
3836 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Distributed Autonomous Virtual Resource
Management in Datacenters Using

Finite-Markov Decision Process
Haiying Shen , Senior Member, IEEE, Member, ACM, and Liuhua Chen

Abstract— To provide robust infrastructure as a service, clouds
currently perform load balancing by migrating virtual machines
(VMs) from heavily loaded physical machines (PMs) to lightly
loaded PMs. Previous reactive load balancing algorithms migrate
VMs upon the occurrence of load imbalance, while previous
proactive load balancing algorithms predict PM overload to
conduct VM migration. However, both methods cannot maintain
long-term load balance and produce high overhead and delay
due to migration VM selection and destination PM selection.
To overcome these problems, in this paper, we propose a
proactive Markov Decision Process (MDP)-based load balancing
algorithm. We handle the challenges of allying MDP in virtual
resource management in cloud datacenters, which allows a PM
to proactively find an optimal action to transit to a lightly
loaded state that will maintain for a longer period of time.
We also apply the MDP to determine destination PMs to achieve
long-term PM load balance state. Our algorithm reduces the
numbers of service level agreement (SLA) violations by long-term
load balance maintenance, and also reduces the load balancing
overhead (e.g., CPU time and energy) and delay by quickly
identifying VMs and destination PMs to migrate. We further
propose enhancement methods for higher performance. First,
we propose a cloud profit oriented reward system in the MDP
model so that when the MDP tries to maximize the rewards
for load balance, it concurrently improves the actual profit of
the datacenter. Second, we propose a new MDP model, which
considers the actions for both migrating a VM out of a PM and
migrating a VM into a PM, in order to reduce the overhead and
improve the effectiveness of load balancing. Our trace-driven
experiments show that our algorithm outperforms both previous
reactive and proactive load balancing algorithms in terms of SLA
violation, load balancing efficiency, and long-term load balance
maintenance. Our experimental results also show the effectiveness
of our proposed enhancement methods.

Index Terms— Markov decision process, cloud computing,
resource management.

I. INTRODUCTION

CLOUD computing is a new emerging IT service, which
provides various services under one roof. Services such

Manuscript received February 11, 2016; revised January 29, 2017 and
May 6, 2017; accepted September 20, 2017; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor S. Sengupta. Date of publication
October 26, 2017; date of current version December 15, 2017. This work was
supported in part by the U.S. NSF under Grant OAC-1724845, Grant ACI-
1719397, and Grant CNS-1733596, and in part by the Microsoft Research
Faculty Fellowship under Grant 8300751. An early version of this work was
presented in the Proceedings of SOCC, 2014 [32]. (Corresponding author:
Haiying Shen.)

H. Shen is with the Computer Science Department, University of Virginia,
Charlottesville, VA 22904-4740 USA (e-mail: hs6ms@virginia.edu).

L. Chen is with the Department of Electrical and Computer Engineering,
Clemson University, Clemson, SC 29634 USA.

Digital Object Identifier 10.1109/TNET.2017.2759276

as storage, computing and web hosting, which used to be
provided by different providers, are now provided by a single
provider [1]–[3]. Many businesses move their services to
clouds with their flexible “pay as you go” service model, in
which a cloud customer only pays for the resources it has used.
Such elasticity of the service model brings about cost saving
for most businesses [4] by eliminating the need of developing,
maintaining and scaling a large private infrastructure.

Clouds utilize hardware virtualization, which enables a
physical machine (PM) to run multiple virtual machines (VMs)
with different resource allocations. A cloud hosts multiple
applications on the VMs. Since the load of each VM on a
PM varies over time, a PM may become overloaded, i.e.,
the resource demand from its VMs is beyond its possessed
resource. Such load imbalance in a PM adversely affects the
performance of all the VMs (hence the applications) running
on the PM. Insufficient resources provision to customer appli-
cations also violates the Service Level Agreement (SLA). An
SLA is an agreement between a cloud customer and the cloud
service provider that guarantees the application performance
of the customer. In order to uphold the SLA, a cloud service
provider must prevent load imbalance using load balancing
algorithms, in which overloaded PMs migrate their VMs to
underloaded PMs to release their excess loads.

Many load balancing algorithms [5]–[10] have been pro-
posed that reactively perform VM migration upon the occur-
rence of load imbalance or when a PM’s resource utilization
reaches a threshold. However, these algorithms only consider
the current state of the system. Fixing a load imbalance
problem upon its occurrence not only generates a delay to
achieve load balance but also cannot guarantee the subsequent
long-term load balance state, which may lead to resource
deficiency to cloud customer hence SLA violations. Also, the
process of selecting migration VMs and destination PMs is
complex and generates high delay and overhead.

Recently, some methods [11]–[16] have been proposed to
predict VM resource demand in a short time for sufficient
resources provision or load balancing. In the proactive load
balancing, a PM can predict whether it will be overloaded
by predicting its VMs’ resource demands, and moves out
VMs when necessary. However, this method has the following
problems. First, a PM does not know which VMs to migrate
out. Additional operations of identifying VMs to migrate bring
about additional delay and overhead. Second, since it only
achieves load balance at the predicted time spot, without con-
sidering long-term load balance, it generates high migration
overhead. Third, some of the methods build a Markov chain

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7681-6255

SHEN AND CHEN: DISTRIBUTED AUTONOMOUS VIRTUAL RESOURCE MANAGEMENT IN DATACENTERS 3837

model and calculate the transition probability matrix for each
individual VM in the system, which generates prohibitive
overhead especially in a system with a large number of VMs.

What’s more, both reactive and proactive methods select
the destination PMs simply based on their current available
resources without considering their subsequent load status.

Effectively achieving the trade-off between the penalties
associated with SLA violations and cloud resource utiliza-
tion (hence revenue maximization) requires an algorithm that
i) helps proactively handle the potential load imbalance prob-
lem by migrating VMs out of PMs that are about to be
overloaded in advance and also maintains its load balance state
for a long time, ii) generates low overhead and delay for load
balancing, and iii) maintains a long-term load balance state
for destination PMs after the VM migrations. However, as far
as we know, there are no load balancing algorithms that can
meet these requirements.

To meet this need, in this paper, we propose a proactive
Markov Decision Process (MDP)-based [17] load balancing
algorithm. However, there are two challenges in using the
MDP for the load balancing purpose.
• First, the MDP components must be well designed for low
overhead. An MDP consists of states (s), actions (a), transition
probabilities (P) and rewards (R). After state s takes action
a, it has probability Pa(s, s′) to transit to s′ and then receives
reward Ra(s, s′). If an MDP considers an action as moving
out a specific VM, it needs to record the load state transitions
of a PM for moving out each VM in the system, which
generates a prohibitive cost and also is not accurate due to
time-varying VM load. To handle this challenge, our designed
MDP intelligently uses a PM load state as a state and records
the transitions between PM load states by moving out a VM
in a specific load state.
• Second, the transition probabilities in the MDP must be sta-
ble. Otherwise, the MDP cannot accurately provide guidance
for VM migration or the MDP must be updated very frequently
to keep the transition probabilities accurate. To handle this
issue, we have studied VM migrations based on real traces,
which confirms that the transition probabilities are stable in
our MDP.

We also design the rewarding policies, which encourages a
PM to transit to or maintain in the lightly loaded state and dis-
courages a PM to stay at the heavily loaded state. Thus, when
each PM attempts to maximize its rewards through performing
VM migration actions, it can find an optimal action to transit to
a lightly loaded state that will maintain for a longer period of
time. A similar MDP is also built for determining destination
PMs with the goal to not only maintain their load balance
states for a long time but also fully utilize their resources.

Compared to previous reactive and proactive load balanc-
ing algorithms, our algorithm has several advantages. First,
it reduces the numbers of SLA violations by proactive load
balancing and long-term load balance maintenance. It also
reduces the load balancing overhead and delay by quickly
identifying VMs to migrate out based on MDP, which avoids
the need of additional operations of the VM identification. In
addition, it only needs to build one MDP that can be used
by all PMs in the system. Unlike the previous proactive load
balancing algorithms that focus on predicting VM or PM load,

our work is the first that focuses on providing guidance on
migration VM selection and destination PMs selection for
long-term load balance state maintenance.

In order to improve the actual profit of the datacenter,
we propose a cloud profit oriented reward system in the
MDP model. It specifies the reward based on the datacenter’s
profit (calculated by revenue, energy consumption cost and
live migration overhead) in the practical scenario. Thus, the
datacenter’s profit can be concurrently maximized when the
MDP tries to maximize the rewards for load balance. Using
such an improved reward system in the MDP model can
improve the actual profit of the datacenter.

We further propose a new MDP model that considers the
actions of both migrating a VM out of a PM and migrating
a VM into a PM. Unlike the preliminary MDP-based load
balancing algorithm that builds two MDP models (one MDP
model is for selecting migration VMs from PMs to migrate out
and the other MDP model is for selecting destination PMs for
hosting the migration VMs), the new MDP model avoids the
potential action conflictions and reduce the overhead brought
about by using two separate MDP models.

The rest of the paper is organized as follows. Section II
presents the related work. Section III presents the overview
of our MDP-based load balancing algorithm. Section IV
presents the detailed design of the MDP-based load balancing
algorithm, together with our proposed enhancement methods.
Section V presents the performance evaluation of our algo-
rithm compared with other load balancing algorithms in trace
driven simulations. Finally, Section VI concludes this paper
with remarks on our future work.

II. RELATED WORK

In recent years, many load balancing methods have been
proposed to avoid overloaded PMs in the clouds [5]–[10].
These algorithms perform VM migration when a PM’s
resource utilization reaches a threshold. After migration VMs
are selected, these methods select their destination PMs simply
based on their available resources at the decision time without
considering their subsequent load status.

Many methods [11]–[16] predict workloads of PMs or VMs
in order to ensure the sufficient provision for the resource
demands or for load balancing. They also select the destination
PMs simply based on their current available resources.

However, the migration VM selection and destination PM
selection in the previous reactive and proactive load balancing
algorithms cannot maintain a long-term system load bal-
ance state, which otherwise reduces not only SLA violations
(SLAV) but also the overhead and delay caused by load
balancing execution. To overcome these problems, we propose
a method that uses MDP to let each PM calculate the optimal
action to perform with the goal of achieving long-term load
balance state. Though our algorithm shares similarity with the
previous algorithms in proactive prediction, those algorithms
focus on predicting VM or PM load, while our algorithm
focuses on providing PMs with guidance on migration VM
selection for long-term load balance state maintenance. This
work is non-trivial as it requires well-designed components
of MDP to constrain the overhead of MDP creation and

3838 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

maintenance and ensure the MDP’s stability. Our previous
work in [18] considers VM workload patterns to consolidate
VMs to fully utilize PM resources in the initial VM allocation
phase. Our MDP model indicates a PM’s state transitions
when it migrates out a VM in different states. Since the
state is the resource utilization of PMs, and the action is
migrating out a VM in a state (a certain resource utilization
level), so the MDP model is not affected by time-varying
workload of VMs or the workload patterns. Many research
works have been devoted to power management for VMs.
For example, Laszewski et al. [19] used the technique of
Dynamic Voltage Frequency Scaling (DVFS) for schedul-
ing virtual machines in a compute cluster to reduce power
consumption. Kansal et al. [20] presented a solution for VM
power metering, named Joulemeter. They built power models
to infer power consumption from resource usage at runtime
and identify the challenges that arise when applying such
models for VM power metering. Since DVFS can potentially
decrease the system reliability, Xu et al. [21] proposed a data
center management framework, DUAL, which consists of new
VM power and reliability analysis tools in order to balance
the dual needs of a data center: reducing energy consumption
and providing high reliability. Unlike these works that mainly
focus on energy consumption reduction, this work focuses on
achieving the load balance state by VM migration with low
overhead (e.g., energy consumption).

III. MDP-BASED LOAD BALANCING

A. Goals

The goal of our load balancing algorithm is to reduce SLAV
and meanwhile reduce the load balancing overhead and delay.
Usually SLAV comes from two parts: SLA Violation due to
Overutilization (SLAVO) and SLA Violation due to Migrations
(SLAVM) [22]. Thus, we need to guarantee sufficient resource
provisioning to cloud VMs and reduce the number of VM
migrations. To achieve the goals, we aim to prevent heavily
loaded state for each PM and maintain the load balance state
for a long time. In this way, we not only reduce SLAV but
also reduce the times to execute the load balancing algorithm,
hence reduce the number of VM migrations and overhead
(energy, CPU time, etc.) caused by load balancing execution.
Also, we aim to design a load balancing algorithm that
generates low overhead and delay itself. Low load balancing
delay can reduce the delay for the system to recover to the load
balance state, hence also reduce SLAV. Low load balancing
overhead saves the resources for applications, which increases
the revenue of the cloud provider.

B. Low Overhead MDP Creation and Maintenance

To achieve the above-stated goals, we design an MDP model
that provides guidance on migration VM and destination
PM selections for long-term load balance state maintenance.
An MDP [17] requires a 4-tuple input (States (S), Actions (A),
Transition Probabilities (P), Rewards (R)). An MDP provides a
general framework for finding an optimal action in a stochastic
environment, which maximizes the rewards from the actions
so that the outcomes follow the decision maker’s desire. The
overhead of both MDP creation and maintenance (determined

by the update frequency) must be low in order to meet the
low load balancing overhead requirement.

Unlike the previous VM load prediction models [11]–[13],
[15], [16], we directly use the PM load state as the MDP state,
which enables a PM to directly check whether it is heavily
loaded or lightly loaded. The action set A should be a set of
VM migrations that a PM in a certain state can perform. For
an MDP, it is required that the set of actions A do not change;
otherwise, MDP has to be updated upon a change. Declaring
migration actions based on each individual VMs held by a PM
will lead to the changes of action set A and their associated
transition probabilities in the PM. This is because the VMs
held by a PM may change and a PM could hold any VM in the
system due to VM migration, hence the available actions of a
PM may change. For example, if PM1 migrates VM1 to PM2,
the action of migrating out VM1 needs to be deleted from
PM1’s action set, and it needs to be added to PM2’s action
set. When the resource utilization of VM2 in PM1 changes,
the transition probabilities of the action of migrating out VM2

from PM1 to each transition state needs to be updated. To
solve this problem, we can define the action set A as moving
out each individual VM in the system. This solution however
generates a prohibitive cost considering the huge number of
VMs in the system. Also, the resource utilization of each
VM dynamically changes, which also necessitates the frequent
updates of the associated transition probabilities.

To achieve a stable and small action set and stable transition
probabilities, we novelly define an action set as the migration
of a VM with a specific load state (migration of VM-state
in short). The load state is defined as a combination of the
utilizations of different resources such as “CPU-high, Mem-
high”. We will explain the details of VM-state later on.
Therefore, all PMs in the cloud have the same action set A,
which includes the migrations of each VM-state. An MDP
state has a transition probability to transit to another state after
performing an action. As the total number of VM-states in
the action set does not change regardless of a PM’s actions,
the action set A does not change. Also, each VM-state itself
does not change, so the associated transition probability for
migrating this VM-state does not change. Thus, MDP does
not need to update with the migration of VM-states.

Our MDP model is continuously trained using the past
actions. It indicates a PM’s state transitions when it migrates
out a VM in different states. Each PM refers to the established
MDP to decide its optimal action (that leads to the maximum
expected reward) based on its current state. Even though the
workload trends of VMs are not reflected in the MDP model,
the long-term expected reward has the same idea to keep the
stability of the system (i.e., achieve and maintain long-term
load balance).

It is required that the transition probabilities in an MDP
must be stable. If the MDP creation approach cannot main-
tain stable transition probabilities, the MDP then cannot
function well or it needs a very frequent update in order
to provide correct guidance. To confirm whether our MDP
is stable, we have conducted an experimental study on
real traces. Before we present the results in Section III-D,
we first introduce the definitions of the load states in
Section III-C.

SHEN AND CHEN: DISTRIBUTED AUTONOMOUS VIRTUAL RESOURCE MANAGEMENT IN DATACENTERS 3839

C. Load State of PMs and VMs

In our load balancing algorithm, each PM selects VMs
in certain load states to migrate out in advance when they
are about to be overloaded, so that it can maintain its load
balance state for a long time. This algorithm proactively avoids
overloading PMs in the cloud and continually maintains the
system in a load balance state in a long term while limits
the number of VM migrations. Therefore, a basic function of
our algorithm is to determine the load state of PMs and VMs
to represent PM-state and VM-state used in the MDP model.
PM-state represents the load state of a PM in the MDP model,
while VM-state is used to identify VMs with certain resource
utilization degrees to migrate in the actions of PMs.

In a cloud environment, there are different types of resources
(CPU, memory, I/O and network). Therefore, the workloads
of PMs and VMs are multi-attribute in terms of different types
of resources. In order to generalize our definitions, we use k
to denote the number of resource types.

We assume there are N VMs running on M PMs in a
cloud. We regard time period as a series of time intervals
(τ) and use ti to denote the specific time at the end of the
i-th interval. We use lkn(ti) to denote the demanded resource
amount (i.e., load) of the type-k resource in the n-th VM at
time ti. For time-sharing resources (e.g., CPU, bandwidth),
lkn(ti) equals the average value from time ti−1 to time ti. For
space-sharing resources (memory, disk space), lkn(ti) equals
the demand value at time ti. We use Lk

m(ti) and Ck
m(ti) to

denote the load and capacity of the type-k resource in the
m-th PM at time ti, respectively. Suppose the m-th PM has
Nm number of VMs, then Lk

m(ti) =
∑Nm

j=1 lkj (ti).
We define the utilization of the type-k resource in the n-th

VM at time ti as

ukn(ti) = lkn(ti)/ck
n(ti), (1)

where lkn(ti) and ck
n(ti) denote the load and assigned resource

of the n-th VM at time ti. We define the utilization of the
type-k resource in the m-th PM at time ti as

Uk
m(ti) = Lk

m(ti)/Ck
m(ti) =

Nm∑

j=1

lkj (ti)/Ck
m(ti). (2)

We use T k
o to denote the threshold for the utilization of the

type-k resource in a PM. The objective of our load balancing
algorithms is to let each PM maintain Uk

m(ti) ≤ T k
o for each

type of resources. For simplicity, we omit k in the notation
unless we need to distinguish different types of resources.

In a PM, for a given resource, based on the resource utiliza-
tion (i.e., load) of the PM, we determine the utilization level
of this resource in this PM. We use three levels (high, medium
and low) as an example to explain our algorithm in this paper,
which can be easily extended to more levels. Specifically,
to perform level determination for type-k resource, we use
Equation (3), in which T k

1 and T k
2 are two thresholds used

to distinguish low and medium, and medium and high levels,
respectively.

⎧
⎪⎨

⎪⎩

Low if Uk
m < T k

1

Medium if Uk
m ≥ T k

1 and Uk
m < T k

2

High if Uk
m ≥ T k

2

(3)

Fig. 1. Example of a simple MDP. (a) PM states. (b) MDP model.

To extend these three levels to fine-grained levels, we only
need to add more thresholds. Accordingly, the number of states
in the MDP model will be increased. The state determination
of VMs is performed in the same manner by changing Uk

m

in Equation (3) to uk
n. We consider that a PM is heavily

loaded when the utilization of one of its resources reaches the
high-level threshold, and consider that a PM is lightly loaded
when none of its resource utilizations reaches the high-level
threshold.

Consider a set of K resources R = {r1, r2,....rK} in
the cloud system and resource utilization levels L = {High,
Medium, Low}. The total number of states of VMs or PMs
equals |L||R|; the Cartesian product of the two sets. The set
of states is S = R×L, where×means the combination of
rk in different resource utilization levels. For example, if we
consider two resources, R = {CPU, Mem}, a PM’s state
can be represented by the utilization degree of each resource
such as (CPU-high, Mem-high), (CPU-median, Mem-low),
etc. Then, there are 32 = 9 states for a VM or a PM as
shown in Figure 1(a).

D. Trace Study on the Stability of Our MDP

State set S is a set of PM resource utilization levels based on
Equation (3). As mentioned before, the transition probabilities
of an MDP must be stable. To confirm whether our design
of different MDP components can achieve the MDP stability,
in this section, we conduct an experiment, which shows that
the transition probability matrix remains stable even when
we slightly change threshold T k

i in Equation (3). Therefore,
we can properly set approximate T k

i to determine the resource
utilization level in MDP construction.

In Equation (3), T k
2 is more important than T k

1 since T k
2

is a threshold to determine the high utilization level, which
determines the heavily loaded state of a PM. Thus, we con-
ducted experiments with varying T k

2 values and kept T k
1 = 0.3.

We used CloudSim [23] for the experiments and compared the
transition probability matrix obtained under varying threshold
T k

2 values. The PMs are modeled from commercial product
HP ProLiant ML110 G4 servers (1860 MIPS CPU, 4GB
memory) and the VMs are modeled from EC2 micro instance
(0.5 EC2 compute unit, 0.633 GB memory, which is equivalent
to 500 MIPS CPU and 613 MB memory). We used two traces
in the experiments: PlanetLab trace [23] and Google Cluster
trace [24]. The PlanetLab trace contains the CPU utilization of
VMs in PlanetLab every 5 minutes for 24 hours in 10 random
days in March and April 2011. The Google Cluster trace
records resource usage on a cluster of about 11000 machines
from May 2011 for 29 days. As there are a very large number

3840 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 2. Probability of state transitions of a PM using PlanetLab trace. (a) PM-state: high→high. (b) PM-state: high→med. (c) PM-state: high→low.
(d) PM-state: med.→high. (e) PM-state: med.→med. (f) PM-state: med.→low. (g) PM-state: low→high. (h) PM-state: low→med. (i) PM-state: low→low.

Fig. 3. Probability of state transitions of a PM using Google Cluster trace. (a) PM-state: high→high. (b) PM-state: high→med. (c) PM-state: high→low.
(d) PM-state: med.→high. (e) PM-state: med.→med. (f) PM-state: low→low. (g) PM-state: low→high. (h) PM-state: low→med. (i) PM-state: low→low.

of states when considering multiple resources, we focus on the
CPU resource in the experiments. In each test, we selected
x VMs from the trace and assigned them to a PM, where
x was randomly selected from [1, 20]. We then randomly
selected a VM in the PM to migrate out. We measured
the PM-state before and after VM migration based on the
thresholds, and the load state of the migrating VM. In each
experiment, we repeated this process for 100,000 times and
calculated the transition probabilities for different PM-state
changes when migrating different VM-states (e.g., the number
of “high→medium” PM-state transitions when migrating a
medium VM-state).

We repeated the experiment 100 times and calculated
the transition probabilities. Figure 2 and Figure 3 show the
transition probabilities of PM state changes when using the
PlanetLab trace and the Google Cluster trace, respectively.
The error bars show the 99th and 1st percentiles among
the 100 experiments. Each figure shows the results with
different T2 threshold values from 0.7, 0.8 to 0.9. In these
figures, VM-high, VM-medium and VM-low represent that
the migration VM-state is high, medium and low, respectively.
We use PM-high, PM-medium and PM-low to represent a
PM in the high, medium and low state, respectively. For
example, Figure 2(c) and Figure 3(c) indicate that a PM-high
has a high probability (0.95-1 for PlanetLab trace and 1 for

Google Cluster trace, respectively) to transit to state low
when it migrates VM-high. In Figure 2(i) and Figure 3(i),
a PM-low always (near 1 probability) transits to state low
when it migrates VM-medium. It is interesting to see that in
Figure 2(g) and Figure 3(g), the probability that a PM-low
transits to state high when it migrates VM-low is not 0, which
means that a PM-low can transit to state high even when it
migrates out a VM, due to the fluctuation of workload. We can
observe that in each of these figures, the probabilities are
almost the same under varying threshold T2 with different
traces. The error bars indicate that the probabilities derived in
different experiments have a very small variation. Compared
to the transition probabilities derived from the PlanetLab trace
in Figure 2, the absolute values of the transition probabilities
derived from the Google Cluster trace in Figure 3 are slightly
different, due to the difference of the workload characteristics
of these two trace. We can still observe that in each of
these three figures, the probabilities are similar under varying
threshold T2.

The results indicate that slightly varying threshold T2 will
not greatly affect the values of the probability transition
matrix. As a result, we can tune the threshold for determining
PM states as expected. In our MDP-based load balancing algo-
rithm, we use T1 = 0.3 and T2 = 0.8, which are reasonable
thresholds for the low and high resource utilization levels.

SHEN AND CHEN: DISTRIBUTED AUTONOMOUS VIRTUAL RESOURCE MANAGEMENT IN DATACENTERS 3841

Note that the workload of VMs may change over time.
A distinguishing feature of the MDP model is to achieve
and maintain a long-term load balance. After a PM takes
an action, it can maintain the lightly loaded state for a long
term. The MDP model is built based on the historical data
which embraces the workload changes. Therefore, the final
established MDP model reflects the general case. If workload
changes are normal situation in the system, they are caught
in the MDP training and are reflected in the state transitions.
Otherwise, they are just an occasional case and then upon a
PM’s action after the workload change, it is most likely to
maintain a long time lightly load balanced state.

IV. CONSTRUCTION OF MDP

A. Overview of The MDP Model

The previous two sections indicate the feasibility of our
proposed MDP. Below, we present an overview of our MDP
model in this section, and then present the details of the MDP
components in the following sections. In our MDP-based load
balancing algorithm for a cloud system, the resource utilization
degree of a PM is classified to a number of levels. Unless
otherwise specified, in this paper, we use three levels: {high,
medium and low} and two resources {CPU, Mem} as an
example for the MDP creation. Our method can be easily
extended to more levels and more resources. Specifically,
we define the 4 elements of MDP in our MDP-based load
balancing algorithm as follows:

1) S is a finite set of states {(CPU-high, Mem-high),
(CPU-medium, Mem-low),…}, which are multi-variate
classified representation of current resource utilization
of a PM (PM-state).

2) A is a set of actions. An action means a migration of VM
in a certain state (VM-state) or no migration. VM-state
is represented in the same manner as PM-state.

3) Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) is the
probability that action a∈A in state s∈S at time t
will lead to state s′∈S at time t + 1. The transition
probabilities are determined based on the trace of a given
cloud system.

4) Ra(s, s′) is an immediate reward given after transition
to state s′ from state s with the transition probability
Pa(s, s′) by taking action a.

Figure 1(b) illustrates the transition model of a simple MDP
with two states and two actions. The 3×3 table in Figure 1(a)
represents all possible PM states. The two circles with s1 and
s2 indicate the two states of a PM. The four smaller circles
with a1 and a2 mean an action of migrating out a VM in a
certain VM-state or no migration. The fraction number along
the arrow from state si to state sj going through ai means
the probability that si will transit to sj after taking action ai

(Pa(si, sj)), and the number along the dashed arrow represents
the reward associated with the state transition from si to sj

after taking action ai (Ra(si, sj)). As shown in the figure, for
a PM in state s1 (CPU-high, Mem-high), if it takes action a1,
it has a probability of 0.2 to stay in s1 and receive reward
−1, and has a probability of 0.8 to transit to s2 (CPU-high,
Mem-med) and receive reward 6.

The transition probability matrix for a given system is
obtained by studying the trace information of the system.
We will show in Section IV-B that the final constructed
transition probability matrix remains stable during a certain
period of time, hence does not require frequent recalculation
of the probabilities in the MDP. In the set of states (S), some
states mean that the PM is heavily loaded while others mean
the PM is lightly loaded. In the MDP, a PM identifies the
action with the highest expected reward and takes this action
to maximize its earned reward, which enables it to transmit to
or remain at the lightly loaded state for a long time.

For this purpose, we design the reward system in the MDP
that assigns a positive reward for transiting to or maintaining
at a lightly loaded state and a negative reward for maintaining
a heavily loaded state. In Section IV-B, we present our reward
system, which encourages a PM to find the optimal action
to perform to attain and maintain a lightly loaded state for a
longer time. As a result, each PM is in a lightly loaded state
with high probability in a long term and the total number of
VM migrations in the system is reduced.

B. Construction and Usage of MDP in a Cloud

In this section, we present the construction of an MDP
in a cloud. As indicated earlier, the MDP needs 4-tuple
variables: States S, Actions A, Transition Probabilities P and
Rewards R. We explain each variable in the following.

States (S) and Actions (A): We explained “States”
and “Actions” in Section III-C. As mentioned previously,
S = R×L. The action set A consists of (|L||R|)+1 elements
and “1” represents “no action”. In our MDP, no matter if
incoming VM changes the state of a PM or the loads of VMs
currently running on a PM change, the state set and action set
will not change. The MDP is able to find an optimal action
that achieves load balance state and sustains this state for a
longer time period.

Using the state determination method introduced in
Section III-C, a PM determines its own PM-state. It then
identifies its position in the MDP and finds the actions it
needs to take to transit to or remain at the lightly loaded state.
To migrate out VMs to become or remain lightly loaded, a PM
needs to determine the VM-state of each of its VM. Then,
it chooses VMs in a certain VM-state to take the actions.

Transition Probabilities (P): For a PM in state si∈S, after
it performs action a∈A, it will transit to another state sj∈S or
remain in the same state. We need to determine the probability
of transiting to each of other states after taking each action.
The transition probability should be stable because a change in
the transition probability would result in new transition policy
if the change in value is too large.

The cloud uses the information from the trace of the
state changes and VM migrations to determine the transition
probability matrix. In the previous load balancing algorithms,
a central server monitors the states of PMs and determines the
VM migrations between PMs. We let this central server keep
track of the VM-state of each migrated VM and the PM state
changes upon the VM migration. Based on this information,
the central server can calculate the transition probability from
one state to another state upon an action. For example, in

3842 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

TABLE I

PROBABILITIES WITH THRESHOLD T2 = 0.8

the 1-resource environment, for action a∈A, if the transition
high→high occurs 5 times, high→medium occurs 4 times, and
high→low occurs 1 time, then the transition probability in
performing action a when in state high is 0.5, 0.4, 0.1 to the
high, medium, low state, respectively.

We conduct a similar experiment as in Section III-D. Table I
shows the probabilities of PM state changes when T2 = 0.8.
bH , bM and bL represent the high, medium and low state
before migration, respectively; aH , aM and aL represent the
high, medium and low state after migration, respectively; and
vH , vM and vL represent actions of migrating VM in state
high, medium and low respectively. For a given “state” before
migration and specific actions, the sum of the probabilities
that transit to any states (aH , aM and aL) is 1. Notice that a
PM in state low has a nearly zero probability to change to any
states when taking action vH (migrating VM in state high).
Table I will be used in our experiments in Section V.

Rewards (R): Rewards are incentives that are given to a
PM after performing action a∈A. By encouraging each PM
to maximize its received rewards, the reward system aims
to constantly avoid heavily loaded state for each PM while
minimizing the number of VM migrations; that is, maintain
a system load balance state for a long time and minimize
load balancing overhead. To achieve this goal, we need to
carefully assign rewards for actions. For example, rewarding
a PM for each migration might result in continuous migrations
of a PM, which generates a high overhead. To achieve the load
balance state, each overloaded PM should be encouraged to
change to lightly loaded PM. Thus, the system rewards heavily
loaded PM positively for performing actions that lead it to a
lightly loaded state. Also, PMs should be rewarded to maintain
their lightly loaded state. In order to prevent under-utilization
of resources, the reward for maintaining the medium state is
greater than maintaining the low state. We present the details
of the reward policies for transiting from state s to state s′

below. A PM receives a reward when the state of one of its
resources is changed. Note that the rewards are for each type
of resources. We consider the following two cases.

1) Reward for a resource utilization transiting from high
state to another state (λ) by moving out a VM:

a) Positive reward for a transition to a low (c) or
medium (b) state.

b) Negative reward for a transition to a high state (d).
c) The reward for a transition to a medium state is

higher than to a low state (b > c).
2) Reward for performing no action (γ):

a) Reward for performing no action in a low (c′) or
medium state (b′).

b) Reward for no action in a low state is higher than
in a medium state (c′ > b′).

c) Negative reward for performing no action in a high
state (d′).

Let RH be the subset of resources in R of a PM whose
resource utilizations are high after action a. Similarly, we let
RL and RM be the resource subsets whose resource utiliza-
tions after action a are low and medium, respectively. Thus,
we have,

R = RL ∪RM ∪RH . (4)

The first reward is λ, which is the reward for transiting to
another state. This reward encourages each PM to transit each
of the resources into a lower loaded state, thus helping to
achieve load balance state. For a PM with R resources, after
performing an action a, the reward λ equals:

λ =
∑

r∈RH

d +
∑

r∈RM

b +
∑

r∈RL

c, ∀r ∈ R, (5)

where d, b and c are non-negative reward and d < c < b.
Let’s consider reward for no action γ. This reward encour-

ages PM to maintain a low or medium state for a longer period
of time. When a PM performs no action, it is rewarded for
performing no action. The reward is dependent on the state
of each of the PM’s resources. The reward γ is calculated as
follows and c′ > b′ > d′.

γ =
∑

r∈RH

d′ +
∑

r∈RM

b′ +
∑

r∈RL

c′, ∀r ∈ R

As a result, the total reward earned by a PM is the sum of
the two rewards λ and γ.

Ra(s, s′) = λ + γ

Note that if the action taken is "no action", γ is used
and λ equals to 0, and if the action taken is moving out a
VM, γ equals to 0 and λ is used. Each PM needs to find
the optimal actions, denoted by π(s) (a∈A) to maximize its
earned rewards, i.e., to reach or remain low or medium state
for a long time period. In the next section, we explain how to
obtain action set π(s).

Optimal Action Determination Based on MDP:: The goal
of the optimal action determination in an MDP is to find an
action for each specific state that maximizes the cumulative
function of expected rewards:

∞∑

t=0

Rat(st, st+1),

where t is a sequence number, and at is the action taken
at t. The algorithm to calculate this optimal policy requires
the storage for two arrays indexed by state: value V (s),
which contains the reward associated with a state, and policy
Π = {π(s1), π(s2), . . . , π(si, . . .)}, which contains the action
for each state that maximizes the cumulative expected rewards
from the state. The algorithm outputs the optimal policy Π that
contains the most suitable action for each state to take that will
result in the maximum value V (s) for the state The algorithm
outputs the optimal policy Π that contains the most suitable
action for each state to take that would result in the maximum
value V (s) for the state, and V (s) contains the sum of the
rewards to be earned (on average) by following the action
from state s. The optimal policy for an MDP makes a PM
attain a lightly loaded state and sustain for a longer period
of time. The algorithm has the following two steps, which

SHEN AND CHEN: DISTRIBUTED AUTONOMOUS VIRTUAL RESOURCE MANAGEMENT IN DATACENTERS 3843

Algorithm 1 The value-iteration algorithm.
Inputs: T , a transition probability matrix

R, a reward matrix.
Output: Policy Π
1: V (si)← 0, Vnew(si)← R(si), i = 1, 2, ..., |S|
2: while max|V (si)− Vnew(si)| ≥ e, i = 1, 2, ..., |S| do
3: V ← Vnew

4: for all state i in S do
5: Vnew(si)← R(si) + maxa

�
j P (si, a, sj)V (sj)

6: π(si)← arg maxa{�j(Pa(si, sj)(R(si, sj) + V (sj))}
7: end for
8: end while
9: return Π

are repeated in some order for all the states until no further
changes take place:

π(si) = arg max
a

{
∑

j

(Pa(si, sj)(Ra(si, sj) + V (sj))} (6)

V (si) =
∑

j

Pπ(si)(si, sj)(Rπ(si)(si, sj) + V (sj)) (7)

Equation (6) obtains the optimal policy. In Equation (6),
V (sj) is obtained by using Equation (7) for each state. Specif-
ically, in order to determine the optimal policy, we apply the
value-iteration algorithm [25], which is a dynamic algorithm.
The aim of this algorithm is to find the max value V (si) of
each state and corresponding action π(si), until it observes
convergence in values for all states in successive iterations.
Thus, using this algorithm, we can obtain the action for each
state that can quickly lead to the maximum reward.

Algorithm 1 shows the pseudo code for the value-iteration
algorithm. In the algorithm, R(si) is calculated by

R(si) =
∑

j

Pπ(si)(si, sj)Rπ(si)(si, sj), (8)

where π(si) is the optimal policy to maximize Vnew(si).
The algorithm first initializes V (si) and Vnew(si) (Line 1).
It then repeatedly updates V (si) based on Equation (7) and
Equation (6) and the corresponding optimal policy π(si)
(Lines 2-7). When it observes convergence in values for all
states, that is max|V (si)−Vnew(si)| < e (Line 2), it considers
that V (si) is close to its maximum value and the correspond-
ing π(si) is returned (Lines 9).

Analysis: In the following, we introduce a metric that
evaluates the performance of an MDP in terms of the output
optimal policy. The metric is called n-step transition probabil-
ity, which is the probability that one state transits to another
state after taking n actions. Recall that an MDP’s policy is
Π = {π(s1), π(s2), . . . , π(si), ..., π(|S|)}, which contains the
action for each state that maximizes the cumulative expected
rewards from the state. That is, π(si) is the action that a PM in
state si should choose so that the cumulative expected rewards
can be maximized. The n-step transition probability can be
used to evaluate the policies of an MDP with different reward
systems in order to find the best policy (or the best reward
system). For example, suppose Π1 and Π2 are two policies
corresponding to two reward systems. The n-step transition
probabilities from state high to state medium of Π1 and Π2

are 95% and 90%, respectively. We prefer Π1 as it has higher

probability of transiting from state high to state medium, i.e.,
eliminating overloaded PMs.

For a fixed stationary policy Π, a transition probability
matrix P , and a reword matrix R, action a = π(si) is taken
when a PM is in state si. The process of state transition
{X1, X2, ..., Xk, . . . , Xn} is a Markov chain, in which the
transition from Xk = si to Xk+1 = sj is an one-step transition
with probability Pπ(si)(si, si+1) when action π(si) is taken
based on Π. The n-step transition probabilities of this Markov
chain can be represented by:

P
(n)
π(si)

(si, sj) = P{Xn = sj | X0 = si}. (9)

Note that P
(1)
π(si)

(si, sj) = Pπ(si)(si, sj), where Pπ(si)(si, sj)
is the one step transition probability that can be measured from
the trace as introduced in Section III-D. By the Chapman-
Kolmogorov equations [26], we get:

P
(n)
π(si)

(si, sj) =
∑

sk∈S

P
(n−1)
π(si)

(si, sk) · Pπ(sk)(sk, sj), (10)

where P
(0)
π(si)

(si, sj) = 1 for j = i and P
(0)
π(si)

(si, sj) = 0
for j �= i. By applying Equ. (10) to an arbitrary MDP policy,
we can estimate the PM resource utilization state in long-term
operation, and also can select the best MDP policy among
different policies. Since the transition from state high to state
medium is the most important transition in the MDP-based
load balancing algorithm as it eliminates overloaded PMs, we
only evaluate the probability of transiting from state high to
state medium as an example. The MDP policy that has the
highest probability is the best policy because it can elimiate
overloaded PMs with the highest probability. For example,
given a set of W policies {Π1, Π2, ..., Πk, . . . , ΠW } and
n = 50. We calculate P

(n)
π(si)

(si, sj) based on Formula (10)
for each policy Πk, where si and sj represent PM state high
and state medium, respectively. We then select the policy Πw

that has the maximum P
(n)
π(si)

(si, sj) as the best policy

C. A Cloud Profit Oriented Reward System

Recall that the MDP-based load balancing algorithm uses
a reward system as one of its inputs and calculates the opti-
mal policy for PMs that maximizes the cumulative expected
rewards. Reward Ra(s, s′) is an immediate reward given after
the transition to state s′ from state s by taking action a.
Different reward systems represent different preferences on
PM state transitions from different actions. In this section, we
improve the previous reward system considering its problems
listed below.

1) It only aims to avoid overloaded PMs but is not closely
related to the datacenter’s profit, which is the ultimate
goal of the cloud service provider. If the reward system
is related to the datacenter’s profit, the datacenter’s profit
can be concurrently maximized when the MDP tries to
maximize the rewards.

2) It does not consider the actual VM migration cost or the
power cost of PMs.

3) It only roughly gives guidance on how to set the reward
values in terms of the relationship (e.g., d<c<b) instead
of specifying the actual reward value for each state

3844 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

transition by taking an action, which otherwise can more
accurately reflect the reward.

Therefore, we propose a new reward system, called cloud
profit oriented reward system, which is closely related to the
cloud profit in the practical scenario. Using such an improved
reward system in the MDP model will improve the actual profit
of the datacenter.

Datacenter Profit: The prime motive of any datacenter
operator is to make most of available resources to cash in
as much profit as possible. In this section, we derive the
formula for calculating the profit contributed by individual
PMs. We denote the profit, the revenue, and the cost over
a unit period of time of a PM at time ti as P , I , and C,
respectively. The equation to calculate profit is

Pm(ti) = Im(ti) − Cm(ti) (11)

In the following, we explain how to calculate revenue Im(ti)
and cost Cm(ti), respectively.

Revenue Calculation: For each unit of time, a virtual
machine VMn contributes E units to the total revenue of
datacenter operator, if the resource requirement dictated in the
SLA is satisfied. On the other hand, if resource requirement
is not satisfied for VMn, penalty of Y units is levied on
datacenter operator.

For the revenue calculation, we assume that if a PM is
unable to provision the aggregated demanded resource by its
resident VMs, all VMs suffer from SLA violations. We detect
such scenario by comparing the aggregate VM utilizations for
each resource type with pre-defined utilization threshold for
each resource type. We use Anm(ti) = 1 to indicate that VMn

is placed on PMm at time ti. In the following discussion, we
remove ti from Anm(ti) for simplicity. Then

∑N
n=1 Anm is

the number of VMs in PMm at time ti. As a result, the revenue
generated by a machine PMm at time ti can be calculated by:

Im(ti) = γ(ti)
N∑

n=1

Anm (12)

where γ(ti) is calculated by

γ(ti) =

{
E Uk

m(ti) ≤ T k
o ∀ k (k = 1, 2, ..., K),

−Y Uk
m(ti) > T k

o ∃ k (k = 1, 2, ..., K)
(13)

where T k
o is the threshold for type-k resource. Only when the

utilization of all resource are smaller than the corresponding
threshold, the revenue is positive; as long as there is one type
of resource utilization greater than its threshold, the revenue
is negative.

Cost Calculation: We consider power cost and VM live
migration overhead for the cost calculation of a PM.

Power Cost: Each active PM consumes electricity and
the power consumed is proportional to the CPU utilization
level of the PM [27]. Each active PM, even though it is not
being utilized, draws some minimal power called static power
(denoted by Cidle). The power consumption increases with the
CPU utilization of the PM and reaches the maximum when
the PM has 100% CPU utilization. As proposed by Fan et al.
[27], the power consumption of a PM, say PMm, at time ti
follows a linear model

Cm(ti) = Cidle + α × U cpu
m (ti) (14)

where U cpu
m (ti) represents the CPU utilization of PMm and

α is a calibrated constant, which is determined by the com-
mercial model of the server. Note that the power model we use
is CPU utilization centric. The power usage of other types of
resources such as memory can be assumed to be constant [28]
and considered in Cidle.

Live Migration Overhead: Live migration of a VM
consumes resources both on the source PM from which the
VM is being migrated out and on the destination PM to
which the VM is being migrated to. In our model, the live
migration overhead caused by each VM is captured by extra
CPU utilization, which is proportional to a factor β (0<β≤1)
as in [29]. The extra CPU utilizations introduced to both source
and destination PMs vary linearly with the memory utilization
of the migrating VM during migration. More specifically, if
VMn requiring umem

n (ti) at time ti is being migrated from
PMs to PMd, the migration overhead exerted on PMs and PMd

(denoted by ΔU cpu
s,mig(ti) and ΔU cpu

d,mig(ti)) are calculated by:

Δ U cpu
s,mig(ti) = (1 + β)umem

n (ti) (15)

Δ U cpu
d,mig(ti) = βumem

n (ti) (16)

Based on Equations (14)-(16), the total power consumption
of PMm by migrating out VMp and migrating in VMq can be
derived.

Reward Specification: If a PM, say PMm, migrates out a
VM and migrates in a VM, after obtaining the CPU utilization
of PMm, we can apply Equ. (14) to derive Cm(ti), and apply
Equ. (12) to derive Im(ti). Based on Equ. (11) the profit
brought by this PM can be calculated.

In our cloud profit oriented reward system, this calculated
profit is used to determine the reward, which is given to a
transition from state s to state s′ when taking action a. In the
following, we first discuss the rewards for PM state changes
by taking actions of migrating out a VM or no migration. The
resulting policy will be used to guide migration VM selections
from PMs. The rewards for PM state changes by taking actions
of migrating in a VM (accepting a VM) and no migration can
be derived similarly, and the corresponding resultant policy
will be used to guide destination PM selection for selected
migration VMs.

Suppose PMm is in state s and has CPU utilization U cpu
m (ti)

at time ti. By taking action a (migrating out a VM in a certain
VM-state or no migration), PMm transits to state s′ and has
CPU utilization U cpu

m (ti+1) at time ti+1. We can calculate
the profit from PMm at these two times, i.e., Pm(ti) and
Pm(ti+1), by Equ. (11). The corresponding reward equals the
change of profits:

Ra(s, s′) = Pm(ti+1) − Pm(ti) (17)

D. Destination PM Selection

After a PM identifies the VMs to migrate out, the destination
PMs need to be determined to host these migration VMs.
In previous methods, a central server identifies the destina-
tion PMs where the identified VMs can migrate to [5], [6],
and [30]. For example, Sandpiper [30] first defines volume
for PMs as volume= (1/(1 − Ucpu)) ∗ (1/(1 − Unet))∗
(1/(1 − Umem)), where U is resource utilization, and then

SHEN AND CHEN: DISTRIBUTED AUTONOMOUS VIRTUAL RESOURCE MANAGEMENT IN DATACENTERS 3845

selects the PM with the least volume as the destination. A PM
can be a VM’s destination PM if placing the VM at the PM
does not violate the multidimensional capacities. Then, the
central server identifies and distributes the PM destinations for
each heavily loaded PM in the system. However, though such
a method can ensure that the destination PM is not overloaded
upon accepting the migration VM, it cannot ensure that this
load balance status can sustain for a long time.

In order to maintain a long-term load balance states of
these destination PMs while fully utilizing PM resources,
we again develop a similar MDP-based model to determine the
destination PMs. A central server runs the MDP and selects
the PMs that are most suitable to accept migration VMs based
on VM-states. We use MDP* to denote the method that
uses an MDP model for determining the migration VMs
and uses another MDP model for determining the destination
PMs. Compared to the previous MDP model, MDP* has the
same state set S. Its action set A is accepting a VM in a
certain VM-state or not accepting any VM. Recall that by
defining such an action set, we can ensure that A does not
change, which is required by MDP. The transition probability
Pa(si, sj) is defined as the probability of PM in state si tran-
siting to state sj after performing action a∈A. MDP* model
uses the information from the trace of state changes when PM
accepts VMs to build the transition probability matrix. The
central server keeps track of the resource utilization status
of the PMs when they accept VMs or take no action. The
method introduced in Section IV-B is used for the probability
calculation.

The rewards given to a PM after performing action a∈A
should encourage PMs to accept VMs while avoiding heavy
state in a long term. Accordingly, the reward system is
designed as follows for the state transition of each resource:

1) Positive reward for a transition to a low/medium state.
2) Negative reward for a transition to a high state.
3) The reward for a transition to a medium state is higher

than to a low state.
4) The reward for actions of accepting a VM in different

VM-states follows: high>medium>low. These rewards
should be higher than the reward for “no action”.

Similar as the migration VM selection, the optimal action set
is created that leads to the highest expected reward. Then,
this optimal action set is used to decide whether a PM should
accept a VM or not. For a given migration VM, the central
server can identify the most appropriate destination PMs based
on the MDP that generate the highest expected reward. Better
options from these PMs can be further identified based on
additional consideration factors such as VM communication
cost and migration distance [10].

E. An MDP with Extended Action Set

As indicated previously, two MDP models are needed to
conduct the MDP-based load balancing; one MDP model is
for selecting migration VMs from PMs to migrate out and the
other MDP model is for selecting destination PMs for hosting
the migration VMs. Building two MDP models brings about
a high overhead. More importantly, the policies generated by
these two MDP models may lead to contradiction of actions
for a PM because the former MDP model uses the action set of

migrating VMs out of PMs, while the latter MDP model uses
the action set of migrating VMs into PMs. For example, the
policy of the former model suggests migrating a VM out of a
PM while the policy of the latter model suggests migrating a
VM to the PM. The conflict could be solved by filtering out all
PMs that want to migrate out VMs and only consider migrating
in VMs for all the remaining PMs, if we give higher priority
to migrating out VMs than accepting VMs. However, we still
need to solve the high overhead problem caused by two MDP
models. Therefore, we propose to develop a comprehensive
MDP, we extend the action set to cover all possible migration
actions (including migrating out VMs and migrating in VMs)
of a PM. We introduce each component of this comprehensive
MDP below.

State: Similar to the previous MDP model, the states are
defined as the combination of different load levels of different
types of resources (e.g., CPU-low, Mem-high). We adopt
the same thresholds to distinguish different load levels as in
Section III-C (i.e., T1 = 0.3, T2 = 0.8).

Action: We create a new action set by combining the actions
in the two MDP models, i.e., actions for migrating out VMs in
different VM-states and migrating in VMs in different VM-
states. Unlike the previous MDP models, we now have two
types of actions corresponding to every VM state. That is,
migrating out a VM in this state and migrating in a VM in
this state. Recall that there are |L||R| VM states in total in the
previous MDP model. Then, the extended action set consists
of 2(|L||R|) + 1 elements and the “1” represents “no action”.

Probability: Since the probabilities are specified with
respect to every action (e.g., the probability for a PM state
transition when taking an action), we need to combine the
probabilities of migrating VMs out (MDP) and the probabili-
ties of accepting VMs (MDP*).

Reward: The rewards for migrating VM out or no migration
are the same as in Section IV-C. The rewards for migrating
VM in can be derived similarly as for migrating VM out.

V. PERFORMANCE EVALUATION

In this section, we conducted trace-driven experiments on
CloudSim [23] to evaluate the performance of our proposed
MDP-based load balancing algorithm in a two-resource envi-
ronment (i.e., CPU and Mem). We used the VM utilization
trace from PlanetLab [23] and Google Cluster [24] to generate
VM workload to determine the transition probability matrix
in our MDP model. We implement two versions of our MDP
load balancing algorithm, represented by MDP and MDP*.
In order to solely show the advantage of MDP on VM
selection, MDP uses our MDP model for identifying VMs to
migrate and adopts the PM selection algorithm as Sandpiper
(Section IV-D). MDP* uses our MDP model for both VM
selection and destination PM selection. We compared MDP
and MDP* with Sandpiper [5] and CloudScale [11] in terms
of the number of VM migrations, the number of overloaded
PMs, and time and resource consumptions. We use Sandpiper
to represent reactive load balancing algorithms and use Cloud-
Scale to represent proactive load balancing algorithms.

We simulated the cloud datacenter with 100 PMs hosting
1000 VMs. The PMs are modeled from commercial product
HP ProLiant ML110 G4 servers (1860 MIPS CPU, 4GB

3846 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 4. Performance using the PlanetLab trace. (a) Cumulative # of VM migrations. (b) Total # of VM migrations. (c) Cumulative # of overloaded PMs.
(d) Total # of overloaded PMs.

Fig. 5. Performance using the Google Cluster trace. (a) Cumulative # of VM migrations. (b) Total # of VM migrations. (c) Cumulative # of overloaded
PMs. (d) Total # of overloaded PMs.

memory) and the VMs are modeled from EC2 micro instance
(0.5 EC2 compute unit, 0.633 GB memory, which is equivalent
to 500 MIPS CPU and 613 MB memory). The resource utiliza-
tion trace from PlanetLab VMs and Google Cluster VMs are
used to drive the VM resource utilizations in the simulation.
We repeatedly carried out each experiment for 20 times and
reported the results. At the beginning, the VMs are randomly
allocated to the PMs. We used this VM-PM mapping for
different load blanching algorithms in each experiment to have
fair comparison. When the simulation is started, the simulator
calculates the resource utilization status of all the PMs in the
datacenter every 300 seconds, and records the number of VM
migrations and the number of overloaded PMs (the occurrence
of overloaded PMs) during that period. In each experiment
round, each PM conducts load balancing once and waits
for 300 seconds before the next load balancing execution.
We used T1 = 0.3 and T2 = 0.8 as the resource utilization
thresholds for both CPU and memory usage. Note that all
methods conduct load balancing every 300 seconds. When a
PM conducts load balancing, in Sandpiper and CloudScale,
it performs VM migration if it detects that it is overloaded,
while in MDP and MDP*, it chooses the action to perform that
results in the maximal expected rewards in MDP and MDP*.

A. Performance of the Basic MDP
1) The Cumulative Number of Migrations: Figure 4 and

Figure 5 show the performance of MDP, MDP*, Sandpiper and
CloudScale with the PlanetLab trace and Google Cluster trace,
respectively. Figure 4(a) and Figure 5(a) show the cumulative
number of migrations over the rounds. Both results follow
MDP*<MDP<Sandpiper<CloudScale. MDP and MDP* out-
perform Sandpiper and CloudScale because each PM can find
the best actions to perform to keep a long-term load balance
state while triggering a smaller number of VM migrations.
Compared to MDP, MDP* further reduces the number of VM
migrations due to the reason that it additionally selects the
most suitable destination PMs for VM migrations based on
MDP model, and hence results in a long-term load balance
state, which helps reduce the number of VM migrations.
CloudScale generates a larger number of VM migrations than
Sandpiper in each round because CloudScale migrates VMs

not only for a correctly predicted overloaded PM but also for
an incorrectly predicted overloaded PM, but Sandpiper only
migrates VMs for occurred overloaded PMs. Figure 4(b) and
Figure 5(b) show the median, the 10th and 90th percentiles
of the total number of VM migrations in the experiments.
Due to the random VM to PM mapping at the beginning
of simulations, the number of migrations varies in different
simulations. Statistically, MDP* generates fewer VM migra-
tions than MDP, MDP generates fewer VM migrations than
Sandpiper, and Sandpiper generates fewer VM migrations than
CloudScale due to the same reasons mentioned before. These
results confirm that MDP and MDP* are advantageous in
maintaining a long-term load balance state and minimizing
the number of VM migrations, hence reducing load balancing
overhead. Also, our MDP model is effective in both migration
VM selection and destination PM selection to maintain a long-
term load balance state.

2) The Number of Overloaded PMs: Next, we measure the
number of overloaded PMs, which indicates the effectiveness
of load balancing algorithms. Figure 4(c) and Figure 5(c)
show the cumulative number of overloaded PMs over rounds.
MDP and MDP* generate a smaller number of overloaded
PMs in each round than CloudScale and Sandpiper. This is
because the MDP algorithm incentivizes the PMs to perform
optimal VM migration actions to maintain a system load
balance state for a longer time. MDP* outperforms MDP with
fewer overloaded PMs since it further uses the MDP model
for the destination PM selection to maintain a long-term load
balance state. CloudScale produces fewer overloaded PMs than
Sandpiper because its predicted overloaded PMs migrate VMs
out before they become overloaded, while Sandpiper conducts
VM migrations upon the PM overload occurrence. Figure 4(d)
and Figure 5(d) show the median, the 10th and 90th percentiles
of the total number of overloaded PMs in the experiments.
The results follow MDP*<MDP<CloudScale<Sandpiper due
to the same reasons indicated previously.

B. Performance of the MDP with the Cloud Profit
Oriented Reward System

We then study the performance of the MDP using the cloud
profit oriented reward system introduced in Section IV-C.

SHEN AND CHEN: DISTRIBUTED AUTONOMOUS VIRTUAL RESOURCE MANAGEMENT IN DATACENTERS 3847

Fig. 6. Performance of cloud profit oriented reward system (PlanetLab trace).
(a) The number of VM migrations. (b) The number of overloaded PMs.

Fig. 7. Performance of cloud profit oriented reward system (Google Cluster
trace). (a) The number of VM migrations. (b) The number of overloaded PMs.

We denote the MDP with this improved reward system as
MDP-P and denote MDP* with the improved reward system
as MDP-P*, and compare them with MDP and MDP*. As
the improved reward system needs the average number of
VMs in a PM as indicated in Equ. (12), we increased the
average number of VMs in a PM from 5 to 20 to study the
performance. When computing the rewards, we set α = 1,
β = 1, E = 10 for unit revenue and Y = 10 for penalty. For
each average number of VMs, we apply Algorithm 1 to find
the optimal policies. For each optimal policy, we applied it to
CloudSim and repeated the simulation for 20 times.

1) The Number of VM Migrations: Figure 6 and Figure 7
show the experimental results with the PlanetLab trace and
Google Cluster trace, respectively. Figure 6(a) and Figure 7(a)
show the median, the 10th and 90th percentiles of the number
of VM migrations of the four methods with different average
number of VMs per PM. The number of VM migrations
follows MDP-P<MDP and MDP-P*<MDP*. Compared to
MDP, MDP-P reduces the number of VM migrations because
MDP-P more focuses on the memory resource utilization of
the migrating VM than the CPU resource utilization. For
example, MDP uses Equ. (5) to construct the reward system,
which does not explicitly reflect memory utilization of the
migrating VMs. MDP-P relies on Equ. (17), which incorpo-
rates Equ. (15) and Equ. (16) to explicitly consider memory
utilization of the migrating VM. Therefore, the reward system
in MDP-P discourages migrating a VM with heavy memory
resource utilization, a portion of the VM migrations in MDP
are prevented. For example, when the cost of migrating a
VM with intensive memory utilization surpasses the penalty
of violating the SLA of this VM, this VM will not be migrate
out. As a result, MDP-P produces fewer VM migrations. The
result of MDP-P*<MDP* is caused by the same reasons. The
number of VM migrations increases with the average number
of VMs because the workload in the PMs increases.

Figure 6(b) and Figure 7(b) show the median, the 10th
and 90th percentiles of the number of overloaded PMs of the
four methods with different average number of VMs per PM.

Fig. 8. Performance of MDP-A (Google Cluster trace). (a) The number of
VM migrations. (b) The number of overloaded PMs.

When the average number is 5, MDP has a smaller number
of overload PMs than MDP-P. The reason is that the cost for
violating SLA is relatively smaller as Equ. (12) indicates, i.e.,
violating SLA leads to a relatively smaller loss of revenue,
than the cost of migration VMs. As a result, the MDP-P model
tries to reduce the number of VM migrations at the cost of
sacrificing SLA guarantees. When the average number is 10
and 20, MDP-P achieves a smaller number of overload PMs
than MDP because violating SLA becomes more expensive
and even a small number of the PMs in an overloaded status
will lose a high amount of revenue. The relationship of MDP*
and MDP-P* stays similar as the relationship of MDP and
MDP-P due to the same reasons. The number of overloaded
PMs increases with the average number of VMs because the
workload of a PM increases with the number of VMs in
the PM.

C. Performance of the MDP with Extended Action Set

We then study the performance of the MDP with extended
action set denoted by MDP-A. Similar as previous experi-
ments, we increased the average number of VMs in a PM
from 5 to 20. For each average number of VMs, we applied
the optimal policies corresponding to each algorithms (i.e.,
MDP, MDP* and MDP-A) to CloudSim and repeated the
simulation for 20 times. Figure 8 presents the experimental
results with the Google Cluster trace. Figure 8(a) shows the
number of VM migrations of the algorithms. The number
follows MDP-A<MDP*<MDP. MDP-A reduces the number
of VM migrations because MDP-A considers both migrating
VM out and accepting VM in the same MDP model and
hence produces an optimal policy that avoids any conflicts of
the actions as in MDP*. As a result, MDP-A tends to avoid
unnecessary VM migrations. Figure 8(b) shows the number of
overloaded PMs. The number follows MDP-A<MDP*<MDP
because MDP-A reduces the number of overloaded PMs since
PMs conduct actions according to a policy that is produced
by one MDP model. In this case, the PMs are able to avoid
being overloaded due to action conflicts (e.g., they migrate
VMs out according to one MDP model and at the same time
accept VMs according to the other MDP model).

D. Comparison of Different MDP Models

1) CPU Time for Load Balancing: The CPU time consump-
tion for load balancing consists of the maintenance time spent
on system monitoring, the time identifying VMs to migrate,
the time to determine destination PMs for VMs and the time
for VM migrations. The maintenance time refers to the CPU

3848 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 9. Comparison of CPU time consumption by different methods to achieve load balance. (a) Total time. (b) CPU time breakdown (ratio = 2.5).
(c) CPU time breakdown (ratio = 3). (d) CPU time breakdown (ratio = 3.5).

time spent on checking whether there are overloaded PMs
and determining whether VM migration is necessary in each
round. MDP-P differs from MDP only in using a different
reward system, while MDP-A differs from MDP* only in
applying one MDP model to select VMs and PMs by using
an extended action set, the CPU time consumption for load
balancing and the time breakdowns of MDP-P and MDP-A
are similar to MDP and MDP*, respectively. In the figures,
we present the results of MDP-P together with MDP, and
MDP-A together with MDP*. Figure 9(a) shows the median,
the 10th and 90th percentiles of the CPU time consumption
to achieve load balance in the four methods under different
VM/PM ratios with 100 PMs. We see that the CPU time
increases as the ratio increases for all four methods. As
the ratio increases, the system needs more CPU resource
to predict and monitor the workload status of more VMs.
For each VM/PM ratio, the CPU time consumption follows
MDP*<MDP<Sandpiper<CloudScale. CloudScale consumes
more CPU time than the other methods due to two reasons.
First, CloudScale needs to predict the load of each VM
and hence needs more CPU time. Second, CloudScale has
relatively more VM migrations, which consumes more VM
migration CPU time. MDP consumes less time than Sandpiper
since it can quickly make VM migration decisions and has a
smaller number of VM migrations. MDP* consumes the least
CPU time since it can quickly select both migration VMs and
destination PMs.

In order to give a thorough comparison between the four
methods, we broke down the CPU time to different parts
as shown in Figure 9(b), Figure 9(c) and Figure 9(d) cor-
responding to three VM/PM ratios. MDP and MDP* consume
the least maintenance time that is used to determine whether
VM migrations are needed. In MDP and MDP*, each PM
only needs to refer to the optimal policy Π and hence they
require less CPU time. Sandpiper consumes more CPU time in
maintenance than MDP and MDP* since it needs to calculate
the volume [5] of each PM to check the load status of the PMs.
CloudScale consumes much more CPU time since it needs to
predict the workload status of each VM and also predict the
PM workload status to determine whether VM migrations are
needed.

The time to identify VMs to migrate refers to the CPU
time needed to determine which VMs to migrate when a PM
is overloaded. MDP and MDP* refer to the optimal policy Π
and quickly select VM to migrate in each round, and hence
need little CPU time, while Sandpiper needs a relatively long
CPU time to calculate the volume-to-size (VSR) ratio of
each VM. Sandpiper consumes slightly less CPU time than

CloudScale because Sandpiper does not need to predict each
VM workload and it selects fewer VMs than CloudScale due to
fewer VM migrations. The time to determine destination PMs
is the CPU time for determining destination PMs where the
selected VMs migrate to. MDP* quickly selects destination
PMs by referring to the optimal policy Π derived from the
MDP model and hence needs the least CPU time. MDP and
Sandpiper use the same PM selection algorithm, so their CPU
time is dominated by the number of VMs that need to migrate.
MDP consumes a slightly less CPU time than Sandpiper due
to fewer VM migrations. CloudScale uses a greedy algorithm
to find the least loaded destination PM and hence consumes
less CPU time than MDP and Sandpiper. The VM migration
time depends on the number of VM migrations and it follows
MDP*<MDP<Sandpiper<CloudScale.

VI. CONCLUSION

In this paper, we propose an MDP-based load balancing
algorithm as an online decision making strategy to enhance
the performance of cloud datacenters. Compared to the previ-
ous reactive load balancing algorithms, the MDP-based load
balancing algorithm maintains the load balance state for a
longer time (hence lower SLAV) and also produces low load
balancing delay and overhead. Its advantages compared to
previous proactive load balancing algorithms are three-fold.
First, it aims to maintain a long-term load balance for both the
source PM that performs VM migrations to release its work-
load and the destination PM that accommodated this VM, and
hence prevents subsequent load imbalance. Second, it quickly
determines which VMs to migrate out to achieve load balance,
which eliminates the need of additional operations to identify
migration VMs. Third, it quickly determines destination PMs
with much less overhead and delay. We also develop a cloud
profit oriented reward system to improve the actual profit of
the datacenter. We further develop a new MDP model with
an extended action set, which considers the actions of both
migrating a VM out of a PM and migrating a VM into a
PM. Our trace-driven experiments show that the MDP-based
load balancing algorithm outperforms previous reactive and
proactive algorithms. MDP is able to maintain the system
in a relatively balanced state with a smaller number of PM
overload occurrences in the system by triggering fewer number
of VM migrations. Further, MDP consumes less CPU time and
memory under different workload scenarios. The experimental
results also show the effectiveness of the cloud profit oriented
reward system and the new MDP model. In our future work,
we aim to make our algorithm fully distributed to increase

SHEN AND CHEN: DISTRIBUTED AUTONOMOUS VIRTUAL RESOURCE MANAGEMENT IN DATACENTERS 3849

its scalability. In the future work, we can consider combine
considering VM workload patterns to improve the performance
of the MDP-based load balancing algorithm. For example,
when selecting migration VMs or deciding accepting VMs, the
MDP model can further consider the future resource utilization
of VMs based on the workload patterns for achieving better
long-term load balance. We will also study how to consider the
time-sharing feature of some resources (e.g., CPU, bandwidth)
in our algorithm to achieve better performance [31]. Recall
that we did not consider the size of the VMs due to the equal
size of VMs and also assume the same capacities of PMs. The
sizes of VMs and the capacities of PMs may be different in
practice. We will study this issue in our future work. Also,
it may be true that considering too much of the future might
affect the effectiveness of handling the present. We will study
the short-term load balance performance of the MDP. Further,
a PM overload does not necessarily mean a real SLA violation
so we will study how the PM overloads affect the real SLA
violation.

ACKNOWLEDGEMENTS

The authors would like to thank K. Sapra for his
discussions.

REFERENCES

[1] Amazon Web Service. (2016). [Online] http://aws.amazon.com/
[2] (2016). Microsoft Azure. [Online] http://www.windowsazure.com
[3] BEA System Inc. (2016). [Online] http://www.bea.com
[4] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson,

“Cost-benefit analysis of cloud computing versus desktop grids,” in Proc.
IPDPS, May 2009, pp. 1–12.

[5] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sandpiper:
Black-box and gray-box resource management for virtual machines,”
Comput. Netw., vol. 53, no. 17, pp. 2923–2938, 2009.

[6] M. Tarighi, S. A. Motamedi, and S. Sharifian, “A new model for virtual
machine migration in virtualized cluster server based on fuzzy decision
making,” CoRR, vol. 1, no. 1, pp. 40–51, Feb. 2010.

[7] E. Arzuaga and D. R. Kaeli, “Quantifying load imbalance on virtualized
enterprise servers,” in Proc. WOSP/SIPEW, 2010, pp. 235–242.

[8] A. Singh, M. R. Korupolu, and D. Mohapatra, “Server-storage virtual-
ization: Integration and load balancing in data centers,” in Proc. SC,
2008, Art. no. 53.

[9] A. Sallam and K. Li, “A multi-objective virtual machine migration policy
in cloud systems,” Comput. J., vol. 57, no. 2, pp. 195–204, 2013.

[10] L. Chen, H. Shen, and S. Sapra, “RIAL: Resource intensity aware
load balancing in clouds,” in Proc. INFOCOM, Apr./May 2014,
pp. 1294–1302.

[11] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: Elastic resource
scaling for multi-tenant cloud systems,” in Proc. SOCC, 2011, Art. no. 5.

[12] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of
service constraints,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7,
pp. 1366–1379, Jul. 2013.

[13] U. Sharma, P. J. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware
elasticity provisioning system for the cloud,” in Proc. ICDCS, Jun. 2011,
pp. 559–570.

[14] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual
machines for managing SLA violations,” in Proc. IM, May 2007,
pp. 119–128.

[15] Z. Gong, X. Gu, and J. Wilkes, “PRESS: Predictive elastic resource
scaling for cloud systems,” in Proc. CNSM, Oct. 2010, pp. 9–16.

[16] A. Chandra, W. Gong, and P. J. Shenoy, “Dynamic resource allo-
cation for shared data centers using online measurements,” in Proc.
SIGMETRICS, 2003, pp. 300–301.

[17] R. A. Howard, Dynamic Programming and Markov Processes.
Cambridge, MA, USA: MIT Press, 1960.

[18] L. Chen and H. Shen, “Consolidating complementary VMs with
spatial/temporal-awareness in cloud datacenters,” in Proc. INFOCOM,
Apr./May 2014, pp. 1033–1041.

[19] G. V. Laszewski, L. Wang, A. J. Younge, and X. He, “Power-aware
scheduling of virtual machines in DVFS-enabled clusters,” in Proc.
CLUSTER, Aug./Sep. 2009, pp. 1–10.

[20] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. SOCC, 2010,
pp. 39–50.

[21] X. Xu, K. Teramoto, A. Morales, and H. H. Huang, “DUAL: Reliability-
aware power management in data centers,” in Proc. CCGrid, May 2013,
pp. 530–537.

[22] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
Comput., Pract. Exper., vol. 24, no. 13, pp. 1397–1420, 2012.

[23] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Softw., Pract. Exper., vol. 14, no. 1, pp. 23–50, 2011.

[24] (2016). Google Cluster Data. [Online]. Available: https://code.google.
com/p/googleclusterdata/

[25] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
Univ. Press, 1957.

[26] C. W. Gardiner et al., Handbook of Stochastic Methods. vol. 4. Berlin,
Germany: Springer, 1985.

[27] X. Fan, C. S. Ellis, and A. R. Lebeck, “The synergy between power-
aware memory systems and processor voltage scaling,” in Proc. PACS,
2005, pp. 164–179.

[28] L. Minas and B. Ellison, Energy Efficiency for Information Technology:
How to Reduce Power Consumption in Servers and Data Centers.
Mountain View, CA, USA: Intel Press, 2009.

[29] H. Liu, H. Jin, C.-Z. Xu, and X. Liao, “Performance and energy
modeling for live migration of virtual machines,” Cluster Comput.,
vol. 16, no. 2, pp. 249–264, 2013.

[30] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Black-box
and gray-box strategies for virtual machine migration,” in Proc. NSDI,
2007, p. 17.

[31] L. Chen and H. Shen, “Considering resource demand misalignments
to reduce resource over-provisioning in cloud datacenters,” in Proc.
INFOCOM, 2016, pp. 1–9.

[32] L. Chen, H. Shen, and K. Sapra, “Distributed autonomous virtual
resource management in datacenters using finite-Markov decision
process,” in Proc. SOCC, 2014, pp. 1–13.

Haiying Shen (SM’13) received the B.S. degree
in computer science and engineering from Tongji
University, China, in 2000, and the M.S. and Ph.D.
degrees in computer engineering from Wayne State
University in 2004 and 2006, respectively. She is
currently an Associate Professor with the Com-
puter Science Department, University of Virginia.
Her research interests include cloud computing
and cyberphysical systems. She was the program
co-chair for a number of international conferences
and a member of the Program Committees of many

leading conferences. She is a Microsoft Faculty Fellow of 2010 and a member
of the ACM.

Liuhua Chen received the B.S. and M.S. degrees
from Zhejiang University in 2008 and 2011, respec-
tively. He is currently pursuing the Ph.D. degree with
the Department of Electrical and Computer Engi-
neering, Clemson University. His research interests
include distributed and parallel computer systems,
and cloud computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

