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The Wireless Power Transfer (WPT) system that enables in-motion charging (or wireless charging) for Electric
Vehicles (EVs) has been introduced to resolve battery-related issues (such as long charging time, high cost, and
short driving range) and increase the wide-acceptance of EVs. In spite of many previous works on ubiquitous
data-driven traffic flow management for traditional vehicles, no research has been devoted to ubiquitous data-driven
optimal route determination for EVs with WPT, where charging sections are installed in the road network to
accommodate wireless charging. In this paper, we study the WPT system with the objectives of minimizing energy
consumption, travel time, charging monetary cost on the way, and range anxiety for online EVs. Specifically,
we propose the Multi-Objective Route Planner system (MORP) to guide EVs for the multi-objective routing.
MORP incorporates two components: traffic state prediction and optimal route determination. For the traffic state
prediction, we conducted analysis on a traffic dataset and observed spatial-temporal features of traffic patterns.
Accordingly, we introduce the horizontal space-time Autoregressive Integrated Moving Average (ARIMA) model
to predict vehicle counts (i.e., traffic volume) for locations with available historical traffic data. And, we use
the spatial-temporal ordinary kriging method to predict vehicle counts for locations without historical traffic
data. Based on vehicle counts, we use the non-parametric kernel regression method to predict velocity of road
sections, which is used to predict travel time and then, energy consumption of a route of an EV with the help
of the proposed energy consumption model. We also estimate charging monetary cost and EV related range
anxiety based on unit energy cost, predicted travel time and energy consumption, and current onboard energy. We
design four different cost functions (travel time, energy consumption, charging monetary cost, and range anxiety)
of routing and formulate a multi-objective routing optimization problem. We use the predicted parameters as
inputs of the optimization problem and find the optimal route using the adaptive epsilon constraint method. We
evaluate our proposed MORP system in four different aspects (including traffic prediction, velocity prediction,
energy consumption prediction, and EV routing). From the experimental studies, we find the effectiveness of the
proposed MORP system in different aspects of the online EV routing system.

CCS Concepts: e Information systems — Location based services; « Mathematics of computing — Math-
ematical optimization; ¢ Human-centered computing — Ubiquitous computing; ¢ Computer systems
organization — Embedded and cyber-physical systems;

Additional Key Words and Phrases: Wireless power transfer system, electric vehicle routing, multi-objective
optimization, spatial-temporal traffic analysis

ACM Reference Format:

Ankur Sarker, Haiying Shen, and John A. Stankovic. 2017. MORP: Data-Driven Multi-Objective Route Planning
and Optimization for Electric Vehicles. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 0, 0, Article 0
(January 2017), 35 pages. https://doi.org/0000001.0000001

This research was supported in part by U.S. NSF grants ACI-1719397 and CNS-1733596, Microsoft Research Faculty
Fellowship 8300751, and IBM PhD Fellowship.

Authors’ address: Ankur Sarker; Haiying Shen; John A. Stankovic, University of Virginia, School of Engineering, Char-
lottesville, VA, 22903, USA.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor, or affiliate of the United
States government. As such, the United States government retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for government purposes only.

© 2017 Association for Computing Machinery.

2474-9567/2017/1-ARTO $15.00

https://doi.org/0000001.0000001

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0.
Publication date: January 2017.


https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 e A. Sarker, H. Shen, and J. A. Stankovic

1 INTRODUCTION

Ubiquitous data-driven urban computing has focused much attention in recent years on the design and
maintenance of a better smart city incorporated with intelligent transportation systems to promote
better safety and to conform to the residents and commuters of the city [55, 57]. In the ubiquitous
urban computing concept, every sensor, person, vehicle, building, and street in urban areas can be
treated as sensing and computing units for serving the people and the city. Ubiquitous traffic planning in
urban spaces requires much more attention to increase the efficiency of existing road infrastructures [57].
According to a recent study [2], commuters in the city of Los Angeles spent an average 104 hours a year
in traffic during congested peak hours, which accounted for an average cost of $2,408 per commuter and
$9.6 billion per the city as a whole from direct and indirect costs. Ubiquitous data-driven intelligent
city-level traffic flow control and individual trip guidance would alleviate the issues inherent in city-level
traffic congestion [22, 26, 50, 58]. Usually, traffic flow is spatio-temporal (space and time-related) and
ubiquitous traffic flow data from different locations of the city can be represented as a city’s vibes and
can help to explain mobility patterns of people. Ubiquitous data-driven individual trip guidance to reduce
either travel time or energy/fuel consumption has been thoroughly studied as a way either to ensure
lower travel time or to reduce green-house gas effects [16, 21, 26, 50]. However, it is vitally important to
consider both travel time and energy consumption as the first two factors in ubiquitous vehicle routing at
the same time with city-level traffic flow as dynamic components.

In conjunction with improved urban traffic planning, the use of EVs further enhances the ubiquitous
urban traffic system and ensures a more environmentally friendly smart city. The recent developments
in Electric Vehicles (EVs) have great potential; although, the wide-acceptance of EVs still depends
on tackling battery related issues (e.g., long charging times, high cost, short driving range, and heavy
battery weight) that EVs encounter with the usage of onboard battery cells as the sole power source. In
consequence, the EV commuters are constantly anxious about the driving range and always mindful of
the availability (or lack) of charging facilities (i.e., range anxiety). To resolve this problem, the Wireless
Power Transfer (WPT) system is designed to transmit power to the online EVs (with inductive charging
capability) so that EVs can be charged on the way by the charging sections installed on top of the
roads [34, 39]. As a result, the battery related anxiety issues can be mitigated. As reported in [33], any
sort of charging infrastructure of EVs is capable of substantially reducing range anxiety of EVs. However,
it is also reported that experienced EV drivers would still exhibit less range anxiety than inexperienced
drivers in the presence of WPT systems and range anxiety would not be diminished overnight [23, 36].
In addition, frequent acceleration and deceleration because of traffic signs and traffic congestion would
introduce additional energy consumption and increase the range anxiety. Thus, battery-related range
anxiety should be considered as a third routing factor of online EVs. Charging monetary costs should be
considered as a fourth important factor in the routing of online EVs. The price of power from the grid is
also spatio-temporal and always fluctuates due to the fluctuations of power supplies and demands [4, 38].
Based on traffic flow, the amount of power taken from a particular location of WPT systems would be
changed as well as charging cost.

As shown in Figure 1, we consider the scenario where online EVs run in a road network and receive
drive-through electricity from charging sections. A road network consists of nodes and edges, where a
node is a location and an edge is a road section connecting two locations. EVs can be charged from any
of the three charging sections in the road network. A charging section has a certain length and the EV
can be charged only when an EV is driving upon it. An EV needs to pay for the amount of received
power from the grid [38]. In this paper, we focus on routing in highways with fixed charging sections
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Fig. 1. Routing of online EVs.

and consider that our road network consists of mostly highways, although our approach can be directly
applied to non-highways.

In a city or across-city area, suppose charging sections are deployed in certain locations in the high-
ways [52]. Then, there arises a problem: for a given EV driving from a source to a destination, how to
choose a route so that i) the EV can successfully arrive at its destination with sufficient power supply on
the way, and i) the driver’s range anziety, charging monetary cost, travel time, and energy consumption
can be minimized at the same time considering the current traffic flow?

The solutions to this problem will contribute significantly to building intelligent transportation
systems in urban computing. However, in spite of many previous works on ubiquitous data-driven route
selection [6, 14, 19, 24, 32, 35, 40, 41, 43, 50, 56], there has been little research on this problem. The
previous works are not for EVs with a WPT system and hence cannot be directly applied to meet the
specific WPT-related requirements in such a scenario. In addition, these four factors are not positively
related with each other and the consideration of these factors in ubiquitous data-driven vehicle routing
problem is not trivial. For example, less travel time increases the energy consumption of vehicles. Range
anxiety is dependent on the current onboard energy of EVs, total charging cost of EVs depends on
traveling cost, and the location-based electricity price is determined by the power grid [38]. In addition,
the impact of all four factors change based on spatio-temporal traffic flow in the road network. In this
paper, we are motivated to fill in the gap in the literature by exploring a solution for the aforementioned
ubiquitous data-driven vehicle routing problem.

In this paper, we propose a ubiquitous traffic data driven Multi-Objective Route Planner system (MORP)
for online EVs that provides the optimal route for the aforementioned problem. MORP incorporates
mainly two components: 1) traffic state prediction and 2) optimal route determination. First, we analyze
the ubiquitous traffic flow data to realize the spatio-temporal traffic flow characteristics and devise
the traffic state prediction approaches. We collected and analyzed 212 consecutive day-long historical
hourly traffic flow data from 20 different highways and interstate roads in South Carolina (SC) from the
Department of Transportation (DOT) website [1]. We made the following observations:

e specific time of the day affects the change of traffic flow (i.e., vehicle counts),

e in city level traffic flow, the free flow velocity is not necessarily observable at night,

e the velocity in a road section does not exhibit any obvious daily pattern over time and velocity
distribution is usually skewed,
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e the traffic counts in two time points (or two road sections) that are connected/next to each other
are similar,

e regardless of the distance between two road locations, there is a correlation between the time of the
day and the difference between the vehicle counts in the two road locations. It represents the pulse
of the traffic flow.

Second, traffic state prediction helps to predict travel time and energy consumption of a route of an EV
that are used later in the formulated optimization problem as inputs. If the predicted velocity of a road
section is not accurate enough, it would affect the accuracy of the EV routing solution. Based on our
data analysis observations, we build spatial-temporal regression models to predict the vehicle counts and
velocity of each road section, which will be used to predict the travel time and energy consumption of a
route of an EV in the optimization problem formulation. Some locations have historical traffic data while
other locations do not have historical traffic data. For locations with historical traffic data, we introduce
a horizontal space-time Autoregressive Integrated Moving Average (ARIMA) model based on observed
temporal and spatial features of traffic to predict the vehicle counts at each hour. For locations without
any historical traffic data, we apply spatial-temporal ordinary kriging method [13] and predict possible
vehicle counts at each hour. Based on the predicted vehicle counts, we then use the non-parametric
kernel regression model [20] to estimate velocity according to the correlation between vehicle counts and
velocity. Eventually, we use the predicted velocity to estimate the travel time and energy consumption
of a route of an EV, which are used in our formulated optimization problem. Third, in optimal route
determination, we formulate a multi-objective optimization problem and find the optimal solution. We
design four different objective functions for minimizing range anxiety, charging monetary cost, travel time,
and energy consumption. For the power charging monetary cost, we consider that different sub-regions
have different charging prices due to the variance of supply and demands of the power grid. We use
the Polytomous Rasch model [18] as a scaling technique to represent the range anxiety of commuters.
Then, we formulate a multi-objective optimization problem that ensures satisfying constraints of the
state-of-charges (SOCs) (i.e., the percentage of energy stored in the battery) of EVs and the capacity of
charging sections. To solve the multi-objective problem, we use adaptive epsilon constraint method [28],
which is suitable for multiple objective functions and does not explicitly relax the constraints of the
optimization problem.

We perform extensive simulation studies in Simulation for Urban MObility (SUMO) traffic simulator [25]
based on real traffic data to evaluate the performances of our proposed MORP system in comparison
with other route selection methods. The simulation results show that MORP outperforms other methods
in terms of simultaneously minimizing range anxiety, charging monetary cost, travel time, and energy
consumption. The simulation results also show that our proposed horizontal ARIMA model can more
accurately make predictions than existing ARIMA model. We also show the simulation results on the
traffic prediction using the ordinary kriging method, on the velocity prediction utilizing the non-parametric
kernel regression, and on the energy consumption prediction based on our energy consumption model.
We also evaluate the impact of traffic predictions on the performance of the route planning.

In summary, in this paper, we design and develop the MORP system, a data-driven multi-objective
route planner for online EVs, which chooses the best available path for each EV in the road network
considering the travel time, energy efficiency, charging cost, and range anxiety. Other factors can be easily
incorporated into MORP for further consideration. The following are the major contributions of this

paper:
e We analyzed a ubiquitous traffic dataset in terms of spatial-temporal features of traffic patterns,
which serves as a foundation for building the prediction models for the traffic features (Section 3.2).
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e Based on the dataset analytical observations, we introduce prediction models for the traffic features
including traffic counts and velocity (Section 3.3).

e We develop an energy consumption model for EVs. We estimate travel time and energy consumption
of a route of an EV based on the traffic prediction models in conjunction with the energy consumption
model. Then, we use these estimations in the multi-objective optimization problem (Section 3.4).

e We design four different objective functions considering four factors (traveling time, energy con-
sumption, charging cost, and range anxiety) and develop a multi-objective optimization problem.
We find the solution to the proposed optimization problem using the adaptive epsilon constraint
method (Section 3.5).

e We conduct extensive simulation studies based on real traffic data. The simulation results show
the effectiveness of our MORP system in simultaneously achieving the multiple objectives and the
effectiveness of the prediction models and energy consumption model (Section 4.2).

The rest of the paper is organized as follows. Section 2 presents the basic definitions and research
problem of this paper. Then, Section 3 presents the system design of proposed multi-objective route
planner. Section 4 evaluates the proposed route planner through extensive simulation studies. Section 5
discusses the existing literature. Finally, Section 6 concludes this paper with remarks on the future work.

2 BASIC CONCEPTS AND PROBLEM STATEMENT

In this section, we first introduce some basic definitions. Then, we briefly introduce our problem statement
of finding a multi-objective routing of EVs.

Definition 2.1 (Road Network). A road network covers a large geographical-region and it consists of a
finite set of locations N = {ni,ns,...,n:} and a finite set of edges E where edge e; ; represents a road
section connecting location n; to location n;.

Definition 2.2 (Road Section). Road section represents a small portion of the road network and it
includes either single or multiple edges.

Definition 2.3 (State of Charge (SOC)). The SOC of an EV k represents the ratio between current
stored energy in its battery pack and maximum energy capacity of the battery pack. Usually, SOC is in
the certain range [0,1].

Definition 2.4 (Traffic Data Locations). In a dataset for a road network, traffic data locations are the
set of locations {ny,na,...,n;} that have historical traffic data (average velocity, vehicle counts, etc.).

Definition 2.5 (Traffic State). For a road network, the traffic state or traffic scenario indicates the
traffic flow (i.e., vehicle counts and average velocity) of its road sections at a particular time. Actually,
average hourly velocity changes based on the traffic state. And, travel time, energy consumption, charging
monetary cost, and range anxiety are dependent on the average hourly velocity. Thus, it is important to
accurately predict the traffic states ahead such that an optimization algorithm can determine the most
appropriate route. In this paper, we alternately use either ”traffic state” or ”traffic scenario”.

Definition 2.6 (Travel Time). For a source to destination routing, the travel time means the required
time to finish the trip based on the corresponding traffic scenario (e.g., average velocity).

Definition 2.7 (Energy Consumption). For a source to destination routing, the energy (or fuel) con-
sumption signifies the required energy to finish the trip based on the corresponding traffic scenario (e.g.,
average velocity).
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Table 1. Symbols and Definitions.

Notation | Definition
K Total number of EVs
M Total number of charging sections
S; The source of EV 1
d; The destination of EV i
n; The location ¢ in the region
€i,j The edge connecting locations n; and n;
yi(t) SOC of EV i at time ¢
capm Total capacity of charging section m
Dth,k Lower value of SOC

Definition 2.8 (Range Anxiety). For the commuters of an EV, range anxiety represents the fear of fully
depleting the onboard battery before reaching the destination. Based on the current traffic scenario, range
anxiety mostly depends on current onboard energy and required energy to finish the trip (e.g., average
velocity). The Consideration of range anxiety in EV route planning is important for better traveling
experiences and it is reported that range anxiety would not be diminished overnight [23, 36].

Definition 2.9 (Charging Monetary Cost). Charging monetary cost refers to the money required to get
the energy from charging sections of the WPT system, which fluctuates due to the regional supplies and
demands of the power grid [4, 38]. In addition, for a given traffic scenario (e.g., average velocity), the
charging monetary cost also depends on the amount of energy an EV can get from the WPT. Thus, it
is possible to choose some charging sections over others which require a lower monetary cost. Here, we
consider the fixed placements of charging sections.

Definition 2.10 (EV Routing Problem). For an EV k, routing problem is a path finding problem which
seeks a feasible path 7% from source location to destination location.

Suppose there are K number of online EVs running on the different road sections of a region, and each
of them has a certain SOC and a source-destination pair. Here, SOC must be in a certain range (0.25-1)
for the sake of battery health. Let ph 1 be the lower limit of SOC for EV k to maintain healthy battery
state and the continuous vehicle operation. Also, there are M number of charging sections installed on the
different edges of the region and cap,, is the capacity of charging section m. Table 1 shows the parameters
related with basic definitions. EVs can receive energy from the charging sections if the charging sections
are on and they drive on top of the charging sections. We assume the charging sections are always on for
the sake of simplicity. The motivation of this work is to plan and distribute the real-time routing of the
EVs so that EVs can reach their destinations satisfying their onboard energy constraint, lower travel
time, lower chagrining cost, and lower range anxiety. However, EVs share the road with other vehicles
and it is necessary to predict the future traffic state of the road network. Traffic scenario prediction
requires the construction of prediction models based on the analysis of the historical traffic data in the
region. Thus, the first problem is how to predict the future traffic congestions, traveling time, and energy
requirements of different road sections based on available historical traffic data? After predicting the
travel time and energy consumption of different road sections, we can determine the optimal routes for
the EVs on different road sections considering their SOCs, charging section placements, charging cost,
traveling time, and range anxiety (which is related to current SOC). Different EVs may have different
amounts of onboard energy and they may need different amounts of required energy. Thus, it is desirable
to finish their trips while satisfying their energy, travel time, charging monetary cost, and range anxiety
constraints. Thus, the second problem is to reroute the EVs so that EVs can satisfy the available energy
constraints, minimize four costs (energy consumption, traveling time, charging monetary cost, and range
anziety), and finish their trips.
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Fig. 2. The framework of MORP.

In next section, we present the system design of the proposed MORP system to distribute the EVs
among different edges of the region.

3 SYSTEM DESIGN

In this section, at first, we present the framework of the proposed MORP system (Section 3.1). Then, we
discuss our observations from the ubiquitous traffic data (Section 3.2). Next, we present the available
traffic, velocity, and energy consumption predictions based on the traffic data analysis (in Section 3.3 and
Section 3.4, respectively). Finally, we present the multi-objective optimization problem and an approach
to find its solution (Section 3.5).

3.1 Framework of MORP

In the MORP system, ubiquitous traffic flow data is collected to the cloud (or fog [46]) periodically. Then,
the cloud (or fog) processes the collected data for traffic state prediction and then solves the optimization
problem and finds the optimal route for each EV. Finally, the cloud (or fog) sends the optimal route to
each EV. To develop the MORP system, our work consists of the following three stages as shown in the
three dashed boxes in Figure 2.

Traffic data analysis. We analyze the spatial-temporal traffic correlation for different road sections and
try to determine some patterns (if any) with respect to (w.r.t.) time and space which are used in traffic
state prediction later.

Traffic state prediction. The cloud (or fog) needs to predict vehicle counts, velocity, and energy con-
sumption of a route of an EV. Based on the vehicle density and traffic flow rate, the energy consumption
and travel time of a route change. In addition, range anxiety and charging monetary cost depend on traffic
flow rate indirectly. Thus, it is very crucial to accurately predict vehicle counts so that route planning is
accurate and can satisfy future traffic flow. Here, we use ARIMA and ordinary kriging to predict the
vehicle counts from which we predict the average velocity using non-parametric kernel regression. We
then use average velocity in our proposed energy consumption model to predict the energy consumption
and also predict travel time for a route of an EV.

Multi-objective route planning. We design four different objective (goal) functions: energy consump-
tion, travel time, charging monetary cost, and range anxiety. The energy consumption and travel time
of a given route are calculated based on the predicted vehicle counts and velocity of the same route.
Charging monetary cost is also determined based on predicted velocity and unit energy price. Range
anxiety is indirectly dependent on predicted velocity. At first, we calculate the values for four different
objective functions. Then, we formulate the optimization problem to achieve these objective functions
and use the adaptive epsilon constraint method to find the solution (e.g., an optimized route satisfying
these objective functions).
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Fig. 4. Vehicle counts from one traffic location.

In the following section, we present traffic data analysis, traffic state prediction, and multi-objective
route planning, respectively.

3.2 Data Analysis of Different Road Sections

We collected 212 consecutive day-long historical hourly traffic flow data (December 1, 2016 — June 30,
2017) from the SC DOT website for 20 locations in 3 interstate routes, 9 US routes, and 6 state routes as
shown in Figure 3. The scaling of the map is 30 kmx20 km. The cyan dots represent different locations in
highways for collecting traffic data. For each data location, SC DOT collects hourly eastbound /westbound
vehicle counts, average hourly velocity of these vehicles, and average hourly vehicle counts of the last
three months. We collected the data manually and used the R programming language to analyze the
data. It is known that traffic flow data is spatial-temporal in nature. That is, the traffic scenario (e.g.,
vehicle counts and velocity) at a location may exhibit a certain pattern over time, and the traffic scenario
at neighboring locations at times may exhibit a certain correlation. We analyze the dataset to study
the spatial-temporal features. In the following, we only show the significant spatial-temporal features
discovered from the data analysis.

Temporal analysis. At first, we study the temporal correlations between vehicle counts and time of
the day of different locations. More specifically, we try to answer the following questions:

Q1. For a given location, does the vehicle counts exhibit a certain pattern over time? Figure 4(a) shows
hourly (eastbound) vehicle counts of 212 consecutive days from a randomly chosen location (id 0086).
We can see that the daily vehicle counts gradually changes over time. More exactly, from December to
January vehicle counts increase gradually, from February to May vehicle counts are more stable, and
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Fig. 5. Vehicle counts analysis.

from May to June vehicle counts decrease. In addition, there are peaks of vehicle counts on Tuesday,
Wednesday, and Thursday. Vehicle counts are also peaked based on the popular public holidays; e.g.,
vehicle counts are higher than usual on February 14 (Valentine’s Day) and May 14 (Mother’s Day). Then,
we zoom-in the data from the same location and check vehicle counts for a randomly selected week
(January 2 to January 8). Figure 4(b) shows the vehicle counts for 7 days (Monday — Sunday). We can
see that the distribution of the vehicle counts is not uniform throughout the day and there are similar
patterns on weekdays and/or weekends. We also find that the horizontal deviation of vehicle counts is
smaller than the vertical deviation of vehicle counts.

Next, we closely study the correlations between vehicle counts and time. Figure 5(a) shows hourly 212
consecutive day-long vehicle counts for the same location, where each line represents vehicle counts for
a day and there are 212 lines in total. We see that the vehicle counts for different days exhibit similar
hourly patterns. More clearly, there is a sudden rise in vehicles counts around 6 am and it reaches a
stable state around 10 am. There are also two separate trends for two groups of days: weekdays and
weekends. Weekdays’ vehicle counts are very close to each other and weekends’ vehicle counts are more
diverse. Figure 5(b) shows the hourly vehicle counts per week for five weeks (January 30 to 5 March) for
the same location. As we have already discussed, the vehicle counts of these five weeks are comparable
and vehicle counts of different weeks also show similar daily patterns. Particularly, we find that weekdays
traffic easily resembles one pattern and weekends’ traffic resembles another pattern. We conducted the
same analysis on all other locations and observed similar phenomena. Based on an analysis of the above
findings, we can make the following observation:

Observation 1. The vehicle counts exhibit a certain pattern over time and horizontal deviation of vehicle
counts are smaller than the vertical deviation of vehicle counts. To predict the vehicle counts at a specific
time ¢ of a day, we would utilize the vehicle counts at that time, ¢ of previous days.

Q2. For a given location, does the average hourly velocity exhibit a certain pattern over time? Then,
we analyze the hourly average velocity for all 20 locations and they show similar phenomena. Figure 6(a)
shows hourly average velocity for each day of the same randomly chosen location. Here, we remove the
extreme outliers to more clearly show the results. The hourly average velocity does not resemble a specific
pattern. Generally, if the speed limit of the roads is 65 mph, then the average velocity falls into the range
of [60 mph,70 mph]. Figure 6(b) shows the average velocity in a week for five weeks (January 30 to March
5) for the same randomly chosen location. Then, we analyze average velocity distributions of different
traffic locations and we find that the distributions are always skewed as shown in Figure 7(a) where
different lines represent the data from different traffic locations. In addition, we analyze the average
velocity distribution of two weeks (January 9 to January 23) from another randomly chosen location

)
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(id 0126) w.r.t. time and vehicle count as shown in Figure 7(b). We find that there are three bands
of velocity points w.r.t.the speed limit of the road section. Sometimes, the vehicle counts and average
velocity are lower than usual due to the arrival rate of vehicles. From the above analysis, we can make
the following observation:
Observation 2. The average velocity does not exhibit a certain pattern over time and distributions
of the velocity are skewed. Fortunately, we can predict average velocity at a road section based on the
vehicle counts of the road section using nonparametric prediction methods as in previous work [48].

Spatial analysis. We seek the following spatial relationship w.r.t. the correlations of vehicle counts
and hourly average velocity from different locations.

Q1. Can we predict the near-future traffic flow (i.e., vehicle counts or average velocity) at a location
using the current traffic flow of its preceding locations?
Figure 8(a) shows the scatter plot of 212 consecutive day-long vehicle counts from two randomly
chosen neighboring data locations (id 0086 and 0126) with 1 hour time lag (as collected data is hourly
accumulated). That is, if location n; is preceding to location n;y; in traffic flow, the vehicle counts of
location n; at hour t — 1 (z) and the vehicle counts of location n;41 at hour ¢ (y) produces a point (z,y) in
the figure. From the figure, we can see that first vehicle counts and second vehicle counts show significant
positive correlations which means if one vehicle count changes, other vehicle counts also change in the
same direction. Also, we conduct the Pearson correlation coefficient test by applying two vehicle counts
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Fig. 8. Correlations among different traffic locations.

into the correlation function [29]. If population correlation coefficient is closer to 1 and p-value of the test
is less than 0.5, then it means two variables are strongly correlated more than 95% of the time. In our case,
the population correlation coefficient equals 0.96 and p-value of the test is less than 2.2 x 10716, Thus,
two vehicle counts are significantly correlated in more than 95% of the test cases. Figure 8(b) shows the
scatter plot of 212 consecutive day-long vehicle counts from another pair of randomly chosen neighboring
data locations (id 0086 and 0157) with 1 hour time lag and we can conclude the same observation.

Then, we analyze the correlation between two average velocity values (with 1 hour time lag) for the
first pair of randomly chosen neighboring traffic data locations as in Figure 8(a). Figure 8(c) shows the
scatter plot of 212 day-long average velocity values for the two different traffic data locations and we
can see that the two different velocities from two different locations are overlapped with each other.
Figure 8(d) shows the scatter plot of 212 day-long average velocity values for the second pair of two
different traffic data locations as in Figure 8(b). Thus, we can conclude the following observation:

Observation 3. Vehicle counts exhibit spatial correlations among different traffic locations. Thus, we
can utilize neighbors’ vehicle counts for traffic flow predictions.

Finally, we analyze the hourly change rate of vehicle counts among different locations using all collected
traffic data. We grouped all data locations using the intermediate distance between any two locations is
less than 16.75 km, and obtained three specific groups. There are eight (0086, 0111, 0126, 0152, 0153,
0154, 0155, and 0157), eight (0001, 0022, 0111, 0151, 0152, 0153, 0154, and 0113)), and seven (0015,
0021, 0032, 0093, 0095, 0147, and 0086) data locations in each group, respectively. Figure 9 shows the
change rate of vehicle counts of each location in a group (consists of eight data locations). Five out of the
eight locations are neighbors. We calculated change rate as follows: 100x (current hour’s vehicle counts -
previous hour’s vehicle counts)/previous hours’ vehicle counts. Specifically, Figure 9(a) shows the hourly
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Fig. 9. The change rate of neighboring traffic data locations.

change rate in the one week (9 January to 15 January) and Figure 9(b) shows the hourly change rate
in another week (2 January to 8 January). In the figure, each curve represents a seven-day long hourly
change rate in a data location. We can see that there are clear daily patterns as the vehicle counts are
stable and there is no obvious pattern for the first few days (Monday to Wednesday) of the week as it is
the week just after the New Year holiday and vehicle counts are being stable over time. We find that the
average vehicle counts on these days are lower than the average vehicle counts of the same days of the
last three months. However, most of the change rates of vehicle counts are peaked at the same time. We
also perform the same study for the other two groups and get similar results (figures are not shown here
due to the space limit). Based on the above discussion, we can make the following observation:
Observation 4. The vehicle counts in close locations exhibit certain correlations.

Next, we present the traffic prediction procedures based on the spatial-temporal data analysis observa-
tions presented above.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0.
Publication date: January 2017.



MORP: Data-Driven Multi-Objective Route Planning and Optimization for Electric Vehicles e 0:13

3.3 Traffic Prediction of Different Road Sections

Here, we use ubiquitous traffic flow data to predict future vehicle counts. As mentioned in Section 3.1, it
is very important to accurately predict future vehicle counts so that route planning is accurate w.r.t. four
different objective functions. In our dataset, SC DOT only collected traffic data for certain locations and
many locations do not have any traffic flow data. Indeed, in practice, it is likely that some locations do
not have historical traffic data because of the reasons such as lacking sensing devices or data transmission
failure. Therefore, we conduct two types of predictions: i) we predict the vehicle count values at locations
with available traffic flow data, and ii) we predict the vehicles count values at locations without any
historical traffic flow data.

3.3.1 Prediction for locations with historical data. We propose an ARIMA model to predict vehicle
counts for locations with historical data. Usually, a space-time ARIMA model has two components:
autoregression (AR) and moving average (MA). The AR component uses the dependent relationship
between an observation and some number of lagged observations. The MA component uses the dependency
between an observation and a residual error from a moving average in terms of the lagged observations.
Based on the Observation 1 and Observation 3 from the spatial-temporal analysis in Section 3.2, we
introduce the horizontal ARIMA model [44]. First, to predict vehicle counts in location n; at time ¢;, we
use the historical vehicle counts at location n; at time t; on the previous days and the vehicle counts
at location n; until a certain time period before time ¢; on the current day (Observations 1). In this
way, the ARIMA model needs to consider the small moving average order. Second, we consider neighbor
correlation or weight matrix of vehicle counts in neighboring locations. The proposed horizontal ARIMA
model is relatively simple: it utilizes the time series of vehicle counts, and it does not try to forecast the
cycles.

An existing work [11] considers average velocity as the scale factor of space-time ARIMA model to
calculate the neighbor weight matrix. However, based on the spatial analysis in Section 3.2 (Observation
2 and Observation 3), we consider vehicle counts as the scale factor. More specifically, we consider
the neighbor weight matrix, W', a square m x m [ order weight matrix. In the matrix element, wz(lj)
represents the correlation of adjacent locations n; and n; with {** temporal lag in terms of vehicle counts
z; and x;. Dynamic spatial weight between two locations, wij (t), is calculated as a function of their
relative vehicle counts (i.e., difference between z;(t) and z,(¢) at a particular time ¢). If we see a drop of
vehicle counts in one location, we expect this decreases vehicle counts in an adjacent location and vice
versa.

For all location pairs (z;, ;) with spatial lag [, if location x; is upstream of location ;, the corresponding

! ; s calculated as follows:

w;.

2,(t) = (1)

(1)
otherwise,

(ot = =02, 2
J
The neighbor weight matrix tends to equilibrate the differentials of vehicle counts over space. Here, we
can easily incorporate velocity as a scale factor of neighbor weight matrix in our system if necessary.
Finally, we can present the horizontal ARIMA model as follows. In our ARIMA model, there are
horizontal autoregression and moving average terms with certain temporal lag. Also, there are adjacent
locations’ autoregression and moving average terms with single temporal lag. Here, we only consider

w
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single temporal lag as we use hourly historical traffic data and vehicles can traverse from one location to
another location in the road network within an hour based on their average velocities. Let X (¢) be an
N-dimensional column vector containing the observations z;(¢) (vehicle counts) on the location n;, where
i=1,2,....,V, during each time interval t. Accordingly, the proposed horizontal ARIMA model can be
described as follows:

P q 14 \%4
E(t) = Y Oai-aeos — Y Wafi—asaa + Yy OW'a, g =Y U We, g +ey, (3)

d=1 d=1 =1 1=1
where 64; and 14; are autoregressive and moving average parameters at temporal lag d and special
lag I; p is the autoregressive order; ¢ is the moving average order; ¢; is the white noise; © and ¥ are
autoregressive and moving average parameters for adjacent locations, respectively; xs_gs24 and £;_gs24
are autoregression and moving average terms of horizontal vehicle counts, respectively, with temporal lag
d*24; and x;_1 and ;1 are autoregression and moving average terms of adjacent locations’ vehicle counts
with temporal lag 1, respectively. Thus, from Equation (3), we can state that the proposed ARIMA model
considers the horizontal temporal lag and most recent observations in neighboring locations. Proposed
ARIMA model produces forecasts based on prior values in the time series (AR terms) and the errors
made by previous predictions (MA terms). This typically allows the model to rapidly adjust for sudden

changes in trend (i.e., weather effects), resulting in more accurate forecasts.

Parameters Estimation. For our proposed horizontal ARIMA model, we need to estimate in total
(p+ g+ 2N) parameters. At first, we estimate the values of autoregressive order p and moving average
order ¢ using space-time autocovariance function. Then, we can use the maximum likelihood estimation
method to estimate all other parameters (discussed in Appendix A).

3.3.2  Prediction for locations without historical data. If a traffic location (without any historical data)
has a single incoming (or upstream) road section, we can use the prediction of vehicle counts of its
preceding location (with historical traffic data) to approximately estimate the vehicle counts of this
location (Observation 4 in Section 3.2). However, this approach cannot be applied to a location with
more than one incoming road section. To handle this case, we use the spatio-temporal ordinary kriging
approach [47]. The basic idea of kriging is to predict the value of a function at a given location by
computing a weighted average of the known values of the function in the neighborhood of the location.
For a given location n;, time ¢; and vehicle counts x; can be expressed as:

Z(wi,ti) = p+e(wi, i), (4)

where p is the original mean of the vehicle counts of all locations and &(z;,t;) is the random quality
with mean zero. We use h to represent both the direction and distance w.r.t. to location n; and use u to
represent the time w.r.t. the original time t;. Based on the nature of traffic flow, we can consider that the
traffic flow data is intrinsic stationary (vehicle counts and average velocity of nearby locations are almost
the same) and the variogram can be derived as follows:

Z { 331, z (%tz)]}2~ (5)

2V(h w)

v(h,u) = ( o

Thus, for a location o without historical traffic data, we can apply the spatio-temporal ordinary-kriging
approach as follows:

V24
1'0, o ZZ xm z ’ (6)
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Table 2. Symbols and Definitions used in the traffic predictions.

Notation | Definition

w Neighbor matrix
Temporal lag
Traffic count of location ¢ at time ¢
Autoregressive order
Moving average order
‘White noise
Autoregressive parameters
Moving average parameters
Traffic data distribution
Original average of vehicle counts
Vehicle counts
Moving average parameters
Largance multiplier

8
s
S~
o~
N2

O EETETNKODODL

where \;4,,1 =1,2,...,V, are the weights chosen to minimize the prediction error variance by the solution
of the following functions:

Vo 24
D> dienl@i t) = (25,)] + o, to) = 71(,85) = (o, to)], (7)

=1 t=1

where Zfil fil Xity = 1, y[(zi, t:) — (x4, t5)] is the semivariance between locations n; and n; at time ¢,

and a(z,,t,) is the Lagrange multiplier introduced to minimize the error variance. Thus, from historic
traffic data, we can get the optimal value of A, ;, for each location n; at time ¢ based on Equation (7).
Thus, we can easily predict the traffic data for another location (z + h,u). Table 2 shows the parameters
related to the traffic predictions.

So far, we have introduced how to predict the vehicle counts of a location using historical traffic data.
In the next section, we present how to predict the average velocity based on the predicted vehicle counts,
and then how to use the predicted velocity to predict the travel time and energy consumption for a route
of an EV.

3.4 Prediction of Velocity, Travel Time, and Energy Consumption

We can predict the average velocity of each road section based on the predicted vehicle counts. We
basically use the vehicle counts to figure out the expected velocity profile of each road section of the road
network. Then, we can predict approximate travel time and energy requirements of each road section of
the road network using the predicted velocity profile. Eventually, we can estimate the travel time and
energy consumption of a route of an EV.

Based on the temporal analysis (Observation 1 and Observation 2) in Section 3.2, we can consider
speed limit as free-flow velocity of a road section. The (positive or negative) deviation from free-flow
velocity of a road section causes a range of velocities of that road section. The vehicle counts can be
used to estimate the deviation from free-flow velocity (Observation 2). First, we consider the following
relationship among free-flow velocity, average velocity, and vehicle counts:

TJ(.’E) :Ufree‘f'fv(m)v (8)

where z is the vehicle counts, v(x) is the average velocity of vehicles, v, ce is the free-flow velocity, and
function f,(x) represents the velocity deviation function based on the total vehicle counts z. Next, we
consider the non-parametric kernel regression [20] to predict velocity deviation based on the number
of vehicles, f,(z) (Observation 2). Here, kernel regression is used to find a non-linear relation among
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vehicle counts and velocity deviation. Kernel regression basically estimates the conditional expectation of
a random variable. Then, we can write the above term f,(z) as follows:

(5 ) au

S K(%“)

where v is the total number of observations of vehicle counts, Km( . ) and K, t( . ) are the kernel functions,
set to the Gaussian function based on its smoothness [31], x; is the number of vehicles, Av; is velocity
deviation from observation 4, and h is the smoothing parameter influencing the estimation accuracy of
regression which is determined according to the mean integrated squared error criterion [45]. Finally, we
can predict the hourly average velocity v(x) based on f,(x) and Equation (8).

Now, based on the vehicle counts and three velocity values (speed limit, upper and lower ranges of
velocities), we consider three different velocity profiles for a given edge in the road network (free flow
velocity and positively and negatively deviated velocities from free flow velocity). Here, we further use
truncated regression to consider a certain range of velocities [30]. In the case of truncated regression, we
use two ranges of average velocity observations as the outcome variables in two cases, respectively and
systematically exclude other velocities. Thus, the predicted average velocity at a specific time may cause
less energy consumption or worse energy consumption based on different cases (e.g., velocity profiles).

Next, we design a power consumption model w.r.t. different applied forces in EV when it is crossing a
road section with an average velocity. The EV’s power consumption depends on different factors of the
road sections. Let y(t) represent the SOC of EV k at time ¢, and let y(t) = [y1(¢)y2(t)...Ym (t)] . Then,
yr(t$) and yg(t!) represent the SOC of vehicle k when it enters and leaves a road section, respectively.
From previous work [37], we can derive the amount of power required to move the EV k for a unit time
period, denoted by P;ac k. However, it does not consider the force of rolling resistance and ignores battery
energy transforming efficiency 7; and powertrain working efficiency 72. To additionally consider these
factors, we calculate the amount of power required to move EV k for a unit time period as follows:

folx) (9)

Myarvi + 3 pairkCa v’ + MygCrrvy
Ptrac,k = 3 (10)
172
where My, ar, Vi, Pair,k, and Cq j represent the mass, the acceleration, the velocity, the air density, and
the drag coefficient of EV k, respectively. Given EV k’s battery power Ppatt 1 (t — 1) at the time (¢ — 1),
its battery power at time ¢ is calculated by:

Paaa k(t)

Poatek(t) = Poater(t—1) +
nwpt

- Ptrac,k(t)a (11)
where P,qq,%(t) represents the power added to EV k’s battery at time t and nyp represents the wireless
power transmission efficiency. We can use Equation (11) to calculate power stored in the battery of EV
of each time period based on the received energy, applied velocity, and acceleration. For an EV, when the
brake is applied, Pirqc,r in Equation (11) becomes negative and its battery is charged by Pjrqcr amount
of power at each time period.

Using Equation (10), we can predict the energy consumption rate of an EV considering different
values of average velocity, average acceleration, and possible road gradients. More specifically, using
Equations (8), (9), and (10) and the total length of the road section, we can compute the approximate
energy consumption of an EV to cross a given road section. In addition, based on the average velocity for
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a road section, we can estimate the travel time to cross that road section. For the sake of simplicity, we
consider constant average velocity for a road section.

After the approximate energy and travel time estimations for different routes of an EV are determined,
the proposed MORP system can choose the best possible route considering four factors discussed in the
next section.

3.5 Optimal Routing Problem Formulation and Solution

Here, the goal is to find the optimized routing path for each EV to minimize energy consumption, travel
time, charging monetary cost, and range anxiety w.r.t. different traffic scenarios. First, we introduce
the maximum regret criterion to consider different traffic scenarios. Then, we present four different
objective functions and formulate the EV routing problem as a multi-objective integer programming
problem. Finally, we present the solution of the multi-objective optimization problem using the adaptive
epsilon-constraint method [28].

3.5.1 Maximum regret criterion. As mentioned in Section 3.4, we consider three different velocity
profiles (speed limit and positive and negative deviations from free-flow velocity) for the road sections at
the same time. In this way, we can consider possible different traffic scenarios at the same time. One of
these three velocity profiles for a road section would represent the worst conditions w.r.¢. different factors
(i.e., energy consumption, travel time, etc.) of an EV in that road section. Our goal is to choose the best
possible path in the worst conditions. We consider the regret criterion so that the shortest path is robust
enough [17]. Here, we incorporate regret as different traffic scenarios in the objective functions to choose
the robust solution (i.e., best possible solution in the worst conditions). Each EV, say k, has different
paths from source location to destination location which can be considered as a set of valid paths Cy,
from source location to the destination location. Let S represent the set of finite traffic scenarios based
on the velocity profiles, Ti’fj represent a path from location ¢ to location j for EV k, and cs(ri’fj) represent

its associate cost (e.g., energy consumption or traveling time) for scenario s. Similarly, let denote lej*

) represent its associated

represent the shortest path from location ¢ to location j for EV k and c¢?® (TLk J*
cost. Let vfeg denote the maximum regret for EV k considering worst and best scenarios. Then, the

optimum solution according to the maximum regret criterion for an EV k is denoted as follows:

. k,
vl (i) = mip magee’(rty) — " (n), (12)

where Ufeg(Tfé;) is the optimal solution according to the maximum regret criterion and cost function ¢*().
Thus, we can find a best available routing solution w.r.t. all possible traffic scenarios using maximum

regret criterion.

3.5.2  Multi-objective optimization problem. We express four different criteria as four different cost
functions and formulate a multi-objective optimization problem. We aim to minimize the travel time,
energy consumption, range anxiety, and the charging monetary cost. Basically, we derive four different
objective functions based on four different cost functions. Let bf,j denote a decision variable for an edge

e;; and path 7% as follows:

ko 17 if@i)jETk
bi’j o { 07 if ei,j ¢ Tk (13)

where bf ; states if edge e;; is included in path 7% or not. Based on the maximum regret criteria
k

i j» we formulate the multi-objective routing problem as an

(Equation (12)) and decision variable b
integer-programming problem.
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First, we define the energy requirements of different edges of the road network w.r.t. different traffic
scenarios (or velocity profiles). Let EZ ’jk (t) denote the energy cost of vehicle k for an edge e; ; at time ¢

based on the scenario s. 5; ’jk can be calculated using Equation (10). Thus, the energy consumption cost
function for all EVs can be defined as follows:

frm= 3 > &5 (14)

keEK i,jeV i#]

Second, we consider the travel time of EV k. We use Rfjk (t) to denote the time for EV k to traverse edge

e;; at time ¢ based on the scenario s. Rfjk can be calculated based on the length of the road section and
predicted average velocity of a scenario (Equation (9)). We can express the travel time cost function for

all EVs as follows:
grw=> Y Ry (15)

keEK i,jEV,i#]

Third, we consider the charging monetary cost to choose some specific charging sections installed on
the edges of the road network. Here, we consider charging sections are static and there are few charging
sections installed on the edges of the road network. Usually, the marginal energy cost from the grid
is spatio-temporal [4, 38] and the charging monetary costs at different charging sections are different.
In addition, the total energy received from a charging section (or charging monetary cost) would be
changed due to traffic flow rate. Thus, the idea is to choose other alternative edges to reduce the charging
monetary cost. Let r; ;(¢) represent the price of electricity rate for an edge e; ; at time ¢. Then, based on
scenario s on a charging lane of an edge e; ;, let EV k receive total ./\/lf]]C (t) amount of energy from the

charging section installed in edge e; ; at time ¢. If there is no charging section in edge e; ;, ./\/lf]k(t) will

be zero. ./\/lf]]C (t) can be calculated based on the length of the charging section, power transfer rate, and
average velocity of a traffic scenario. This formulation will work perfectly with the consideration of a
fixed charging monetary cost throughout the whole region. Eventually, we can formulate the third cost
function of all EVs as follows:

= > > MI(rate; ;)b (16)

keK i,jeV,i#]

Fourth, we consider range anxiety associated with the limitations of batteries used in EVs. The range
anxiety actually depends on the current onboard energy and required energy to finish the whole trip.
The WPT system would help to alleviate the range anxiety but it would take some time to overcome the
range anxiety. Besides, unexpected traffic congestion and traffic signs at different road sections increase
sudden changes of velocity. As a result, it is possible to increase unexpected energy consumption and
range anxiety would be increased in these scenarios. Here, we treat the range anxiety as five different
scales and we use a well-known rating scale model [18] to evaluate the range anxiety of commuters. If
the difference between required energy to finish the trip and onboard energy stored in the battery is
larger, range anxiety of commuters would increase gradually and vice versa. For edge e; ;, we evaluate
the probability of having range anxiety « (scales from 1 to A) of the commuters of EV k based on its
current SOC yy(t) and remaining required SOC y,“(¢) at time ¢ as follows [18]:

i (e ()= )
P(.A],c = Oé) = v () . (17)
Z-A Zd 1 (e () — W—’Yd)

p=1
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Table 3. Symbols and Definitions used in the optimization problem.

Notation | Definition
Ck The set of paths for EV &
S The set of scenarios
Tk A path for EV k
cs(.) Associated routing cost considering scenario s
’Ulwfeg Maximum regret criteria of EV k
b, j Decision variable for an edge e; ;
Eij Energy cost for edge e; ;
Ri,j Traveling time for edge e; ;
74,5 The price of energy for edge e; ;
M ; Total amount of energy on edge e; ;
ak Range anxiety of EV k
A Maximum anxiety level
fi i¢p, cost function
T Power of EV k

Here, 7, is the cut-off value of the range anxiety scale a which states as follows: SOC value in the range
[0.0-0.2] for range anxiety scale 1, SOC value in the range [0.2-0.4] for range anxiety scale 2, and so
on. Thus, we can decide the range anxiety ozfjk (t) for an edge e; ; at time ¢ w.r.t. scenario s based on
Equation (17). We can design the fourth cost function for all EVs as follows:

=00 > el (18)

kEK i,jEV,itj
Then, we can apply the above four cost functions in Equation (12) and get four objective functions

Ao (), 1570 0), f570(+), and £ (+) which basically consider maximum regret criteria w.r.t. different
traffic scenarios. Eventually, we can formulate the following multi-objective optimization problem:

min(f17f25f37f4) (19)
subject to:
k .o
bi,j = {07 1}7 VZ,], k (20)
> ME() < capj, Yk, jit (21)
k=1
Yk (t) 2 Dth,k, Vta k (22)
yu(t) <1, vtk (23)
Tk (t) - Ptrac k
Tr(t+1) = (8 24
k( ) { Tk(t) + 'QAWJiF(,tT) - Ptrac,k ( )

where the first constraint (Equation (20)) represents the valid input of decision variable b. The second
constraint (Equation (21)) means that the total power allocated to all EVs cannot exceed the maximum
power provided by the charging section j. The third constraint (Equation (22)) means that the SOC
of each EV k should be at least pin i, which is a predetermined threshold for the SOC in each time
point. The fourth constraint (Equation (23)) means that the SOC of each EV k cannot exceed 1 and
the fifth constraint (Equation (24)) means that at time ¢, 1) if EV k is not located at any charging
section, then its onboard energy is reduced by Piyack at each time unit; 2) if EV k is located at the
charging section j, then its energy is added by (%ﬁ? — Pirac k) at each time unit. Table 3 shows the
parameters related with the multi-objective optimization problem and its solution. Here, these four

objective functions are not positively related with each other. For example, from Equation (10), f; increases
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when f> decreases and vice versa. Also, fo is not always linear with f3 as charging monetary costs at
different charging sections would be different. f; mostly depends on required energy to finish the trip and
current onboard energy of EVs. Next, we present the solution approach of the multi-objective problem.
ALGORITHM 1: Pseudocode for adaptive epsilon constraint method.

Input: E = {}, N ={},e=(0),0,0)

1 Find the shortest paths for objective functions f1, fa, f3, and f4 and update e accordingly
2 i< 0
3 h«1
4 while true do
5 while : < h do
6 (e, 6/) < getConstraints(m, e, |E|)//retrieve e-constraints from matrix of coordinates e
7 if [¢,é] ¢ N then
8 n < opt(f,€€)
9 if n =null or In € E: 7% > n then
10 | N+ NU[{
11 end
12 else
13 ‘ break
14 end
15 i i+1
16 end
17 end
18 E +— EU{n}
19 N+ NU[f(s),€]
20 e < updateConstraints(f(s),e)//update matrix of coordinates e and divide the grid
21 h+ (|E|+1)3
22 1+ 0
23 end
24 return E

3.5.3 Optimization problem solution. To solve the above optimization problem, we use the adaptive
epsilon constraint framework. Basically, this framework alternates the multi-objective optimization
problem into a single hyper-grid searching problem and it treats each objective function separately [28].
Algorithm 1 shows the overall procedures of the solution. Based on the number of objective functions, our
multi-objective optimization problem turns into a 3-dimensional hyper-grid searching problem. Here, each
dimension in the grid represents the constraint search space for each objective function, where opt(f, €, €)
returns the solution of the optimization problem based on the set of objective functions f, as well as €
and € as lower and upper bounds of the objective functions f. Here, we extend the original framework to
increase the searching efficiency. At the beginning, we solve the single objective optimization problem for
each objective function separately and find the shortest path for all four objective functions (fi, fa, f3,
and f4) individually (Step 1). The values of these shortest paths are set as the lower limits (é) of the
objective functions. Then, we initially consider one objective function as the base objective function,
whose objective space is dense. We utilize the remaining three objective functions where the grid cell
coordinates are identified by the solutions of these objective functions. Thus, the whole potential objective
space is R%. Here, we let define F as the already found solutions of the optimization problem and N as
the already covered search space. We also define matrix F as the coordinates of the grid includes already
found optimization solutions of fi, fa, and f3, separately. After the initialization, at each step, we try
to find a new solution (Step 4 - Step 23). More specifically, each time a new optimization solution is
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Table 4. Parameters of Spark EV.

Descriptions Values
Mass, M 1300 kg
Air density, Ay 1.97 m?
Drag coefficient, Cy 0.33
Rolling resistance efficiency, u 0.018
Power transforming efficiency, 71 0.9
Powertrain working efficiency, 72 0.97

sought using opt(f, €, €) procedure (Step 8) based on the constraints [e, €] derived by getConstraints(...)
procedure [28]. At first, [, €] is derived (Step 6) and checked with the already covered search space N
(Step 7). If [e, €] is completely new search space, a new solution n is generated using opt(f, e, €) (Step 8).
Then, n is compared with already found solutions set F (Step 9) and added to the set N if n does not
dominate the solution set E (Step 10). Otherwise, a new solution is found and n is added to solution set F
(Step 18). Then, [, €] is added to the already covered search space, N (Step 19). [e, f(A)] is added to the
matrix e (Step 20) where 3-dimensional grid coordinates is divided based on update Constraints(...) [28].
Finally, the number of cells is increased by the power of 3 (i.e., the number of objective functions minus
one) (Step 21). The algorithm convergences to the Pareto front solution [27, 42] w.r.t. the number of
solutions found and the number of objective functions (discussed in Appendix B).

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of proposed solutions in different aspects: vehicle count pre-
dictions at locations with/without historical traffic data, hourly average velocity and energy consumption
predictions, the solution of proposed multi-objective optimization problem, and the impact of hourly
average velocity prediction in the route planning. At first, we present the experimental settings used in
different scenarios. Then, we present the experimental results with appropriate figures and descriptions.

4.1 Experimental Settings

4.1.1 Energy consumption rate. We built the energy consumption model based on the parameters of
Chevrolet Spark EV (which has become popular recently [5]). Using the proposed energy consumption
model, it is possible to calculate the energy consumption in different traffic scenarios (i.e., velocity
values). From the Spark EV specifications, the battery pack structure consists of 2090 Sony VTC4-1850
Lithium-ion battery cells. Thus, the total capacity of the battery pack is 46.2 Ah and the voltage is 399
V. The rest of EV parameters are presented in Table 4.

4.1.2 Vehicle count prediction. For the traffic prediction estimation, we used our collected data from
SC DOT. As stated before, we manually collected the historical traffic data from SC DOT web site
for 212 days (December 1, 2016 — June 30, 2017). Initially, we choose 20 different traffic locations as
shown in Fig. 3 to collect the data. Then, we used this data to estimate the parameters of our prediction
models. Basically, the predictions for vehicle counts are divided into two categories. First, in the traffic
locations with available data, we implemented the proposed horizontal ARIMA model using R. We used
collected vehicle counts to estimate the parameters of the proposed horizontal ARIMA model. In the
proposed horizontal ARIMA model, we fed the vehicle counts w.r.t. the hourly time of the day (e.g.,
9 am, 10 am, and so on). We set both autoregressive (p) and moving average (q) parameters to 10
based on autocorrelation and partial autocorrelation functions. Figure 10 shows the autocorrelation and
partial autocorrelation functions using vehicle counts in a traffic location (id 0086). We can see that both
autocorrelation and partial autocorrelation values significant at time lag 10. For the comparison, we use
existing (10,10) ARIMA model [12]. Second, in the case of the traffic locations without any historical data,
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Fig. 10. Correlation analysis of vehicle counts.
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Fig. 11. SUMO experiments.

we implemented spatio-temporal ordinary kriging using R. Initially, we utilized collected vehicle counts
at 20 traffic locations. Ordinary kriging requires intermediate distance information of locations with
historical data. Here, we used global positioning system (GPS) coordinates of these 20 traffic locations as
GPS coordinates are more accurate spatial information. Then, we built and trained the ordinary kriging
model using collected vehicle count values.

4.1.3 Average velocity prediction. Here, we implemented the kernel regression method using R to
predict average velocity. We used the same collected traffic data to train kernel regression model. As a
kernel function K ( : ) was set to the Gaussian function. The bandwidth value h was set to 0.63 based on
the smoothness [45].

4.1.4 Multi-objective route planner. In this experiment, we first implemented our adaptive epsilon
constraint method using python programming language. Then, we used the SUMO traffic simulator to
verify the performances in real traffic scenarios. At first, we downloaded the road network map (included
mostly highways) from OpenStreetMap and then, converted it into a bi-directional graph using NetworkX
interface [3]. For each edge of the graph, we calculated the travel time and energy consumption using
predicted vehicle counts and hourly average velocity. Particularly, we used Equation (9) and Equation (10)
with the total length of an edge to calculate the travel time and energy consumption of that edge,
respectively. In the experiments, we used 10 EVs and set the number of charging sections to 15 and we
distributed these charging sections randomly to crowded road sections as shown in Figure 11(a). We
randomly selected a value in [0.4,0.9] as the SOC for each EV when it enters the road network. We set
each charging section length L and the maximum power capacity cap to 200 m and 500 kW, respectively.
The amount of power each EV can receive is equal to the time it would spend on top of the charging
section and it is directly related to the velocity of the EV. We used Equation (16) and Equation (18) to
calculate the charging monetary cost and range anxiety of each individual EV, respectively. Figure 11(a)
shows the SUMO network map converted from OpenStreetMap where each junction or point represents
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Table 5. List of source-destination pairs.

EV | Source | Destination | EV | Source | Destination
1st 1 13 6th 19 2
2nd 16 10 7th 4 9
3rd 6 17 8th 18 8
4th 12 5 9th 14 3
5th 11 15 10th 7 20

node and each edge is represented by connecting the path between two nodes. The scaling of the map is
30 kmx20 km. Figure 11(b) shows an EV leaving the wireless charging section in SUMO. Table 5 shows
the source-destination pairs for 10 EVs w.r.t. different traffic locations.

Then, we solved the multi-objective optimization problem and obtained different optimal routes for
different EVs. These routes were later used in SUMO to evaluate the performance in real traffic scenarios.
More specifically, we utilized TraCI interface (included in SUMO) to route each vehicle from the source
location to the destination location. We generated the hourly traffic flow in SUMO by setting the hourly
number of vehicles traversing in each road section. To evaluate our performance in different scenarios,
we conducted the experiments of multi-objective route planner in three different cases: first, we set 10
source-destination pairs for 10 EVs and ran the algorithm using the road network as shown in Figure 11(a).
Here the number of charging sections is 15. Second, we removed six charging sections (#4, #7, #8, #9,
#10, and #12) and ran the experiments again. Third, we further removed three edges between different
charging sections [(#4, #6), (#4, #7), and (#9, #12)] and again ran the experiments. Finally, to verify
the effectiveness of our method, we compared our optimization results with two other methods: one is the
lexicographic solution approach used in [15] and another is EcoDrive, an existing energy efficient routing
solution [24]. First, the lexicographic approach is applicable for solving any multi-objective optimization
problem, different objective functions are solved separately and, finally, some additional constraints
are added with each objective function to treat these objective functions together and find a solution
satisfy each objective function. Second, EcoDrive focuses a single objective and it tries to reduce the fuel
consumption of traditional vehicles w.r.t. the path length. To implement EcoDrive in terms of EVs, we
mainly calculated total energy consumption (using Equation (10)) and used dynamic programming to
find the most appropriate route such that total energy consumption is minimized. Here, we used the first
experimental scenario as described above.

4.1.5 Impact of average velocity prediction in route planning. To evaluate the impact of hourly average
velocity prediction in the route planning, we conducted an experiment in a route between charging section
#7 and charging section #9. We let one EV drive from charging section #7 to charging section #9. The
length of the route is 4.52 km and we considered the actual velocity of the route was 65 mph. We set the
SOC of the EV to 0.45 and we assumed the EV drove the whole route smoothly. Here, we changed the
error rate of average velocity prediction from -15% to +15% with 5% step size. Thus, there were seven
cases in total. As usual, we calculated the energy consumption and SOC of the EV using Equation (10)
and Equation (11), respectively. Also, we determined the charging monetary cost and range anxiety using
Equation (16) and Equation (18), respectively.

4.2 Experimental Results

4.2.1 Energy consumption rate. Based on the proposed model, the energy consumption rate (in mAhs=!)
of the EV is shown in Figure 12 w.r.t. different values of velocity and acceleration. For simplicity, we
consider the road gradient is zero. Here, velocity changes from 0 ms~! to 35 ms~!' and acceleration
changes from -2 ms~?2 to 3 ms—2. From the above figure, we can state that the energy consumption of an
EV increases faster when it accelerates faster. We can also find that energy consumption of an EV is
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Fig. 13. Correlation analysis of the proposed horizontal ARIMA model.

negative when the EV decelerates. It means the braking energy of EV would be able to transfer back into

battery easily.

4.2.2 Vehicle count predictions. At first, we used the proposed horizontal ARIMA model to predict the
vehicle counts in locations with historical traffic data. Figure 13 shows the correlation analysis of the
proposed horizontal (10,10) ARIMA model for a randomly chosen location (id 0086) of the road network,
where x axis shows the time lag and y axis represents autocorrelation or partial autocorrelation values,
(autocorrelation and partial autocorrelation are explained in Section 3.3). From Figure 13(a) we can
see that the model does not show any significant autocorrelations of the current vehicle count with the
previous vehicle counts. It means our horizontal model predicts the vehicle counts accurately. Similarly,
we can see from Figure 13(b) that there is no significant partial autocorrelation of current vehicle count
with previous vehicle counts of the data. Above observations from Figure 13 verify the proper fitness of

our model w.r.t. the collected data.

Figure 14 shows the proposed horizontal model prediction results based on the collected vehicle counts
at the specific time of the day (9 am). Here x axis represents vehicle counts at the specific time of 212
days, y axis represents vehicle counts, darker shadow represents 80% confidence interval of predicted
vehicle counts, and lighter shadow represents 95% confidence interval of predicted vehicle counts. We draw
this figure using two different proposed (10,10) ARIMA models used for two different traffic locations.
Figure 14(a) shows the prediction of vehicle counts at 9 am in another location (id 0086) and Figure 14(b)
shows the prediction of vehicle counts at 9 am in another one location (id 0157). Both Figure 14(a) and
Figure 14(b) show the predicted vehicle counts (blue line) and the actual vehicle counts (black line) are
close to each other. Thus, we can again verify the prediction performance of the proposed horizontal
ARIMA model. Next, Figure 15 shows the predicted and actual vehicle counts in one location (id 0086)
for seven days (March 12 to March 18) where it snows on March 12 and March 16. We can see that the
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predicted vehicle counts almost overlap with the actual vehicle counts at different times of the day. It
means that the proposed ARIMA model can predict the trends of vehicle counts throughout the day.

Then, we compare the performance of vehicle counts of the proposed ARIMA model and the existing
(10,10) ARIMA model. Figure 16 basically shows the comparison of vehicle count predictions between
the existing (10,10) ARIMA and the proposed horizontal (10,10) ARIMA in terms of Mean Absolute
Error (MAE)and Root Mean Square Error (RMSE). Here, we use vehicle counts in 10 different traffic
locations and a specific time of the day (12 pm). Using the RMSE value, we can analyze the deviation
of the prediction from original data and MAE value can help us to interpret the prediction accuracy.
Thus, we can analyze any traffic location (e.g., id 0001) and check the deviation and prediction error
based on RMSE and MAE values of two models. For most of the locations, MAE and RMSE values are
similar except for one location (id 0147) where that location does not have any neighbor and the vehicle
counts of that location are skewed. In addition, the variance of the prediction errors of vehicle counts
is larger and error magnitudes are in the same direction rather than in other locations. We can easily
verify that the proposed horizontal ARIMA model is more accurate and deviates less from the original
data. However, the existing ARIMA model produces more false predictions and the deviation from the
original data is much higher. As we consider data-driven intubation to use horizontal historical data, the
accuracy of our proposed ARIMA model is better. Also, instead of considering the average velocity of
neighbor traffic locations, we consider the number of vehicles of neighbor points and it decreases the
possible deviation from historical vehicle counts.

Now, in traffic locations without any historical traffic data, we used the ordinary kriging approach as
shown in Figure 17 where x axis represents the intermediate distances between different traffic locations,
y axis represents the time lag (interval between different times), and z axis represents the value of
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function (Equation (7)). From this graph, we can estimate the vehicle counts using v function w.r.t. any
given location at a given time of the day.

4.2.3 Average velocity estimations. Figure 18 shows the hourly average velocity prediction using the
kernel regression method. Here we consider two different cases: upper range of hourly average velocity
prediction (w.r.t. the speed limit) and lower range of hourly average velocity prediction (w.r.t. the speed
limit). More exactly, Figure 18(a) shows the lower range of hourly average velocity prediction using
historical vehicle counts in a location (id 0086). Here, the hourly average velocity is less than the speed
limit. x axis represents vehicle counts and y axis represents average velocity (in mph). We can see that
initially hourly average velocity decreases when the vehicle count increases. However, when the vehicle
count reaches around 1400, the average velocity starts to increase. There is another fall of the average
velocity when the vehicle count reaches around 2500. Next, Figure 18(b) shows the upper range of hourly
average velocity prediction w.r.t. vehicle counts in the same location. In contrast to the previous figure,
here, the hourly average velocity is greater than the speed limit. We can see that initially hourly average
velocity increases gradually when vehicle count increases. However, the average velocity decreases sharply
when vehicle count is around 3500. However, average velocity reaches a steady state when vehicle count
is more than 5000.
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Fig. 19. Vehicle routing results in three different cases.

4.2.4 Multi-objective optimization solutions. First, we evaluate the performances of our adaptive epsilon
constraint approach in three different cases as described in Section 4.1.4. Figure 19(a) shows the
corresponding energy consumption in three cases. We see that energy consumption of the 1st and 4th
EVs are unchanged. Energy consumption of the 2nd, 3rd, and 5th are unchanged in the second case but
increased in the third case. Also, energy consumption of the 6th, 8th, and 9th EV are decreased in the
second case but are increased in the third case. The 7th EV’s energy consumption is the same in the
second and third cases, and finally, the 10th EV’s energy consumption increases in the second and third
cases. Similarly, Figure 19(b) shows the required travel time of EVs in three cases. Travel times of the
1st and 4th EVs remain unchanged in three cases. The 2nd, 3rd, and 5th EVs’ travel times remain the
same in the first two cases but increase in the third case. The travel times of the 6th, 7th, and 9th EVs
are decreased in the second case but increased in the third case compared with the second case. The
7th EV’s travel time is the same in the second and third cases. And, the travel time of the 10th EV
is increased only in the third case. Then, Figure 19(c) shows the charging monetary cost of 10 EVs in
three cases. As in the previous two figures, the charging monetary cost of the 1st and 4th EVs remain
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unchanged. The charging monetary cost of the 6th, 8th, and 9th EVs are decreased in the second case
but increased in the third case. The 2nd, 3rd, and 5th EVs’ charging costs are decreased in the second
and third case compared to the first case. The 7th EV’s charging cost is the same in the second and third
cases. The charging monetary cost of the 10th EV is also decreased in the second and third cases. And,
Figure 19(d) shows the range anxiety of commuters of the 10 EVs in three cases. Similar to previous
figures, the range anxieties of the 1st and 4th EVs remain the same. The 2nd, 3rd, and 5th EVs’ range
anxieties are increased in the second and third cases. The Range anxieties of the 6th, 8th, and 9th EVs
are increased in the second case but decreased in the third case. The Tth EV’s range anxiety is the same
in the second and third cases. The 10th EV’s range anxiety is the same in the first and third cases.

From the above discussion, it is obvious that the 1st and 4th EVs’ routes do not affect the EVs at
all in three cases (all four factors are remain the same). The 2nd and 3rd EVs’ routes remain the same
in the second case (same energy consumption and travel time but less charging cost) and they have to
choose a new route in the third case (more energy consumption and travel time with more charging
cost). The routes of EV 5 is the same in the first and second cases but it takes a new route with fewer
charging sections in the third case. The routes of the 6th, 8th, and 9th EVs take a detour without these
five removed charging sections in the second case (less energy consumption and charging cost with more
anxiety) but have to choose a longer path with a new charging section in the third case. The 7th EV is
not affected by edge removal and takes the same route in the second and third cases (same charging cost
and range anxiety). The 10th EV takes the same route in the first and second cases but has to choose
another route with a new charging section in the third case. Thus, we can state that it is not obvious that
a new charging section in the road network would spur all EVs to change their routes in the adaptive
epsilon constraint approach. This is because our adaptive epsilon constraint approach always tries to find
a new Pareto optimal path [27, 42] which can satisfy all already found solutions.

Second, we evaluate the performance of our adaptive epsilon constraint approach by comparing with
the lexicographic approach to solve the multi-objective optimization problem. We also compared our
solution with another existing system, called EcoDrive which considers only energy efficiency as the
singular objective function. Four different figures (in Figure 20) show the evaluation of three different
solution approaches in four aspects: energy consumption, travel time, charging monetary cost, and range
anxiety. First, Figure 20(a) shows the energy consumption amount of 10 different EVs based on the
solution approaches used. Here, we calculate the energy consumption as the difference between previous
onboard energy before starting the trip and current onboard energy after finishing the trip. We can see
that the adaptive epsilon constraint method requires more energy than others as our adaptive epsilon
constraint approach try to find a routing solution which considers all four objective functions together. In
the lexicographic approach, some constraints of the objective functions are relaxed and this approach
requires a modest amount of energy. EcoDrive requires the lowest amount of energy as it considers
only energy efficient routing. Then, Figure 20(b) shows the travel time of 10 EVs using three different
approaches with the same source-destination pairs. We calculated the travel time using total time to
finish the trip, which also included the waiting time in front of traffic signals. Using the velocity profile of
an EV over time, we can determine if the EV stops at the traffic signal and then calculate the waiting
time. Here, we can see that EcoDrive requires the highest amount of time as it only considers energy
consumption and sacrifices travel time. Then, the lexicographic approach requires the second greatest
amount of travel time as it gives highest priority to the energy consumption factor. In our adaptive
epsilon constraint approach, the required travel time is slightly lower than the lexicographic approach
due to the consideration of the four objectives.

Figure 20(c) shows charging monetary cost of 10 EVs when three different solution approaches are
used. The cost to charge the EVs is considered using randomly chosen unit electricity values for different
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Fig. 20. Vehicle routing results using three different optimization approaches.

subregions so that we would be able the evaluate the real grid scenario where the price of electricity
is different in different regions due to the power fluctuations. Here, the charging cost in EcoDrive is
highest as it always tries to find the path which requires the lowest onboard energy consumption. The
charging cost in the lexicographic approach is modest as it considers charging cost as the third objective
function. Here, the charging cost of the adaptive epsilon constraint method is lowest as our method
has the consideration to balance different objectives. Finally, the range anxieties of 10 EVs commuters
using three different approaches are given in Figure 20(d). Here, we calculate the range anxiety using
Equation (17). We can see that the range anxiety of the commuters in our method is lower than in the
other two methods. The main reason is that the other two methods either do not have any range anxiety
consideration or give the lowest priority to the range anxiety.

From the above discussion, we can see that our adaptive epsilon constraint approach can offer a more
balanced solution compared with the existing lexicographic approach and EcoDrive. The adaptive epsilon
constraint method tries to find the balance between different objective functions and to find a routing
path from source to destination which does not cause a much higher charging cost or higher range anxiety
or higher traveling time. The performance of the lexicographic is worse w.r.t. the range anxiety and
charging monetary cost minimization. Even though the energy consumption of the lexicographic method
is lower than our method, the energy consumption differences are not significant (less than 10%). The
trip time of the lexicographic approach is a little bit higher than our approach in most of the cases.
Basically, the lexicographic approach relaxes some search spaces of objective functions and it tries to
find an overlapping region among four different objective functions. In the case of EcoDrive routing
solution, the travel time, charging cost, and range anxiety are almost always higher than in the other two
approaches. Since EcoDrive only considers energy consumption in the optimization problem. EcoDrive
cannot satisfy other objectives and its performance is worse than in the other two solution approaches.

4.2.5 Impact of average velocity prediction in route planning. Table 6 shows the impact of hourly average
velocity prediction in route planning. Here, there are seven cases in total. We can see that the more
positive error rate in hourly average velocity prediction causes more energy consumption of the EV and
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Table 6. Impact of hourly average velocity prediction.

Error rate | Energy consumption | Travel time | Charging monetary cost | Range anxiety
(+)5% 833.11 kW 148.14 s $1.78 3
(+)10% 914.34 kW 141's $1.75 3
(+)15% 999.35 kW 135.26 s $1.70 4

0% 755.65 kW 155.4 s $1.82 2
(-)5% 612.08 kW 163.2 s $1.86 1
(-)10% 681 kW 172.83 s $ 1.92 1
(-)15% 545.96 kW 183 s $1.97 1

requires less travel time to finish the trip. As a result, the positive error rate in hourly average velocity
prediction requires a lower charging monetary cost but causes more range anxiety. However, the more
negative error rate in hourly average velocity prediction requires a higher charging monetary cost and
causes less range anxiety. This is because the negative error rate requires more travel time and consumes
more energy. From the above discussion, we can easily understand the importance of traffic predictions
(i.e., vehicle counts or hourly average velocity) in route planning.

5 RELATED WORK

Vehicle routing. The traditional vehicle routing problem is studied by several existing works [9, 19, 40, 56]
where the main idea is to distribute the vehicles among road networks satisfying energy constraints
of vehicles. In addition, different other aspects (e.g., traveling time, load distribution, road network
utilization, etc.) are considered as the cost functions. As an example, Goseiri et al. [19] proposed a
multi-objective optimization problem for taxis to minimize travel distance and serve more passengers.
Another work by Banos et al. [9] tries to solve the vehicle routing problem in terms of minimizing distance
traveled and balancing the workload (delivery services) of different vehicles with strict deadline constraints.
The authors proposed a combination of evolutionary computation and simulated annealing approaches
to solving the multi-objective formulations of the vehicle routing problem. A real-time congestion-aware
vehicle routing problem is proposed by Zhang et al. [56] and the solution of a routing problem is established
using the lexicographic approach. The main idea is to predict the flows of existing vehicles in the road
network such that it: (i) transfers passengers to their destinations in minimum time and (ii) re-balances
vehicles throughout the network to satisfy the passengers’ demand of taxis. Similar to our routing problem,
Schneider et al. [40] studied the EVs’ routing problem to satisfy the charging schedules of stationary
charging stations and to minimize energy consumption without using any multi-objective consideration.

In the routing of online EVs, it is important to ensure a sufficient power supply along the way and
the commuter’s range anxiety, charging monetary cost, travel time, and energy consumption should be
considered together. Besides, the above studies, without leveraging the ubiquitous traffic flow patterns
of the road network, may fail to validate in real-life scenarios. Our ubiquitous data-driven EV routing
problem considers current traffic conditions to ensure the onboard energy constraints and consider multiple
objectives to provide an optimal routing solution.

Data-driven intelligent transportation system. Utilizing the spatio-temporal features of road
networks to ensure better travel experiences (safety, comfort, etc.) within the transportation system falls
into the category of urban computing and has been studied in recent years [6, 7, 10, 26, 49-51, 54]. As an
example, the existing study [32] is inspired to provide real-time route guidance utilizing the probability-
based congestion awareness of real traffic analysis. A very common approach to this set of works is to
predict the near-future traffic states based on available historical data. The study [7] utilizes periodic
messages (containing the location, passenger status, destination, etc.) from taxis to generate current traffic
snapshots and provide accurate traffic forecasting based on previous taxis’ trajectories. Another work [10]
analyzes the intra-day trends for traffic flow series to improve the prediction of vehicular congestion. Xu et
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al. [49] proposed a framework for online traffic prediction leveraging contextual correlation of predictors.
In their work, several weak predictors are dynamically adjusted to build a strong self-adapting hybrid
predictor.

Abadi et al. [6] designed a traffic simulator based on an autoregressive prediction algorithm to be
more adaptable to the unpredictable events. Zhang et al. [54] combined several traffic datasets to design
a data-driven service to notify commuters about possible stop location and departure time. Another
data-driven system DESTPRE [50], predicts the destination of a partial trajectory based on the similarity
between different vehicles’ trajectories. Ziebart et al. [59] utilized context-aware user behaviors and
context-sensitive action utilities towards vehicle route preference modeling to predict left and right
turns, traversing the path and final destination of vehicles. De et al. [14] presented a probability-based
intention aware routing of EVs considering waiting time reduction in static charging stations. Also, Sun
et al. [43] integrated predictive hybrid-EV energy management strategy with real-time vehicles’ trajectory
information to find out optimal SOC trajectory (SOC consumption profiles of the trajectory) using
dynamic programming approach. The above data-driven existing works do not utilize spatio-temporal
correlations of different traffic locations such that the computation complexity in vehicle routing problem
would be reduced as it discards some repetitive steps. Although some of these works [14, 32, 43] utilize
ubiquitous traffic patterns in vehicle routing problem, they ignore multiple aspects in the vehicle routing
problem. For example, Yuan et al. [53] considered routing of individual vehicles based on the probabilistic
prediction using hidden markov model and Horvitz et al. [21] considered opportunistic routing of different
paths based on historic user preferences without having multiple objectives. In our work, we leverage
spatio-temporal correlations of different nodes to reduce prediction complexity of vehicle routing problem
to satisfy multiple objectives.

6 CONCLUSIONS

In this paper, we proposed MORP, a ubiquitous data-driven route planner of online EVs consisting
of four different factors (travel time, energy consumption, charging cost, and range anxiety). We first
conducted ubiquitous traffic flow data analysis and found the spatial-temporal features of vehicle counts
and velocity. Based on our observations, we built several models to predict vehicle counts and average
velocity. MORP system predicts the vehicle counts using the proposed horizontal ARIMA model and the
ordinary kriging model for locations (both) with and without traffic data. Then, it predicts the average
velocity of each road section using non-parametric kernel repression along with predicted vehicle counts.
Again, MORP predicts travel time using the predicted average velocity of each road section. Finally,
it predicts energy consumption of different road sections using a proposed energy consumption model
with the help of predicted average velocity of these road sections. Eventually, predicted travel time and
energy consumption are used as the inputs of two cost functions in the multi-objective optimized routing
solution. We also considered charging monetary cost and range anxiety of EVs as two other cost functions
in the routing solution. Basically, we applied the adaptive-epsilon constraint method along with a robust
optimization technique in order to obtain the solution of the multi-objective optimization problem of the
best available routes for different EVs. As a result, the proposed MORP system offers several optimal
routes in the road network while minimizing travel time, energy consumption, charging monetary cost,
and range anxiety of EVs. We evaluated the proposed MORP system using different experimental tools
in order to consider different scenarios. Most importantly, we evaluated the performances along optimized
routes using SUMO traffic simulator to check the validity of proposed MORP in real traffic scenarios. In
the future, we would like to devise more sophisticated regression models in traffic predictions and build
an online optimization framework based on more complex traffic scenarios.
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A PARAMETERS ESTIMATION FOR HORIZONTAL ARIMA MODEL

First, we derive the log likelihood function of the distribution of vehicle counts using autocorrelation
function of its time series. Then, we design a minimization problem to estimate the values of all parameters
in Equation (3) (except p, g, and W).

Let T'; represent the autocovariance function of the vehicle counts = at time ¢. Then, we can write:

T; = Elz(t), z(t — i)], (25)

where F is the expected value of the vehicle counts z(t). Equation (25) can be further used to represent
the autocorrelation function p;, the covariance at time lag i divided by the variance of the vehicle counts.
Thus, it can be written as follows:

I

P 26

Pi= T, (26)

Now, if we consider proposed horizontal ARIMA model is basically a zero mean Gaussian process. Then

for any fixed value 6, v, ©, ¥, and o2, the (z; — 1), ..., (¥, — 2,) are independent and normally
distributed with variances o2py, ..., 02p,_1. Then, the likelihood function can be written as:

. 1 (x; — ;)2
£0.,0,0,0%) = [[ el ~ T o7
(0.1 )= e - 5 (27)

Now, if we apply log in Equation (27), we can get the following form:

5(0,4,0,7)

D22 (28)

1
InL(0,v,0,¥,0%) = —5((2m2)"p0...pn,1) -

PR 2
w =3, (‘Tmii) Next, by differentiation of Equation(29) w.r.t. to o2, we can get

following minimization problem:

5(97 1/)7 97 \Ij)) + Zi:l lnpi—l (27T02)np0...pn,1) . 5(9, 'Q[J, @, \I/)

n n 202

where

InL(9,1,0,¥) = In( ; (29)

which can be done numerically using Newton-Raphson’s method [8].

B CONVERGENCE OF PARETO OPTIMALITY OF MULTI-OBJECTIVE OPTIMIZATION

THEOREM B.1. If |F| is the number of objective functions and k is the number of times that the
single-objective optimizer will be called, then the complexity of Algorithm 1 to discover a Pareto optimal
solution is O(|k|?).

PRroOOF. The single objective optimizer, opt(...) is called for different combinations of upper and lower
constraint vectors (e,€) (Step 8 in Algorithm 1). Each newly found solution leads to 3 new constraint
values and further subdivision of some of the previous constraint regions. Given a constraint matrix e,
the total number of times the algorithm calls the single objective optimizer equals (|E| + 1)% where |E|
is the total number of newly found solutions. E includes all and only Pareto optimal solutions which
have not been either discovered or dominated by already found solutions. |E| is maximal when all Pareto
optimal solutions have been discovered and included in E, i.e., f(E) = F*. Thus, the single objective
optimizer can not be called for more than (|F*| + 1)% and k = |F*| + 1. It completes the proof. O
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