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Abstract—In large-scale computing clusters, when the server storing a task’s requested data does not have sufficient computing
capacity for the task, current job schedulers either schedule the task to the closest server and transmit to it the requested data, or
let the task wait until the server has sufficient computing capacity. The former solution generates network load while the latter solution
increases task delay. To handle this problem, load balancing methods are needed to reduce the number of overloaded servers due to
computing workloads. However, current load balancing methods do not aim to balance the computing load for the long term. Through
trace analysis, we demonstrate the diversity of computing workloads of different tasks and the necessity of balancing the computing
workloads among servers. Then, we propose a cost-efficient Computing load Aware and Long-View load balancing approach
(CALV ). CALV is novel in that it achieves long-term computing load balance by migrating out an overloaded server data blocks
contributing more computing workloads when the server is more overloaded and contribute less computing workloads when the server
is more underloaded at different epochs during a time period. Based upon the task schedules, we further propose a task reassignment
algorithm that reassigns tasks from an overloaded server to other data servers of the tasks to make it non-overloaded before
CALV is conducted. The above methods are for the tasks whose submission times and execution latencies can be predicted. To handle
unexpected tasks or insufficiently accurate predictions, we propose a dynamic load balancing method, in which an overloaded server
dynamically redirects tasks to other data servers of the tasks, or replicates the tasks’ requested data to other servers and redirects
the tasks to those servers in order to become non-overloaded. Finally, we propose a proximity-aware tree based distributed load
balancing method to reduce the reallocation cost and improve the scalability of CALV. Trace-driven experiments in simulation and a
real computing cluster show that CALV outperforms other methods in terms of balancing the computing workloads and cost efficiency.
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1 INTRODUCTION
Large-scale computing-based storage systems, such as
GFS [1] and HDFS [2], have been widely used to serve
data-intensive computing frameworks (e.g., MapReduce [3])
in computing clusters to concurrently support a variety of
data-intensive applications (e.g., search indexing, recom-
mendation systems and scientific computation [4]). Data-
intensive applications have a large amount of input data
and computing workloads. Sharing a cluster infrastructure
among different applications facilitates data sharing among
the applications and also enhances the resource utilization
of the cluster, which saves the capital cost of building
separate clusters for each kind of applications. However, the
applications suffer from unpredictable performance varia-
tions [3] due to the resource multiplexing between them.

Current computing clusters depend on job schedulers [2,
5, 4] to improve system efficiency such as data locality
and task delay. Preserving “data locality” means putting
computing workloads, such as mapper tasks in MapRe-
duce [3], with their requested data. When a task’s data
servers (i.e., the servers storing the task’s requested data) do
not have sufficient computing capacities to host this task, it
is allocated to the closest server with sufficient computing
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capacity [2, 5]. However, this method cannot preserve data
locality because it requires data transmission from the task’s
data server to its allocated server. In order to preserve the
data locality, the Delay scheduler [4] postpones running a
task until its data server has sufficient computing capacity,
which generates an extra delay for task execution. Therefore,
job schedulers cannot preserve data locality exclusively
without causing task delay. To improve system efficiency
with data locality preservation and low task delay, the
cooperation between the job scheduler and the load balancer
is critical. When a server is overloaded by its computing
workloads, it moves some data blocks to another server to
release the computing workloads of tasks targeting these
data blocks. However, most previously proposed load bal-
ancing methods [2, 6–16] for cluster storage systems do not
consider the computing workload, which is the bottleneck
in data-intensive applications. Though the CDRM [17] load
balancing method considers computing workload, it does
not balance the computing load for the long term. It aims
to achieve the load balanced state at the time of executing
the load balancing method rather than for the long term.
As a result, a server may still become overloaded before the
next load balancing execution. One solution for this problem
is to set a very small time interval for the periodical load
balancing execution, which leads to very high overhead.
Therefore, it is critical to balance the computing workloads
for the long term.

Further, the load balancing operation itself must be cost-
efficient and scalable. There are tens of thousands of servers
and billions of data blocks in a commercial computing
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cluster today [18], and the scale increases rapidly over time.
A load balancer needs to keep track of the workload for
each data block [11, 13] and schedules “data reallocation”
among servers. Also, migrating many data blocks within a
short time period in reallocation generates a high network
peak load in the storage system. To avoid this problem,
a load balancer should reduce the number of data blocks
being migrated at the same time. Therefore, designing a
computing load aware load balancing method that meets
the above requirements in a cluster storage system is not
trivial.

In this paper, we first analyze a Facebook Hadoop cluster
trace [18, 2, 19], which trace is a typical MapReduce trace
with many jobs concurrently running on a large storage
cluster. It is widely used to analyze the clusters comput-
ing workloads [20–23], which shows that i) the computing
workloads of tasks are heterogenous, ii) there are a large
number of server overloads due to insufficient computing
capacities, and iii) the server overloads either break data
locality or delay task execution. Therefore, it is important
to consider computing workloads in load balancing. For
this purpose, we propose a Computing load Aware and
Long-View load balancing method (CALV) with high cost-
efficiency and scalability in a cluster storage system. CALV
is designed for a storage cluster with jobs concurrently
running on it for a long time, so that the data locality
and task delay are important issues for tasks competing
resources mutually. It consists of the following methods.

Coefficient-based data reallocation. An overloaded
server is overloaded at some epochs but may be under-
loaded at some other epochs in a time period. To achieve
long-term load balance during the time period, we define
a coefficient for data blocks in an overloaded server to rep-
resent their priorities to be reallocated. Specifically, higher
coefficients are assigned to data blocks that contribute more
computing workloads when the server is more overloaded
and contribute less computing workloads when the server is
more underloaded at different epochs during a time period.

Lazy data block transmission. By selecting a time to
migrate a data block from source server to the destination
server in the data allocation schedule, this method avoids
high network peak load and improves the load balanced
state.

Enhancement methods for CALV. Task reassignment al-
gorithm; It reassigns tasks from an overloaded server to
other data servers of the tasks to make it non-overloaded
before CALV is conducted. Dynamic load balancing method;
An overloaded server dynamically reallocates tasks to other
data servers of the tasks, or replicates the tasks’ requested
data to other servers and redirects the tasks to those servers
in order to become non-overloaded. Proximity-aware tree
based distributed load balancing. It builds a tree by connecting
proximity-close servers and conducts data block migrations
between proximity-close servers in the bottom-up manner
along the tree in order to reduce the reallocation cost and
improve the scalability of CALV.

The coefficient-based data reallocation method are for
the tasks whose submission times and execution latencies
can be pre-known. The dynamic load balancing method
handles unexpected tasks or insufficiently accurate predic-
tions.

TABLE 1: Notations.

si server i Cc
si

si’s computing capacity
Dsi the set of data blocks dj data block j

stored in si
ti task i ek time epoch k in T
u
si
ek si’s unbalanced Cc

ti
ti’s required amount

workload at ek of computing resource
esti ti’s submission time efti ti’s finishing time

L
dj
ek computing workloads L

si
ek computing workloads

targeting dj during ek on si during ek

Trace-driven experiments in simulation and a real cluster
show the effectiveness of CALV in balancing the computing
workloads and its high cost-efficiency. CALV is the first
work that balances the computing workloads for the long
term among servers by reallocating data blocks among
them. It is suitable in a scenario in which a large number
of jobs are submitted periodically [24]. The rest of this paper
is organized as follows. Section 2 presents the preliminaries
of the load balancing problem and the trace analysis results.
Section 3 presents the design of CALV and its enhancement
methods in detail. Sections 4 and 5 present the performance
evaluation of CALV in simulation and a real cluster. Section
6 presents the related work. Section 7 concludes this paper
with remarks on our future work.

2 COMPUTING LOAD AWARE LOAD BALANCING
PROBLEM
2.1 Preliminaries
In this section, we present the environment of the cluster
storage system and its load balancing problem. Table 1 lists
the important notations used in this paper. In a cluster
storage system, we use S to denote the set of all servers,
and si to denote the ith server.

We use Cc
si to denote the computing capacity of si repre-

sented by the number of computing slots [2], such as cores
of CPUs. There are a set of files, each of which is split into
several data blocks [2, 11, 8]. We use dj to denote the jth data
block. We then use Dsi to denote the set of all data blocks
stored in si. To enhance data availability, each block has
several replicas [2] stored in different servers. Since we focus
on data-intensive computing applications containing long-
term batch jobs, such as MapReduce jobs [3], the computing
resource instead of I/O resource is the bottleneck of a server.
Thus, we focus on balancing the computing workload in
this paper. To additionally consider the I/O resources, we
can easily add the I/O capacity as constraints in data block
reallocation.

Each data-intensive job, such as a MapReduce job [3], is
constituted of tasks. A task such as a mapper [3], denoted
by ti, processes a data block using a certain computing
resource. A task (or the computing workload of a task) can
be denoted by a 3-tuple as ti =< esti , e

f
ti , C

c
ti >. esti and

efti denote the time epochs during which ti is submitted
and finished, respectively, and Cc

ti denotes the required
amount of computing resource of ti, such as the number
of computing slots in MapReduce. For the tasks that run
periodically in a computing cluster [25, 26] on the same
type of files, we can predict their execution time based
on the historical log. For example, the Hadoop cluster for
Facebook, Yahoo! and Google periodically process terabytes
of the same type of data for advertisement, spam detection
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Fig. 1: Trace data analysis results.
and so on [27]. For a new submitted job without an
execution historical log or a previous job on a different type
of data, we can get its process execution time by profiling
run [25, 28]. We also assume that each task’s submission
time is predictable in advance according to its historical
running records [25] or is indicated in advance. If a task
runs multiple times in a time period, we consider them
as different tasks associated with different running times.
Then, ti =< esti , e

f
ti , C

c
ti > of each task can be predicted.

The data can be short-lived and long-lived [14, 16, 29]
and the predicted execution time by tracking may not be
accurate especially for short-lived data blocks. Also, the
submission times of some jobs may not be pre-known or the
predicted submission times may not be accurate. To han-
dle these problems, we propose a dynamic load balancing
method (Section 3.6).

We use T to denote a time interval for task scheduling
and load balancing, and use ek to denote the kth time epoch
during T . When a task is scheduled to its data server which
does not have enough computing resource for the task, we
call this server overloaded server. The goal of our load
balancing method is to reduce the number of such over-
loaded servers by data reallocation while achieving high
cost-efficiency with low network load, which is measured
by the product of the size of transmitted data and the
transmission path length [30, 31].

2.2 Trace Data Analysis
In this section, we analyze a Facebook Hadoop cluster
trace [18, 2]. It is a 24-hour job running trace that contains
24442 jobs, the submission times of the mapper tasks of
each job, and the input, output and shuffle data size of each
job. The number of tasks of a job varies from 1 to 87307.
Each mapper task uses one computing slot for certain time
to process one data block.

In order to find the running time of each task, we
conducted a profiling run of the jobs in the trace in a
Hadoop cluster with 128MB block size. The number of
tasks of a job can be calculated by dividing its input size by
block size. To determine the type of each job, we randomly
selected a job testing example in Apache Hadoop. The
Hadoop cluster consists of 8 nodes in Palmetto [32], each
of which has 8 cores and 32GB memory. Figure 1(a) shows
the cumulative distribution function (CDF) of the running
time of all mapper tasks. We can see that the running
time of different tasks varies significantly. The running
time of 56.5% tasks are longer than 10s. It indicates that
for different tasks, even though they require the same
amount of computing resources and the same I/O resource
(i.e., use one computing slot and request one 128MB data

block), their computing workloads vary greatly since they
occupy the computing resources for different time periods.
Therefore, simply balancing the number of I/O requests or
the number of tasks targeting data blocks stored in servers
cannot balance their associated computing workloads.
The longer tasks dominant the workload and we need to
balance the workload with a long term view.

Figure 1(b) shows the CDF of the number of concurrently
submitted tasks in the trace. It shows that there are many
tasks submitted concurrently. This implies that the tasks
compete with each other for the computing capacities on
their data servers if their requested data blocks are stored
in the same servers. Therefore, it is important to balance the
computing workloads among servers over time to avoid
server overloads.

Figure 1(c) shows the CDF of the number of concurrently
submitted tasks belonging to different jobs in the trace. It
shows that the tasks from different jobs may compete each
other. Since different jobs have different data processing
procedures, the mapper tasks in a server may generate
different computing workloads. If there are no concurrently
submitted jobs, balancing the data blocks processed by a
job among servers may solve the problem. However, a data
block may still be requested by many different jobs sub-
mitted at different time, therefore, we still need to achieve
a data allocation with data block balancing among servers
for all jobs. Otherwise, data blocks may still be transferred
among servers to achieve the data locks balancing for next
job. Therefore, we still need a load balancer with long-
view computing load balancing to improve the data locality.
Therefore, simply balancing the number of tasks per server
by balancing the number of data blocks processed by these
concurrently submitted tasks [9] cannot solve the problem.

When a task’s data server si does not have sufficient
computing capacity for a task, the job schedulers handle
this case in two ways. The FIFO scheduler [2] allocates
the task to the closest server that has sufficient computing
capacity and the data is transmitted from si to this server,
which generates network load. The Delay [4] scheduler lets
the task wait until si has sufficient computing capacity,
which generates task delay. We then measure the number
of such data transmissions and the task delay to show the
adverse effect of computing workload imbalance.

We simulated 3000 servers as in [18] with 8 computing
slots in each server and 10PB of data [33] randomly dis-
tributed among all servers. We simulated the 24442 jobs [18]
and used the submission time and input/output sizes of
a job in the trace. The requested data is randomly chosen
and the execution time is set to the same time as in our
profiling run. Figure 1(d) shows the CDF of the number
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of data transmissions from a server when it is overloaded
with the FIFO scheduler. We see that more than 50% of all
servers transmit more than 6 data blocks to other servers.
It indicates that the data locality preservation is worsened
due to the server overloads. Figure 1(e) shows the CDF of
the waiting time of all tasks. We see that around 50% of
all tasks wait for more than 16s. It indicates that the tasks
are delayed due to the imbalance of computing workloads
among servers. Figures 1(a) - 1(e) show that the computing
load aware load balancing is very important for improving
data locality and reducing task latency.

3 COMPUTING LOAD AWARE AND LONG-VIEW
LOAD BALANCING

3.1 System Overview of CALV
Motivated by our trace study, we propose a Computing
load Aware Long-View load balancing method (CALV) with
high cost-efficiency in a cluster storage system. Based on
the computing workloads targeting its data blocks at each
epoch (e.g., the number of computing slots in each second),
each server checks if it will become overloaded in the next
T . Each overloaded server selects data blocks to migrate
out to release its excess computing workloads while fully
utilizing its computing capacity over T . It reports the
workloads of these blocks to the load balancer. Each server
also reports to the load balancer its computing workloads
and computing capacity. Then, the load balancer schedules
and conducts data reallocation for the reported data blocks
from the overloaded servers. In previous load balancing
methods, each server reports the information of each data
block to the load balancer. The pre-selection of migration
blocks in CALV reduces the amount of reported data, and
hence reduces the network overhead and the computing
overhead in the load balancer.

One novelty of CALV lies in its coefficient-based data
reallocation that helps to achieve long-term load balance
during T rather than at a time spot. During time period
T , a server may be overloaded in some epochs while
underloaded in other epochs. In an overloaded server, the
data blocks that contribute more computing workloads
when it is more overloaded and contribute less computing
workloads when it is more underloaded at different epochs
during T have higher priorities to migrate out. Thus,
long-term load balance over T can be achieved with a
limited number of data migrations.

CALV also incorporates a lazy data block transmission
method to improve the load balance performance and re-
duce network peak load. Since the source server and des-
tination server of a migration block may be overloaded at
some epochs while non-overloaded at other epochs, the lazy
data block transmission method delays the block migration
until the source server is about to be overloaded due to
the computing workloads targeting this data block. This
way, we can try to avoid the situation that the destination
becomes overloaded by hosting this data block.

3.2 Computing Workload Tracking and Reporting

For long-term load balance, CALV aims to balance the
computing workload at each epoch ek in the next T . In the
previous T , each server predicts the computing workloads

targeting its stored data at each epoch in the next T . The
computing workloads are predicted based on the historical
logs for periodically running tasks and are notified by the
job scheduler for new submitted jobs. To create the historical
log, each server needs to record the workload of each task ti
requesting each of its data blocks at time ek (esti ≤ ek ≤ efti ).
Note that each data block may be updated periodically. The
whole set of the tasks requesting data block dj is denoted
by T ek

dj
. Then, we can get the total workloads towards data

block dj at epoch ek by:
L

dj
ek =

∑
ti∈T

ek
dj

Cc
ti (1)

Recall that the whole set of data blocks stored in server si
is denoted by Dsi . Then, we can get the workloads on si
during epoch ek by:

Lsi
ek =

∑
dj∈Dsi

L
dj
ek (2)

For each server si, at epoch ek ∈ T , if Lsi
ek

> Cc
si , we

regard si as an overloaded server at epoch ek; if Lsi
ek

< Cc
si ,

we regard si as an underloaded server at epoch ek. A
server si is an overloaded server if it is an overloaded
server in at least one epoch in the next T . For the load
balancer to schedule data reallocation, in the previous T ,
each server si reports its workload to the load balancer at
each epoch as Lsi

e1 , L
si
e2 , ..., L

si
en and its computing capacity.

Also, each overloaded server needs to pre-select migration
data blocks to release its excess computing workload and
report the workload of each of these blocks at each epoch as
L
dj
e1 , L

dj
e2 , ..., L

dj
en . The pre-selection increases the scalability

of the load balancer. If the load balancer considers all the
data blocks to achieve load balance, it cannot be scalable
since there are a large amount of data blocks in the system.

3.3 Coefficient-based Data Reallocation
In this section, we first introduce how an overloaded server
pre-selects data blocks to reallocate and then present how
the load balancer schedules the data reallocation.

si
(a) Reduce num. of reported 
data blocks in spatial space

(b) Reduce num. of reported 
data blocks in temporal space

: Computing capacity of the server 

e1 e2 e3
d1

d2

d3

d1

d2
d6

d5

sj

e1 e2 e3d1

d2

d3

d5 d7

d6

d4

sk

e1 e2 e3d1

d2

d3

d2 d3

d2d4

d3

(c) Avoid server underload

Fig. 2: Selection of data block to reallocate.

Rationale of the migration data block selection policy. We
use an example shown in Figure 2 to illustrate the rationale
of our migration data block selection policy. In the figure,
the height of each data block represents the computing
workload targeting this data block during an epoch. For
example, in Figure 2(a), the workloads of data blocks 1
and 2 at epoch e1 and e2 equal to 1 computing slot and
the workload of block 3 at epoch e1 equals to 2 computing
slots (Ld3

e1 = 2). When an overloaded server selects the data
blocks to migrate out, it follows two principles as explained
below.

Each overloaded server should try to reduce the number
of selected data blocks. It not only reduces the size of
information reported to the load balancer hence its network
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load and computing load but also reduces the reallocation
overhead due to fewer block migrations. This objective can
be achieved in both the spatial space and the temporal
space. We define a server’s overloaded epoch, underloaded epoch
and non-overloaded epoch as the epoch in which the server is
overloaded, underloaded and non-overloaded, respectively.
The spatial space considers the workload of each block in
an overloaded epoch. The temporal space considers the
aggregated workload of each block in all overloaded epochs
during T . In the spatial space, for example, in Figure 2(a),
to release the extra 2 slots of workload in e1, d3 (one block)
should be selected rather than both d1 and d2 (two blocks).
In the temporal space, for example, in Figure 2(b), d3 should
be selected to release the excess workload in both e1 and e2.
Selecting any other block in e1 and e2 can only release the
excess load of either e1 or e2. Therefore, the first principle
is that the data blocks contributing more computing workloads at
more overloaded epochs in the spatial space and temporal space
have a higher priority to be selected to reallocate.

Each overloaded server also should try to fully utilize its
computing resources, i.e., reduce the number of its under-
loaded epochs and its underloaded degree. By reallocating a
data block to another server to release the excess load in an
overloaded epoch, a server may become more underloaded
at other epochs. For example, as shown in Figure 2(c),
though reallocating d2 or d3 releases the excess load in
epoch e1, it makes the server more underloaded at epoch e2
or epoch e3, respectively. Therefore, d1 should be reallocated
instead of d2 or d3. Thus, the second principle of data block
selection is that among all data blocks contributing workloads at
an overloaded epoch, the data blocks contributing less workload at
more underloaded epochs have a higher priority to be selected to
reallocate.

In order to jointly consider the above two principles in
migration data block selection, we introduce a load bal-
ancing coefficient for the blocks in an overloaded server to
represent their priorities to be selected to reallocate. For an
overloaded server si at epoch ek, we define its unbalanced
workload at epoch ek as

usi
ek =

{
Lsi

ek − Cc
si if Lsi

ek 6= Cc
si

−c otherwise (3)

where c is a computing capacity unit, such as a computing
slot in MapReduce. We set it to −c instead of 0 when si’s
computing resource is fully utilized in order to set a higher
coefficient for d1 than for d2 and d3 in Figure 2(c) according
to the second principle. Then, we define the load balancing
coefficient of data block dj in server si as:∑

∀ek∈T

usi
ek · L

dj
ek (4)

The blocks with larger coefficients have a higher priority to
reallocate. If usi

ek
> 0 during ek, which indicates that the

server is overloaded, a larger L
dj
ek leads to a larger coef-

ficient. Therefore, it follows the first principle. Otherwise if
usi
ek

< 0, a smaller Ldj
ek leads to a larger coefficient. Therefore,

it follows the second principle.
For an overloaded server, releasing its excess computing

workload is more important than fully utilizing its com-
puting resource in load balancing. Therefore, the migration
blocks should be selected from the blocks that contribute
computing workloads at overloaded epochs within T . We

then introduce a concept called overload contribution that
measures the contribution of a block dj to the overload of
an overloaded server si. It is calculated by

∑
∀ek∈T osiek ·L

dj
ek ,

where osiek = Lsi
ek
− Cc

si if Lsi
ek

> Cc
si and osiek = 0 otherwise.

Next, we introduce the process for an overloaded server
to select data blocks to report to the load balancer to real-
locate. Server si first calculates the overload contribution
of all data blocks stored in si. The server then chooses
the blocks with positive overload contributions. For each
of these blocks, server si calculates its coefficient based
on Formula (4). The server then sorts these data blocks in
a decreasing order of their coefficients. Starting from the
first block in the sorted list, server si selects the blocks
one by one in the top-down manner until it becomes non-
overloaded at each epoch in T . Every time when a block, say
dj , is selected from the sorted list, the computing workload
of si at each epoch ek where dj contributes workload is
updated by Lsi

ek
← Lsi

ek
− L

dj
ek . Note that after reallocating

the data blocks prior to data block dj in the sorted list, the
original overloaded epochs where dj contributes computing
workloads may become non-overloaded epochs. If all of the
original overloaded epochs where dj contributes computing
workloads become non-overloaded epochs, dj is removed
from the sorted list. This block selection process continues
until server si is not overloaded during T . Then, the over-
loaded server si reports each selected data block dj to the
load balancer in the form of Ldj

e1 , L
dj
e2 , ..., L

dj
en .

Data reallocation scheduling at the load balancer. Each
server reports its computing capacity (Cc

si ) and comput-
ing workload at each epoch ek to the load balancer
(Lsi

e1 , L
si
e2 , ..., L

si
en ). The load balancer sorts the servers in the

descending order of
∑

∀ek∈T (C
c
si − Lsi

ek
). It then schedules

reallocating the reported data blocks to other servers that
will not be overloaded or generate the least overload degree
after hosting the blocks. Unlike the previous load balancing
methods, we use all servers instead of underloaded servers
as candidates to reallocate the reported data blocks since
overloaded servers in our method may have underloaded
epochs in T before and during the reallocation scheduling.

We hope to migrate the most loaded block to the least
loaded server in order to quickly achieve load balance.
Thus, the reported blocks are ordered in descending order
of their accumulated workload during T , i.e.,

∑
∀ek∈T L

dj
ek

and the underloaded servers are ordered in descending
order of their accumulated available capacity during T , i.e.,∑

∀ek∈T (C
c
si − Lsi

ek
). Starting from the first data block di in

the sorted block list, the load balancer reallocates it from
its source server si to another server. In the sorted server
list, the load balancer checks each server in the top-down
manner. For each picked server sj , the load balancer first
checks whether it has enough storage capacity of di and
has no replica of di. If yes, the load balancer calculates
the workload of sj if it hosts di at each epoch ek during
T by L

sj
ek ← L

sj
ek + Ldi

ek
. If sj is non-overloaded at each

epoch where di contributes computing workload (i.e., di’s
overload contribution to sj equals to 0), di is scheduled
to be reallocated to sj . If such a server cannot be found
in the sorted server list, the load balancer calculates di’s
overload contribution for each server. It then chooses the
server with the smallest overload contribution as block di’s
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reallocated server. In this way, the load balancer schedules
the reallocation of each block in the sorted block list to a
server and finally completes scheduling the reallocation.

3.4 Lazy Data Block Transmission
The coefficient-based data reallocation method generates a
new data allocation schedule offline. Reallocating the data
blocks right after the reallocation scheduling may generate
tremendous network loads in a short time and also overload
the destination server, which may delay the execution of
user jobs at the beginning of next T . For example, in Fig-
ure 3, in the reallocation schedule, d3 needs to be transmit-
ted from si to sj to release the overload in si. If we transmit
d3 at the beginning of T at e1, sj becomes overloaded at e1.
However, if we wait and transmit d3 at e2, both si and sj
will not be overloaded. Then, the load balancer delays the
transmission of each block from the source server until the
first time that the block contributes to the overload of the
source server.

Si

: Computing capacity 

e1 e2 e3
d1

d3
d1

d2
d1

d2

d3

d1

d2

d3

e4
Sj

e1 e2 e3
d5

d4
d5 d5 d5e4

Fig. 3: Lazy data block transmission.

Below, we introduce how the load balancer determines
the block transmission time for each data block to be real-
located in order to avoid overloading the destination server
and reduce the peak network load. For data reallocation of
each data block, say dk, from server si to server sj , the load
balancer finds their first overloaded epochs where block dk
contributes workload if they host dk, denoted by eosi,dk

and
eosj ,dk

, respectively. If eosi,dk
> eosj ,dk

, it means that si is not
overloaded during data dk’s first several task processes, but
sj may be overloaded if reallocating dk to it during this time
period. The load balancer then calculates the completion
time of the last task targeting dk at sj prior to eosi,dk

, denoted
by efsj ,dk

. Then, the load balancer randomly selects an epoch

within (efsj ,dk
, eosi,dk

) for dk’s reallocation. Take d3 in Fig-
ure 3 for example, we can get eosi,d3

= e3, eosj ,d3
= e1. Since

eosi,d3
> eosj ,d3

and efsj ,dk
= e1, the data can be transmitted

within (e1, e3), which is e2. If eosi,dk
≤ eosj ,dk

, it indicates
that the source server is overloaded before the destination
server becomes overloaded if it stores dk. Then, dk should be
transmitted before eosi,dk

. Thus, the load balancer randomly
selects a time within [e1, e

o
si,dk

) for di’s reallocation.

3.5 Task Reassignment Algorithm

The basic CALV method moves blocks from predicted over-
loaded servers to underloaded servers. Recall that each
block has several replicas. Then, rather than relying on
data reallocation, a task assigned to a predicted overloaded
server can be reassigned to an underloaded data server
of the task (which has a replica of the task’s requested
data block). In this way, overloaded servers can be avoided
without the need of data reallocation, which saves network
overhead. For example, in Figure 4, the tasks requesting
block d3, d4 and d5 originally assigned to server si are

reassigned to server sj . Then, si will not be overloaded and
the resources in sj are fully utilized. Accordingly, we pro-
pose task reassignment method (TR) to complement CALV.
TR requires the cooperation between the job scheduler and
the load balancer. That is, the job scheduler needs to pre-
determine the allocated servers for tasks, and then notifies
the servers of their assigned tasks. Each server predicts its
overload status. If it predicts that it will be overloaded, it
reports to the load balancer its assigned tasks and their
requested data blocks in the form of < ti, bi >. The load
balancer has a view of the data allocation among the servers.
Then, the load balancer can reassign tasks on overloaded
servers to the tasks’ underloaded data servers. After the task
reassignment, it conducts CALV to achieve load balance by
data reallocation.

si
e1 e2 e3

d1

d2
d1

d2
d1

d2

d3

d1

d2 d3

e4
sj

e1 e2 e3
d5

d4
d5 d5 d5e4

Task reassignment

Overloaded at e2 and e3 Underloaded at e2 and e3

d4 d5

Fig. 4: Task reassignment.
During the task reassignment process, for faster load

balance convergence, the load balancer gives more over-
loaded servers (measured by

∑
∀ek∈T (L

si
ek
− Cc

si)) a higher
priority to reassign their tasks out. Also, we aim to move
out as few tasks as possible from an overloaded server si to
make it non-overloaded. Below, we introduce how to find
tasks to reassign based on this principle. First, we find the
epochs that server si is overloaded, combine consecutive
epochs and generate overloaded epoch periods such as
Te = {e1, e2 − e3, e4}. For a single epoch ek, such as e1 and
e4, among the tasks generating workload in epoch ek, the
task with workload no less than and closest to (Lsi

ek
− Cc

si)
has the highest priority to be reassigned. If such a task
does not exist, we order these tasks in descending order
of their workloads and select the tasks in the top-down
manner to reassign until the server is non-overloaded in
epoch ek. In this way, the excess load can be released quickly
and the resources can be more fully utilized. The procedure
to handle a single epoch actually can be generalized to
the procedure of handling combined consecutive epochs
introduced below.

For epoch period ei−ej (e.g., e2−e3), we first find tasks
that maximally cover consecutive epochs during ei − ej but
do not cover the epochs before ei and after ej . The first
condition aims to reduce the number of tasks for reassign-
ment. The latter condition aims to avoid the transfer of tasks
between servers during their running time. Therefore, we
group tasks that cover the same epoch period T ′

e ∈ Te, and
rank the task groups in descending order of the number of
their covered epochs. We pick each task group in the top-
down manner and select tasks to reassign to remove excess
load of server si in this group’s T ′

e. After we remove excess
load of each epoch period T ′

e ∈ Te, server si becomes non-
overloaded. We use Cc

ti,ek
to denote the required amount

of computing resource of ti at epoch ek. To choose tasks
in a group to resign, the task with Cc

ti,ek
≥ (Lsi

ek
− Cc

si)
and min{

∑
ek∈T ′

e
{Cc

ti,ek
− (Lsi

ek
− Cc

si)}} for each epoch
ek ∈ T ′

e has the highest priority to be reassigned to release
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all the excess load in T ′
e of server si. If there is no such

a task, the tasks in the group are ordered in descending
order of workload and are selected in sequence until si is
not overloaded during T ′

e. Reassigning these selected tasks
can release excess load in each overloaded epoch maximally
while fully utilizing the resources in server si during T ′

e.
Then, the selected tasks are reassigned to underloaded

data servers of the tasks during their epoch periods. We use
T ti
e to denote the covered epoch period of task ti. Task ti

that targets data block dj during epoch T ti
e is reassigned to

another server that hosts dj and has sufficient computing
capacity for the task during each epoch ek ∈ T ti

e . Therefore,
we first find the servers that satisfy (Cc

si − Lsi
ek
) ≥ Cc

ti,ek
for each epoch ek ∈ T ti

e . Among these servers, the one with
min{

∑
ek∈T

ti
e
(Cc

si−L
si
ek
)−Cc

ti,ek
} is selected to reassign task

ti. In this way, the selected server will not be overloaded by
hosting task ti while the resources can be fully utilized.

3.6 Dynamic Load Balancing Method
Our proposed methods in the above assume that tasks’
submission times are predictable or pre-indicated. However,
some tasks in the next time interval T may not be pre-
dictable or their submission times are only indicated a few
epochs in advance. In this case, even after the task reassign-
ment algorithm and the CALV algorithm are executed offline
to reach load balance in the next time interval T , some
servers may still become overloaded during the next T . To
avoid this problem, we propose a dynamic load balancing
method (DLB) that is executed during task running time in
interval T .

si
e1 e2 e3

d1

d2

d3

d1

d2
d7

d6

sj
e1 e2 e3

d1

d2
d1

d3
d7

sk
e1 e2 e3

d1

d2
d1

d3'
d7

Assign task

Redirect task

Replicate data
Redirect task

1

2

Overloaded

Underloaded

Underloaded

Fail

Fig. 5: Dynamic Distributed Task Assignment Method
As shown in Figure 5, when a server is overloaded, it

first redirects tasks to other data servers of the tasks that
have sufficient available computing capacity. If it cannot
find such data servers, it replicates the tasks’ requested
data blocks to other servers that have sufficient available
computing capacity and then redirects the tasks to these
servers. In this example, server si becomes overloaded in
epoch e2. Then, since server sj hosts d3 and has available
computing capacity for the task at epoch e2, the task
targeting d3 can be redirected to server sj at epoch e2. If
there is no data server (which hosts d3) of the task that has
sufficient available computing capacity at epoch e2, then a
replica of block d3 is created (d3′ in the figure) at server sk
that has available computing capacity at epoch e2 for the
task, and the task is then redirected to sk.

We can rely on the load balancer to conduct DLB. That
is, each overloaded server reports its assigned tasks and
their targeting blocks to the load balancer (i.e., < ti, bi >),
and the load balancer then conducts the DLB algorithm.
After receiving the notification from the load balancer, the
overloaded server redirects task directly or first replicates
data and then redirects task. In order to reduce the load

on the centralized load balancer, the direct task redirection
algorithm can be executed in a distributed manner. That is,
after executing CALV, the load balancer notifies each server
other replica servers of each of its blocks. Then, when a
server becomes overloaded, it contacts the replica servers
of its blocks to reassign its tasks. The distributed method is
not suitable for task redirection that needs data replication
because it requires each node to always have an updated
global knowledge of the workload schedule in each epoch
in each server.

Each server runs the DLB algorithm when it becomes
overloaded. Since the overload is caused by unexpected
tasks, overloaded server si tries to redirect the unexpected
tasks to other servers in order to keep the original task
assignment schedule as much as possible. Server si ranks
the unexpected tasks in descending order of their workloads
and reassigns the tasks in the top-down manner. For a
picked task ti, it asks each data server of ti whether it has
sufficient available computing capacity to host ti, i.e., satis-
fies (Cc

sj−L
sj
ek) ≥ Cc

ti,ek
for each epoch ek ∈ T ti

e . If server sj
receives positive responses from several servers, it redirects
task ti to the server with min{

∑
ek∈T

ti
e
(Cc

sj−L
sj
ek)−Cc

ti,ek
}.

In this way, the selected server has sufficient computing
capacity to host task ti while its resources are more fully
utilized. If server si becomes non-overloaded after the task
redirection, the DLB process stops. Otherwise, the next task
is picked and the same process is conducted. After all the
tasks are checked, server si conducts data replication and
task redirection.

In the data replication procedure, server sk checks the
remaining unexpected tasks. It reports the first task ti =<
esti , e

f
ti , C

c
ti > to the load balancer. Among the servers that

do not have task ti’s requested block bi, the load balancer
finds the servers that have sufficient computing capacity to
host ti (i.e., satisfy (Cc

sj − L
sj
ek) ≥ Cc

ti,ek
for each epoch

ek ∈ T ti
e ). It then selects the server with min{

∑
ek∈T

ti
e
(Cc

sj−
L
sj
ek)−Cc

ti,ek
} and notifies server si of this selected server sj .

Next, overloaded server si replicates task ti’s requested data
block to sj and redirects ti to sj . Then, server si checks if it
becomes non-overloaded. If yes, it stops redirecting tasks.

3.7 Proximity-Aware Tree based Distributed Load Bal-
ancing
The network load increases when either the size of transmit-
ted data or the transmission path length increases [30, 31].
Therefore, besides reducing the number of data blocks in
reallocation, it is also important to reduce the path length
of data block transmission. Thus, CALV tries to find a
destination server physically close to a source server for
data reallocation. Also, it is important to conduct the load
balancing in a distributed manner in order to release the
computing and network overloads on the load balancer. For
these two purposes, CALV builds a proximity-aware tree
based load balancing infrastructure as shown in Figure 6.
The load balancer knows the topology of the cluster such as
the fat-tree infrastructure [34]. Also, all servers report their
computing capacities to the load balancer. The load balancer
builds a m-nary proximity-aware tree, in which each root
of a sub-tree has m number of children and connected
servers are physically close to each other. First, the load
balancer builds a tree by temporarily regarding one of the
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core routers as the root and all servers as leaves. Next, to
create each sub-tree, the load balancer selects the server with
the largest computing capacity among all m servers inside
the sub-tree to be the root of this sub-tree. The sub-trees are
built in the bottom-up manner and finally the load balancer
itself becomes the root of the entire tree. After the tree is
built, the load balancer notifies all servers of their parents
and children in the tree.

CALV 
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Fig. 6: Proximity-aware tree based distributed load balancing.
In load balancing, each server reports information as

indicated in Section 3.2 to its sub-tree root, which con-
ducts data reallocation as described in Sections 3.3 and 3.4.
Different from the data reallocation scheduling explained
previously, one data block dj is only allocated to a desti-
nation server si with 0 overload contribution (a server is
overloaded due to the workload contributed by dj) from
dj , i.e., si is not overloaded in any epoch with computing
workload towards dj . This is because there may be a server
in other sub-trees that has 0 overload contribution from dj .

After the reallocation scheduling, a root of a sub-tree
may not be able to find destination servers to reallocate
some reported data blocks. Then, the root reports the in-
formation of these data blocks and all servers in its sub-tree
to its parent, which will schedule the reallocation for these
blocks. Thus, the load balancing is conducted in the bottom-
up manner and finally the information of unsolved blocks
and all servers are reported to the load balancer. The load
balancer itself conducts the data reallocation as explained
previously. As a result, the load balancing is conducted in
a distributed manner and the data is transmitted between
physically close servers in data reallocation. The CALV runs
periodically so that the proximity-aware tree can be recon-
structed every time. If the closest server fails, the overloaded
server will continue searching for secondary closest node.

4 TRACE-DRIVEN PERFORMANCE EVALUATION
We conducted trace-driven experiments to evaluate CALV in
comparison with other load balancing and data allocation
methods using the Facebook Hadoop cluster trace [18, 2].
Based on the trace, we simulated 3000 servers in a com-
puting cluster with the typical fat-tree topology [34]. In our
experiments, we varied the number of jobs as x times of
the number of jobs in the trace (i.e., 24442), where x was
increased from 0.5 to 1.5 with a step size of 0.25. As [25, 28],
we set each task’s execution time as its execution time in the
profiling running in Palmetto in Section 2.2. The storage and
computing capacities of each server were set to 12TB [35, 36]
and 8 computing slots [32, 37], respectively. The default size
of a block and the number of replicas were set to 128MB
and 3, respectively [2]. The total size of all blocks was set to
10PB because there are tens of PBs of data in a commercial
cluster such as the Facebook’s cluster [33]. By default, the
requested data block of each task was randomly chosen
from all blocks. To randomly choose a data block from M

(80M) blocks, we generated a random number in the range
of [1,M ], denoted by m. Then, the mth data block is the
randomly chosen block. We set the load balancing execution
time period T to 24 hours and the epoch e to 1 second, and
set c = 1.

We compared CALV with the following data alloca-
tion and load balancing methods: Random [2], Sierra [10],
Ursa [11]. Random randomly allocates data blocks to servers.
Sierra allocates equal number of blocks among servers in
order to balance the computing workload. Ursa allocates
data blocks to servers so that each server has a request rate
targeting its data blocks less than its I/O capacity. In our
experiments, we modified Ursa to achieve an equal request
rate on each server since we simulated a homogenous
environment of servers with equal amount of each type of
resources. We created a Computing load Aware load bal-
ancing method (CA) for comparison. CA uses the average
computing workload per second during load balancing time
period to measure the block load in load balancing, and aims
to balance the average computing workload among servers.
It can represent a modified current computing aware load
balancing method [17]. We chose three typical job schedulers
to assign tasks among servers after load balancing: FIFO [2],
Fair [5] and Delay [4]. FIFO schedules jobs in an increasing
order of their submission times and allocates a task to
the closest server with sufficient computing capacity if its
data server has insufficient computing capacity. Delay delays
the scheduling of a task until one of its data servers has
available computing slots. In Fair, tasks of different jobs
share resource fairly, that is, currently running jobs have
the same average number of computing slots over time. We
use the FIFO scheduler by default. We first allocate data
blocks to servers randomly. After running all the jobs with a
job scheduler, we ran a load balancing method to reallocate
data blocks. Then, we ran the jobs again and measure the
performance. We reported the average performance of each
method from 10 experiments.

4.1 Effectiveness of Load Balancing
4.1.1 Performance of Data Locality with the FIFO and Fair
Schedulers
In the FIFO and Fair schedulers, when a task is allocated to
another server when its data server does not have sufficient
computing capacity, the task’s required data is transmitted
from its data server to its allocated server. We first show
the network load due to such data transmissions, which
is measured by the product of the size of transmitted data
and the transmission path length [30, 31].

Figures 7(a) and 7(b) show the percentage of the
network load of each load balancing method com-
pared to the network load of Random using the FIFO
and Fair schedulers, respectively. The result follows
100%=Random>Sierra>Ursa>CA>CALV. Random allocates
data blocks to all servers randomly without a specific load
balancing operation. Thus, more servers become overloaded
due to computing workloads since they store more data
blocks being processed by tasks simultaneously, leading to
many data transmissions to other servers for processing.
Sierra balances the workload by allocating equal number
of data blocks to servers. However, data blocks may be
processed by different number of tasks and different tasks
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(b) Network load with Fair

Fig. 7: Data locality performance of all methods.
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(b) Network load with Fair

Fig. 8: Data locality performance with skewed data requests.
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(a) Random data request distribu-
tion
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Fig. 9: Performance on task latency with Delay scheduler.
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Fig. 10: Performance on job latency with Delay scheduler.

require different amounts of computing resources. There-
fore, some servers may still become overloaded and need to
transmit data blocks to other servers. Ursa balances the av-
erage number of data requests per unit time among servers
but does not balance the computing workloads among
servers. Therefore, some servers may be overloaded due
to too many tasks processing data blocks. However, since
CA does not aim to achieve long-term load balance, even
though a server’s average computing workload per second
during T does not exceed its computing capacity, there may
be some time epochs during which its computing workload
from concurrently submitted tasks exceeds its computing
capacity. Also, without long-term load balance, load balanc-
ing for tasks’ data servers when they become overloaded
may not quickly offload their excess load, which still makes
the tasks be allocated to other servers and requires data
transfers. Therefore, CA generates larger network load than
CALV, which balances the computing workloads over time
in T among servers.

We then repeated the experiments with skewed data
request distribution on blocks, since the workload usually
are highly skewed to a few data blocks [11]. As [11], we
set the number of task requests for each block using a
truncated power-law distribution with the lower bound as 1
and the shape as 2, respectively. Figures 8(a) and 8(b) show
the percentage of the network load of each load balancing
method compared to the network load of Random with
the FIFO and Fair schedulers, respectively under skewed
data requests. They show that the network load follows
100%=Random>Sierra>Ursa>CA>CALV due to the same
reasons as in Figures 7(a) and 7(b). Figures 8(a) and 8(b)
indicate that CALV achieves higher data locality perfor-
mance and hence saves much more network load than other
methods with skewed requests.

4.1.2 Performance of Task and Job Latency with the Delay
Scheduler

We measured the task latency and job latency that are the
time elapsed from their submission to the end of their
execution. Figures 9(a) and 9(b) show the reduced average
latency per task of all methods compared to Random

using the Delay scheduler. They show that the result follows
0=Random<Sierra<Ursa<CALV. This is because if a method
introduces more server overloads, tasks need to wait for
a longer time until their data servers are available, which
leads to longer average task latency. Therefore, these figures
exhibit the opposite order of all methods compared to
Figures 7 and 8. The figures indicate that CALV generates
the shortest task latency among all the methods. Figure 10
shows the reduced average job latency per job of all meth-
ods. The result follows the same order as Figure 9 due to the
same reasons and shows that CALV generates the shortest
job latency among all the methods.Compared to previous
load balancing methods, CALV is novel in that it achieves
long-term computing load balance. Thus, CALV reduces the
probability that a task’s assigned data server is overloaded
and hence the probability of task re-assignment. As a result,
CALV reduces network load for task re-assignment and task
latency (without task-reassignment in the Delay scheduler).

4.1.3 Effect of the Time Length of Epochs
In this section, we test the effect of the time length of
epochs on the effectiveness and overload of load balancing.
We set the number of jobs as 1.5 times of that in the
trace. Figure 11 shows the network load of CALV and CA,
and the computation time for data reallocation of CALV
with different epoch time lengths using the FIFO and Fair
schedulers, respectively. CALV checks whether a server is
overloaded after each epoch time based on the average
workload per second during the epoch time. Both figures
show that when the epoch length is 1 second and 10 sec-
onds, the network load of CALV is lower than CA due to
the same reasons as in Figure 7. When the epoch length
increases to 100 and 1000 seconds, the network load of CALV
increases and approaches that of CA, while the network
load of CA maintains nearly constant. In CALV, when the
epoch time is short, the load balancer can detect the server
overload more accurately, which generates lower network
load. As the epoch time increases, the accuracy that the load
balancer detects server overload decreases. CA always aims
to balance the computing workload per second during the
load balancing period, so its network load performance is
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not affected by the epoch length. Figure 11(a) and 11(b) also
show that the computation time decreases as the epoch time
increases in CALV. With a longer epoch time, CALV has
fewer epochs to consider in a time period, thus reducing
computation time. The experimental results show that there
is a trade off between the network load and computation
time determined by the epoch time length in CALV.

4.2 Cost-Efficiency of Load Balancing
CALV also has a coefficient-based data reallocation method
to choose as few data blocks as possible to reallocate.
In order to measure the effectiveness of this method, we
measured the performance of CALV compared to CALV-
Max, CALV-Random and CALV-All. In CALV-Max, each
server reports the data blocks with the largest overload
contributions until it is non-overloaded. In CALV-Random,
each server randomly chooses the data blocks with positive
overload contributions until it is non-overloaded. In
CALV-All, each server reports all data blocks with positive
overload contributions.

Figure 12 shows the number of blocks reported to
the load balancer in all methods versus the number of
jobs. The result follows CALV-All>CALV-Random>CALV-
Max≈CALV. CALV-Random selects a part of all data blocks
contributing workloads when the server is overloaded.
Thus, it reports fewer data blocks than CALV-All which
reports all such data blocks. CALV-Max and CALV report the
data blocks with the largest overload contributions and load
balancing coefficient, respectively, which contribute more
computing workloads than other data blocks to server over-
loads. Therefore, CALV and CALV-Max report the smallest
number of data blocks to the load balancer in all methods.
This figure indicates that CALV and CALV-Max are effective
in reducing the number of data blocks reported to the load
balancer, leading to lower network load and computing
overhead on the load balancer than other methods. How-
ever, since CALV chooses data blocks with the additional
consideration of the second principle in Section 3.3 com-
pared to CALV-Max, the computing capacities in source
servers can be more fully utilized after data reallocation
in CALV than in CALV-Max. The coefficient-based data
reallocation method reduces the number of blocks reported
to the load balancer. It also reduces the workload on the
load balancer for load balancing.

4.3 Performance of Lazy Data Transmission
In this section, we present the performance of CALV’s lazy
data transmission method in reducing the peak network
overhead for data reallocation and improving the load
balance performance. Recall that this method can avoid
overloading the destination servers. If a destination server
is overloaded, the task whose data server is this destination

server will be allocated to another server and its required
block needs to be transmitted, which generates network
load. Figure 13 shows the saved percentage of network load
calculated by (nl−nl′)/nl, where nl and nl′ are the network
loads of CALV without and with the lazy transmission
method, respectively. It shows that the lazy transmission
method can save at least 5.1% network load. Without this
method, the destination server may be overloaded earlier
than the source server due to hosting the migrated block.
With lazy transmission, the network load due to such kind
of overloads in the destination servers can be avoided.
This is confirmed by the result of the reduced number of
overloads in Figure 13.

Figure 13 also shows the saved percentage of the peak
number of reallocated blocks during a second within T
of CALV with the lazy data block transmission method
compared to CALV without this method. We see that this
method saves at least 99.95% of the peak number of data
blocks reallocated. Without this method, all data blocks
are reallocated right after the reallocation scheduling. By
arranging the data transmissions at different times, this
method releases the peak network overhead in data reallo-
cation. This figure verifies that the lazy data transmission
method can reduce the peak network overhead for data
reallocation and improve the load balance performance.

4.4 System Overhead
In this section, we measured the computing time
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Fig. 14: System overhead.

of different data allocation
methods in order to show
their system overhead in
computing resource con-
sumption. We also mea-
sured the computing time
used by both servers and
load balancer in CALV
with the proximity-aware
tree based distributed method, denoted by CALV-Dis. Fig-
ure 14 shows the computing time of all methods versus
the number of jobs. It shows that CALV generates more
computing time than other methods. That is because CALV
additionally needs to find the priorities of data blocks to be
reallocated and their destination servers by computing and
comparing the overload contributions. Random generates
the shortest computing time, because it assigns data without
load balancing awareness. We can also see that CALV-
Dis generates similar computing time with other methods
due to its distributed and parallel process, which expedites
the load balancing process. The figure indicates that CALV
generates a slightly more computing time (e.g., 13.4s) for
load balancing with all jobs in the trace [18]. However, with
the proximity-aware tree based distributed load balancing
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method, CALV-Dis generates similar computing time as
other methods.

4.5 Performance of Task Reassignment Algorithm
In this section, we present the performance of the task
reassignment algorithm, denoted by CALV+TR, compared
with CALV. Figures 15(a) and 15(b) show the network
load for data transfers in task running versus the number
of jobs with the FIFO and Fair schedulers, respectively.
They show that CALV+TR can save more network load
than CALV. CALV only migrates data blocks to release the
excess load of the overloaded servers. Some servers may
not have available capacity to host more tasks, so that data
transfers are needed when some tasks cannot be assigned
to their data servers. CALV+TR takes advantage of data
replicas in underloaded servers to release the excess load of
overloaded servers. As a result, CALV+TR generates fewer
data transfers and hence less network load in task running.

Figures 16(a) and 16(b) show the reduced average la-
tency per task of all methods compared with Random versus
the number of jobs with the FIFO and Fair schedulers,
respectively. They show that CALV+TR reduces more task
latency per task than CALV. As mentioned above, CALV+TR
can achieve better load balanced state than CALV. With
more overloaded servers, tasks have lower probability to be
assigned to their data servers, which leads to longer average
task latency. These figures indicate that CALV+TR has better
performance than CALV in achieving load balance.

Figures 17(a) and 17(b) present the number of transferred
blocks between servers versus the number of jobs with
FIFO and Fair, respectively. These two figures show that
CALV+TR generates fewer transferred blocks than that of
CALV. CALV+TR releases the excess loads of overloaded
servers by reassigning their tasks to other data servers of
the tasks without data block transfers before it executes the
CALV algorithm. Therefore, CALV+TR reduces the number
of transferred blocks of CALV.

Figures 18(a) and 18(b) show the computing time of
CALV+TR and CALV versus the number of jobs with the
FIFO and Fair schedulers, respectively. They show that
CALV+TR generates more computing time than that of
CALV. This is because CALV+TR conducts the TR algorithm
to reassign tasks from overloaded servers to their other
data servers before conducts CALV. By reassigning a task
to another data server of the task without the need of
data transfer, the task reassignment algorithm is effective
in improving CALV in terms of task latency, the number
of transferred blocks and the computing time of the load
balancing method.

4.6 Performance of Dynamic Load Balancing
In this section, we present the performance of the dynamic
load balancing method (DLB). To generate the unexpected
tasks, we randomly selected one task from the trace and
added it into the job schedule after every 1000 regular
tasks were completed. Since the performance of DLB does
not depend on the types of job schedulers, we tested the
performance of CALV+DLB, CALV+TR+DLB, CALV+TR and
CALV with only the FIFO job scheduler. Figure 19(a) shows
the network load for data transfer during job running versus
the number of jobs. It shows that CALV+DLB has lower

network load than that of CALV. Since CALV+DLB can
redirect tasks to other data servers of the tasks or copy
data blocks to underloaded servers. It can achieve load
balanced state during running time. Due to the unexpected
tasks, several servers may become overloaded in CALV.
Therefore, more tasks need data transfers in running time
in CALV, leading to higher network load. We see that the
network load is approximately the same in CALV+DLB and
CALV+TR+DLB. It means that DLB can effectively handle
both the sever overloads caused by unexpected tasks and
unsolved server overloads in offline load balancing. How-
ever, we need the offline TR algorithm because it can avoid
data block movement between servers in load balancing.
Figure 19(b) shows the reduced average latency per task
compared with Random versus the number of jobs. It shows
that CALV+DLB and CALV+TR+DLB have the best perfor-
mance in task latency reduction. The reason is that in DLB,
an overloaded server can redirect its tasks to other servers
to become underloaded.

Figure 19(c) shows that the number of transferred blocks
versus the number of jobs. It indicates that CALV+DLB
has a slightly higher number of transferred blocks than
CALV. This is because DLB is an additional step after CALV.
In DLB, a server may need to replicate a data block to
another server in order to redirect a task to the server, which
generates block transfers. CALV+TR and CALV+TR+DLB
generate much fewer block transfers. With the TR algorithm
executed prior to CALV that reassigns tasks to their other
data servers without moving data blocks, CALV+TR and
CALV+TR+DLB greatly reduce the number of transferred
blocks in CALV+DLB.

Figure 19(d) presents the computing time versus the
number of jobs. We added the total computing time on
the load balancer and the average computing time on each
server as the computing time of DLB. The figure shows that
CALV+DLB only slightly increases the computing time of
CALV. CALV+DLB needs to additionally execute DLB. In
DLB, each overloaded server tries to redirect tasks to their
other data servers in a distributed manner to become non-
overloaded, and if it fails to release excess load, it requests
the load balancer to find underloaded servers to redirect
tasks. CALV+TR+DLB generates slightly higher computing
time than CALV+TR due to the same reasons. Since TR
generates high computing time as explained previously,
CALV+TR+DLB also generates high computing time though
DLB only increases computing time slightly on each server.
The dynamic load balancing method is effective in handling
unexpected tasks.

4.7 Performance of the Proximity-aware Tree Based
Distributed Load Balancing Method

We then measured the effectiveness of the proximity-
aware tree based distributed load balancing method. Fig-
ure 20 shows the saved percentage of the number of data
blocks reported to the load balancer, the network over-
head measured by TB · hop with the proximity-aware
tree based method, and the saved percentage of network
overhead calculated by (no − no′)/no, where no and
no′ represent the network overhead generated by CALV
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Fig. 15: Data locality performance of CALV and CALV+TR.
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Fig. 16: Task latency reduction of CALV and CALV+TR.
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Fig. 17: The num. of transferred blocks of CALV and CALV+TR.
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Fig. 18: Computing time of CALV and CALV+TR.
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Fig. 19: Performance of CALV+DLB and CALV+TR+DLB.
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without and with this
method, respectively. It
shows that the network
overhead is no larger
than 20TB · hop in the
data reallocation. It also
shows that this method
can save at least 10% of
network overhead in data
reallocation, because it
reallocates data with proximity-awareness. The figure also
demonstrates that the distributed load balancing method
can reduce at least 82% of the number of blocks reported to
the load balancer because most of the overloads are resolved
by the root servers in the sub-trees. The proximity-aware
tree based distributed load balancing saves the network
overhead in data reallocation and improves the scalability
of the load balancer.

5 PERFORMANCE EVALUATION ON A REAL CLUS-
TER

In this section, we present the experimental results on a real
cluster. We implemented CALV and its comparison methods
on the Apache Hadoop (version 1.2.1) on Palmetto [32],
which is a computing cluster consisting of 771 8-core nodes.
Due to the limitation of usage, we randomly selected 100
nodes to form a computing cluster. Since the server scale is
reduced to 1/30 as in the trace, we reduced the number of
total jobs to 1/30 of the number of jobs in the trace. Also,
due to the storage usage limitation on each node, we set

each server’s storage capacity and the input/output size of
a job to be 1/1000 of their original settings. The default size
of a data block was set to 128MB. All other settings remain
the same in the simulation. We measured the performance of
CALV with the FIFO, Fair and Delay schedulers, respectively,
by repeating the experiments in Sections 4.1.1 and 4.1.2.

Figures 21(a) and 21(b) show the percentage of the
network load of all methods compared to Random versus
the number of jobs using the FIFO and Fair schedulers,
respectively. They illustrate the same order and trend of
all methods as in Figures 7(a) and 7(b), respectively. The
results confirm that CALV can save more network load
than all other methods with its computing load aware load
balancing.

Figure 22 shows the reduced task latency of all
methods compared to Random using the Delay scheduler.
It demonstrates the same order and trend of all methods
as in Figure 9(a) due to the same reason. It confirms that
CALV can reduce the task latency and improve the task
throughput with the Delay scheduler on a real computing
cluster. Figure 23 shows the number of blocks reported
to the load balancer in all methods. It illustrates the same
order and trend of all methods as in Figure 12 due to the
same reason. It indicates that the coefficient-based data
reallocation in CALV is effective in reducing the computing
and network overhead of the load balancer and the network
overhead in data reallocation. The real cluster experimental
results are consistent with the simulation results and
confirm the higher performance of CALV compared with
previous load balancing methods.
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Fig. 21: Data locality performance on a Hadoop cluster.
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Fig. 22: Reduced task latency
on a Hadoop cluster with De-
lay scheduler.
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6 RELATED WORK

Many research efforts have been devoted to data allocation
in large-scale computing clusters. We classify these works
into three groups for discussion below.

Random data allocation. The works in [2, 6, 38]
randomly allocate data blocks to servers in the cluster in
order to balance the storage load. Weil et al. [7] proposed to
randomly select data blocks to be reallocated to the newly
added server in order to balance the storage utilization
between the existing servers and newly added servers,
and randomly allocate data blocks stored in a failed server
to all other servers to maintain the load balance among
servers. However, these data allocation methods cannot
avoid server overloads due to computing workloads.

Balancing the number of data blocks. In [8], the
servers are divided into two groups, primary and sec-
ondary servers, and the primary replica and secondary
replicas of each block are stored in these two groups ac-
cordingly. Within each group, the data blocks are evenly
distributed among servers, and the requests of a data block
are evenly distributed between the primary replica and sec-
ondary replicas. Hsiao et al. [9] assumed that the computing
workloads in servers are proportional to the number of
blocks stored in them and aimed to balance the number
of data blocks among servers. With the same assumption,
Thereska et al. [10] proposed to uniformly allocate data
blocks to all servers. However, this assumption does not
hold true in reality. Therefore, these methods cannot avoid
server overloads due to computing workloads by allocat-
ing data blocks without considering the difference of their
associated computing workloads.

Balancing the I/O load. You et al. [11] found that the I/O
workload varies among data blocks in servers, and there are
servers over-utilizing their I/O capacities. Thus, they pro-
posed Ursa to migrate data blocks in these servers to servers
not fully utilizing their I/O capacities, with bandwidth cost
minimization. Ursa also works on power management and
balancing, which is an important issue. In CALV, we reduce
the network energy usage by improving the data locality.
But to reduce or balance server computing energy usage
is not our focus due to the existing large overhead. To
cooperate any power management and balancing is in our
future work. Bonvin et al. [12] proposed a self-managed key-
value storage service in cloud storage. Each data partition
migrates or replicates itself by considering both monetary
payment to cloud providers and its popularity in order to
balance the queries among servers and meanwhile minimize
the payment cost. In [13], the problem of data allocation
with I/O load balance and reallocation cost minimization is
proved to be NP-Hard, and heuristic solutions are proposed

for this problem. Fan et al. [14] found that more replicas
give the job tracker more flexibility to assign tasks to nodes
with local data copies, which leads to better load balance.
Scarlett [15] and DARE [16] replicate data according to its
popularity, so that popular data has more replicas in order
to achieve load balance. However, all methods above only
consider the data I/O workload, without considering the
computing workload.

Wei et al. [17] considered the data servers’ overload
probability and their capacities (storage and computing)
to calculate the minimum number of replicas of their data
and determine data reallocation in order to maintain the
required data availability to achieve load balance. However,
it does not achieve long term load balance for computing
workload of data blocks. CALV is the first work that bal-
ance the computing workload for the long term with the
consideration of the differences of computing workloads
associated with data blocks in servers.

7 CONCLUSION

Through an analysis of a Facebook cluster’s job running
trace, we show the importance of considering the computing
workloads in load balancing for the long term. We then
propose a Computing load Aware and Long-View load
balancing method (CALV). CALV is cost-efficient and cre-
ative in two features: i) it considers computing workload in
load balancing, and ii) it achieves long term load balance.
To achieve these objectives, when selecting data blocks to
migrate out from an overloaded server, CALV chooses the
blocks that contribute more workloads at the server’s more
overloaded epochs and contribute less workloads at the
server’s more underloaded epochs. To improve the load
balance performance, CALV incorporates a lazy data block
transmission method. It chooses a time for each data mi-
gration in order to reduce the destination server overloads,
and release the peak network overhead for data reallo-
cation. CALV is further enhanced by a task reassignment
algorithm and a dynamic load balancing method. Moreover,
CALV depends on a proximity-aware tree based distributed
load balancing method to improve its scalability and cost-
efficiency. The trace-driven experiments on both simulation
and a real computing cluster show that CALV outperforms
other methods in improving data locality, reducing task
delay, network load and reallocation overhead. In the future,
we will further study the dynamic load balancing within T
for jobs without planned submission times.
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