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Abstract—MapReduce is a popular computing model for parallel data processing on large-scale datasets, which can vary from

gigabytes to terabytes and petabytes. Though Hadoop MapReduce normally uses Hadoop Distributed File System (HDFS) local file

system, it can be configured to use a remote file system. Then, an interesting question is raised: for a given application, which is the

best running platform among the different combinations of scale-up and scale-out Hadoop with remote and local file systems. However,

there has been no previous research on how different types of applications (e.g., CPU-intensive, data-intensive) with different

characteristics (e.g., input data size) can benefit from the different platforms. Thus, in this paper, we conduct a comprehensive

performance measurement of different applications on scale-up and scale-out clusters configured with HDFS and a remote file system

(i.e., OFS), respectively. We identify and study how different job characteristics (e.g., input data size, the number of file reads/writes,

and the amount of computations) affect the performance of different applications on the different platforms. Based on the measurement

results, we also propose a performance prediction model to help users select the best platforms that lead to the minimum latency. Our

evaluation using a Facebook workload trace demonstrates the effectiveness of our prediction model. This study is expected to provide

a guidance for users to choose the best platform to run different applications with different characteristics in the environment that

provides both remote and local storage, such as HPC cluster and cloud environment.

Index Terms—MapReduce, Hadoop, scale-up, scale-out, remote file system, local file system, job characteristics
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1 INTRODUCTION

MAPREDUCE [19] is a framework designed to process a
large amount of data in the parallel and distributed

manner on a cluster of computing nodes. Hadoop, as a pop-
ular open source implementation of MapReduce, has been
deployed in many large companies such as Yahoo! [18] and
Facebook [45]. Also, many high-performance computing
(HPC) sites [1] extended their clusters to support Hadoop
MapReduce. HPC differs from Hadoop on the configuration
of file systems. In Hadoop Distributed File System (HDFS),
data is stored in the compute nodes, while in HPC, data is
usually stored on remote storage servers. The Clemson Pal-
metto HPC cluster successfully configured Hadoop by
replacing the local HDFS with the remote Orange File Sys-
tem (OFS) [1], as shown in Figs. 1 and 2.

In the last decade, the volumes of computation and data
have increased exponentially [12], [40]. Real-world applica-
tions may process data size up to the gigabytes, terabytes,
petabytes, or exabytes level. This trend poses a formidable
challenge of providing high performance on MapReduce
and motivates many researchers to explore to improve the
performance.While scale-out is a normalmethod to improve

the processing capability of a Hadoop cluster, scale-up
appears as a better alternative for a certain workload with a
median data size (e.g., MB andGB) [14], [30], [33]. Scale-up is
vertical scaling, which refers to addingmore resources (typi-
cally processors and RAM) to the nodes in a system. Scale-
out is horizontal scaling, which refers to adding more nodes
with few processors and RAM to a system.

Considering the different combinations of scale-up and
scale-out Hadoop with a remote file system (OFS) and a
local file system (HDFS), we can create four platforms as
shown in Table 1: scale-up cluster with OFS (denoted as up-
OFS), scale-up cluster with HDFS (denoted as up-HDFS),
scale-out cluster with OFS (denoted as out-OFS), and scale-
out cluster with HDFS (denoted as out-HDFS). Then, an
interesting question is raised: for a given application, which
is the best running platform.

To answer this question, it is important to understand the
performance of different types of applications (e.g., data-
intensive, CPU-intensive, and I/O-intensive) with different
characteristics (e.g., input data size, the number of file reads/
writes, and the amount of computations) on these four plat-
forms, since a big data workload generally consists of differ-
ent types of jobs, with input data size ranging from KB to PB
[18], [43]. However, there have been no previous works that
conduct such a thorough analysis. CPU-intensive applica-
tions include a large amount of computations and devote
most of the time on computing. Data-intensive and I/O-
intensive applications have large input data size and require
large amount of data read/write operations. Data-intensive
applications contain certain amount of computations such as
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counting, while I/O-intensive applications do not or have
only few computations. Different characteristics of applica-
tions may lead to different performance and gain different
benefits in the scale-up and scale-out systems. For example,
data-intensive applications have large input and shuffle data
size and may benefit more from a large size of memory and
hence from the scale-upmachines.

In this paper, we have conducted comprehensive experi-
ments for different types of applications (including data-
intensive, CPU-intensive, and I/O-intensive applications)
on the four platforms with different input data sizes and
provide an insightful analysis on their performance. We
also have analyzed how different application characteristics
affect the application performance and system overheads
on the four platforms and determine the best platform for
an application with certain characteristics. Our measure-
ment results provide a guidance on how to select the best
platform to run different types of applications with different
characteristics.

The contributions of our paper are as follows:
1. We have conducted thorough experiments for differ-

ent types of applications (including data-intensive, CPU-
intensive and I/O-intensive) on the four platforms. We
have analyzed how different application features (e.g.,
input data size, the number of reading/writing files and the
amount of computations) affect the application performance
on the four platforms and determine the best platform for
an application with certain features. We confirm that replac-
ing HDFS with OFS for Hadoop is feasible when data size is
relatively large.

2. Our measurement results provide a guidance on how
to select the best platform that leads to minimum latency to
run different type of jobs with different job characteristics.

3. Based on the measurement results, we also propose a
performance prediction model to help users select the best
platforms. Our evaluation using a Facebook workload trace
demonstrates the effectiveness of our prediction model.

The remainder of this paper is organized as follows.
Section 2 describes the configurations of scale-up and scale-
out machines for Hadoop with OFS and HDFS on a HPC-
based cluster. Section 3 presents the measurement results of
performance for different types of Hadoop applications and
provides an in-depth analysis of the results. Section 4 sum-
marizes the observations and further discusses the guidance
to cloud environment. Section 5 presents a performance pre-
diction model to help users select the best platforms and

evaluates the prediction accuracy of our prediction model.
Section 6 gives an overview of the related work. Section 7
concludes this paperwith remarks on our future work.

2 CONFIGURATIONS ON HPC-BASED HADOOP

In this section, we introduce the details on how to configure
Hadoop MapReduce on a HPC cluster. We do our experi-
ments on HPC cluster because HPC clusters generally have
machines with different CPU and memory, which allows us
to deploy scale-up and scale-out machines easily without
any further cost. In our experimental measurement, we use
Clemson Palmetto HPC cluster, which ranks the top five
fastest supercomputers at public universities in United
States and the 66th fastest supercomputers globally [5].

2.1 Introduction of Hadoop MapReduce

MapReduce [19] is a scalable and parallel processing frame-
work to handle large datasets. HDFS is a highly fault tolerant
and self-healing distributed file system to cooperate with
HadoopMapReduce. HDFS has a master/slave architecture,
which generally consists of a namenode and multiple datan-
odes. Namenode manages the metadata of the cluster and
provides the access to files to clients, while datanodes are
used to store the data blocks. HDFS stores the input data of
each job into several blocks. The number of blocks is calcu-
lated by input data size

block size . In a MapReduce job, there are generally
three phases: map, shuffle and reduce. In the map phase, the
job tracker assigns each mapper to process one data block.
Note that the data block may locate at the same nodes with
the mapper, which is called data locality. Hadoop MapRe-
duce prefers high data locality to reduce network consump-
tion for data movement to improve performance. All the
mappers generate the output, called intermediate data (i.e.,
shuffle data). In the shuffle phase, each mapper’s output is
then partitioned and sorted. Different partitions are shuffled
to corresponding reducers. Once the reducers are scheduled
on specific nodes by the job tracker, the shuffle data is copied
to the reduce nodes’ memory first. If the shuffle data size is
larger than the size of in-memory buffer, the shuffle data will
be spilled to local disks, which results in extra overheads. In
the reduce phase, the reducers aggregate the shuffle data
and produce the final output of the jobs.

2.2 Experiment Environment

In the experiments, we use the Hadoop MapReduce version
1.2.1. We use four machines for scale-up Hadoop. Each
scale-up machine is equipped with four 6-core 2.66 GHZ
Intel Xeon 7,542 processors, 505 GB RAM, and 91 GB hard
disk and 10 Gbps Myrinet interconnections. To achieve fair
performance comparison, we require the scale-up and
scale-out machines have similar cost. We investigated the
cost information from [9] and found that one scale-up
machine matches similar price with 6 scale-out machines.

Fig. 1. Typical Hadoop with HDFS local storage (HDFS in short).

Fig. 2. Hadoop with the OrangeFS remote storage (OFS in short).

TABLE 1
Different Platforms

Scale-up Scale-out

OFS up-OFS out-OFS
HDFS up-HDFS out-HDFS
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Therefore, the scale-out cluster consists of twenty-four
machines, each of which has two 4-core 2.3 GHZ AMD
Opteron 2,356 processors, 16 GB RAM, and 193 GB hard
disk and 10 Gbps Myrinet interconnections. Note that Myri-
net is a high-speed local area networking system. It has
much lower protocol overheads than Ethernet and hence
can provide better throughput. With Myrinet, the data can
be accessed with less latency and the communication over-
heads between each node are reduced.

2.3 Configurations on HDFS and OFS

As we mentioned in Section 1, while traditional Hadoop is
deployed with the distributed local file system HDFS, con-
ventional HPC architecture relies on the remote file system.
On HPC cluster, compute and data are separated and con-
nected with high speed interconnects, such as Ethernet and
Myrinet. However, we can still deploy Hadoop MapReduce
framework with HDFS on HPC cluster. Under the help of
myHadoop [28], we easily configure Hadoop with HDFS on
the HPC cluster in our university.

Recently, in order to achieve better performance, a Java
Native Interface (JNI) shim layer has been successfully imple-
mented on the HPC cluster in our university, which allows
Hadoop to work directly with remote file system OFS. Both
the input and output data can be stored in the remote file sys-
tem, while the shuffle data is still required to store in local file
system of each node. OFS is a parallel file system (PVFS) that
distributes data across multiple servers. Moreover, OFS is
demonstrated to be able to offer much better I/O perfor-
mance [1] thanHDFS on processing large amount of data.

In order to achieve fair comparisons between the remote
file system and the local file system, a couple of parameters
are required to be set consistently in OFS and HDFS. In
HDFS, we set theHDFS block size to 128MB tomatch the set-
ting in the current industry clusters [45]. Similarly, OFS stores
data in simple stripes (i.e., similar as blocks in HDFS) across
multiple storage servers in order to facilitate parallel access.
In order to compare OFS fairly with HDFS, we also set the
stripe size to 128 MB. Typically, in current commercial Map-
Reduce cluster [14], the total number of map and reduce slots
is set to the number of cores. Therefore, in our experiments,
each scale-up machine has 24 map and reduce slots, while
each scale-outmachine has 8map and reduce slots in total.

For HDFS, the replication factor is set to 3 by default,
which means that each file block has three replicas. For
OFS, it currently does not support build-in replications.
However, it does not affect our measurement results since
data loss never occurs in OFS during our experiments.

2.4 Configurations for Best Performance

The scale-out architecture deploys many scale-out machines
with less powerful CPU and small RAM size. On the other
hand, the scale-up architecture has a fewmachines with high
performance CPU and large RAM size. In order to fully uti-
lize the CPU andRAMsize advantages of scale-upmachines,
several parameters of the scale-up Hadoop clusters are con-
figured differently from the conventional Hadoop clusters.

Heap Size. In Hadoop, each map and reduce task runs in a
JVM. The heap size is the memory allocated to each JVM for
buffering data. The map outputs are written to a circular
buffer in memory, which is determined by the heap size

[14]. When the circular buffer is closed to full, the data is
spilled to the local disk, which introduces overheads. There-
fore, by increasing the heap size, it is less likely for the data
to be spilled to local disk if the heap size is larger, leading to
better performance in the shuffle phase.

The heap size is 200 MB for each JVM by default in
Hadoop. In the experiments, the machines for scale-up and
scale-out machines allow us to set the heap size to a much
larger value than 200 MB. We tune the heap size through
trial and error on both scale-up and scale-out machines. To
achieve the best performance and also avoid the out of
memory error [14], we set the heap size to 8 GB per task on
scale-up machines, and to 1.5 GB on scale-out machines,
respectively, through trial and error.

RAM Drive to Place Shuffle Data. After setting the heap
size to 8 GB, we find that there is still much memory left
(more than 300 GB) on scale-up machines. In Hadoop, the
shuffle data of the jobs is required to store on local file sys-
tem. On the HPC cluster in our university, it enables us to
use half of the total memory size as tmpfs, which serves the
same functions as RAMdisk. Therefore, we use half of the
RAM (253 GB) as RAMdisk to place the shuffle data on
scale-up machines. If the shuffle data size is larger than the
available RAMdisk size, the rest of the shuffle data is stored
on the local disks. On the other hand, since the memory size
is not large on the scale-out machines (i.e., 16 GB), the shuf-
fle data is placed on the local disks only.

Other Configurations. Besides the key configurations
above, there are also some other Hadoop configuration
parameters (e.g., io.sort.mb and io.sort.spill.percent) that
have significantly impact on the performance of the applica-
tions. To select the best platforms for applications, we need
to compare the best performance of each platform in the
measurement study. Hence, we assume that users can lever-
age the tools in several previous studies such as Starfish [22]
and iTuned [20], which help configure Hadoop clusters to
achieve the best performance for different applications on
different platforms. In the measurement study in Section 3,
for each application, we tune the Hadoop configuration
parameters on different platforms to achieve the best perfor-
mance, based on the instructions in Starfish [22]. As a result,
we can focus on how job characteristics of the applications
affect the performance on different platforms.

Next, let us discuss the details in a Hadoop MapReduce
job. Generally, a MapReduce job consists of map stage and
reduce stage, as shown in Fig. 3. However, many researchers
actually consider that the MapReduce job has three phases
by further splitting the reduce stage to shuffle phase and
reduce phase. In this paper, we consider that there are three
phases in a MapReduce job—map phase, shuffle phase and
reduce phase.

2.5 Factors of Job Execution Time in Hadoop
MapRuduce

According to [44], in the following, we break down the
Hadoop MapReduce execution flow and analyze the factors
of each step in a job, as shown in Fig. 4.
Factors for the Time Duration of Map Task

Step 1. The map tasks of a job need to read the input
data for the MapReduce execution. The time duration of
this data reading process depends on two main factors.
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The first one is the amount of input data that a map task
needs to process. The second is the I/O speed of the file
system.

Step 2. Each map task processes one input data block and
generates the intermediate <key; value> pairs (called map
output data or shuffle data or reduce input data), according
to the user-defined map function. The time duration of this
step depends on twomain factors. The first one is the amount
of data eachmap task needs to process. The second one is the
speed of each node to process the data.

For the second factor, as each node processes different
jobs at a different speed, it is difficult to generalize a speed
model for every job. However, since the map task’s function
is to process the input data and generate intermediate data,
we can approximately convert the second factor to the map
output data size, i.e., shuffle data size.
Factors for the Time Duration of Shuffle Task

Step 3. In Hadoop, only when a certain portion (called
map completion threshold) of map tasks for a job have
completed, the reduce tasks of this job are allowed to
scheduled. Only after a reduce task is scheduled, the
shuffle task starts. The map outputs are first written to
the memory buffer, and then spilled to the disk. The map
outputs are partitioned corresponding to the number of
reduce tasks. All the partitions are then transmitted to the
corresponding nodes that run the reduce tasks. The time
duration of this step depends on three main factors. The
first one is the amount of data each node needs to pro-
cess. The second one is the speed of the network to trans-
mit the data. The third one is the buffer size.
Factors for the Time Duration of Reduce Task

Step 4. Note that the reduce tasks begin only after the
shuffle phase completes. Each reduce task takes the trans-
mitted data from the shuffle phase and processes the shuf-
fle data according to the user-defined reduce function. As
all the reduce tasks in the reduce phase are run by the
worker nodes in parallel, the time duration of this step
depends on two main factors. The first one is the amount
of data each reduce task needs to process. The second one
is the speed of each node to process the data. Similar to
Step 2, we can actually convert the second factor to the
generated output data size.

Step 5. The output data of the reduce tasks is written to
the file system. The time duration of this step depends on
two main factors. The first one is the amount of output data
that a reduce task generates. The second one is the I/O
speed of the file system.

3 PERFORMANCE MEASUREMENTS

In this section, we will compare the performance of data-
intensive, CPU-intensive, and I/O-intensive jobs with dif-
ferent input data sizes on the four platforms as mentioned
previously. The four configurations include scale-up
machines with OrangeFS, scale-up machines with HDFS,
scale-out machines with OrangeFS, and scale-out machines
with HDFS, denoted by up-OFS, up-HDFS, out-OFS, and
out-HDFS, respectively. We expect to provide a guidance
for users on how different applications benefit from differ-
ent platforms.

3.1 Measured Applications and Metrics

We classify the representative Hadoop benchmarks into
three types: data-intensive, I/O-intensive and CPU-inten-
sive in our performance measurement. We can roughly infer
the types of applications by the size of the input data, shuf-
fle data and output data. In general, data-intensive applica-
tions have large input and shuffle data sizes and devote
much processing time to I/O requests, while I/O-intensive
applications generally conduct only read/write operations
on the file system. CPU-intensive applications include a
large amount of computations such as iterative computa-
tions. The representative Hadoop applications we measure
in this section include Wordcount, Grep, Terasort, table cross
join [10], write and read test of TestDFSIO, PiEstimator, and
matrix multiplication [4].

Among them, Wordcount, Grep, Terasort and TCJ are typi-
cal data-intensive applications since they need to read/
write and process a large amount of data. Wordcount and
Grep have relatively large input and shuffle sizes but small
output size, while Terasort generally has relatively large
input, shuffle and output sizes. We generated the input data
forWordcount, Grep, Terasort from a big data benchamrk Big-
DataBench [43], which is based on the Wikipedia datasets.

Table cross join (TCJ) is an application to cross join two
tables. It is developed in Apache PIG, which is a high-level
platform used with Hadoop. The application joins and sorts
all the same key-value pairs in two tables to a much larger
table. The mappers complete most of the cross join jobs since
the mappers need to list and sort out all the key-value pairs
in the two tables. The reducers aggregate the same key-value
pairs in themap output and generate the final output.

The write and read test of TestDFSIO are typical I/O-
intensive applications. They complete a large number of
read/write operations during the map tasks and only do
some calculations like calculating the I/O rate in the reduce

Fig. 3. Map, shuffle and reduce phases in MapReduce [19].
Fig. 4. Timeline of each step in a MapReduce job.
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tasks. In TestDFSIO, each mapper reads/writes one file. It
allows us to set the number of mappers (i.e., the number of
files) and the read/write size of file, regardless of the block
size. For example, if we want to read/write 80 GB data in
total, we can either read/write eighty 1 GB files or forty 2 GB
files, though the block size is 128 MB. Note that in Hadoop,
the number of reading/writing files in a job actually affects
the number of disks the job reads/writes to, that is, the num-
ber of I/O operations on the cluster. More reading/writing
files meansmore I/O operations and vice versa.

The CPU-intensive applications we use in the experi-
ments are PiEstimator and matrix multiplication. PiEstimator
uses a statistical (quasi-Monte Carlo) method [15] to esti-
mate the value of Pi. Points placed at random inside of a
unit square also fall within a circle inscribed within that
square with a probability equal to the area of the circle,
Pi/4. The value of Pi can be estimated from the value of 4R
where R is the ratio of the number of points that are inside
the circle to the total number of points that are within the
square. The larger the sample of points used, the better
the estimate is. The mappers generate a specified number of
sample points placed at random inside of a unit square and
then counts the number of those points that are inside a unit
circle. The reducers accumulate points counted by the map-
pers and then estimates the value of Pi. Matrix multiplica-
tion (MM) in the experiments calculates the multiplication
of two square matrices. The two matrices are decomposed
to a large number of small blocks and hence each mapper
processes one block multiplication, while the reducers
aggregate all the output block results generated in the map-
pers. The majority computations of the jobs are also com-
pleted during the map phase.

We measure these metrics for different applications:
� Execution time, which is the job running time and cal-

culated by the job ending time minus job starting time.
� Map phase duration, which is calculated by the last

mapper’s ending time minus the first mapper’s starting
time.

� Shuffle phase duration, which is defined as last shuffle
task’s ending time minus the last mapper’s ending time.

� Reduce phase duration, which is from the ending time
of the last shuffle task to the end of the job.

In the experiments, we normalize the execution time
and map phase duration by the results of up-OFS. For

example, if a job running on up-OFS and up-HDFS has an
execution time of 10 and 15 seconds, respectively, then
up-OFS on the figure is shown as 1, while up-HDFS on
the figure is shown as 1.5. Due to the limit of local disk
size, we cannot process data more than 80 GB on up-
HDFS platform. Therefore, in the following measurement
results, we do not show the up-HDFS for input data size
more than 80 GB. On one hand, this limitation does not
have any impacts on our measurement analysis, as we
are able to have meaningful observations before the
input data size is increased to 80 GB. On the other hand,
we can take a first sight of the drawback of scale-up
machines from this limitation. That is, as the input data
size increases, it finally exceeds the capability of scale-up
machines. Thus, scale-up machines are not as scalable as
the scale-out machines. The number of map (reduce) waves
of a job is calculated by the number of distinct start times
from all mappers (reducers) of the job. If the number of
mappers (reducers) of a job is larger than the number of
map (reduce) slots in a node, partial mappers (reducers)
are scheduled to all the slots first, forming the first wave.
After the tasks complete and some slots are available,
the second, third and subsequent waves are scheduled in
sequence. When all the mappers (reducers) have the same
execution time, the number of map (reduce) waves is
equal to the number of tasks

the number of task slots.

3.2 Data-Intensive Applications

In this section, we show the performance evaluation of data-
intensive applications including Wordcount, Grep, Terasort,
and TCJ. Figs. 5a, 6a, 7a, and 8a show the normalized execu-
tion time of Wordcount, Grep, Terasort, and TCJ versus differ-
ent input data size, respectively. Note that in all these
applications, the number of mappers is determined by the
input data size, which is calculated by dInput data size

Block size e. Since
the block size is fixed in the experiments, the number of
mappers is proportional to the input data size. From the fig-
ures, we have several meaningful observations.

We observe that when the input data size is small
(WordCount: 0.5-16 GB, Grep and TeraSort: 0.5-8 GB, TCJ:
1-16 mappers), the performance of Wordcount, Grep,
Terasort, and TCJ is better on the scale-up machines than
the scale-out machines. On the contrary, when the input
data size is large (WordCount: �32 GB, Grep and TeraSort:

Fig. 5. Measurement results of data-intensive jobs ofWordcount.

Fig. 6. Measurement results of data-intensive jobs of Grep.
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�16 GB, TCJ: � 32 mappers), the performance of Word-
count, Grep, Terasort, and TCJ is better on the scale-out
machines than on the scale-up machines. This result is
caused by the following reasons.

First, when the input data size is small, the number of
mappers that needs to process is also small. As we men-
tioned, the number of task waves is related to the total num-
ber of mappers and the slots available on the nodes. Though
the scale-out machines have more CPU cores, small jobs (i.e.,
jobs that process small input data size) on the scale-up
machines can also be completed in only one wave or a few
task waves. As a result, the small jobs benefit from the more
powerful CPU resources of the scale-upmachines and hence
better performance. Second, recall that the shuffle data is
copied to the reduce nodes’ memory, which is determined
by the JVM heap size. Since the scale-up machines have
larger heap sizes, it is less likely for the shuffle data to be
spilled to local disks, leading to better performance than the
scale-out machines. Third, the utilization of RAMdisk on the
scale-upmachines provides a much faster shuffle data place-
ment than the scale-out machines. In summary, the more
powerful CPU, larger heap size, and utilization of RAMdisks
guarantee the better performance on scale-up machines than
on scale-outmachines, when the input data size is small.

When the input data size is large, there are more
mappers/reducers in the jobs. In this situation, the scale-out
machines benefit from more task slots than the scale-up
machines. Therefore, the scale-out machines complete jobs
in fewer task waves than the scale-up machines do. Note
that the more task waves will lead to a significant longer
phase duration. Therefore, even though the scale-up
machines are configured with larger heap size and utiliza-
tion of RAMdisk, the scale-out cluster still outperforms the
scale-up cluster.

Comparing HDFS and OFS, when the input data size is
large, OFS outperforms the HDFS. However, when the
input data size is small, surprisingly, the performance of
HDFS is 20 percent (calculated by jOFS�HDFSj

OFS ) better than
OFS, although OFS can provide better I/O performance
than HDFS [1] as we mentioned. This is because of the fol-
lowing reasons.

(1) The remote file system is required to be accessed
through network. Although Myrinet provides a very fast

local area interconnect, there is still network latency in OFS,
while HDFS benefits from data locality and hence avoids
network latency. The network latency includes the latency
generated by the overhead, the latency used to establish a
connection with the remote file system and the latency of
round-trip delay time. When the input data size is small,
the execution time is relatively small. In this case, the net-
work latency is not negligible comparing to the small execu-
tion time and the performance of small size jobs is degraded
by this network latency in OFS [32].

(2) On the other hand, when the input data size is large, the
execution time becomes large and hence the network latency
is gradually amortized by the large file. In this situation, since
OFS has better I/O performance than HDFS as aforemen-
tioned, the execution time is shorter onOFS than onHDFS.

Therefore, we observe that when the input data size is
small, the performance follows up-HDFS > up-OFS > out-
HDFS > out-OFS (> means better). When the input data
size is large, the performance of Wordcount and Grep follows
out-OFS > out-HDFS > up-OFS > up-HDFS, while Tera-
sort follows out-OFS>up-OFS> out-HDFS>up-HDFS. Ter-
asort performs a little bit different from Wordcount and Grep
on up-OFS and out-HDFS when the input data size is large.
This is because the sorting program not only has relatively a
large amount of shuffle data but also a large amount of out-
put data, whileWordcount and Grep have a negligible output
data size compared to Terasort. It means that with OFS, Tera-
sort reads input data for map tasks from OFS and writes the
output of reduce task to OFS, while Wordcount and Grep
only take advantage of OFS during reading input data for
map tasks. Therefore, Terasort benefits twice from the higher
I/O rate of OFS, which results in better performance on up-
OFS than out-HDFS.

Furthermore, from Figs. 5a, 6a, and 7a, we observe that
the performance of WordCount is better on scale-up
machine until the input data size of WordCount reaches
32 GB (namely cross point), while the performance of Grep
and TeraSort is better on scale-up machine until the input
data size reaches 16 GB. This indicates that these three
applications have different degrading speed on scale-up
and scale-out machines as the input data size increases,
although they are all data-intensive applications. This dif-
ference for the applications is caused by the different ratio

Fig. 7. Measurement results of data-intensive jobs of Terasort.

Fig. 8. Measurement results of data-intensive jobs of TCJ.
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of shuffle data size
input data size . In our experiments, no matter how much

input data size the jobs have, the shuffle/input ratio of
Wordcount, Terasort and Grep are around 1.6, 1.0 and 0.4,
respectively. Given an input data size, with a higher shuffle
to input ratio, WordCount tends to have more shuffle data
than Terasort and Grep. Hence, WordCount can achieve
more benefits from the larger heap size and RAMdisk of
scale-up machines, resulting in a slower application perfor-
mance degradation on the scale-up machines.

Since the execution time of a job consists of the dura-
tions in the map, shuffle and reduce phases, we then
study these broken-down durations. Figs. 5b, 6b, 7b, and
8b show the normalized map phase duration of Word-
count, Grep, Terasort, and TCJ, respectively. We observe a
similar relationship of the map phase duration with the
job execution time due to the same reasons. When the
input data size is small (0.5-8 GB), the map phase dura-
tion is shorter on scale-up than on scale-out; when the
input data size is large (> 16 GB), the map phase duration
is shorter on scale-out than on scale-up. As to the compar-
ison between OFS and HDFS, it is also similar with the
relationship of the job execution time due to the same rea-
sons. We see that when the input data size range is 0.5-8
GB, the map phase duration of these jobs are 10-50 per-
cent shorter on HDFS than on OFS. When the input data
size is larger than 16 GB, the map phase duration is 10-40
percent shorter on OFS than on HDFS, no matter if they
are configured with the scale-up or scale-out cluster.

Figs. 5c, 6c, 7c, and 8c show the shuffle phase duration of
Wordcount, Grep, Terasort, and TCJ, respectively. We see that
the shuffle phase duration is always much shorter on scale-
up machines than on scale-out machines. This is because of
the larger heap size and RAMdisk of scale-up machines as
aforementioned.

Figs. 5d, 6d, 7d, and 8d show the reduce phase duration
of Wordcount, Grep, Terasort, and TCJ, respectively. In Word-
count and Grep, the reduce phase aggregates the map out-
puts which have small size and hence the reduce phase
duration is very short. Therefore, the reduce phase duration
of Wordcount and Grep is around a few seconds and there is
not any specific relationship of the reduce phase duration.
On the other hand, the reduce phase of Terasort needs to
sort the map outputs which has the same size as the input
data, resulting in a long reduce phase duration (increasing
from 5 to 1,800 seconds as the input data size increases. The
number of task waves of the reduce slots on scale-out
machines is fewer than on scale-up machines and hence the
reduce phase duration of Terasort performs similarly as the
execution time and the map phase duration. That is, when
the input data size is small (0.5-8 GB), the reduce phase
duration is shorter on scale-up than on scale-out; when the

input data size is large (> 16 GB), the reduce phase duration
is shorter on scale-out than on scale-up. As to TCJ, its reduce
phase is similar to the reduce phase of TeraSort. When
the number of mappers in TCJ increases, the output data
size becomes larger. Therefore, we see from Fig. 8d that the
reduce phase duration of TCJ on scale-out machines is
smaller when the number of mappers is large; when the
number of mappers is small, the reduce phase duration is
similar on the scale-up and scale-out clusters.

We see neither OFS nor HDFS affects the reduce phase
duration of Wordcount and Grep. This is because the reduce
phase duration of these two applications only lasts for a
short time, which is hardly affected by the file system. For
Terasort, the reduce phase duration is 20-65 percent shorter
on HDFS than on OFS when the input data size is small
(0.5-8 GB) on either the scale-up or scale-out cluster. When
the input data size is large (> 16 GB), it is 20-70 percent
shorter on OFS than on HDFS, no matter if they are config-
ured with the scale-up or scale-out cluster. This is because
Terasort has the same output data size as the input data size.
When the input data size is large, the output data size is
also large. Therefore, as aforementioned, when the input
data size is large, OFS provides better I/O performance
than HDFS and can complete the writing of output data
faster; when the input data size is small, HDFS outperforms
OFS because of the network latency on OFS.

In this section,WordCount,Grep, and Terasort prove that the
shuffle data size does impact the cross point (and hence plat-
form selection). Next, we varied the shuffle data size of the
same application to further demonstrate this observation. We
ran a set of Grep measurement experiments by varying the
regular expressions to grep. In this way, the shuffle/input
ratio of Grep ranged from 0.0 to 8.0. We aim to explore the
cross points between scale-up and scale-out for Grepwith dif-
ferent shuffle/input ratios. Fig. 9 shows the cross point versus
the shuffle/input ratio for Grep. We see that as the shuffle/
input ratio increases, the cross point also increases. Grep can
achieve more benefits from scale-up machines as the shuffle
data size increases, which demonstrates that the shuffle data
size is one of the key factors in platform selection.

3.3 I/O-Intensive Applications

In this section, we measure the performance of a relatively
large data size (80 GB). Figs. 10a and 11a show the normal-
ized execution time of TestDFSIO reading/writing 80 GB
data versus different number of files, respectively. In these
reading/writing tests, the size of each file is equal to

80GB
the number of files. More reading/writing files means more I/O
operations and vice versa. We see that when the number of
files is large, the performance of I/O-intensive applications
(both read and write) is better on scale-out machines than on
scale-up machines, no matter if they use HDFS or OFS. For
HDFS, the I/O rate of local disks is similar on both scale-up
and scale-out machines. However, scale-out machines
read/write data from/to twelve datanodes simultaneously,
while scale-up machines read/write data from/to only two
datanodes. Therefore, scale-up machines read/write to
fewer disks in parallel, which limits their performance. As to
OFS, it allows CPU to build up multiple communications
with remote storage servers simultaneously and hence

Fig. 9. Cross point versus shuffle/input ratio.
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read/write files in parallel. As a result, the scale-out
machines that have more CPU cores can read/write more
files from/to OFS at the same time. On the other hand, since
the scale-up machines have fewer CPU cores, they build up
fewer communications with OFS and hence read/write
fewer files from/to OFS. Therefore, for both HDFS and OFS,
the scale-out cluster outperforms the scale-up cluster.

When the number of files is small, the performance is
similar on scale-up machines and scale-out machines. This
is because when there are only a small number of files, both
scale-up and scale-out machines read/write files from/to
only a small number of disk devices simultaneously, which
cannot take advantage of the larger number of disk devices
in the scale-out machines. In this case, the factor that affects
the performance is mainly the disk rate. Since the disk rate
is similar on the scale-up and scale-out machines, no matter
if they use HDFS or OFS, the execution times on scale-up
and scale-out machines are similar to each other.

Figs. 10b, 10c, and 10d and Figs. 11b, 11c, and 11d show
the map, shuffle and reduce phase durations of the write
test and the read test of 80 GB data, respectively. we see that
in both the write and read tests, the map phase duration
exhibits a similar performance trends as the execution time.
The shuffle and reduce phase durations of both tests are
quite small (< 8 s), and hence they exhibit no specific rela-
tionship. Comparing OFS and HDFS in the scale-up and
scale-out clusters, the map phase duration is shorter on OFS
than on HDFS for reading/writing 80 GB. Since the shuffle
and reduce phase durations are very small, they are not
affected by using either OFS or HDFS.

3.4 CPU-Intensive Applications

Fig. 12a shows the execution time of PiEstimator versus the
number of sample points. PiEstimator has 80 mappers in
this experiment. Note that as the number of sample points
increases, there are more calculations in the experiments

because the application needs to calculate the location of
each point to determine whether it is in the unit circle or
not, which results in an increase of the execution time of
each mapper. Moreover, as the number of sample points
increases, each mapper needs to process an input file size
ranging from (2-20,000) KB.

When the number of sample points is small (105-107) (i.e.,
each mapper conducts fewer computations and can be com-
pleted in a shorter time), we see that the scale-up machines
outperform the scale-out machines. However, when the
number of sample points is large (> 107) (i.e., each mapper
conductsmore computations and requiresmore time to com-
plete), we see that the scale-outmachines perform better than
the scale-upmachines. Although the scale-outmachines ben-
efit from more CPU cores to handle the mappers, the scale-
up machines still outperform the scale-out machines when
the number of sample points is small. This is because of the
L1 cache size difference of CPUs on the scale-up and scale-
out machines. When the number of sample points is small,
the input data size (2-200 KB) is as small as the CPU L1 cache
size and hence the CPUs can process all the data within the
fastest cache. When all the data is placed in L1 cache, the
CPUs on scale-up machines can be fully utilized. Therefore,
the full utilization of CPUs on scale-up machines compen-
sates the disadvantage of fewer CPU cores. When the
amount of computations is large, the input data size is much
larger than the L1 cache size, which means that CPU cannot
maintain the fastest speed, resulting in lower performance.
Then, the disadvantage of fewer map slots on scale-up
machines cannot be compensated. As a result, the execution
time on scale-up machines is higher than on scale-out
machineswhen the amount of computations is large.

Comparing the performance of OFS and HDFS, we see
that OFS always performs worse than HDFS. This is because
each mapper handles a small file size in PiEstimator. As we

Fig. 10. Measurement results of I/O-intensive write test (80 GB) of TestDFSIO.

Fig. 11. Measurement results of I/O-intensive read test (80 GB) of TestDFSIO.

Fig. 12. Measurement results of CPU-intensive jobs of PiEstimator.
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mentioned previously, when the input data size is small, the
network latency is non-negligible in OFS. In contrast, HDFS
benefits from high data locality and avoids the network
latency. Therefore, HDFS outperforms OFS for small input
data sizes.

Figs. 12b, 12c, and 12d show the map, shuffle and reduce
phase durations of PiEstimator, respectively. Since the map
phase of PiEstimator completes the majority of the work in
the jobs (determining whether the sample points are in the
unit circle or not), while the shuffle phase only collects the
statistics and the reduce phase simply derives Pi from the
map results, we see that the map phase duration exhibits a
similar performance trend as the execution time. The shuffle
and reduce phase durations of PiEstimator are quite small
(< 5 s), and they exhibit no specific relationships on either
scale-up or scale-out machines. Comparing OFS and HDFS,
OFS leads to 50� 80 percent longer map phase duration.
This is caused by the non-negligible network latency for
processing a small data size. As to the shuffle and reduce
phases, since their durations are very small, whether using
OFS or HDFS does not affect the durations of these two
phases much.

Fig. 13a shows the normalized execution time of
MM versus different number of mappers. Note that more
mappers means that the matrix’s size is larger. When the
number of mappers is small (1-16), we see that scale-up
machines perform better because of their better CPUs as
indicated previously. When the number of mappers is large
(> 16), scale-out machines perform better since there are
fewer map slots on scale-up machines and hence more task
waves. In spite of the better CPU on scale-up machines,
the performance is degraded because of the more task
waves of MM.

Figs. 13b, 13c, and 13d show the map, shuffle, and reduce
phase durations of MM versus the number of mappers. We
see that the map phase duration has similar results as the
execution time because the majority of the work of MM is
completed in the map phase. The shuffle phase duration is
shorter on scale-up machines than on scale-out machines
because the scale-up machines handle shuffle data more
quickly as explained previously for the data-intensive jobs.
The reduce phase of MM aggregates the results generated
in map phase. As the size of matrix (hence the number of
mappers) increases, the output data size of MM becomes
larger. We see that when the number of mappers is large,
the reduce phase duration on scale-out machines becomes
smaller because the scale-out machines can write the output
data to more disk devices simultaneously, as explained pre-
viously for the I/O-intensive jobs. When the number of
mappers is small, we see that the reduce phase duration is
similar on the scale-up and scale-out clusters. This is
because the output data size is small and hence it can be

written in a few blocks, which cannot take advantage of the
large number of disk devices of the scale-out machines.

Comparing OFS and HDFS for MM, when the number
of mappers is small, it is better to use HDFS. On the con-
trary, as the number of mappers increases, it becomes
better to use OFS rather than HDFS. The reason is that
OFS can provide more powerful I/O performance than
HDFS, as explained for the data-intensive applications
previously. However, when the input data size is small,
the network latency is non-negligible and degrades the
performance of OFS.

4 DISCUSSIONS

In this section, we first summarize the measurement results
and analysis in Section 3. Then we discuss the potential
implications of our measurement results on guiding the
users who would like to configure Hadoop in the cloud
environments.

4.1 Summary of Results

We can make the following conclusions for data-intensive,
CPU-intensive and I/O-intensive applications.
Data-Intensive Applications

(1) When the input data size is small, the performance
relationship is up-HDFS>up-OFS> out-HDFS> out-OFS.

(2) When the input data size is large, the performance of
applications with a small output data size (e.g., Wordcount
and Grep) follows out-OFS> out-HDFS>up-OFS>up-
HDFS, while the performance of applications with a large
output data size (e.g., Terasort) follows out-OFS>up-
OFS> out-HDFS>up-HDFS.
I/O-Intensive Applications

(1) When the number of reading/writing files is small,
the performance relationship is up-OFS> out-OFS>up-
HDFS > out-HDFS.

(2) When the number of reading/writing files is large
and the total file size is large (e.g., 80 GB), the performance
relationship is out-OFS>up-OFS> out-HDFS>up-HDFS.
CPU-Intensive Applications

(1) When both the amount of computations and the input
file size are small, the performance relationship is up-HDFS
> out-HDFS > up-OFS> out-OFS.

(2) When both the amount of computations and the input
file size are large (e.g.,MM), the performance relationship is
out-OFS> out-HDFS>up-OFS>up-HDFS. On the other
hand, when the amount of computations is large but the
input file size is small (e.g., PiEstimator), the performance
relationship is out-HDFS>up-HDFS> out-OFS>up-OFS.

Therefore, for a specific type of applications, users can
determine which platform should be use to execute the
applications to achieve the best performance. For example,

Fig. 13. Measurement results of CPU-intensive jobs ofMM.

LI AND SHEN: MEASURING SCALE-UP AND SCALE-OUT HADOOPWITH REMOTE AND LOCAL FILE SYSTEMS AND... 3209



when a data-intensive job with input data size 100 GB is
submitted, based on our conclusions, the job should run on
the out-OFS platform. We expect that our measurement
results can help users to select the most appropriate plat-
forms for different applications with different characteris-
tics on HPC clusters.

4.2 The Guidance of Hadoop Configurations in
Cloud Environments

Although the the performance measurements in our paper
were conducted on the Hadoop configurations on a HPC
cluster, our performance measurement results may also
provide guidance for the users who would like to configure
Hadoop in the cloud environments.

Take Amazon EC2 [2] as an example. Users are able to
configure their Hadoop MapReduce clusters with different
types of instances on Amazon EC2. Our performance mea-
surement results can first guide the users on how to select
the instances for their Hadoop MapReduce cluster for better
performance based on the workloads they have. For exam-
ple, if the workloads are data-intensive and most of the jobs
in the workloads have large input data size, it is better for
them to select a bunch of scale-out machines. For some
CPU-intensive workloads with small input data size, select-
ing several scale-up instances instead of many scale-out
instances may be a better choice.

Another guidance of our paper is on the file system con-
figuration of Hadoop. We can guide the users on whether
Hadoop with HDFS or Hadoop with remote file system can
provide better performance. Data is generally stored in
Amazon Simple Storage Service (Amazon S3) [3], which is a
highly-scalable remote storage. In addition to Amazon S3,
each instance on Amazon EC2 also comes with a storage.
However, the storage on the instances is small, which may
not be suitable for large-size applications. Besides, in the
cloud environment, users need to first transfer the data
from Amazon S3 to the storage on each instance, which is
costly and takes time. In this paper, our performance mea-
surement results show that the users may not need to use
the traditional Hadoop with HDFS configuration. For exam-
ple, users may achieve better performance on their Hadoop
clusters by directly configuring Hadoop with S3 for work-
loads that are data-intensive and have large input data size.
For some CPU-intensive workloads with small input data
size, configuring the traditional Hadoop with HDFS may be
a better choice. We leave the exploration of configuring
Hadoop with remote storage in cloud environments as the
future work.

5 PERFORMANCE PREDICTION MODEL FOR BEST

PLATFORM SELECTION

In this section, we aim to develop a performance prediction
model to predict the performance of different applications
based on their characteristics, which helps users select the
best platforms for their applications.

Recall in Section 2 that a MapReduce job consists of
map, shuffle, and reduce phases. In this section, in order
to predict the performance, we revisit the basic principle
of MapReduce. First, we would like to elaborate the factors
that impact the performance of a MapReduce job (i.e., the

job execution time). Then we analyze the impacts from dif-
ferent machines (i.e., scale-up and scale-out machines) and
different storages (i.e., HDFS and OFS) on the job execu-
tion time.

5.1 Proposed Prediction Model

The execution time of a MapReduce job is impacted by the
time duration of the five steps in Section 2.5, as shown in
Fig. 4. Due to the parallel feature of MapReduce, shuffle
phase runs highly overlap with map phase. Therefore, Step
3 only contributes part of its time duration to the job execu-
tion time.

Fig. 4 indicates which parts the four metrics (i.e., execu-
tion time, map phase duration, shuffle phase duration and
reduce phase duration in Section 3) represent. We see that
the shuffle phase duration is actually slightly different from
the time duration of Step 3. Let us denote MPD, SPD, and
RPD as the map phase duration, shuffle phase duration,
and reduce phase duration, respectively. We can express
the job execution time ET as follows,

ET ¼ MPDþ SPDþRPD: (1)

Let us denote tr, tmap, tshu, tred, tw as the time durations of
input data reading, execution of map tasks, shuffle data
transferring, execution of reduce tasks, and output data
writing, respectively. A simple “rule-of-thumb” [24], [25],
[38], [44] states that the time duration of each step is propor-
tional to the amount of processed data. Let us denote the
input data size, shuffle data size, and output data size as IS,
SS, and OS, respectively. Suppose the job has M map tasks
and R reduce tasks. Then, based on the factors that affect
each part, we can derive the time duration of each step as
follows,

tr ¼ a � IS
M

þ d1;

tshu ¼ p � SS;
tw ¼ b �OS

R
þ d2;

(2)

where a and b are the speed coefficients of the disk I/O. d1
and d2 are constants, which could be the network setup
delay for remote file transfer. p is the speed coefficient of the
network. The time durations of Steps 2 and 4 are given by

tmap ¼ a � IS
M

;

tred ¼ b � SS
R

;

(3)

where a and b are the coefficients that reflect the speed of
each node to process the data. As mentioned above, to gen-
eralize the model for different jobs, we can approximately
convert a and b to shuffle data size. Therefore, we have

tmap ¼ d � SS
M

� IS
M

;

tred ¼ u �OS

R
� SS
R

;

(4)

where d and u are the speed coefficients of each node to pro-
cess the data.
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In additional to the data size, we also need to consider
the number of waves (mentioned in Section 3.1) to estimate
the job execution time [24]. Suppose the entire cluster has N
machines, each of which contains m map slots and r reduce
slots. Therefore, the map tasks run in d M

N�me waves, while
the reduce tasks run in d R

N�re waves. We then can derive the
job execution time ET as follows,

ET ¼ MPDþ SPDþRPD

¼ ðtr þ tmapÞ �
�

M

N �m
�
þ h � tshu þ ðtred þ twÞ �

�
R

N � r
�
;

(5)

where h is the coefficients that describes how much time
duration Step 3 contributes to the execution time. Substitut-
ing Equations (2) and (4) into (5), we have the execution
time ET prediction model as follows,

ET ¼
�

M

N �m
�
� a � IS

M
þ d1 þ d � SS

M
� IS
M

� �

þ h � p � SS þ
�

R

N � r
�
� u �OS

R
� SS
R

þ b �OS

R
þ d2

� �
:

(6)

Now let us analyze the prediction model in the above. In
a given cluster, the number of machines (i.e., N), the num-
ber map and reduce slots (i.e., m and r) are constant. For a
given job with certain characteristics running on this cluster,
IS, SS, OS, M, and R are all known parameters. Therefore,
in Equation (6), the unknown coefficients are actually d1, d2,
d; u, h, p, a and b. Notice that different platforms result in
different sets of coefficients. To get the coefficients for differ-
ent platforms, we can use linear regression [7] to train the
model.

Next, we briefly discuss howdifferentmachines (i.e., scale-
up and scale-out machines) and different storages (i.e., HDFS
andOFS) impact the coefficients in the predictionmodel.

Scale-up machines and scale-out machines. One difference
between scale-up machines and scale-out machines is the
difference of CPU and memory capacity. This difference
between different machines certainly results in different d
and u. As scale-up machines have more powerful CPU and
memory, we would expect that with scale-up machines, d
and u are smaller.

Besides, due to the memory and network configuration
differences, scale-up machines and scale-out machines also
lead to different h and p. Similarly, it is expected to have
smaller h and pwith scale-up machines.

Moreover, since the scale-up machines and scale-out
machines have different number of CPU cores, the number
of map and reduce slots m and r are different on different
machines.
HDFS and OFS. As we stated above in Section 2.5, the file
system affects the speed of input data reading and the out-
put data writing. Therefore, a and b are impacted by the
selection of HDFS and OFS. From the measurement results
in Section 3, it is expected that with OFS, a and b are
smaller.

In summary, we present a performance prediction model
to help users select their best platforms based on the job char-
acteristics. Specifically, we derive a simple linear model

based on the job characteristics to predict the performance.
In this model, we leverage two widely used assumptions in
many previous studies. The first assumption is that the time
duration of each step is proportional to the amount of proc-
essed data [24], [25], [38], [44]. The second assumption is that
the tasks tends to finish in waves [25], [27], [46]. Several pre-
vious studies have presented more complex performance
models, such as Starfish [22], MRPerf [42], iTuned [20] and
the analytic model in [34]. However, in this paper, our goal is
not to accurately predict the job execution time of each job.
Instead, we aim to propose a simple mathematical model to
let users quickly estimate the performance difference of their
jobs between different platforms and select the best plat-
forms. In other words, we expect to propose a model to find
out which platforms are the best for different jobs.

5.2 Performance Evaluation

In this section, we used the Facebook synthesized workload
FB-2009 [18] to evaluate the performance of our prediction
model, focusing on whether users can utilize our prediction
model to select the best platforms. FB-2009 is a workload
trace that records the characteristics of jobs running in pro-
duction clusters. The trace contains the job characteristics
such as job submission time, input data size, shuffle data
size, and output data size. According to previous studies
[17], [18], The jobs in FB-2009 are very diverse and have
input data size ranging from KB to TB, which ensures suffi-
cient datasets for every platform to evaluate the perfor-
mance of our prediction model.

Based on FB-2009, we generated the jobs correspondingly
[18] and reran all the jobs in FB-2009 one by one on each of
the four platforms. The configurations of the four platforms
are the same as the configurations in Section 2. After run-
ning the jobs, we collected the Hadoop logs for all the jobs,
which include the job execution time, the number of map
and reduce tasks, and input, shuffle and output data sizes.
We used the logs as the datasets and the features (job
characteristics) of every job include d M

N�me � IS
M, d M

N�me,
d M
N�me � SS

M � IS
M, SS, d R

N�re � OS
R � SS

R , d R
N�re � OS

R , and d R
N�re, as

shown in Equation (6).
We can formulate the platform selection problem as two

machine learning problems, regression and classification [39].
In regression, we leverage the model in Equation (6) to

predict the execution times of the application on every plat-
form and then select the one with the smallest execution
time. Specifically, we utilize the Ridge Regression (RR) [23],
which is a widely used linear regression model with regu-
larization when the features have high collinearity. The
ridge regression uses a parameter � to control the regulari-
zation to avoid overfitting problem. The ridge regression is
used when the features have high collinearity. In this case,
d M
N�me � IS

M and d M
N�me are highly collinear, as IS

M represents the
block size of the file systems (i.e., 128 MB). It is worth men-
tioning that each � is corresponding to one linear model. To
choose the best � value (the best model), we used 10-fold-
cross-validation approach [6] to train the FB-2009 trace. Spe-
cifically, we first randomly divided the FB-2009 trace into 10
folds, among which 9 folds are the training dataset and the
remaining 1 fold is the testing dataset. For a �, we repeated
this process for 10 times, with each fold of data used once as
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the testing dataset. Each time we computed the mean
square error (MSE) [8] of the trained model on the one fold
of testing dataset (in total 10 MSE results for 10 folds). We
then took the average of 10 MSEs as the MSE of the � and
we chose the best � that gives the smallest MSE. The regu-
larization parameter � for each platform are listed in Table 2.
We then applied the trained model for each platform on the
FB-2009 trace. We computed the execution time of each job
on each platform and selected the platform with the small-
est execution time. The prediction accuracy of the best plat-
form is 89.23 percent.

In classification, instead of using Equation (6) to calculate
the execution time, we use the equation as a reference to
imply that what features significantly affect the final perfor-
mance of an application and hence the platform selection.
Then, we use the Support Vector Machine (SVM) classifier
with the nonlinear RBF kernel [26], which takes the features
of each application in Equation (6) as inputs and predicts
which class (i.e., which platform) the application should
run on. The RBF model have two parameters g and C to
control the regularization to avoid overfitting problem. As
the RR, we use the 10-fold-cross-validation approach as
introduced above to select the best g and C with the highest
prediction accuracy. Using SVM, we can get a prediction
accuracy of 94.16 percent, which is higher than the predic-
tion accuracy in the regression model.

Further, we applied the trained models to the measure-
ment results in Section 3 to see how the models perform
and whether the models overfit the FB-2009 dataset. Fig. 14
shows the accuracy of our models in selecting the best plat-
forms for different applications. We see from the figure that
Wordcount, Grep, Terasort, TestDFSIO, MM and TCJ all
achieve high accuracies in selecting the best platforms
(more than 87 percent using RR and more than 89 percent
using SVM), while the CPU-intensive application PiEstima-
tor only achieves an accuracy around 70 percent. This is
because of the current artifact of OFS—when transferring
extremely small files (e.g., smaller than 10 KB), OFS suffers
from abnormal latency, as explained in Section 3.4.

6 RELATED WORK

File System. MapReduce [19] is a popular framework that
performs parallel computations on big data. Many HPC
sites [1] have extended their clusters to support Hadoop
MapReduce. File systems are an essential component in the
MapReduce and HPC clusters. Tantisiriroj et al. [41] inte-
grated PVFS into Hadoop and compared its performance
with HDFS. Other works [11], [13] successfully implement
HPC file systems (GPFS and Lustre) in Hadoop. Meza et al.
[35] provides a large scale study of flash memory based
solid state drives (SSD) in data center. Chen et al. [16]

evaluated the performance of network file system version 4
with different features. Our work is different from the above
work in that we combine HDFS and OFS with scale-up and
scale-out machines and measure the application perfor-
mance on different platforms in order to provide guidance
on selecting the most appropriate platform to run a job
based on its characteristics.

Workload Characterization. In order to improve the perfor-
mance of MapReduce clusters, characterizing the workload
features is important since cluster provisioning, configuring
and managing is essential for a cluster. Studying the work-
loads can provide general insights about the performance of
clusters. Chen et al. [17] characterized new MapReduce
workloads, which are driven in part by interactive analysis
and with heavy use of query-like programming frameworks
such as Hive on top of MapReduce. Elmeleegy [21] studied
the workloads from Yahoo! Hadoop cluster and revealed
that the majority of jobs are short and have only small num-
ber of tasks. Ren et al. [37] conducted a case study of the
jobs and tasks of the workload from a commodity Hadoop
cluster Taobao. Kavulya et al. [27] analyzed MapReduce
logs from the M45 supercomputing cluster. Appuswamy
et al. [14] measured the performance of a set of representa-
tive Hadoop applications on scale-up and scale-out
machines. All of these works provide guidance on how to
characterize different applications. Our work is different
from the above works since we configure scale-up and
scale-out machines for Hadoop with HDFS and a remote
file system and measure the performance difference among
all these platforms. From the results, we can select the best
platform for different jobs with different characteristics.

Scale-Up or Scale-Out. Whether scale-up or scale-out
architecture is not only an attracted research area in MapRe-
duce, but also exists in some other research ares. GraphChi
[29], a work focusing on graph computations, advocates
processing big data in a single machine. Michael et al. [36]
investigated scale-up versus scale-out in an emerging
search application. However, they found that the scale-out
solutions provide better price/performance ratio, although
at the cost of increasing management complexity.

7 CONCLUSION

In this paper, we have conducted performance measure-
ment study of data-intensive, I/O-intensive and CPU-
intensive applications on four HPC-based Hadoop plat-
forms: scale-up cluster with OFS, scale-up cluster with
HDFS, scale-out cluster with OFS and scale-out cluster with

TABLE 2
Coefficients of Different Platforms

Platforms �

up-OFS 1.00
up-HDFS 5e10
out-OFS 93,690.87
out-HDFS 5e10

Fig. 14. Prediction accuracy in selecting the best platforms for different
applications.

3212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 11, NOVEMBER 2017



HDFS. We have conducted a thorough analysis on the mea-
surement results and identified the best platform for each
type of applications with certain characteristics, which pro-
vides a guidance on selecting platforms to run different
applications. We confirm that replacing HDFS with OFS for
Hadoop is feasible and we found that OFS outperforms
HDFS when an application processes a large data size. Also,
an application processing a small data size should be con-
sidered to be executed on the scale-up cluster. We expect
that our measurement results can help users to select the
most appropriate platforms for different applications with
different characteristics. We also propose a performance
prediction model to help users select the best platforms for
different applications. Our evaluation using a Facebook
workload trace demonstrates the effectiveness of our pre-
diction model. Additionally, our results can also provide
potential guidance on instance selection and file system
selection for the users who would like to configure Hadoop
in the cloud environments that provide similar file system
architectures as HPC cluster. In the future, we plan to study
the in-memory computing systems such as Spark on HPC
clusters. Moreover, based on the conclusions in this paper,
we plan to develop an adaptive hybrid platform that con-
tains both scale-up and scale-out machines, and HDFS and
OFS. It can automatically determine the best platform for a
given application with certain characteristics.
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