

2.1 System Model

A customer deploys its application on one or multiple data-
centers, which we call customer datacenters. The clients access
the storage services directly and the broker is responsible
for the price selectoin. We use Dc to denote the customer
datacenters of all customers and use dci∈ Dc to denote the
ith customer datacenter. Ds denotes the set of the storage
datacenters of all CSPs and dpj ∈ Ds denotes the jth storage
datacenter. D denotes the set of all customers’ data items,
and dl ∈ D denotes the lth data item. As in [13], the SLO
indicates the maximum allowed percentages of Gets/Puts
beyond their deadlines. We use εg(dl) and εp(dl) to denote
the percentages and use Lg(dl) and Lp(dl) to denote the
Get/Put deadlines in the SLO of the customer of dl. In
order to ensure data availability [14] in datacenter overloads
or failures, like current storage systems (e.g., Google File
System (GFS)) and Windows Azure), ES3 creates a constant
number (β) of replicas for each data item. The first of the
β replicas serves the Get requests while the others ensure
the data availability. We also use table 1 to denote all the
symbols in section 2, 3 and 4.

The capacity in the paper is the capacity of a data center
or data centers in a region, which has the limit resources,
especially the bandwidth. CSPs charge three different types
of resources: the storage measured by the data size stored in
a specific region, the data transfer to other datacenters oper-
ated by the same or other CSPs, and the number of Get/Put
operations [5]. We use αdpj to denote the reservation price
ratio, which represents the ratio of the reservation price to
the pay-as-you-go price for Get/Put operations. ES3 needs
to predict the size and Get/Put request rates of each data
item (dl) based on the past T periods to generate the data
allocation schedule. For new data items, the information
can be provided by customers if it is known in advance;
otherwise, they can be randomly assigned to datacenters

initially. Previous study [10] found that a group of data
objects with requesters from the same location has a more
stable request rate than each single item. Thus, in order to
have relatively stable request rates for more accurate rate
prediction, ES3 groups data objects (the smallest unit of
data) from the same location to one data item as in [15].

2.2 Problem Objective and Constraints
We formulate the problem to find the optimal data allocation
and resource reservation schedules for cost minimization
and SLO guarantee using an integer programming.
Payment minimization objective. We aim to minimize
the total cost for a broker (denoted by Csum), including
Storage, Transfer, Get and Put costs during reservation time
T , which are denoted by Cs, Ct, Cg and Cp, respectively. Cs
equals the sum of the storage costs of all storage datacenters
in all billing periods within T . The storage cost of a storage
datacenter in a billing period equals the product of unit
storage price and the size of stored data in the datacenter.
Ct is calculated by the product of the unit price and the size
of imported data. Cg and Cp can be calculated by deducting
the reservation benefit from the pay-as-you-go cost, which
is calculated by the product of total number of Gets/Puts
and the pay-as-you-go unit price. We use Rgdpj to denote
the number of reserved Gets in dpj and calculate the Get
reservation benefit in dpj (fgdpj (R

g
dpj

)) by:
fg
dpj

(Rg
dpj

) = (
∑
tk∈T

Rg
dpj
∗ (1− αdpj)−O

g
dpj

(Rg
dpj

)) ∗ pgdpj , (1)

where pgdpj is the unit Get price, and Ogdpj (R
g
dpj

) is the over
reserved Get rates including the cost for over reservation
and the over calculated saving and it is calculated by

Og
dpj

(Rg
dpj

) =
∑
tk∈T

Max{0, Rg
dpj
−

∑
dci∈Dc

r
tk
dci,dpj

∗ tk}, (2)

where rtkdci,dpj denotes the Get rate from dci to dpj during
tk. We calculate the Put reservation benefit (fpdpj (R

p
dpj

))
similarly.

The payment cost of a broker ES3 for its customer cn is:

Ccn
sum = Cs ∗ γcn

s + Ct ∗ γcn
c + Cg ∗ γcn

g + Cp ∗ γcn
p , (3)

where γcns , γcnc , γcng and γcnp are the percentages of cn’s
usages in all customers’ usages of different resources.
Constraints. First, ES3 needs to ensure that a request is
served by a datacenter having a replica of its targeting
data (Constraint 1). ES3 also needs to ensure that each
Get/Put satisfies the Get/Put SLO. We use F gdci,dpj (x) and
F pdci,dpj (x) to denote the cumulative distribution function
(CDF) of Get and Put latency from dci to dpj , respectively.
Thus, F gdci,dpj (L

g(dl)) and F pdci,dpj (L
p(dl)) are the percent-

age of Gets and Puts from dci to dpj within the latencies
Lg(dl) and Lp(dl), respectively. Accordingly, for each cus-
tomer datacenter dci, we can find a set of storage datacenters
that satisfy the Get SLO for Gets from dci targeting dl, i.e.,

Sg
dci,dl

= {dpj |F g
dci,dpj

(Lg(dl)) ≥ (1− εg(dl))}.
We define Gdci as the whole set of Get/Put data requested
by dci during T . For each data dl ∈ Gdci , we can find
another set of storage datacenters:
Sp
dl

= {dpj |∀dci∀tk, (udl,tk
dci

> 0)→ (F g
dci,dpj

(Lp(dl) ≥ 1−εp(dl))}
that satisfy Put SLO of dl, where udl,tkdci

denotes the Put rate
targeting dl from dci during tk. The intersection of the two
sets, Spdl∩S

g
dci,dl

, includes the datacenters that can serve dl’s

4

requests from dci with Get and Put SLO guarantees. There-
fore, any storage datacenter that serves dl’s Get/Put re-
quests from dci should belong to Spdl∩S

g
dci,dl

(Constraint 2).
ES3 needs to maintain a constant number (β) of

replicas for each data item requested by datacenter dci
to ensure data availability (Constraint 3). Finally, ES3

needs to ensure that each datacenter’s Get/Put capacity is
not exceeded by the total amount of Gets/Puts from all
customers (Constraint 4).
Problem. The problem is to find data allocation schedule
and resource reservation schedule that achieves:

min Csum = Cs + Ct + Cg + Cp (4)
s.t. Constraints 1, 2, 3 and 4.

A simple reduction from the generalized assignment
problem [16] can be used to prove this problem is NP-hard.

3 THE DESIGN OF ES3

3.1 Overview of ES3

Data allocation schedule

GA‐based data allocation adjustment (optional)

Resource reservation schedule

tk

T
Reservation

Billing time period

Reservation
time period

Fig. 2: Sequence of scheduling.
Due to the hardness of the above formulated problem,

we propose a heuristic solution, called coordinated data
allocation and reservation method (Section 3.2). It deter-
mines the data allocation first (that proactively increase the
reservation benefit) and then determines the resource reser-
vation schedule based upon the data allocation schedule. To
maximize the reservation benefit, as shown in Figure 2, ES3

can use its GA-based data allocation adjustment method
(Section 3.3) to improve the data allocation schedule before
determining the resource reservation schedule.

Using these methods, at the beginning of each reserva-
tion time T , the master server in ES3 determines the two
schedules based on its predicted data size and Get/Put rates
of each data item in the next billing period tk. To facilitate
the prediction, each customer datacenter dci measures and
reports this information and Get/Put latency distribution to
storage datacenters to the master after each tk. The resource
reservation in each datacenter will not be changed during
the entire reservation time T . Since the Get/Put latency and
rates vary over time, the data allocation schedule under the
fixed reservation schedule needs to update after each tk in
order to reduce the cost. The dynamic request redirection
method (Section 4.1) is used whenever a Get request will be
sent to a reservation-overutilized datacenter.

3.2 Coordinated Data Allocation and Resource Reser-
vation

In Section 3.2.1, we present how to schedule resource reser-
vation given a data allocation schedule, and a rule that
needs to follow in data allocation scheduling to increase
reservation benefit. In Section 3.2.2, we present how to
schedule the data allocation by following this rule and
leveraging all the pricing policies for cost minimization and
SLO guarantee.

dp1

d1

d2
d1

d2

t1 t2
dp2

d3

d4
d3

d4

t1 t2

(a) Unbalanced data allocation (b) Optimal data allocation

dp1

d1

d2

d1

d2

t1 t2
dp2

d3

d4

d3

d4

t1 t2

GA
=>>

Reservation

A1=100

A2=200

A1=100

A1=A2=150

Fig. 3: Unbalanced and optimal data allocation.

3.2.1 Resource Reservation

First, we introduce how to find the optimal reservation
amount on each datacenter that maximizes the reserva-
tion benefit given a data allocation schedule. We take the
Get reservation for datacenter dpj as an example to ex-
plain the method. The determination of the Put reserva-
tion is the same as the Get reservation. We use Bdpj =
Max{fgdpj (R

g
dpj

)}Rg
dpj
∈N∪{0} to denote the largest reserva-

tion benefit for dpj given a specific data allocation. We use
Atk =

∑
dci∈Dc

rtkdci,dpj ∗ tk to denote the number of Gets
served by dpj during tk, and defineA = {A1, A2, ..., An} as
a list of all Atks of different tk ∈ T sorted in an increasing
order. As shown in Figure 3(a), for datacenter dp1, if the
reservation is the amount of Gets in billing period t1, since
the usage in t2 is much higher than the reserved amount,
the payment in t2 is high. If the reservation is the amount of
Gets in t2, then since the real usage in t1 is much lower, the
reserved amount is wasted. It is a challenge to determine
the optimal reservation.

We can prove that when Rgdpj ∈ [Ai, Ai+1] (i = 1, .., n−
1), reservation benefit fgdpj (R

g
dpj

) increases or decreases
monotonically within [Ai, Ai+1] .

Theorem 1. For a datacenter dpj , its reservation benefit function
fdpj (x) increases when x ∈ [0, R′

g
dpj

), and decreases when x ∈
(R′

g
dpj
, An], where R′gdpj is the optimal reserved number of Gets

that leads to the maximal reservation benefit.

Proof. According to Equation (1), we define the increas-
ing benefit of increased reservation as fI(x) = fdpj (x) −
fdpj (x−1) = (n∗(1−α)−O′(x))∗pgdpj , where n is number
of billing periods in T . O′(x) = Odpj (x) − Odpj (x − 1)
represents the number of billing periods during T with∑
dci∈Dc

rtkdci,dpj < x. Thus, O′(x) increases. At first, when
O′(x) < n ∗ (1 − α), then fI(x) > 0, which means fdpj (x)
increases; when O′(x) is larger than n ∗ (1 − α), then
fI(x) < 0, which means fdpj (x) decreases. Therefore, fg

stj
(x)

increases and then decreases. Since fg
stj
(R′

g
dpj

) reaches the
largest f(x), we can derive that fg

stj
(x) increases when

x ∈ [0, R′
g
dpj

), and decreases when x ∈ (R′
g
dpj
, An].

Based on Theorem 1, we can derive that when x ∈
[Ai, Ai+1], fdpj (x) increases or decreases monotonically.
This is because if Ai+1 ≤ R′

g
dpj

, then for x ∈ [Ai, Ai+1],
fdpj (x) increases monotonically; otherwise fdpj (x) de-
creases monotonically. This means that the reservation bene-
fit reaches the maximum when Rgdpj ∈ A. Thus, the optimal
reservation is the Ai (i ∈ [1, n−1]) that generates the largest
reservation benefit, i.e.,

Bdpj =Max{fg
dpj

(Ai)}Ai∈A. (5)

5

Then, based on the determined data allocation, we use
Equation (5) to determine the reserved amount for each
datacenter.

Next, we show how the data allocation can proactively
help increase the reservation benefit when selecting a dat-
acenter to allocate a data item. For x ∈ [0, A1], we can
transform Equation (1) to fdpj (x) =

∑
tk∈T x∗(1−α)∗p

g
dpj

.
Then, we can get that for x ∈ [0, A1], fdpj (x) is posi-
tively proportional to x. Also, the maximum reservation
benefit is no less than the reservation benefit of choosing
Rgdpj = Min{Ai}Ai∈A = A1. Therefore, in order to maxi-
mize reservation benefit on datacenter dpj , we can enlarge
its lower bound fgdpj (A1), which needs to enlarge A1 in data
allocation. Thus, in data allocation, we should follow the
following rule:

Rule 1: Among several datacenter candidates to allocate
a data item, we need to choose the datacenter that leads to
the largest A1 increment after being allocated with the data
item.

3.2.2 Data Allocation

Before we explain the datacenter selection for a data item,
we first introduce a concept of Storage/Get/Put-intensive
data item. A data item dl’s payment cost consists of Get,
Put, Transfer and Storage cost denoted by Cdls , Cdlg , Cdlt and
Cdlp . Transfer conducts one-time data import to clouds and
is unlikely to become the dominant cost. We consider data
item dl as Storage-intensive if Cdls dominates the total cost
(e.g, Cdls � Cdlg +Cdlp), and the Get/Put-intensive data items
are defined similarly. Many data items have certain opera-
tion patterns and accordingly become Get-, Put- or Storage-
intensive. For example, the instant messages in Facebook are
Put-intensive [17]. In the web applications such as Facebook,
the old data items with rare Gets/Puts [11] become Storage-
intensive. In addition, recall that only one copy of the β
replicas of each data item is responsible for the Get requests,
the remaining β − 1 replicas then become either Put or
Storage intensive. In order to reduce cost, a Get, Put or
Storage-intensive replica is allocated to a datacenter with
the cheapest unit price for Get, Put or Storage, respectively.

Next, we introduce how to identify the datacenter to
store a given data item. For each data item, the first replica
handles all Get requests (Constraint 1), and all other replicas
do not handle the Get requests. Section 2.2 indicates that
datacenters in (Spdl ∩ S

g
dci,dl

) satisfy the SLO of data item
dl (Constraint 2) and Constraint 4 must be satisfied to
ensure that the allocated datacenters have enough Get/Put
capacity for dl. Among these qualified datacenters, we need
to choose β (Constraint 3) datacenters that can reduce the
cost as much as possible (Objective (4)). In the datacenter se-
lection, we consider all current pricing policies as presented
in Section 1. First, storing the data in the datacenter that has
the cheapest unit price for its dominant cost (e.g., Get, Put
or Storage) can reduce the cost greatly. Second, if the data is
Storage-intensive, based on the tiered pricing policy, storing
the data in the datacenter that results in the largest aggre-
gate storage size Sdpj can reduce the cost greatly. Third,
if the data is Get/Put-intensive, in order to minimize the
reservation cost, we should choose the datacenters with the
lowest unit reservation price and the datacenters selected

following Rule 1 in Section 3.2.1. Based on these three
considerations, the datacenter candidates to store the data
are selected. Among these selected datacenters, the one with
the smallest Csum is finally identified to store the data.
Algorithm 1 shows the pseudocode for the data allocation
algorithm. After each billing period, using Algorithm 1,ES3

finds a new data allocation schedule and calculates itsCsum.
It compares the new Csum with previous Csum, and chooses
the data allocation schedule with smaller Csum.

Algorithm 1: Data allocation scheduling algorithm.
1 for each dci in Dc do
2 for each dl requested by dci do
3 while the number of replicas of dl is less than β do
4 if first replica of dl then
5 It is assigned to serve requests from dci

towards dl; All other replicas do not serve Gets;

6 if dl is Storage intensive then
7 L = {(dpj with the largest Sdpj among all

datacenters having the smallest Storage unit
price) ∧(dpj ∈ Sp

dl
∩ Sg

dci,dl
)∧(dpj with

enough Get/Put capacity) };
8 else if dl is Get/Put intensive then
9 L = {(dpj with the smallest Get/Put unit price

∨ with the lowest unit reservation price ∨ with
the largest increment of A1)
∧(dpj ∈ Sp

dl
∩ Sg

dci,dl
)∧(dpj with enough

Get/Put capacity)};
10 else if dl is non-intensive then
11 L is the union of all the above L sets;

12 dl is allocated to dpj in L with the smallest Csum;

After determining the data allocation schedule, ES3

needs to transfer a data replica from a source datacenter
with the replica to the assigned datacenter. To reduce cost
(Objective (4)), ES3 takes advantage of the tiered pricing
model of Transfer to reduce the Transfer cost. It assigns
priorities to the datacenters with the replica for selection
in order to have a lower unit price of Transfer. Specifically,
for the datacenters belonging to the same CSP of assigned
datacenter dpj , those in the same location as dpj have the
highest priority, and those in different locations from dpj
have a lower priority. The datacenters that do not belong to
dpj ’s CSP have the lowest priority, and are ordered by their
current unit transfer prices (under the aggregate transfer
data size) in an ascending order to assign priorities. Finally,
the datacenter with the highest priority is chosen as the
source datacenter to transfer data.

3.3 GA-based Data Allocation Adjustment

If the allocated Get/Put rates vary over time largely (i.e., the
rates exceed and drop below the reserved rates frequently),
then the reservation saving is small according to Equation
(1). For example, Figure 3(a) shows a data allocation sched-
ule. Then, both Rgdpj = 100 and Rgdpj = 200 reduce reserva-
tion benefit at a billing period. We propose the GA-based
data allocation adjustment method to make the reserved
amount approximately equal to the actual usage as shown
in Figure 3(b).

As shown in Figure 4, this method regards each data
allocation schedule, represented by <dl, {dp1, ..., dpβ}>
(dl ∈ D), as a genome string, where {dp1, ..., dpβ} (denoted
by Gdl) is the set of datacenters that store dl. Using
Algorithm 1, it generates the data allocation schedule with

6

the lowest total cost (named as global optimal schedule). It
also generates the data allocation schedules with the lowest
Storage cost, lowest Get cost and lowest Put cost (named
as local optimal schedules) by assuming all data items as
Storage-, Get- and Put-intensive, respectively.

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}>

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}>

Global optimal

Storage optimal

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}> Get optimal

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}> Put optimal

<d1,{dp1’,…,dpβ’}>

Crossover Crossover Crossover

Mutation

Fig. 4: GA-based data allocation adjustment.

To generate the children of the next generation, this
method conducts crossover between the global optimal
schedule with each local optimal schedule with crossover
probability θ (Figure 4). Each genome in a child’s genome
string is from either the global optimal schedule (with
probability θ) or the local optimal schedule (with probability
1-θ). To ensure the schedule validity, for each crossover,
the genomes that do not meet all constraints in Section 2.2
are discarded. In order not to be trapped into a sub-
optimal result, the genome mutation occurs in each genome
string after the crossover with a certain probability. In the
mutation of a genome, for each data item, dp1 in Gdl (which
serves Gets) and a randomly selected dpk in Gdl are replaced
with qualified datacenters.

After a crossover and mutation, the global optimal
schedule and the local optimal schedules are updated ac-
cordingly. Among the child schedules and the global op-
timal schedule, the one with the smallest Csum (based on
Equation (4)) is selected as the new global optimal sched-
ule. Similarly, we evaluate each schedule’s Storage/Get/Put
cost exclusively to generate the new Storage/Get/Put local
optimal schedules, respectively. In order to speed up the
convergence to the optimal solution, the number of children
in the next generation (Ng) is inversely proportional to the
improvement of the global optimal schedule in the next
generation. That is, Ng = Min{N, N

Csum/C′
sum
}, where N

is a constant integer as the base population, Csum and C ′sum
are the total cost of current and new global optimal sched-
ules, respectively. Creating generation is terminated when
the maximum number of consecutive generations without
cost improvement or the largest number of generations is
reached. Though this method is time consuming, it is only
executed once at the beginning of reservation time period T
(e.g., one year in Amazon DynamoDB [5]).

4 COST EFFICIENT AND SLO GUARANTEE EN-
HANCEMENTS

4.1 Dynamic Request Redirection

ES3 master predicts the Get load of each storage datacenter
dpj at the initial time of tk (Atk), which is used to calculate
the data allocation schedule. If the actual number of Gets is
larger or smaller than Atk , then the schedule may not reach
the goal of SLO guarantee and minimum cost. There may be
a request burst due to a big event, which leads to an expen-
sive resource usage under current request allocation among

storage datacenters. Sudden request silence may lead to a
waste of reserved usage. The Get operation only needs to
be resolved by one of β replicas. Therefore, we can redirect
the burst Gets on a datacenter that uses up its reservation to
a replica in a datacenter whose reservation is underutilized
in order to save cost. This redirection can also be conducted
whenever a datacenter overload or failure is detected.

We consider a datacenter reservation-overutilized if its
Get load is higher than its reserved number of Gets and
use threshold Tmax = Atk/tk to check whether a data-
center is reservation-overutilized. We consider a datacenter
reservation-underutilized if its reserved Gets are not fully used
and use threshold Tmin = Rgdpj/tk to check whether a dat-
acenter is reservation-underutilized. The master calculates
the aggregate number of Gets for each datacenter during
tk, denoted by gdpj . We used t to denote the elapsed time
interval during tk. Datacenters with gdpj/t < Tmin are
reservation underutilized, datacenters with gdpj/t ≥ Tmax
are reservation-overutilized, and datacenters with Tmin <
gdpj/t < Tmax are called reservation-normalutilized dat-
acenters. We aim to release the load from reservation-
overutilized datacenters to reservation-underutilized data-
centers in order to fully utilize the reservation. Specifically,
ES3 master sends out the three different groups to all the
customer datacenters. If a customer datacenter notices that
the target datacenter to serve a request is a reservation-
overutilized datacenter, it selects another replica among
β replicas in a reservation-underutilized datacenter with
sufficient resource to serve the request and the lowest unit
Get price. The consideration of the unit Get price is to reduce
the cost if the redirected request uses up the reservation
of the datacenter. If there are no reservation-underutilized
datacenters, the reservation-normalutilized datacenter with
sufficient resource to serve the request and the lowest unit
Get price is selected. This way, the dynamic request redi-
rection algorithm further reduces the cost by fully utilizing
the reserved resource. In order to satisfy SLO, we store the
data in datacenters close to the client datacenter, therefore,
we do not expect a remote request will always happen, and
the transfer cost is still not a dominance.

4.2 Grouped Gets for Cost Minimization
To fetch all data objects of a webpage, many Get requests
are generated; each Get fetching one data object. In cloud
storage, each Get has a size limitation (denoted by ug) such
as the 4kB specified in Amazon DynamoDB [5]. For a Get
gi from a user, the actual number of Gets considered by
the cloud provider in cost calculation is equal to dsgi/uge,
where sgi is the requested data size of Get gi. That is, if
the Get size is larger than the size limitation, the Get is
considered as multiple Gets by the cloud provider when
deciding the charging amount.

Usually, one single data object is much smaller than the
size limitation of a Get. For example, one single object in
Facebook [10] has less than 1kB. Therefore, reading multiple
concurrently requested data objects together through one
single Get can save the Get cost. This way, instead of reading
a single data object by one Get, the grouped data objects
within an aggregated data item are read entirely through
one Get. In this section, we use oi to represent a grouped
data object and it may only include one single data object.

7

As indicated in [18], data dependency exists among the
data objects requested to present a webpage. Object oi de-
pends on object oj means oj must be fetched before fetching
oi. For example, in Facebook, when a user logs in, his/her
friend list is fetched first and then their recent posts are
fetched in order to get the user’s News Feed. A dependency
tree can be used to show the dependency among data objects
in a data item, where a parent’s children depend on the par-
ent, i.e., the parent data objects must be queried before the
child data objects. Therefore, intuitively, we can group a data
object and all of its predecessors together to save Get cost.

However, a parent data object’s children may not need
to be read together. Therefore, we still need to resolve how
to cluster data objects in a data item into data groups
so that each group has a high probability to be read to-
gether by a Get from customers. To handle this problem,
we propose a coefficient-based data grouping method to
aggregate the data objects together to reduce the number
of Gets. We define the coefficient between two data objects
as the probability that they are requested together by Gets.
We use poi,oj to denote the coefficient of data objects oi
and oj . oi and oj can be either a single data object or a
grouped data object. We assume the probability that two
data objects requested together is the same for Gets from
different customer datacenters because they serve the same
website. We also assume the data objects’ coefficient does
not change over time, unless the customer changes its
website. In this case, all grouped data objects are broken
into single data objects and they are grouped again by our
grouping method.

Before we present our coefficient-based data grouping
method, we first introduce how to calculate coefficient
poi,oj . Each grouped data object oi has a precedent data
object. If oi is a single data object, its precedent object is oi
itself; otherwise, its precedent object is the data object in oi
at the highest level of the dependency tree. To derive poi,oj ,
we first find the precedent data object in each grouped data
object (oi and oj). When we form a grouped data object, we
need to ensure that all data objects are directly or indirectly
dependent on the precedent data object of the newly formed
grouped data object. Due to the dependency, the read rate of
a grouped data object is the read rate of its precedent data
object. If the precedent object of one grouped data object oi
depends on the precedent object in the other data object oj ,
then at each time when oi is read, oj must be already read.
Hence, we can derive poi,oj = voi/(voi +voj), where voi and
voj is the read rate of grouped data object oi and oj from all
customer datacenters during T . If the precedent objects of
oi and oj have no dependency on each other, poi,oj is set to
negative infinite.

If oi and oj forms a grouped data object, a Get request
initially for oi, oj or both will be a Get request for this
grouped data object. To decide whether oi and oj should
be combined to a grouped data object, we need to check
whether this combination saves the Get cost, that is, whether
reading the combined object entirely has a smaller num-
ber of Gets than reading each single data object inside it
individually based on the read rates of oi and oj . Thus,
we first calculate the Get cost for reading individually as
Cindoi,oj = dsoi/uge∗voi+dsoj/uge∗voj . We then calculate the
cost of reading them together as Cgrpoi,oj = d(soi + soj)/uge ∗

(voi + voj) ∗ (1− poi,oj) = d(soi + soj)/uge ∗ voj by timing
the number of Gets of the entire grouped data object and
the read rate together. We can then calculate the benefit of
grouping two data objects as Boi,oj = Cindoi,oj − Cgrpoi,oj . If
Boi,oj > 0, oi and oj can form a grouped data object.

Algorithm 2: Coefficient-based data grouping algo-
rithm.

Input: List L with all data objects in an aggregated data
item
Output: List L′ with all grouped data objects

1 Sort data objects in list L in descending order of their
levels in the dependency tree of the data item;

2 for each oi in list L do
3 Find oj ∈ L′ with the largest grouping benefit with

oi, Boi,oj ;
4 if Boi,oj > 0 then
5 oi is grouped into oj ;

6 else
7 oi is inserted into list L′;

The detailed procedure of coefficient-based data group-
ing method is shown in Algorithm 2. To group data objects,
we sort all single data objects in the descending order of
their levels in the dependency tree into a list L (Line 1). We
loop all data objects to combine each object into an existing
grouped data object or form an individual grouped data
object (Lines 2-7). For each data object oi ∈ L (Line 2), we
loop each of all data objects inside another list L′, which
initially is empty, and calculate the grouping benefit. For
the data object oj with the largest grouping benefit Boi,oj
(Line 3), if Boi,oj > 0, we group oi into grouped data object
oj (Lines 4-5); otherwise, we directly insert oi into L′ as a
grouped data object with a single object (Lines 6-7). After
looping all data objects inside L, L′ includes the grouped
data objects that can save Get cost. For newly added data
objects, we first insert them into L and insert all current
grouped data objects into L′, and then each new data object
is grouped into an existing grouped data object or form
a new grouped data object according to the procedure in
Lines 2-7. This algorithm is conducted before the real data
allocation conduction, so that the objects in a grouped data
object are stored as a file unit for Get/Puts.

4.3 Lazy Update for Cost-Efficient Puts
4.3.1 Put Aggregation
Eventual consistency means that if no new updates are
made to a given data item, eventually all accesses to that
data item will return the last updated value. Each Put of a
data item needs to be propagated to all of its replicas for
consistency maintenance. We notice that for eventual con-
sistency, the propagation of updates on rarely used replicas
can be postponed, which can be leveraged to save Put cost.
For example, adding an advertisement to a webpage only
needs eventual consistency and it does not need an instant
update. Similar to reading a grouped data object, we can
aggregate sequential writes into one Put to propagate to all
rarely used replicas. Recall that for data item dl of customer
datacenter dci, a storage datacenter dpj storing dl always
serves Gets from dci targeting dl and β replicas of dl are
stored in other storage datacenters for data availability. We

8

call dl in datacenter dpj the master replica of data dl for
customer datacenter dci and call other replicas slave replicas
of data dl for dci.

The write to data item dl from customer datacenter dci
always triggers a Put to its master replica, which serves
Gets from dci targeting dl, so that the customers served
by dci can always see the updates. Since the slave replicas
do not usually serve the Get requests, we can postpone
their updates in order to save Put cost. Thus, customer
datacenter dci caches the recent writes on dl, and combines
the writes before sending them to slave replicas later on. The
TTL (time-to-live) timeout is the longest time the cached
writes can be delayed. The combined writes of an object
will be sent out to all slave replicas after a TTL timeout or
whenever the customer datacenter’s cache (used for the Put
aggregation purpose) is full. In the case that the cache is full,
we adopt a Least Recently Combined First Out (LRCFO)
strategy to select the combined writes of top data items to
send out to relieve cache space. This strategy assumes that
for a data item, if there are no updates for a longer time,
it has lower probability to be updated. Thus, for recently
updated data items, we expect more writes to be combined
to further save Put cost.

4.3.2 Replica Deactivation
Customers may need to maintain strong consistency for
some data items, in which all Puts are seen in the same
order (sequentially) by different distributed clients at the
same time. For both strong and eventual consistencies, in
order to save Put cost, we can dynamically deactivate (i.e.,
remove) the slave replicas of a data item if it receives few
Get requests [19] for a certain time period, so that they do
not need to receive updates. For example, for a customer
datacenter serving online social networks, its service has a
diurnal pattern [20], that is, its workload dramatically drops
down at night. By deactivating some slave replicas of the
data item serving few requests in the inactive time period,
the Put cost can be further reduced. For some high valuable
data, they can be marked by the end-user directly so that
these data will not be deactivated in the period.

Recall that slave replicas of customer datacenter dci usu-
ally do not serve its Get requests and they are created mainly
to increase the data availability. The slave replicas introduce
Storage cost and Put cost. Only when the Get workload from
dci is high and the storage datacenters of master replicas
cannot provide SLO-guaranteed service, the Get requests
will be forwarded to datacenters hosting the slave replicas
of the requested data. Therefore, when the request rate of
Gets from dci towards data item dl drops below a threshold
Tr (i.e., when the slave replicas are unlikely to be used),
in order to save Put cost on the slave replicas, we can
deactivate the slave replicas of dl from storage datacenters.
When the request rate of Gets towards dl from dci increases
beyond Tr, the slave replicas are dynamically created by
transferring the updated replicas of dl from the datacenters
containing them.

Below, we introduce how to choose the slave replicas
of dl to deactivate in order to save total cost. Specifically,
we predict the benefit of deactivating a slave replica to
decide the necessity of its deactivation. For reactivation,
the cost consumption includes the Transfer cost, which is

C ′t = pt(dpj) ∗ sdl , where dpj is a slave replica datacenter.
The Storage and Put costs are saved during the deactivation.
If the reserved Puts of slave replica datacenter dpj has
not been fully utilized, since the payment cost for Put
reservation is already determined and cannot be further
saved, the Put cost C ′p = 0; otherwise, it is calculated
as C ′p = wt

′

dci,dpj
∗ ppdpj ∗ t

′, where t′ is the deactivation
time period. The saved storage cost can be calculated as
C ′s = sdl ∗ psdpj (Sdpj) ∗ t

′. Finally, we can derive the deac-
tivation benefit of a slave replica as C ′s + C ′p − C ′t. If the
deactivation benefit is larger than zero, this slave replica is
deactivated; otherwise, it will not be deactivated.

The storage savings may be much smaller compared to
transfer cost in the deactivation if the transferring happens
between different CSPs, which has a higher unit Transfer
price. For example, if a data item has 1GB and a data
object that needs deactivation to save Put cost has 1kB, then
transferring 1GB to reactivate the data item may generate
cost higher than the sum of the costs for transferring only
1kB between different CSPs and storing (1GB-1kB). Thus,
we do not need to remove the slave replica of the entire
data item. Instead, we remove the data objects that receive
Puts during the deactivation period. When a data item is
identified to be deactivated, it is marked. Then, during the
deactivation time, once there is a Put on an object, this object
is removed. This way, we can further save the total cost by
only transferring the updated data objects inside the data
item in the activation to further reduce the transfer cost.

4.4 Concurrent Requests for Rigid Get SLO Guarantee

Within each billing period, the data allocation of a customer
is stable. However, the customer may require a more rigid
Get SLO (low tail latency SLO) during this billing period
with a smaller ε(dl) or Lgdl . If the Get SLO of dl is too rigid
for the storage datacenter of the main replica to handle, we
can concurrently submit multiple Get requests to different
replicas including the master and slave replicas. This way,
although some of the datacenters cannot supply a Get SLO
guarantee service, there can be a datacenter among them re-
sponding the request with the rigid SLO guarantee. Though
this method introduces additional Get cost due to more Get
requests, it avoids the need to conduct data reallocation
again, so that it saves the replica Transfer cost and does not
waste the reserved Get/Put cost for datacenters currently
storing dl.

Intuitively, if we transmit a Get request targeting data
dl to all β datacenters with its replica, we can get a low
response latency with a high probability. However, it may
introduce unnecessary Get costs, since a combination of part
of the datacenters may already supply a Get SLO guaran-
teed service. The problem to find such a combination with
Get SLO guarantee and Get cost minimization can be easily
reduced to the knapsack problem, which is NP-hard [16].
Since β is usually small, we can enumerate all combinations
that satisfy the rigid Get SLO and find the one with the min-
imum cost. To efficiently find the combination, we introduce
a greedy heuristic algorithm. Unlike the master replicas of
dl, the Gets towards its slave replicas are not considered
in deciding the Get reservation of their datacenters. Then,
the Get cost is calculated based on the pay-as-you-go policy.

9

Thus, to minimize the additional Get cost introduced by
concurrent requests, we sort all slave replica datacenters
of dl in ascending order of the Get unit cost. Then, we
sequentially check each slave replica datacenter dpj in the
list. If the additional Get workload on dpj does not make
its total Get workload exceed its Get capacity, we add dpj
into the combination C. This process continues until the
combination can satisfy the rigid Get SLO guarantee, that is,∏

dpj∈C
(1− F g

dci,dpj
(Lg(dl))) ≤ εg(dl). (6)

Therefore, the probability that all storage datacen-
ters cannot respond a Get within the deadline,∏
dpj∈C(1 − F gdci,dpj (L

g(dl))), is no larger than the
allowed percentage εg(dl), so that the rigid SLO is satisfied.

5 PERFORMANCE EVALUATION

We conducted trace-driven experiments on Clemson Uni-
versity’s Palmetto Cluster [21], which has 771 8-core nodes,
and on real-world clouds with a real deployment of ES3.
We first introduce the experimental settings.

Simulated clouds. The services we are simulating is a
broker serving multiple web application using key-value
data storage model. We simulated two datacenters in each of
all 25 cloud storage regions in Amazon S3, Microsoft Azure
and Google cloud storage [1], [2], [3]. The pricing model
in the simulation referes to DynamoDB. The distribution of
the inter-datacenter Get/Put latency follows the real latency
distribution as in [10]. The unit prices for Storage, Get, Put
and Transfer and the reservation price ratio in each region
follow the real prices listed online. We simulated ten times
of the number of all customers listed in [1], [2], [3] for
each cloud storage provider. As in [10], in the SLOs for all
customers, the Get deadline is 100ms [10], the percentage
of latency guaranteed Gets and Puts is 90%, and the Put
deadline for a customer’s datacenters in the same continent
is 250ms and is 400ms for an over-continent customer. Also,
the size of each data item of a customer was randomly
chosen from [0.1TB, 1TB, 10TB] [10]. The number of data
items of a customer follows a bounded Pareto distribution
with a lower bound, upper bound and shape as 1, 30000
and 2 [22]. We set the mutation rate, crossover rate, and the
maximum number of generations in the GA-based data al-
location adjustment method to 0.2, 0.8, and 200 respectively.
In simulation, we set the billing period to 1 month, and we
computed the cost and evaluated the SLO performance in 12
months. We run each experiment for 10 times and reported
the average performance.

Get/put operations. The percentage of the data items
visited (Get/Put) follows a bounded Pareto distribution
with a upper bound, lower bound and shape as 20%, 80%
and 2. The size of each requested data object was set to
100kB [10]. The Put rate follows the publicly available wall
post trace from Facebook [23] and we set the Get rate of
each data item based on the 100:1 Get:Put ratio [18]. We set
the Get and Put capacities of each datacenter to 1E8 and 1E6
Gets/Puts per second, respectively, based on real Facebook
Get/Put capacities [18]. When a datacenter is overloaded,
the Get/Put operation on it was repeated once.

Real clouds. We also conducted a small scale trace-
driven experiment on real-world clouds. We implemented

ES3’s master in Amazon EC2’s US West (Oregon) Region.
We simulated one customer that has customer datacenters
in Amazon EC2’s US West (Oregon) Region and US East
Region. Unless otherwise indicated, the settings are the
same as before. Due to the small scale, the number of
data items was set to 1000, the size of each item was set
to 100MB, and β was set to 2. We set the Put deadline to
200ms. We set the capacity of a datacenter in each region of
all CSPs as 30% of total expected Get/Put rates. Since it is
impractical to conduct experiments lasting a real contract
year, we set the billing period to 4 hours, and set the
reservation period to 2 days.

Comparison methods. We compared ES3 with the
following systems. i) COPS [9]. It allocates requested data
into a datacenter with the shortest latency to each customer
datacenter but does not consider payment cost minimiza-
tion. ii) Cheapest. It selects the datacenters with the cheapest
cost in the pay-as-you-go manner to store each data item. It
neither provides SLO guarantee nor attempts to minimize
the cost with the consideration of reservations. iii) Random.
It randomly selects datacenters to allocate each data item
without considering cost minimization or SLO guarantee.
iv) SPANStore [10]. It is a key-value storage system over
multiple CSPs’ datacenters to minimize cost and guarantee
SLOs. It does not consider the data-center capacity
limitation, which may lead to SLO violation. On the other
hand, it does not fully leverage all pricing policies in cost
minimization as indicated previously. Furthermore, it does
not consider Get/Put rate variation during a billing period.

5.1 Comparison Performance Evaluation
In this section, we varied each data item’s Get/Put rate from
50% to 100% (named as request ratio) of its actual Get/Put
rate in the Facebook trace [23], with a step increase of 10%.
The Get SLO satisfaction level of a customer is calculated by
Min{Min{n′tk/ntk}∀tk∈T , (1−ε

g)}/(1−εg), where n′tk and
ntk are the number of Gets within Lg and the total number
of Gets of this customer, respectively. Similarly, we can get
the Put SLO satisfaction level.

Figures 5(a) and 5(b) show the lowest Get SLO satisfac-
tion level of each system in simulation and real-world exper-
iment, respectively. ES3 considers both the Get SLO and ca-
pacity constraints, thus it can supply a Get SLO guaranteed
service. COPS always chooses the provider datacenter with
the smallest latency. SPANStore always chooses the provider
datacenter with the Get SLO consideration. However, since
it does not consider datacenter capacity, a datacenter may
become overloaded and cannot meet the Get SLO deadline.
Random randomly selects datacenter so it generates a lower
Get SLO guaranteed performance than SPANStore. Cheapest
does not consider SLOs, so it generates the worst SLO
satisfaction level. Figure 6(a) and 6(b) show the lowest Put
SLO satisfaction level of each system in simulation and
real-world experiment, respectively. COPS allocates data
without considering the Put latency minimization, and the
Puts to far-away datacenters may introduce a long delay.
Thus, COPS generates a lower Put SLO satisfaction level
than SPANStore. Figures 5 and 6 indicate that only ES3 can
supply a both Get/Put SLO guaranteed service.

Figures 7(a) and 7(b) show the percentage of Gets
received by overloaded datacenters in simulation and

10

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100

L
o
w

e
s
t

G
e

t
S

L
O

s
a

ti
s
fa

c
ti
o
n

 l
e
v
e

l

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(a) In simulation

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100

L
o
w

e
s
t

G
e

t
S

L
O

s
a
ti
s
fa

c
ti
o
n
 l
e
v
e
l

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(b) In real clouds
Fig. 5: Get SLO guaranteed performance.

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100

L
o
w

e
s
t

P
u

t
S

L
O

s
a

ti
s
fa

c
ti
o
n

 l
e
v
e

l

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(a) In simulation

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100L
o
w

e
s
t

P
u

t
S

L
O

s
a
ti
s
fa

c
ti
o
n
 l
e
v
e
l

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(b) In real clouds
Fig. 6: Put SLO guaranteed performance.

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100%
 o

f
G

e
ts

 r
e
c
e
iv

e
d

b
y
 o

v
e
r
lo

a
d
e

d

d
a
ta

c
e
n
te

r
s

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(a) In simulation

0%

20%

40%

60%

80%

50 60 70 80 90 100%
 o

f
G

e
ts

 r
e
c
e
iv

e
d

b
y
 o

v
e
r
lo

a
d
e

d

d
a
ta

c
e
n
te

r
s

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(b) In real clouds
Fig. 7: Percent of Gets received by overloaded datacenters.

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100%
 o

f
P

u
ts

 r
e

c
e
iv

e
d

b
y
 o

v
e
r
lo

a
d
e
d

d
a
ta

c
e
n

te
r
s

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(a) In simulation

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100%
 o

f
P

u
ts

 r
e
c
e
iv

e
d

b
y

o
v
e
r
lo

a
d
e
d

d
a
ta

c
e
n
te

r
s

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(b) In real clouds
Fig. 8: Percent of Puts received by overloaded datacenters.

16

32

64

128

50 60 70 80 90 100

C
o
s
t

r
a

ti
o
 t

o

R
a
n

d
o

m
 (

%
)

Request ratio (%)

ES3 ES3-IND SPANStore

COPS Cheapest Random

(a) In simulation

16

32

64

128

50 60 70 80 90 100

C
o
s
t

r
a

ti
o
 t

o

R
a
n

d
o

m
 (

%
)

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(b) In real clouds
Fig. 9: Payment cost minimization with normal Get/Put work-
load.

16

32

64

128

50 60 70 80 90 100

C
o
s
t

r
a

ti
o
 t

o

R
a
n

d
o

m
 (

%
)

Request ratio (%)

ES3 ES3-NG ES3-NR
SPANStore COPS Cheapest

(a) In simulation

16

32

64

128

50 60 70 80 90 100

C
o
s
t

r
a

ti
o
 t

o

R
a
n

d
o

m
 (

%
)

Request ratio (%)

ES3 ES3-NG ES3-NR
SPANStore COPS Cheapest

(b) In real clouds
Fig. 10: Payment cost minimization with light Get/Put work-
load.

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100

G
e
t
S

L
O

s
a
ti
s
fa

c
ti
o
n
 l
e
v
e
l

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(a) In simulation

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100

G
e
t
S

L
O

s
a
ti
s
fa

c
ti
o
n
 l
e
v
e
l

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(b) In real clouds
Fig. 11: Get SLO guaranteed performance with light Get/Put
workload.

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100

P
u
t
S

L
O

s
a
ti
s
fa

c
ti
o
n
 l
e
v
e
l

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(a) In simulation

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100

P
u
t
S

L
O

s
a
ti
s
fa

c
ti
o
n
 l
e
v
e
l

Request ratio (%)

ES3 SPANStore COPS

Cheapest Random

(b) In real clouds
Fig. 12: Put SLO guaranteed performance with light Get/Put
workload.

real-world experiment, respectively. Due to the capacity-
awareness,ES3 can avoid the datacenter overloads. Random
allocates data items over all storage datacenters randomly,
so it has a smaller probability of overloading storage dat-
acenters. The other methods make datacenters overloaded,
and show opposite orders from Figure 5(a) due to the
same reasons. Figures 8(a) and 8(b) show the percentage of
Puts received by overloaded datacenters. Figures 7 and 8
indicate that ES3 outperforms other systems in that it can
effectively avoid overloading datacenters by capacity-aware
data allocation, which helps ensure the Get/Put SLOs.

Since Random does not consider SLO guarantee
or payment cost minimization, we measure the cost
improvement of the other systems compared to Random.

Figures 9(a) and 9(b) show the ratio of each system’s cost
to Random’s cost in simulation and real-world experiment,
respectively. In order to show the effect of considering
the tiered pricing model, in simulation, we also tested
a variant of ES3, denoted by ES3-IND, in which each
customer individually uses ES3 to allocate its data without
aggregating their workload together through the broker.
Since both COPS and Random do not consider cost, they
produce the largest cost. SPANStore selects the cheapest
datacenter in pay-as-you-go manner with SLO constraints,
thus it generates a smaller cost. However, it produces
a larger cost than Cheapest, which always chooses the
cheapest datacenter. ES3-IND generates a smaller cost than
these methods, because it chooses the datacenter under

11

0%

20%

40%

60%

80%

100%

10 20 30 40 50

A
v
g
.
G

e
t
S

L
O

S

a
ti
s
fa

c
ti
o
n

 l
e
v
e

l

Varying ratio bound(%)

ES3 ES3-NRR SPANStore

COPS Cheapest Random

(a) In simulation

0%

20%

40%

60%

80%

100%

10 20 30 40 50

A
v
g
.

G
e

t
S

L
O

S

a
ti
s
fa

c
ti
o

n
 l
e
v
e

l

Varying ratio bound(%)

ES3 ES3-NRR SPANStore

COPS Cheapest Random

(b) In real clouds
Fig. 13: SLO guarantee of Gets with varying Get rate.

16

32

64

128

10 20 30 40 50

C
o
s
t

r
a

ti
o
 t

o

R
a
n

d
o

m
 (

%
)

Varying ratio bound (%)

ES3 ES3-NRR SPANStore
COPS Cheapest Random

(a) In simulation

16

32

64

128

10 20 30 40 50

C
o
s
t

r
a
ti
o
 t

o

R
a
n

d
o

m
 (

%
)

Varying ratio bound (%)

ES3 ES3-NRR SPANStore
COPS Cheapest Random

(b) In real clouds
Fig. 14: Cost minimization with varying Get rate.

0%

20%

40%

60%

80%

100%

1000 2000 3000 4000 5000 6000

G
e

t
c
o

s
t

ra
ti

o
 t

o
 E

S
3

w

it
h

o
u

t
g

ro
u

p
e

d
 G

e
t

Num. of data objects in a data item

ES3-2 ES3-3 ES3-4

Fig. 15: Cost reduction by
grouped Gets.

0%

20%

40%

60%

80%

100%

100 200 300 400 500 600

P
u

t
c
o

s
t

ra
ti

o
 t

o
 E

S
3

w

it
h

o
u

t
P

u
t

a
g

g
re

g
a

ti
o

n

TTL (s)

ES3-10GB ES3-20GB ES3-40GB

Fig. 16: Cost reduction by Put
aggregation.

70%
75%
80%
85%
90%
95%

100%

20 40 60 80 100 120

C
o

s
t

ra
ti

o
 t

o
 E

S
3

w

it
h

o
u

t
 r

e
p

li
c
a

d

e
a

c
ti

v
a

ti
o

n

Time of deactivation (min)

ES3-500 ES3F-500 ES3-1000
ES3F-1000 ES3-1500 ES3F-1500

Fig. 17: Cost reduction by
replica deactivation.

0%

10%

20%

30%

40%

50%

86%
88%
90%
92%
94%
96%
98%

100%

90% 92% 94% 96% 98%

G
e

t
c
o

s
t

ra
ti

o
 t

o

R
a

n
d

o
m

G
e

t
S

L
O

 s
a

ti
s
fa

c
ti

o
n

le

v
e

l

1-ε

ES3-CR (SLO) ES3 (SLO) ES3-CR (Cost)

Fig. 18: Performance of concur-
rent requests.

SLO constraints that minimizes each customer’s cost by
considering all pricing policies. ES3 generates the smallest
cost because it further aggregates workloads from all
customers to get a cheaper Storage and Transfer unit price
based on the tiered pricing model. The figures confirm that
ES3 generates the smallest payment cost in all systems and
the effectiveness of considering tiered pricing model.

5.2 Effectiveness of Individual Methods in ES3

We are interested to see whether the data intensiveness
change will affect the performance of different systems.
In order to measure the effectiveness of GA-based data
allocation on cost minimization, we varied the Get/Put
rate of each data item in a billing period. Specifically, the
Get/Put rate was set to x% of the rate in the previous
billing period, where x was randomly chosen from [50, 200]
according to [10]. We use ES3-NG to denote ES3 without
GA-based data allocation adjustment. In order to show the
effect of considering the reservation on cost minimization,
we also tested ES3 without any reservation or GA-based
method, denoted by ES3-NR.

Figures 10(a) and 10(b) show the ratio of each system’s
cost to Random’s cost in simulation and real-world experi-
ment, respectively. Since ES3-NR also chooses the cheapest
datacenters by considering different pricing policies except
reservation, it produces a cheaper cost than SPANStore.
However, by choosing datacenters with SLOs constraints
that may offer a higher price than the cheapest price, ES3-
NR generates a larger cost than Cheapest, which generates a
larger cost than ES3. This result shows the effectiveness of
considering reservation in cost minimization. ES3-NG pro-
duces a higher cost thanES3, which shows the effectiveness
of the GA-based data allocation adjustment method in cost
minimization.

Figure 11(a) shows the median, 5th and 95th percentile
of all customers’ Get SLO satisfaction levels of each system
with each request ratio in simulation. Figure 11(b) shows the
Get SLO satisfaction level of the customer of each system

in real-world experiment. They show that ES3 and COPS
can supply a Get SLO ensured service due to the same
reasons as in Figure 5(a). SPANStore also supplies a Get
SLO guaranteed service, due to its SLO awareness and the
light workload that does not overload datacenters. Random
and Cheapest do not consider the SLO, thus their Get SLO
satisfaction levels are much lower.

Figure 12(a) shows the median, 5th and 95th percentile
of all customers’ Put SLO satisfaction levels of each system
with each request ratio. Figure 12(b) shows the Put SLO
satisfaction level of the customer of each system with each
request ratio in real-world experiment. They show a similar
order of all systems as in Figure 6(a) due to the same rea-
sons. Different from Figure 6(a), in Figure 12(a), SPANStore
can supply an SLO guaranteed service, and Random and
Cheapest achieve similar performances due to the same
reasons as in Figure 11(a).

5.3 Performance of Enhancements
In this section, we present the performance of the cost effi-
cient and SLO guarantee performance of the enhancement
methods in Section 4 in real clouds.

5.3.1 Dynamic Request Redirection
This section measures the performance in providing Get
SLO guarantee and cost minimization under dynamic re-
quest rates. We denoteES3 without the Request Redirection
method by ES3-NRR. The Get rate of each data item was
randomly chosen from [(1 − x)v, (1 + x)v], where v is the
Get rate, and x is called varying ratio bound and was varied
from 10% to 50% in experiments. Figures 13(a) and 13(b)
show the average Get SLO satisfaction level of all customers
in simulation and real-world experiment, respectively. They
show the same trends and orders of all systems as in Fig-
ures 5(a) and 5(b) due to the same reasons. The figure also
shows thatES3-NRR generates a lower Get SLO satisfaction
level than ES3 and COPS but a higher level than the
others. This is because ES3-NRR generates long latency on

12

overloaded datacenters when some data items have larger
request rates than expected, so it cannot supply an SLO
guaranteed service in the case of varying request rates.
However, due to its Get/Put SLO guarantee and capacity
awareness, it generates a higher SLO satisfaction level than
others. The figures indicate the high effectiveness of ES3’s
dynamic request redirection method to handle the Get rate
variance in ensuring Get SLO.

Figures 14(a) and 14(b) show the ratio of each system’s
cost to Random’s cost. The figures show the same order
between all systems as in Figure 9(a) due to the same
reasons. It also shows that ES3-NRR generates a higher cost
than ES3 but a lower cost than others. Without dynamic
request redirection, ES3-NRR cannot fully utilize reserved
resources like ES3 and pays more for the over-utilized
resources beyond the reservation. However, by leveraging
all pricing policies, ES3-NRR generates a lower payment
cost than other systems. The figures indicate the high ef-
fectiveness of ES3’s dynamic request redirection method to
reduce the payment cost in varying request rates and the
superior performance of ES3 in handling dynamic request
rates for cost minimization.

5.3.2 Grouped Gets for Cost Reduction

Next, we measured the performance of the effectiveness
of the grouped Get method for Get cost saving. We set
the size limitation of each unit Get as 400kB, since the
size of Get unit is 4 times as large as the size of average
data object in Facebook [5], [18], and the default size of
a data object was set to 100kB. We varied the number of
data objects in a data item from 1000 to 6000 with a step
size as 1000. All data objects form a N -ary dependency
tree [18], with N increasing from 2 to 4 with a step size
as 1. The dependency between data objects in one data item
is randomly generated. We used the default setting of Get
rates for the data objects that are leaf nodes of the N -ary
tree, and then the Get rate of a parent node is the sum of
the Get rates of all of its children. We used ES3-N to denote
ES3 with the grouped Get method.

Figure 15 shows the Get cost ratio of ES3-N calculated
by the Get cost of ES3 with the grouped Get method over
the Get cost of ES3 without this method. It shows that the
Get cost ratio of ES3-N is from 56.4% to 68.9%. This is
because by aggregating Gets for data objects concurrently
requested into one unit Get, it reduces the number of Gets,
so that the Get cost is reduced. The figure also shows that
with more data objects within a data item, the Get cost
ratio does not increase, which means the performance of
the grouped Get method is scalable when the number of the
requested data objects increases. We can also see that ES3-
3 achieves the smallest cost ratio. Due to the 100kB data
object size and 400kB Get limitation, one Get can fetch four
objects together. Then, according to Algorithm 2, inES3-3, a
data object will be grouped with all of its child data objects,
so that the Get cost for all the children can be saved by
requesting the parent data object with them together. The
figure indicates that the group Get method can effectively
save the Get cost.

5.3.3 Lazy Update for Cost-Efficient Puts

We then measured the performance of cost reduction by the
put aggregation method. We use ES3-xGB to denote ES3

with the Put aggregation method with a cache size as xGB.
Figure 16 shows the Put cost ratio calculated by the Put
cost of ES3 with the Put aggregation method over the Put
cost of ES3 without this method. This is because the Put
aggregation method combines consecutive Puts together to
save the number of Puts, leading to lower Put cost. It also
shows that the cost ratio decreases when the TTL or the
cache size increases. A longer TTL allows data objects with
lower Put rates to aggregate multiple Puts together to be
propagated in order to save Put cost. Similarly, a larger
cache size also allows more data objects to aggregate their
Puts, leading to lower cost. The result indicates that the Put
aggregation can effectively save the Put cost. Since a larger
TTL leads to a longer inconsistency period but a smaller
payment cost, in reality, we need to set the TTL according
to both the consistency and the payment cost minimization
requirement to break the tie. Besides TTL, a larger cache
also leads to a lower payment cost. However, it brings a
larger capital investigation cost of the customer datacenter.
Therefore, in reality, a customer of ES3 can choose an
optimal cache size according to its payment cost to CSPs and
its own capital investment (or payment to CSP) on cache to
break the tie.

Figure 17 shows the cost ratio of ES3 with the replica
deactivation (or the fine granularity replica deactivation)
compared to ES3 without it. Since the cost does not involve
Get cost, we only measure the cost including Put, Storage
and Transfer. It shows that the cost ratio of ES3 is varied
from 83% to 99%. This is because during the deactivation,
the Put and Storage cost can be saved by removing the
slave replicas temporarily. It also shows that the ES3F can
reduce more cost than ES3 by removing the data objects
that received updates instead of removing a whole data item
in order to save the Transfer cost. Compared to ES3, ES3F
further reduced up to 4.7% total cost. From the figure we can
also see that the cost ratio decreases when the deactivation
time or Tr increases. With a longer deactivation time, more
Puts can be skipped since there is shorter time for storing
the data item, so that the Storage and Put costs are reduced.
Similarly, a larger threshold leads to more replicas to be
deactivated, which saves more cost. The figure indicates
that the replica deactivation can save the payment cost,
and the fine granularity replica deactivation can save more
payment cost. A larger Tr may lead to more data replica
deactivations, and the master replica itself needs to serve a
larger workload. However, due to the deactivation of slave
replicas, the data availability becomes more important. In
reality, ES3 can choose an optimal Tr considering both the
data availability and cost minimization requirements.

5.3.4 Concurrent Requests for Rigid Get SLO Guarantee

We finally measured the SLO guarantee performance of the
concurrent request method. We use ES3-CR (SLO) and
ES3 (SLO) to denote the Get SLO performance of ES3 with
and without the concurrent request method, respectively.
In order to measure the performance under a highly rigid
Get SLO, we need more replicas to send out concurrent

13

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1X 2X 3X 4X 5X 6X

C
o

m
p

u
ti

n
g

 t
im

e
 (

m
s
)

Scale

ES3 ES3-NG ES3-NR SPANStore

Fig. 19: Schedule computing time.

Gets. Therefore, in this experiment, we changed the default
setting for the number of replicas per data item β = 2
to β = 3. We varied the minimum percentage of requests
responded within deadlines (1 − ε) from 90% to 98% with
a step size of 2%. Figure 18 shows the Get SLO satisfac-
tion level of ES3 with and without the concurrent request
method versus 1 − ε. It shows that when 1 − ε is larger
than the default setting 90%, ES3-CR can still guarantee
the SLO but ES3 cannot. This is because by concurrently
sending multiple requests to different replicas, it produces
a higher probability that the fastest response is within the
specified deadline in the SLO.

Recall that our concurrent request method uses the min-
imum Get unit cost first in selecting slave replicas to send
requests until Formula (6) is satisfied. We measured the
Get cost ratio calculated by the Get cost of our method
over the Get cost of another concurrent request method
that randomly selects slave replicas to send requests until
Formula (6) is satisfied (denoted by Random). The figure
shows that the minimum Get unit cost first selection can
save at least 60% of the cost generated by Random due to
the Get unit cost aware datacenter selection. A more rigid
SLO needs more concurrent Gets. The additional selected
datacenters have higher Get unit prices than those with
lower (1 − ε) in our method, but have comparable Get unit
prices as those with lower (1 − ε) in Random, which leads
to lower Get cost savings compared to Random. Therefore,
more concurrent Gets lead to a higher Get cost ratio to Ran-
dom. The figure indicates that the concurrent request method
can effectively guarantee a more rigid temporal Get SLO
and meanwhile supply a cost-efficient service compared to
random replica datacenter selection.

5.4 System Overhead

In this experiment, we measure the overhead of all systems
with SLO guaranteed service. We use ES3-NG to denote
ES3 without the GA based data allocation adjustment
approach. We enlarge the number of datacenters and the
number of customers by x times, which was varied from 1
to 5, with a step size as 1. Figure 19 shows the median, 5th

and 95th percentile of computing time of the data allocation
schedule calculation in different systems. ES3 depends on
the GA based algorithm to enhance the cost minimization
which is time consuming. Thus, it generates the largest
computing time. ES3-NG does not have this algorithm,
but compared to SPANStore, it needs to calculate the reser-
vation, which leads to a slightly higher computing time
than SPANStore. Even though GA based algorithm leads to
the largest computing time, according to the discussion in
Section 3.3, it needs to be conducted only at the initial of T
to determine the reservation.

6 RELATED WORK

Storage services over multiple clouds. RACS [24] and
DepSky [25] are storage systems that transparently spread
the storage load over many cloud storage providers with
replication in order to better tolerate provider outages or
failures. COPS [9] allocates requested data into a datacenter
with the shortest latency. Unlike these systems, ES3 con-
siders both SLO guarantee and payment cost minimization.
Cloud/datacenter storage payment cost minimization.
In [26], [6], a cluster storage configuration automation
method is proposed to use the minimum resource to support
the desired workload. we also share the similarities with [27]
by using redundant requests to reduce tail latency. But they
focus in one datacenter, we focus on across datacenters.

These works are focused on one cloud rather than a
geographical distributed cloud storage service over multiple
CSPs, so they do not consider the price differences from
different CSPs. Puttaswamy et al. [7] proposed a multi-
cloud file system called FCFS. FCFS considers data size,
Get/Put rates, capacities and service price differences to
adaptively assign data with different sizes to different stor-
age services to minimize the cost for storage. However, it
cannot guarantee the SLOs without deadline awareness.
SPANStore [10] is a key-value storage system over multiple
CSPs’ datacenters to minimize payment cost and guarantee
SLOs. However, it does not consider the datacenter capacity
limitation, which may lead to SLO violation, and also does
not fully leverage all pricing policies in cost minimization
as indicated previously. Also, SPANStore does not consider
Get/Put rate variation during a billing period, which may
cause datacenter overload and violate the SLOs. ES3 is ad-
vantageous in that it overcomes these problems in achieving
SLO guarantee and cost minimization.
Cloud service SLO guarantee. Spillane et al. [28] used
advanced caching algorithms, data structures and Bloom
filters to reduce data read/write latencies in a cloud storage
system. Wang et al. [8] proposed Cake to guarantee service
latency SLO and achieve high throughput using a two-level
scheduling scheme of data requests within a datacenter.
Wilson et al. [29] proposed D3 with explicit rate control to
apportion bandwidth according to flow deadlines to guar-
antee the SLOs. Hong et al. [30] adopted a flow prioritization
method by all intermediate switches based on a range of
scheduling principles to ensure low latencies. Zats et al. [31]
proposed a cross-layer network stack to reduce the long
tail of flow completion times. Wu et al. [32] adjusted TCP
receive window proactively before packet drops occur to
avoid incast congestions to reduce the incast delay. Unlike
these works, ES3 focuses on building a geographically
distributed cloud storage service over multiple clouds with
SLO guarantee and cost minimization.

7 CONCLUSION

In this paper, we propose a multi-cloud Economical and
SLO-guaranteed cloud Storage Service (ES3) for a cloud
broker over multiple CSPs that provides SLO guarantee and
cost minimization even under the Get rate variation. ES3 is
more advantageous than previous methods in that it fully
utilizes different pricing policies and considers request rate
variance in minimizing the payment cost. ES3 has a data

14

allocation and reservation method and a GA-based data
allocation adjustment method to guarantee the SLO and
minimize the payment cost. ES3 also incorporates several
methods to enhance its cost efficient and SLO guarantee
performance. Our trace-driven experiments on a supercom-
puting cluster and real different CSPs show the superior
performance of ES3 in providing SLO guarantee and cost
minimization in comparison with previous systems. The
Transfer cost has a tiered pricing model and becomes more
complex, and different CSP provide different unit prices
from a source storage datacenter to other datacenters be-
longing to different CSPs or at different locations. In our
future work, we will study the cost minimization problem
of transferring replicas of data items to different storage
datacenters whenever a new data allocation schedule is
generated.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants IIS-
1354123, CNS-1254006, CNS-1249603, CNS-1049947, CNS-
0917056 and CNS-1025652, Microsoft Research Faculty Fel-
lowship 8300751.

REFERENCES

[1] Amazon S3. http://aws.amazon.com/s3/.
[2] Microsoft Azure. http://www.windowsazure.com/.
[3] Goolge Cloud storage. https://cloud.google.com/storage/.
[4] D. Niu, C. Feng, and B. Li. A Theory of Cloud Bandwidth Pricing

for Video-on-Demand Providers. In Proc. of INFOCOM, 2012.
[5] Amazon DynamoDB. http://aws.amazon.com/dynamodb/.
[6] H. V. Madhyastha, J. C. McCullough, G. Porter, R. Kapoor, S. Sav-

age, A. C. Snoeren, and A. Vahdat. SCC: Cluster Storage Provision-
ing Informed by Application Characteristics and SLAs. In Proc. of
FAST, 2012.

[7] K. P. N. Puttaswamy, T. Nandagopal, and M. S. Kodialam. Frugal
Storage for Cloud File Systems. In Proc. of EuroSys, 2012.

[8] A. Wang, S. Venkataraman, S. Alspaugh, R. H. Katz, and I. Stoica.
Cake: Enabling High-Level SLOs on Shared Storage Systems. In
Proc. of SoCC, 2012.

[9] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Dont Settle for Eventual: Scalable Causal Consistency for Wide-
Area Storage with COPS. In Proc. of SOSP, 2011.

[10] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.
Madhyastha. SPANStore: Cost-Effective Geo-Replicated Storage
Spanning Multiple Cloud Services. In SOSP, 2013.

[11] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani. TAO: Facebooks
Distributed Data Store for the Social Graph. In Proc. of ATC, 2013.

[12] D. E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, 1989.

[13] S. Alan, K. Srikanth, G. Albert G, K. Changhoon, and S. Bikas.
Sharing the data center network. In Proc. of NSDI, 2011.

[14] N. Bonvin, T. G. Papaioannou, and K. Aberer. A Self-Organized,
Fault-Tolerant and Scalable Replication Scheme for Cloud Storage.
In Proc. of SoCC, 2010.

[15] G. Liu, H. Shen, and H. Chandler. Selective Data Replication for
Online Social Networks with Distributed Datacenters. In Proc. of
ICNP, 2013.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[17] D. Borthakur, J. S. Sarma, J. Gray, K. Muthukkaruppan, N. Spiegel-
berg, H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash,
R. Schmidt, and A. Aiyer. Apache Hadoop Goes Realtime at
Facebook. In Proc. of SIGMOD, 2011.

[18] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung,
and V. Venkataramani. Scaling Memcache at Facebook. In Proc. of
Usenix NSDI, 2013.

[19] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical
power-proportionality for data center storage. In Proc. of EuroSys,
2011.

[20] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli, N. Laoutaris,
and K. Papagiannaki. TailGate: Handling Long-Tail Content with
a Little Help from Friends. 2012.

[21] Palmetto Cluster. http://citi.clemson.edu/palmetto/.
[22] P. Yang. Moving an Elephant: Large Scale Hadoop Data

Migration at Facebook. https://www.facebook.com/notes/paul-
yang/moving-an-elephant-large-scale-hadoop-data-migration-at-
facebook/10150246275318920.

[23] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the
Evolution of User Interaction in Facebook. In Proc. of WOSN, 2009.

[24] A. Hussam, P. Lonnie, and W. Hakim. RACS: A Case for Cloud
Storage Diversity. In Proc. of SoCC, 2010.

[25] A. N. Bessani, M. Correia, B. Quaresma, F. Andr, and P. Sousa.
DepSky: Dependable and Secure Storage in a Cloud-of-Clouds.
TOS, 2013.

[26] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and
A. C. Veitch. Hippodrome: Running Circles Around Storage
Administration. In Proc. of FAST, 2002.

[27] W. Zhe, Y. Curtis, and M. Harsha V. Costlo: Cost-effective redun-
dancy for lower latency variance on cloud storage services. In
Proc. of NSDI, 2015.

[28] R. P. Spillane, P. Shetty, E. Zadok, S. Dixit, and S. Archak. An
Efficient Multi-Tier Tablet Server Storage Architecture. In Proc. of
SoCC, 2011.

[29] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better
Never than Late: Meeting Deadlines in Datacenter Networks. In
Proc. of SIGCOMM, 2011.

[30] C. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly
with Preemptive Scheduling. In Proc. of SIGCOMM, 2012.

[31] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail:
Reducing the Flow Completion Time Tail in Datacenter Networks.
In Proc. of SIGCOMM, 2012.

[32] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast Congestion
Control for TCP in Data Center Networks. In Proc. of CoNEXT,
2010.

Haiying Shen received the BS degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Associate Professor in De-
partment of Computer Science at University
of Virginia. Her research interests include dis-
tributed computer systems and computer net-
works with an emphasis on P2P and content
delivery networks, mobile computing, wireless

sensor networks, and grid and cloud computing. She was the Program
Co-Chair for a number of international conferences and member of the
Program Committees of many leading conferences. She is a Microsoft
Faculty Fellow of 2010, a senior member of the IEEE and a member of
the ACM.

Guoxin Liu received the BS degree in BeiHang
University 2006, and the MS degree in Insti-
tute of Software, Chinese Academy of Sciences
2009. He is currently a Ph.D. student in the De-
partment of Electrical and Computer Engineer-
ing of Clemson University. His research interests
include distributed networks, with an emphasis
on Peer-to-Peer, data center and online social
networks. He is a student member of IEEE.

Haoyu Wang received the BS degree in Univer-
sity of Science & Technology of China, and the
MS degree in Columbia University in the city of
New York. He is currently a Ph.D student in the
Department of Computer Science in University
of Virginia. His research interests include data
center, cloud and distributed networks.

