
JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

Towards Bandwidth Guarantee for Virtual Clusters
under Demand Uncertainty in Multi-tenant Clouds

Lei Yu, Haiying Shen, Zhipeng Cai, Ling Liu and Calton Pu

Abstract—In the cloud, multiple tenants share the resource of datacenters and their applications compete with each other for scarce network
bandwidth. Current studies have shown that the lack of bandwidth guarantee causes unpredictable network performance, leading to poor
application performance. To address this issue, several virtual network abstractions have been proposed which allow the tenants to reserve
virtual clusters with specified bandwidth between the Virtual Machines (VMs) in the datacenters. However, all these existing proposals require
the tenants to deterministically characterize the bandwidth demands in the abstractions, which can be difficult and result in inefficient
bandwidth reservation due to the demand uncertainty. In this paper, we explore a virtual cluster abstraction with stochastic bandwidth
characterization to address the bandwidth demand uncertainty. We propose Stochastic Virtual Cluster (SVC), which models the bandwidth
demand between VMs in a probabilistic way. Based on SVC, we develop a stochastic framework for virtual cluster allocation, in which the
admitted virtual cluster’s bandwidth demands are satisfied with a high probability. Efficient VM allocation algorithms are proposed to
implement the framework while reducing the possibility of link congestion through minimizing the maximum bandwidth occupancy of a virtual
cluster on physical links. Using simulations, we show that SVC achieves the trade-off between the job concurrency and the average job
running time, and demonstrate its effectiveness for accommodating cloud application workloads with highly volatile bandwidth demands and
its improvement to work-conserving bandwidth enforcement.

Index Terms—cloud computing, bandwidth guarantee, network abstraction, virtual network, virtual machine placement.

F

1 Introduction

B ased on modern virtualization of datacenters, cloud com-
puting delivers cost-effective and powerful Infrastructure as

a Service (IaaS) for a wide spectrum of applications like Web
services and Hadoop [1]. However, in the shared and multi-
tenant cloud network infrastructures, the competition of applica-
tions for the scarce network resources have caused unpredictable
application performance in the cloud [2]. The lack of guaranteed
network bandwidth causes variable data transmission latency and
job completion time, leading to poor job scheduling and datacenter
throughput [3], [4].

Recently, several virtual network abstractions [5], [6], [7],
[8] have been proposed, which specify a virtual cluster (alter-
natively, a virtual datacenter) required by the tenants and the
bandwidth requirements between VMs. They explicitly enable
the tenants to accurately specify their bandwidth demands for
their virtual clusters while enabling efficient bandwidth provision
in datacenter networks. SecondNet [5] aims to guarantee end-
to-end bandwidth for each pair of virtual machines (in short,
VMs). Oktopus [6] introduces a virtual cluster model that requires
a virtual topology comprising N VMs connected to a virtual
switch with virtual links having bandwidth capacity specified by
the tenants. Considering that many cloud applications have time-
varying bandwidth requirements, a temporally-interleaved virtual
cluster model TIVC [7] is proposed. It allows the tenants to
specify different bandwidth demands at different time intervals.
CloudMirror [8] drives the network abstraction based on the
application communication structure instead of the horse model.

• Lei Yu, Ling Liu and Calton Pu are with the School of Computer Science,
Georgia Institute of Technology, Atlanta, GA, 30303.
E-mail: lyu79@gatech.edu, {ling.liu, calton.pu}@cc.gatech.edu

• Haiying Shen is with the Department of Computer Science, University of
Virginia, Charlottesville, VA, 22904.
E-mail: hs6ms@virginia.edu

• Zhipeng Cai is with the Department of Computer Science, Georgia State
University, Atlanta, GA, 30303.
E-mail: zcai@gsu.edu

While these methods provides efficient bandwidth reservation to
the tenants, they require reliable and deterministic estimate of
bandwidth demand among VMs; the bandwidth requirement is
estimated based on the profiling runs and the analysis of the cloud
applications.

Unfortunately, recent measurement studies [9], [10] show that
the network traffic is highly volatile in production datacenters.
Since the above bandwidth guarantee approaches [5], [6], [7], [8]
require deterministic bandwidth specification in virtual network
abstractions, they have to specify over-provisioned bandwidth
to deal with the stochastic traffic. This can lead to insufficient
bandwidth provision for guaranteeing application predictability,
inefficient network utilization, significant resource waste to cloud
providers and high costs to tenants. It has been shown that the
stochastic traffic has impact on various aspects of traffic engineer-
ing, such as link utilization and bandwidth provisioning [11]. It is
also a difficult task for a tenant to determine the accurate amount
of bandwidth that the virtual cluster needs at the running time
due to demand uncertainty. To remedy these shortfalls, this paper
develops a stochastic bandwidth allocation approach for virtual
clusters, which takes into account the demand uncertainty based
on the stochastic characterization of the bandwidth demand.

The primary contribution of this paper is to explore a new
network allocation abstraction called Stochastic Virtual Cluster
(SVC). It extends the virtual cluster abstraction with probabilistic
distributions of bandwidth demand on virtual links to capture the
traffic uncertainty and variance of cloud applications. The distri-
butional information typically can be derived by statistical pro-
cedures for forecasting network traffic from measurements [12],
[13]. Such information has not been exploited in existing solutions
for bandwidth guarantee.

With using the demand distribution information, SVC aims to
address the insufficiency of existing virtual network abstractions
for handling traffic burstiness and demand uncertainty, and is ex-
pected to improve the network utilization. Several works like Gate-
keeper [14], EyeQ [15] and ElasticSwitch [16] are proposed to ad-

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 2

dress these issues through work-conserving rate control at runtime.
They enforce the minimum bandwidth guarantee specified by the
horse model through the admission control of virtual clusters and
proper VM placement. The traffic burstiness is handled by dynam-
ically increasing the rate beyond the deterministic bandwidth spec-
ification in the abstraction to achieve work-conservation. However,
because these approaches use the hose model with deterministic
bandwidth, they place VMs without respect to traffic burstiness
and the resulting virtual cluster allocations are not optimal for
stochastic bandwidth demands. The VM placement oblivious to
traffic bustiness may let the bursty flows from different VM pairs
go across the same link. The dynamical rate adjustment would
further cause bandwidth competition among these virtual clusters
and link congestion. If the VMs of virtual clusters are admitted
and placed with the consideration of traffic dynamics, that is, the
VMs are placed to prevent bursty traffic from different VM pairs
sharing the same links, the performance gain can be increased for
dynamic rate adjustment. With specifying stochastic bandwidth
demand, the proposed SVC abstraction provides opportunity for us
to address the traffic burstiness and improve network utilization at
an earlier time, i.e., during the network planning phase conducting
admission control and VM placement. Thus, while our work is
orthogonal to these existing works [14], [15], [16], they can
be integrated together to improve the network utilization and
performance for virtual cluster allocation.

Based on SVC, we propose a stochastic framework for virtual
cluster allocation, where the bandwidth demands of virtual clusters
in the datacenter are satisfied with a high probability. In this
framework, virtual cluster admission and VM placement take
into account the effect of statistical bandwidth multiplexing with
ensuring probabilistic bandwidth guarantee for all the admitted
virtual clusters. Being aware of bandwidth demand uncertainty for
virtual cluster allocation, this framework improves the network
utilization and job concurrency in the clouds, and thus provides
better performance guarantee to cloud applications with highly
volatile bandwidth demands.

To implement such a framework, a fundamental problem is
how to allocate VMs in a physical datacenter for an SVC abstrac-
tion while ensuring the probabilistic bandwidth guarantee for all
tenants. To solve the problem, as opposed to previous approaches
proposed for allocating deterministic virtual clusters [6], [7], [8],
we need to characterize the bandwidth occupancy on any links for
a virtual cluster and establish the condition for a valid VM alloca-
tion in a probabilistic manner. Also, we point out that previous VM
allocation algorithms, although providing good locality of VMs in
a virtual cluster, is not optimal in terms of the bandwidth occu-
pancy of physical links. In this paper, we derive the condition for
a valid VM allocation that provides probabilistic bandwidth guar-
antee. Based on that, we then propose a dynamic programming
based VM allocation algorithm that finds the optimal allocation
for a virtual cluster within the lowest-level subtree with the goal
to minimize its bandwidth occupancy on physical links in order
to reduce the possibilities of link congestion. Furthermore, we
consider the SVC model with heterogeneous bandwidth demands
that may follow different probability distributions, and develop a
heuristic algorithm towards finding the optimal VM allocation.

In summary, the contributions of this paper are as follows.

• We introduce a new virtual cluster abstraction SVC with
stochastic bandwidth demands to account for bandwidth
demand uncertainty. Based on that, we propose a stochas-
tic framework for virtual cluster allocation that aims to
provide probabilistic bandwidth guarantee to tenants.

• We devise efficient VM allocation algorithms for SVC with
homogeneous and heterogeneous bandwidth demands,
which not only achieve good locality but also minimize
the bandwidth occupancy of the virtual cluster on physical
links.

• We extend SVC with minimum bandwidth guarantee such
that it can be incorporated with the bandwidth enforcement
approaches for work-conserving bandwidth guarantee.

• We demonstrate the effectiveness of SVC and our network
sharing solution with SVC by extensive simulations. The
results show SVC yields better performance to cloud
applications with highly volatile bandwidth demands and
achieves the trade-off between the job concurrency and
average job running time, compared with previous deter-
ministic bandwidth abstractions.

The rest of the paper is organized as follows. Section 2
describes the related work. Section 3 describes our SVC model
and the stochastic framework for virtual cluster allocation with
probabilistic bandwidth guarantee. Section 4 and Section 5 present
the VM allocation algorithms for SVC with homogeneous and
heterogeneous bandwidth demand, respectively. Section 7 shows
our simulation results.

2 RelatedWork
2.1 Network Sharing in Clouds

Given that the lack of bandwidth guarantee can significantly de-
grade the performance of cloud applications, several network shar-
ing solutions for multi-tenant datacenters have been proposed [4],
[5], [6], [7], [8], [17], [18]. These solutions have different policies
for sharing the bandwidth, including bandwidth reservation [5],
[6], [7], [8] and weight proportional bandwidth sharing [4], [17],
[18].

Secondnet [5] and Oktopus [6] provide bandwidth guarantee
through deterministic bandwidth reservations in the network. Sec-
ondnet [5] proposes a virtual datacenter abstraction which speci-
fies the bandwidth requirements among each VM pair. A central
controller determines the flow rate and the path for each VM-to-
VM pair and inform the end hosts. Based on the hose model,
Oktopus [6] proposes a virtual cluster abstraction for network
reservation, in which a virtual cluster request ⟨N, B⟩ requires a
virtual topology comprising N machines connected by links of
bandwidth B to a virtual switch. TIVC [7] extends the virtual
cluster model of Oktopus [6] with time-varying bandwidth reser-
vation in order to capture the time-varying networking requirement
of cloud applications. In [19], the virtual cluster model is further
extended for allowing heterogeneous bandwidth requirements for
different VMs. The algorithm proposed in [19] addresses the allo-
cation of virtual clusters with heterogeneous bandwidth demand.
It improves the search efficiency by dividing 2N possible subsets
of N VMs into N2 groups and examining the allocatability of VM
subsets by group. The hose model based abstractions like Oktopus
and TIVC well address batch processing applications like MapRe-
duce and Pregel that typically have all-to-all communication struc-
tures. However, for the applications with different communication
structures like multi-tiered applications, the hose model based
abstractions can cause low resource utilization. To address this
issue, CloudMirror [8] drives the virtual network topology based
on the application communication structures. By accurately cap-
turing real communication patterns among VMs, it can effectively
reduce the bandwidth reserved for the virtual cluster and improve
rejection rate of virtual cluster requests from tenants. To derive

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 3

the network abstractions in CloudMirror, it is required to know the
type of applications, their communication structures and to decide
different functions for different VMs among tiers. In our work,
we focus on showing the advantage of incorporating bandwidth
demand uncertainty information in the network abstractions rather
than considering application communication structures. Thus, we
assume unknown application communication structures or simple
all-to-all communication structures and choose host model based
abstractions.

To achieve bandwidth guaranteed virtual to physical mapping
for different virtual network abstractions, the previous works also
propose various VM allocation algorithms and the mechanisms to
enforce the bandwidth guarantee. The work [20] also considers
the dynamic scaling of virtual cluster abstractions in terms of
the number of VMs and bandwidth requirement in Oktopus and
proposes efficient VM alocation algorithms to support it. However,
they require exact and deterministic bandwidth demand informa-
tion for the virtual network abstractions, which is difficult to obtain
due to traffic burstiness and demand uncertainty. These approaches
have to specify over-provisioned bandwidth for virtual networks
to deal with the stochastic traffic. While ensuring the network
performance isolation among different tenants, these approaches
enforce bandwidth guarantee through static provision of link
bandwidth. Thus, they are not work-conserving, which leads to
inefficient utilization of the network bandwidth.

Gatekeeper [14] and EyeQ [15] are two work-conserving
solutions for bandwidth guarantee. They enforce the minimum
bandwidth guarantees with using the horse model as virtual
network abstractions. Based on the assumption that the core of
the network fabric is congestion-free and the bottlenecks occur
at the endpoint links, they ensure minimum bandwidth guarantee
while achieving work-conservation through rate-based congestion
control at end-points. Another work-conserving mechanism for
bandwidth guarantee enforcement, named ElasticSwitch [16], is
proposed recently. ElasticSwitch transforms the bandwidth guar-
antee specified by the hose model into pairwise VM-to-VM rate-
limits. It achieves work conservation by dynamically increasing
the rate-limits when the network is not congested. The problem of
these approaches is that their admission control and VM placement
of virtual clusters do not take into account the traffic burstiness,
because they are based on the hose model with deterministic band-
width requirement. This may lead to inefficient VM placement
with regard to network utilization. Even with the dynamic rate
allocation at runtime, it would limit the room for improvement of
network utilization.

Another type of network sharing solutions, such as Seawall [4],
Netshare [18] and FairCloud [17], share the network bandwidth
proportionally based on weights. Seawall [4] proposes a VM-level
congestion control approach to ensure the share of bandwidth
obtained by per source VM in each congested network link is
proportional to its weight. The congestion control approach adjusts
rates with weighted additive rate increase and multiplicative rate
decrease functions. Netshare [18] proposes a hierarchical weighted
max-min fair sharing mechanism which allocates the bandwidth
to services according to their weights with a central controller.
For each service, Netshare allocates its bandwidth equally to its
TCP connections. Faircloud [17] describes a comprehensive set
of properties for cloud network sharing, including proportion-
ality, minimum bandwidth guarantee, work conservation, etc. It
proposes three allocation policies to navigate the tradeoff space
among these properties. A bandwidth allocation algorithm, Fal-
loc [21] is proposed, that uses the cooperative game model to

80 90 100 110 120
0

0.01

0.02

0.03

0.04

Bandwidth demand (Mbps)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

VM 1 VM N

Virtual Switch

Bandwidth B1 BN

80 90 100 110 120
0

0.02

0.04

0.06

0.08

Bandwidth demand (Mbps)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

Fig. 1: Virtual cluster model with stochastic bandwidth demand.

solve the datacenter bandwidth allocation problem with achieving
both minimum bandwidth guarantee and proportional bandwidth
share for the residual bandwidth. Seawall and Netshare cannot
provide minimum bandwidth guarantees, because the proportion
of bandwidth allocation on the links depends on other source
VMs or tenants and can be arbitrarily reduced. Although a policy
PS-P in Faircloud can provide minimum bandwidth guarantee,
it requires extra hardware support of switches and tree-based
datacenter topologies.

2.2 Statistical Traffic Engineering
A statistical traffic engineering framework [11] has been proposed
for optimizing bandwidth provisioning and route selection under
demand uncertainty. It uses probabilistic distribution of demands
as inputs for off-line optimization with respect to the paths serving
end-to-end traffic demand and the amount of provisioned band-
width on these paths. The optimization objective is to maximize
the revenue obtained from serving demands. The numerical results
show that demand uncertainty has significant impacts on mean
revenue and utilization. In this paper we integrate distributional
information of bandwidth demands into virtual network abstrac-
tion for bandwidth guarantee, in order to optimize the admission
of virtual clusters and VM placement under demand uncertainty
with the goal to improve the network utilization.

3 STOCHASTIC NETWORK ABSTRACTION AND
FRAMEWORK
In this section we introduce a new virtual cluster network abstrac-
tion with stochastic bandwidth demand to account for demand
uncertainty, and propose a stochastic framework for virtual cluster
allocation with probabilistic bandwidth guarantee.

3.1 Stochastic Virtual Cluster Model

Highly dynamic bandwidth usage of cloud applications [9], [10]
indicates the need for a new networking abstraction that can
express the demand uncertainty of application networking re-
quirement. To this end, we propose a novel network abstraction
called Stochastic Virtual Cluster model (SVC) that captures the
bandwidth demand uncertainty of cloud applications.

The SVC abstraction (shown in Fig. 1) consists of a virtual
cluster of N nodes VM 1, . . ., VM N, connected to a switch, via
links of bandwidth B1, . . . , BN respectively, similar to the virtual
cluster model in [6]. However, there are two key differences. First,
the bandwidth for each link is a random variable, instead of a
constant value in the previous work [6]. This not only avoids
the need for reliable bandwidth estimate which is impossible for

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 4

Link Bandwidth C
L

Deterministic

Allocation D
L

Stochastic Sharing

Bandwidth S
L

… …

Fig. 2: View of Bandwidth Allocation on link L.

highly dynamic network traffic, but also improves the utilization
of datacenter resources and the performance of cloud applications
by efficiently capturing the uncertainty of the future bandwidth
usage of applications, as shown in our simulations. Second, the
links can have heterogeneous bandwidth, i.e., the bandwidth of
different links have different probability distributions, instead of
homogeneous constant bandwidth demand for all VMs [6]. This
provides more flexibility to characterize the diverse bandwidth
needs of tenants’ applications.

The first step to derive a SVC abstraction for the customers’
cloud applications is to estimate the probability distributions of
bandwidth demands of VMs in their jobs. Similar to previous
works [5], [6], [7], cloud customers can conduct the profiling runs
before the production runs of their applications, during which the
traffic usage information of VMs is sampled at all VMs to log
all communications between VMs with network tools such as
tcpdump, or sFlow and NetFlow that are already supported by
software switches like Open vSwitch (OVS). With the bandwidth
usage samples during the profiling runs, the probability distribu-
tion of bandwidth demands can be estimated for every VM. Then,
the customers can have the final SVC model description for the
production runs of their cloud applications, which specifies the
number of VMs N and the distribution information of B1, . . . , BN .
Note that the profiling step adds additional overhead but the
overhead can be amortized and drastically reduced when the same
type of cloud applications with the same input size is repeatedly
run many times.

3.2 Probabilistic Bandwidth Guarantee for Stochastic
Bandwidth Demand

For a virtual cluster with deterministic bandwidth, the amount of
reserved bandwidth on any physical links only depends on the
placement of its VMs. The bandwidth is guaranteed via ensuring
sufficient bandwidth provision of the physical links that connect
the virtual cluster’s VMs and enforcing bandwidth reservation by
rate limiting at VMs or switches. For SVC model, however, the
problem of bandwidth guarantee is different due to the stochastic
bandwidth requirement. In this paper we introduce probabilistic
bandwidth guarantee for SVC.

We first characterize bandwidth occupation of K allocated
virtual clusters with stochastic bandwidth demands on a phys-
ical link L. Let CL be the bandwidth capacity of link L. We
assume that the virtual clusters with deterministic and stochastic
bandwidth requirements can co-exist. A deterministic portion of
link bandwidth is reserved for the deterministic virtual clusters,
and the residual bandwidth is shared among the stochastic virtual
clusters. Denote the total amount of the reserved bandwidth for
deterministic virtual clusters on link L by DL. Then, as shown in
Fig. 2, the residual bandwidth S L = CL − DL is shared among K
stochastic virtual clusters, called stochastic sharing bandwidth.

Let BL
1 , . . . , B

L
K be the random bandwidth demands of K virtual

clusters on link L, as shown in Fig. 2. The probabilistic bandwidth
guarantee for these K virtual clusters means that link L can satisfy

their bandwidth demands with a high probability 1 − ϵ, i.e.,

Pr(
∑

i

BL
i > S L) < ϵ. (1)

This inequality describes that the bandwidth outage on link L is
only allowed to happen with a small probability ϵ. For a specific
virtual cluster with bandwidth BL

i , the inequality (1) indicates
Pr(BL

i < S L −
∑

j,i BL
j) > 1 − ϵ, i.e., the bandwidth of this virtual

cluster is guaranteed with a high probability. The parameter ϵ is
indeed a risk factor for link bandwidth shortage with regard to the
tenants’ demands. It can be determined by the cloud provider as a
part of a service level agreement.

3.3 Framework for Virtual Cluster Allocation

The above stochastic virtual cluster abstraction with probabilistic
bandwidth guarantee defines a framework for virtual cluster ad-
mission and VM placement that takes into account the demand
uncertainty.

In this framework, provided the virtual cluster request from
a tenant with the probability distribution of bandwidth demand,
the admission control mechanism with an efficient VM placement
algorithm determines if the virtual cluster can be deployed on
the physical network without violating the probabilistic bandwidth
guarantees for all the existing tenants. A network manager in the
data center, upon receiving a tenant request, performs admission
control and VM placement, with physical links satisfying the
bandwidth requirements in terms of the probabilistic constraint
(1).

The SVC based framework aims to find proper allocation
of virtual clusters with the consideration of bandwidth demand
uncertainty. To solve the VM allocation problem in an online
fashion, the network manager maintains the up-to-date status
of the datacenter network, including (1) the datacenter network
topology; (2) the empty slots in each physical machine (PM, for
short) ; (3) the stochastic sharing bandwidth S L on each physical
link L, calculated from counting the allocations of deterministic
virtual clusters running in the datacenter; (4) the probability
distribution of bandwidth demand of any existing SVC allocations
on each link. Our design of VM allocation algorithm focuses on
tree topology. Such a topology is hierarchical, in which machines
are grouped into racks and the Top-of-Rack (ToR) switches are
in turn connected to higher level switches. In today’s datacenters,
the network can have more complex topologies like multi-rooted
trees and fat-trees. Our algorithms can be applied to these tree-
like topologies because they are also hierarchical and recursively
composed of sub-trees at each level. Because these networks
usually use load balancing techniques to spread traffic across
multiple equal cost paths, as discussed in [7], our algorithms can
follow the same strategy to be applied here, by regarding multiple
links from each PM or switch that are used in multiple equal cost
paths to the same destination as a single aggregation link. The
bandwidth reservation on an aggregation link can be enforced by
having equal reservation split among the multiple physical links
in the aggregate.

An SVC request from tenants specifies the number of VMs N,
and the probability distribution of each VM’s bandwidth demand,
denoted by P1,P2, . . . ,PN . For instance, when the bandwidth
demand follows normal distribution, the probability distribution
is given by its mean and variance. After receiving the request, the
network manager tries to find N empty VM slots to place requested
VMs such that each physical link can still satisfy the constraint
(1) for all stochastic bandwidth demands it carries. Note that the

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 5

tenants can also specify constant bandwidth demand for each VM
in SVC as in the traditional virtual cluster proposed in [6]. The
deterministic and stochastic bandwidth allocation can co-exist in
the datacenters in our framework.

4 VIRTUAL MACHINE ALLOCATION FOR HOMO-
GENEOUS BANDWIDTH DEMAND
In this section, we address the VM allocation problem for SVC
model with homogeneous bandwidth demand, which means that
the bandwidth demand of every VM follows the same probability
distribution, i.e., Pi = P (1 ≤ i ≤ N). The VM allocation
problem has been shown to be NP-hard for deterministic virtual
cluster model [6], [19]. To solve the problem, we first derive
the condition of a valid VM allocation for stochastic bandwidth
demands, and based on that we propose dynamic programming
based VM allocation algorithms with the goal to achieve both
good locality of VMs and less bandwidth occupancy on links.

4.1 Determining valid allocation
We begin with characterizing the stochastic bandwidth demand of
an SVC allocation on a link. Under homogeneous SVC model,
the bandwidth demands of N VMs are independent and identi-
cally distributed (i.i.d.) random variables following distribution P.
Considering a link L on the tree topology, removing L from the
tree results in two disconnected network components. Suppose one
component contains m allocated VMs, and accordingly the other
one contains N − m VMs. The aggregate bandwidth demand of
m VMs has distribution B(m) =

∑m
i=1 Bi where Bi is a random

variable of distribution P, and the other component’s bandwidth
demand has distribution B(N − m). Because virtual machines in
one component cannot send data at a rate larger than the other
component’s total receiving rate, the total bandwidth demand of
such SVC for link L, denoted by BL

r (m), is min(B(m),B(N − m)),
which can be computed with given distribution function P in the
SVC request.

Assume that link L currently serves the SVC requests
r1, . . . , rK with stochastic sharing bandwidth S L (as shown in Fig.
2), and the constraint (1) is satisfied. Each SVC ri has bandwidth
demand BL

i = min(B(mi),B(Ni − mi)) on link L, where Ni is VM
number requested in ri and link L divides its VMs into two groups
of mi VMs and Ni−mi VMs respectively. For a new arrival request
rK+1, a valid allocation needs to ensure the adding of demand
BL

K+1(m) to link L does not violate the constraint (1), i.e., still
Pr(
∑K+1

i=1 BL
i > S L) < ϵ.

Since BL
1 , . . . , B

L
K+1 are bandwidth demands for link L un-

der the VM allocations for each different SVC, they are as-
sumed to be independent random variables. Accordingly, we
use the normal distribution to approximate the distribution of
BL =

∑K+1
i=1 BL

i according to the central limit theorem. Denote
the mean and variance of BL

i by µi,L and σ2
i,L. Then, we have

BL ∼ N(
∑K+1

i=1 µi,L,
∑K+1

i=1 σ
2
i,L). Since BL−E(BL)√

(Var(BL))
∼ N(0, 1), to

satisfy the constraint (1), we can easily derive the following
condition

S L −
K+1∑
i=1
µi,L√∑K+1

i=1 σ
2
i,L

> Φ−1(1 − ϵ), (2)

where Φ−1(·) is the inverse function of Φ(·).
The inequality (2) gives us the sufficient condition for a valid

allocation to an SVC request. Besides, a valid allocation should

only allocate VMs onto the empty slots on PMs. Accordingly,
given a VM allocation solution for SVC request r that allocates
m VMs and N − m VMs in two network components divided by
any link L, we check (i) whether there are no less than m and
N − m empty VM slots in two components respectively, and (ii)
whether the condition (2) still holds with the mean and variance of
distribution min(B(m),B(N −m)). An allocation solution for SVC
is valid only if the above two conditions are checked successfully
for any physical links in the network. Note that if the new arrival
request rK+1 is a deterministic virtual cluster request with VM
bandwidth B, i.e., µK+1,L = B min(m,N − m) and σ2

K+1,L = 0, we
can still use the condition (2), which actually becomes to verify
whether the constraint (1) can still be met for serving the existing
stochastic request r1, . . . , rK under the new stochastic bandwidth
S ′L = S L − uK+1,L. If there are only deterministic bandwidth
demands for the link, we only need to verify the sum of bandwidth
reservations is less than the link capacity.
VM bandwidth of normal distribution: A virtual cluster uses
a physical link for the communication between its VM pairs split
by this link. When the traffic between these VM pairs comes from
many independent individual flows, the aggregated traffic demand
on the link can be approximated by the normal distribution. It
has been extensively observed that the aggregated traffic demand
between network nodes follows the normal distribution [12], [13].
Thus, here we consider SVC and its valid allocation in a special
case that the bandwidth demand B of VMs follows a normal
distribution N(µ, σ2) as in [22], [23], with mean µ = E(B) and
variance σ = Var(B). Then, an SVC request can be represented
by <N, (µ1, σ1), (µ2, σ2), . . . , (µN , σN)>, in which the bandwidth
demand for each VM i follows normal distribution N(µi, σ

2
i).

Homogeneous SVC is represented by r = <N, µ, σ>, where
each VM’s bandwidth demand follows the same normal distri-
bution N(µ, σ2). The aggregate bandwidth demand of m VMs
B(m), has distribution N(mµ,mσ2). The variable BL

r (m) =
min(B(m),B(N − m)) is the min of two normal variables. Based
on [24] that provides the exact distribution of the min of two
normal variables, we can easily derive the following results:

Lemma 1. For two independent normal variables X1 ∼
N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2), the mean and variance of

X = min(X1, X2) are
E(X) = µ1Φ(α) + µ2Φ(−α) − θϕ(α) (3)

Var(X) = (σ2
1+µ

2
1)Φ(α)+(σ2

2+µ
2
2)Φ(−α)−(µ1+µ2)θϕ(α)−(E(X))2

(4)
where ϕ(·) and Φ(·) are the probability density function (pdf)
and the cumulative distribution function (cdf) of the standard
normal distribution, respectively, and θ =

√
σ2

1 + σ
2
2 and α =

µ2−µ1
θ

.

By Lemma 1, we can compute the mean and variance of
min(B(m),B(N−m)), i.e., µr,L and σ2

r,L, respectively. Accordingly,
we can check the condition (2).

It is worth to note that the SVC model, its allocation frame-
work, and the following VM allocation algorithms do not depend
on any specific probability distributions. The tenants can choose
different types of probability distributions to characterize uncertain
VM bandwidth demands. Lemma 1 is for normal distribution. In
the cases other than normal distribution, the probability distribu-
tions of the aggregate bandwidth of VMs B(m) and B(N − m)
in SVC as well as min(B(m),B(N − m)) need to be computed
according to the chosen distribution.

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 6

VM slot

A B

(a) 2 VMs in A, 4 VMs in B
A B

(b) 3 VMs in A, 3 VMs in B

Fig. 3: Two valid allocations with different bandwidth occupancys.

4.2 VM allocation algorithm

According to the discussion above, VM allocation in the tree
topology is to allocate an SVC to a subtree, in which there are
enough empty VM slots and any link L can satisfy the bandwidth
requirement of VMs placed in the subtree connected by L to the
upper level.

The previous work TIVC [7] proposes a dynamic program-
ming based searching algorithm, referred to as TIVC searching
algorithm, to find the lowest subtree for the allocation of the
deterministic virtual cluster abstraction. Searching the lowest
possible subtree is for the most localized allocation of VMs such
that the bandwidth of the links in the upper levels of the tree is
conserved and the ability to accommodate future tenant requests
is maximized. However, this algorithm cannot be directly used to
solve our VM allocation problem since it is based on deterministic
bandwidth demands, and also it cannot achieve optimal bandwidth
occupancy that is addressed by our allocation algorithm.

For TIVC searching algorithm, multiple possible valid alloca-
tions may exist for the same subtree. But because the algorithm
makes no distinction between them, it may result in suboptimal
allocation in term of bandwidth occupancy, i,e, the amount of
bandwidth reserved on links. To illustrate this problem, Fig. 3
gives an example, with a simple tree topology T in which a switch
connects two PMs A and B each having 5 VM slots and each link
has bandwidth capacity 50. Considering a deterministic virtual
cluster request <N = 6, B = 10> that requires 6 VMs each with
bandwidth 10, we can see that the tree T is indeed the lowest
subtree the algorithm finds. The allocation in Fig. 3(a) with 2
VMs in A and 4 VMs in B, and the allocation in Fig. 3(b) with 3
VMs in A and 3 VMs in B are both valid. The reserved bandwidth
on two links in Fig. 3(a) is 10 × min(2, 4) = 20, lower than 30
in Fig. 3(b), which means that the former has a lower bandwidth
occupancy. This example indicates that the VM allocation solution
returned by TIVC algorithm [7] can be sub-optimal on the metric
of bandwidth occupancy. The reason of that is formally shown in
our algorithm description later.

In this paper we propose the allocation algorithm for SVC
with the goal of finding the optimal VM allocation that fits in the
lowest-level subtree while minimizing the bandwidth occupancy
of the links in the subtree.

4.2.1 Bandwidth occupancy

We first quantify the bandwidth occupancy of a link. Without
stochastic bandwidth demands on link L, its bandwidth occupancy
can be easily measured as the ratio of DL

CL
where DL is the amount

of deterministic reserved bandwidth and CL is the total bandwidth
capacity of link L. However, for the bandwidth occupancy with
stochastic demands, the answer is not so obvious.

r

v
m

v
1

v
2

/

Fig. 4: The diagram for showing the optimal substructure with
Lemma 2.

To characterize the bandwidth occupancy of a link with
stochastic demands, we introduce the concept of effective amount
of stochastic bandwidth demand. Consider link L shown in Fig. 2
that meets the constraint (1). According to Inequality (2), we have

S L >

K∑
i=1

µi,L + c

√√√ K∑
i=1

σ2
i,L =

K∑
i=1

µi,L + c
σ2

i,L√∑K
i=1 σ

2
i,L

 (5)

where c = Φ−1(1 − ϵ). With the above transformation of the
right side of Inequality (5), we can regard µi,L + c

σ2
i,L√∑K

i=1 σ
2
i,L

as

the effective amount of bandwidth reserved for stochastic demand
BL

i , denoted by EL
i (1 ≤ i ≤ K). As we can see, it depends

on the other demands served by the links since they statistically
share the bandwidth, rather than being individually reserved in
previous deterministic virtual cluster models. Then, we measure
the bandwidth occupancy ratio of link L, denoted by OL, as
follows:

OL =
1

CL

DL +

K∑
i=1

EL
i

 (6)

Note that S L >
K∑

i=1
EL

i is equivalent to OL <
1

CL
(DL + S L) = 1.

Thus, the sufficient condition (2) for a valid allocation can also
expressed as OL < 1 for any link L.

4.2.2 Minimize the maximum of the bandwidth occupancy ra-
tios

The example in Fig. 3 shows a special case that two links always
have the same bandwidth occupancy ratios given only one request
in the network, so we can minimize their bandwidth occupancy
ratio simultaneously. However, in general network topologies,
the bandwidth occupancy ratios vary among different links and
have dependencies due to shared bandwidth demands, so it is not
feasible to simultaneously to minimize the bandwidth occupancy
ratio for each link. On the other hand, since our SVC model
guarantees the bandwidth in a probabilistic way, link congestion
can occur when

∑
i BL

i > S L in the constraint (1). The link with
the maximum of bandwidth occupancy ratios is the most likely
congested link in the datacenter. Thus, we expect to reduce the
possibility of congestion by the optimization to minimize the
maximum bandwidth occupancy ratio. Therefore, our goal is to
find the valid allocation which minimizes the maximum of the
bandwidth occupancy ratios of the links in the subtree.

We now show that this min-max problem has optimal sub-
structure. Assume that a tree Tr rooted at vertex r has m children
v1, . . . , vm, as shown in Fig. 4. Each link between vi and r is
denoted by Lvi , also called the uplink of vi. Let Tvi be the subtree
rooted at vi.

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 7

Definition 1 (Allocable VM set). For an SVC request of N VMs,
the set of all possible numbers of VMs out of the N VMs that
can be allocated in the subtree Tv rooted at v, with satisfying
the bandwidth constraint of any link in Tv and also the uplink
of v, is called allocable VM set of Tv (or v).

Suppose we have n VMs to be allocated to Tr, and let A∗ be
the optimal VM allocation that minimizes maxL∈Tr (OL) where L
is a link of Tr. Suppose that the allocation A∗ assigns n∗vm

number
of VMs to Tvm , then (n − n∗vm

) VMs are assigned to Tr \ Tvm which
is a tree formed by removing Tvm from Tr. Given that nv VMs
out of the total n VMs are allocated to Tv, maxL∈Tv (OL) actually
only varies with the placement of nv VMs in Tv, regardless of the
placement of n − nv VMs in the rest of the network Tr \ Tv. Thus,
we assume Opt(Tv, nv) be the minimum value of maxL∈Tv (OL)
among all possible allocations of nv VMs in Tv. Then, we have
the following lemma:

Lemma 2.

Opt(Tr, n) = max
{
Opt(Tvm , n

∗
vm

),Opt(Tr \ Tvm , n − n∗vm
),O∗Lvm

}
(7)

where O∗Lvm
is the bandwidth occupancy ratio of link Lvm under

the allocation A∗.

Proof: Under the allocation A∗, let the link that has the
optimal bandwidth occupancy ratio of Opt(Tr, n) be L∗, i.e.,
OL∗ = Opt(Tr, n). Denote the maximum of the bandwidth oc-
cupancy ratio of links in Tvm and Tr \Tvm under A∗ by O∗(Tvm) and
O∗(Tr \ Tvm), respectively. Obviously, we have

OL∗ ≥ O∗(Tvm) ≥ Opt(Tvm , n
∗
vm

) (8)
OL∗ ≥ O∗(Tr \ Tvm) ≥ Opt(Tr \ Tvm , n − n∗vm

) (9)
OL∗ ≥ O∗Lvm

(10)

Then, we prove the lemma by three cases of L∗:
1. If L∗ = Lvm , we have O∗Lvm

= OL∗ ≥ O∗(Tvm) ≥ Opt(Tvm , n
∗
vm

).
Similarly, we have OLvm

≥ Opt(Tr \ Tvm , n − n∗vm
). Thus, (7) holds.

2. If L∗ ∈ Tvm , we have OL∗ = O∗(Tvm) ≥ Opt(Tvm , n
∗
vm

). If
OL∗ > Opt(Tvm , n

∗
vm

), by allocating n∗vm
V Ms to Tvm according to

the allocation that achieves Opt(Tvm , n
∗
vm

), we can obtain smaller
maxL∈Tr (OL), which is a contradiction to the optimality of OL∗ .
Thus, we must have OL∗ = Opt(Tvm , n

∗
vm

). Then, according to
(9) and (10), we can also tell that Opt(Tvm , n

∗
vm

) is the maximum
of {Opt(Tvm , n

∗
vm

),Opt(Tr \ Tvm , n − n∗vm
),O∗Lvm

}. Thus, (7) holds.
3. If L∗ ∈ Tr \ Tvm , we can prove (7) as in the case of L∗ ∈ Tvm .

Lemma 2 shows the optimal substructure of the problem.
Accordingly, given the optimal values of the child subtrees, the
optimal value Opt(Tr, n) can be found by searching optimal n∗vm

.
So we can give the dynamic programming recursive formula to
compute the optimal value as follows:

Opt(Tr, n) = min
x∈Mvm

n−x∈M−vm

max
{
Opt(Tvm , x),Opt(Tr \ Tvm , n − x),OLvm

(n, x)
}

(11)
Here x is the number of VMs allocated into Tvm . Mvm and M−vm

are the allocable VM sets of Tvm and Tr \ Tvm , respectively, with
considering the bandwidth constraint of Lvm . OLvm

(n, x) denotes
the bandwidth occupancy ratio of link Lvm given x VMs in Tvm

and n − x VMs in Tr \ Tvm . OLvm
(n, x) is a function of n and x,

which can be calculated with (3), (4) and (6). Both OLvm
(n, 0) and

OLvm
(n, n) are equal to the initial bandwidth occupancy ratio based

on existing SVC demands on the link.

If the subtree Tv has only one child subtree Tv1 , which means
Tv \ Tv1 is the root vertex, then

Opt(Tv, x) = max
{
Opt(Tv1 , x),OLv1

(n, x)
}

(12)

With (11) and (12), we can use dynamic programming to find the
optimal allocation in a given tree.

4.2.3 Algorithm description
Now we present our allocation algorithm. The algorithm traverses
the topology tree starting at the leaves (PMs at level 0) and
determines if all N VMs in a request can fit. During the traverse,
for any visited vertex v, the algorithm records its allocable VM
set, which is calculated by reusing the recorded allocable VM sets
of v’s children with consideration of the optimality of bandwidth
occupancy. Since searching the allocable lowest-level subtree and
optimizing maxL∈T (OL) are both dynamic programming proce-
dures, we propose an efficient algorithm which combines the
optimization into the searching within only one tree traversal.
Algorithm 1 shows our VM allocation algorithm in pseudo code.

In Algorithm 1, Tv[i] denotes the tree that consists of vertex
v as the root and v’s first i child subtrees. Take Fig. 4 for
instance, Tr[m − 1] = Tr \ Tvm . We define Tv[0] = {v} and
Tv[i] = Tv[i − 1]

⊕
Tvi where “

⊕
” is to connect the child

subtree Tvi to Tv[i − 1] via link Lvi . Tv = Tv[m] where m is
the number of v’s children. S v[i] denotes the set that contains
the numbers of VMs that could be accommodated Tv[i], without
considering the uplink bandwidth constraint of v. Mv denotes the
allocable VM set of v. We have dynamic programming step for
minimizing the bandwidth occupancy ratio in lines 19∼25. The
lines 20 and 22 are corresponding to (11) and (12). Compared
with TIVC algorithm [7], a key difference exists when recording
the allocation in the traversed subtrees. That is, for each possible
value e+h in S v[i], our algorithm records in Dv[i, h] the number of
VMs assigned to the i-th child of v that minimizes the maximum
bandwidth occupancy ratio of links in Tv[i], considering that there
may be multiple combinations of e and h achieving same sum e+h.
TIVC algorithm, however, does not make such an optimal choice
for bandwidth occupancy, thus it may return suboptimal allocation.
Then, as in TIVC algorithm, if N can be allocated according
to Mv, Alloc() is called recursively according to Dv[i, x] while
recording the statistical information of bandwidth demand under
the allocation for request r on each link, and eventually obtain the
number of VMs per PM. The time complexity of Algorithm 1 is
O(|V |∆N2) where |V | is the number of vertices in T and ∆ is the
maximum number of children of any nodes.

5 VM ALLOCATION FOR HETEROGENEOUS
BANDWIDTH DEMAND
In this section, we address the VM allocation problem for het-
erogeneous SVC. For normal distribution, the SVC request can
be represented by r = ⟨N, (µ1, σ1), (µ2, σ2), . . . , (µN , σN)⟩, which
means the bandwidth demands of VMs Bi (1 ≤ i ≤ N) may have
different probability distributions N(µi, σ

2
i). The problem is also

NP-hard in deterministic case [19].

5.1 Determining valid allocation

Under an allocation for the heterogeneous SVC model, a link
L on the tree divides N VMs into two VM sets VL1 and VL2.
Accordingly, their bandwidth demands {Bi|1 ≤ i ≤ N} are
divided into two sets, denoted by BL1 and BL2. The aggregate
bandwidth demand for VLi, denoted by B(BLi), follows the normal

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 8

Algorithm 1: VM Allocation Algorithm
Input: Datacenter tree topology T , SVC request r = ⟨N, µ, σ⟩,

bandwidth reservation information of each link including
the mean and variance of each SVC demand on it

1 for level l← 0 to Height(T) do
2 for each subtree Tv rooted at vertex v at level l do
3 m← the number of v’s children;
4 if l = 0 then // leaf v is a PM
5 S v[0]← {0, 1, . . . ,Cv} ; // Cv is the number of

empty VM slots of v
6 for each value h in S v[0] do
7 Opt[Tv, h] = 0 ; // No link usage between

VMs in the same machine
8 else
9 S v[0]← {0};

10 Tv[0]← v;
11 for i from 1 to m do
12 S v[i]← {0};
13 Tv[i]← Tv[i − 1]

⊕
Tvi ;

14 for each value e in v’s i-th child vi’s allocable VM
set Mvi do

15 for each value h in S v[i − 1] do
16 if e + h is not in S v[i] then
17 minv[i, e + h]← ∞;
18 S v[i]← S v[i] ∪ {e + h};
19 if i = 1 then
20 Opt[Tv[i], e + h]←

max
{
Opt[Tvi , e + h],OLvi

(N, e + h)
}

21 else
22 Opt[Tv[i], e + h]←

max
{
Opt[Tv[i − 1], h],Opt[Tvi , e],OLvi

(N, e)
}

23 if Opt[Tv[i], e + h] < minv[i, e + h] then
24 Dv[i, e + h]← e;
25 minv[i, e + h]← Opt[Tv[i], e + h];
26 Mv ← ∅ ;
27 for each value h in S v[m] do
28 if OLv (N, h) < 1 then // Lv is the uplink of v
29 Mv = Mv ∪ {h} ;
30 Opt[Tv, h]← minv[m, h];
31 if N ∈ Mv then
32 Alloc (r, v,N);
33 return true;
34 return false;
35 Procedure Alloc(r, v, x)
36 if v is a machine then
37 allocate x VMs in v;
38 else
39 for v’s child i from m to 1 do
40 Alloc(r, vi,Dv[i, x]);
41 record bandwidth occupancy for r on v’s i-th link;
42 x = x − Dv[i, x];

distribution N(
∑

Bi∈BLi
ui,
∑

Bi∈BLi
σ2

i). Similar to the homogeneous
case, the bandwidth demand for request r on link L, denoted by
BL

r (BL1,BL2), is min(B(BL1),B(BL2)). Then, we still use Lemma
1 and Inequality (2) to check the validity of an allocation.

5.2 VM Allocation Algorithm
The VM allocation algorithm for the homogeneous virtual cluster
model cannot be used in the heterogeneous case. For the homoge-
neous model, all VMs are the same (i.e., with the same bandwidth
requirement), and their allocation does not need to distinguish dif-
ferent VMs. As a result, the allocation algorithm for homogeneous
model only need to decide the number of VMs in each subtree.
However, in the heterogeneous case, every VM can have different
bandwidth demand, and thus the allocation needs to decide which

VM is allocated to which subtree. The allocation algorithms in
previous works [6], [7] regard VMs are homogeneous and thus
they only need to decide the number of VMs in every subtree. The
allocation algorithm for the heterogeneous model has to consider
which subset of VMs is allocated to which subtree. It is worth
to note that CloudMirror’s algorithm [8] can be extended to deal
with the heterogeneous model by regarding each VM as a tier
in the TAG model (i.e., one tier has one VM). Since in our
paper we do not assume any prior known communication structure
of cloud applications, here we propose a dynamic programming
based search algorithm for the heterogeneous case.
Dynamic programming based allocation algorithm. We can
extend the dynamic programming (DP) approach in Algorithm
1 to find the optimal allocation for the heterogeneous model,
with maintaining the set of all possible VM subsets that can be
allocated in each subtree. Accordingly, in the recursive formula
(11), the allocable VM sets Mvm and M−vm are redefined as the
sets consisting of the VM subsets that can be allocated in the
corresponding subtree Tvm and Tr \ Tvm . However, this approach is
much more costly for the heterogeneous model to find the optimal
allocation than for the homogeneous model. In the homogeneous
case, the number of possible VM subsets that can be allocated to
any subtree is at most N + 1, since the VMs are homogeneous
and indistinguishable and the only variable is the size of the VM
subset. In the heterogeneous case, however, the number of possible
VM subsets that can be allocated to any subtree, i.e., the size of
any allocable VM set, is at most O(2N). Therefore, the algorithm
has exponential time complexity O(|V |∆2N), which can be applied
for small N but is infeasible for large N.
Heuristic allocation algorithm. For the above algorithm, its time
complexity depends on the sizes of the allocable VM sets, which
indicates that we can reduce the time complexity for large N by
limiting the size of each allocable VM set with some heuristic.
Therefore, we propose a heuristic algorithm, which identifies an
allocable VM set with polynomial size in N for each subtree
during tree traversal.

Our algorithm is derived from a simple First Fit algorithm
FF. In FF, VMs are sorted by their bandwidth demands and then
placed sequentially in the first subtree having sufficient bandwidth
and empty VM slots. In the case of the deterministic bandwidth
demands, let S v = (v1, v2 . . . , vn) be a sequence of n VMs in
ascending order of their bandwidth demands. To allocate S v to the
tree Tr rooted at r, Tr’s PMs are visited from left to right, and
the algorithm greedily and sequentially places as many VMs as
possible into each PM in the order of S v. The algorithm finds the
longest sequence of VMs to allocate to the PM currently being
visited, and moves the next PM for allocating the remaining VMs.
As a result of the first fit, each of visited child subtrees is assigned
with a substring of S v which is disjoint with other substrings
assigned to sibling subtrees. For example, suppose that n VMs
are sequentially allocated to the child subtreesTr1 , . . . , Trm rooted
at r. The subtree Tr1 contains a sequence of VMs {v1, v2, . . . , vd1 },
denoted by <1, d1>. The subtree Tr2 has VMs {vd1+1, v2, . . . , vd2 },
denoted by <d1 + 1, d2>, and so forth for the subsequent subtrees.
Generally, the VMs allocated into the subtree Tri are represented
by the subsequence <di−1 + 1, di> (1 ≤ di−1 < di < n, 1 < i < m)
and the last used subtree Trm has <dm−1 + 1, n>. Thus, essentially
FF searches a proper partition of VM sequence S v in a greedy way
such that the resulting substrings can be sequentially allocated to
different subtrees. The FF heuristic ensures that if an allocation
solution is returned, it must be valid. However, it may neither
find a solution nor find optimal one due to its greedy strategy.

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 9

In order to find a solution with a better chance and improve its
optimality, our algorithm sequentially places VMs with dynamic
programming (DP) strategy instead of greedy strategy.

Given a sequence of N VMs, S N = {1, 2, . . . ,N}, <a, b> (a ≤
b) is used to represent the set of VMs in the substring between VM
a and VM b, inclusive. Let AN be the set of all possible substrings
of S N and its size is 1 + (N+1)N

2 (1 for the empty set). As opposed
to the previous DP based allocation algorithm, in this algorithm
the allocable VM set Mv for any subtree Tv only consists of all
the substrings of S N that can be allocated into Tv, which means
Mv ⊆ AN and the size of Mv is O(N2). To compute the allocable
VM set for a subtree, each substring in AN is checked, and the one
that can be allocated to the subtree is put into the corresponding
allocable VM set. The check procedure is conducted as follows:

(1) For each PM v at level 0 of tree topology T , any substring
<a, b> ∈ AN can be allocated into v if v has no less than b − a +
1 empty slots and the uplink Lv has bandwidth occupancy ratio
OLv (N, <a, b>) < 1. OLv (N, <a, b>) is computed as stated in 5.1,
given that Lv divides N into two VM sets <a, b> and S N \ <a, b>;

(2) For each vertex v at level l > 0, its allocable VM set is
calculated in the similar way as line 10-33 of Algorithm 1. But
the difference is that, S v[i] here stores the substrings that could be
accommodated in Tv[i]. For arbitrary k, a ≤ k ≤ b, if S v[i − 1]
and v’s i-th child vi’s allocable VM set Mvi include two substrings
<a, k − 1> and <k, b> respectively (or, <k, b> and <a, k − 1>
respectively), the substring <a, b> can be accommodated in Tv[i].
We define <a, a−1> = ∅. Then, the substrings in S v[m] that do not
violate the uplink bandwidth constraint are put into v’s allocable
VM set Mv. Once S N can be found in Mv, Alloc() is called to
allocate S N into the subtree Tv. The optimization code for band-
width occupancy ratio is similar to Algorithm 1. Opt[Tv[i], <a, b>]
stores the optimal value when <a, b> is assigned to Tv[i]. It is
obtained by the min operation on maximum bandwidth occupancy
ratios over all possible k that have <a, k − 1> and <k, b> exist in
S v[i − 1] and Mvi separately.

The pseudo code of our algorithm is given in Algorithm 2. It
has time complexity O(|V |∆N4). To address stochastic bandwidth
demands, the algorithm sorts N VMs by their 95th percentile
of their bandwidth demands. Based on the first fit algorithm, It
reduces the time complexity of searching feasible allocations by
considering the allocatability of only N2 substrings and optimize
the solution with a dynamic-programming strategy. When all the
numbers in the VM sequence <1, 2, . . . ,N> are replaced with the
same number, which means all VMs are homogeneous, Algorithm
2 is equal to the allocation algorithm for homogeneous SVC in
Algorithm 1.

6 WORK-CONSERVING BANDWIDTH GUARAN-
TEE WITH SVC
The purpose of SVC is to take into account the traffic uncertainty
during the admission and allocation phase of virtual clusters.
The VM allocation based on SVC aims to ensure the bandwidth
demands of virtual clusters can be satisfied in a high probability
with proper VM placement. It needs to be incorporated with a
bandwidth enforcement approach that adaptively adjust the rates
according to the bandwidth demands of virtual clusters and the
available bandwidth of links. The bandwidth allocation is enforced
through rate limiting components of VMs and switches during
the run-time phase of virtual clusters. Several approaches [14],
[15], [16] have been proposed to adjust the rate to exploit the
spare bandwidth from under-utilized reservations to achieve work-
conserving bandwidth guarantee. SVC can further improve their

Algorithm 2: Allocation algorithm for heterogeneous model
Input: Datacenter tree topology T , bandwidth reservation

information of each link, SVC request
r = ⟨N, µ1, σ1, . . . , µN , σN⟩ where {(µi, σi)|1 ≤ i ≤ N} are
sorted by their 95th percentile in non-ascending order.

1 AN ← the set of all the substrings of the sequence ⟨1, 2, . . . ,N⟩;
for level l← 0 to Height(T) do

2 for each subtree Tv rooted at vertex v at level l do
3 m← the number of v’s children;
4 S v[0]← {∅};
5 if l = 0 then // leaf v is a PM
6 for each substring ⟨a, b⟩ ∈ AN do
7 if the size of ⟨a, b⟩ is not larger than Cv then

// Cv is the number of v’s empty
slots

8 S v[0]← S v[0] ∪ ⟨a, b⟩;
9 for each substring h ∈ S v[0] do

10 Opt[Tv, h] = 0 ; // No link usage between
VMs in the same machine

11 Tv[0]← v;
12 for i from 1 to m do
13 S v[i]← {∅};
14 Tv[i]← Tv[i − 1]

⊕
Tvi ;

15 for each substring ∈ Mvi do
16 for each substring ∈ S v[i − 1] do
17 if pair ⟨a, k − 1⟩ and ⟨k, b⟩ exist between

S v[i − 1] and v’s i-th child vi’s allocable set
Mvi then

18 Let s be the string ∈ S v[i − 1] that
contributes to ⟨a, b⟩;

19 if ⟨a, b⟩ is not in S v[i] then
20 minv[i, ⟨a, b⟩]← ∞;
21 S v[i]← S v[i] ∪ {⟨a, b⟩};
22 if i = 1 then
23 Opt[Tv[i], ⟨a, b⟩]←

max
{
Opt[Tvi , ⟨a, b⟩],OLvi

(N, ⟨a, b⟩)
}

24 else
25

Opt[Tv[i], ⟨a, b⟩]←
max
{
Opt[Tv[i − 1], s],

Opt[Tvi , ⟨a, b⟩ \ s],OLvi
(N, ⟨a, b⟩ \ s)

}
26
27 if Opt[Tv[i], ⟨a, b⟩] < minv[i, ⟨a, b⟩] then
28 Dv[i, ⟨a, b⟩]← (k, s);
29 minv[i, ⟨a, b⟩]← Opt[Tv[i], ⟨a, b⟩];
30 else
31

Opt[Tv[i], ⟨a, b⟩]←
max
{
Opt[Tv[i − 1], ⟨k, b⟩],

Opt[Tvi , ⟨a, k − 1⟩],OLvi
(N, ⟨a, k − 1⟩)

}
if Opt[Tv[i], ⟨a, b⟩] < minv[i, ⟨a, b⟩] then

32 Dv[i, ⟨a, b⟩]← (k, ⟨k, b⟩);
33 minv[i, ⟨a, b⟩]← Opt[Tv[i], ⟨a, b⟩];
34 Mv ← ∅ ;
35 for each substring ⟨a, b⟩ ∈ S v[m] do
36 if OLv (N, ⟨a, b⟩) < 1 then
37 Mv = Mv ∪ {⟨a, b⟩} ;
38 Opt[Tv, ⟨a, b⟩]← minv[m, ⟨a, b⟩];
39 if ⟨1,N⟩ ∈ Mv then
40 Alloc (r, v,N);
41 return true;
42 return false;

efficiency with considering the dynamics of bandwidth demand
during the VM allocation phase. In this section, we describe how
to incorporate SVC with these approaches and demonstrate the
benefit of SVC-based allocation.

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 10

In previous sections, we consider the SVC model with the
bandwidth demand of normal distribution, which does not provide
the minimum bandwidth guarantee. However, we can simply
extend the model and allocation algorithms to provide the min-
imum bandwidth. Still, we use normal distribution to characterize
the bandwidth demand but in addition specify the minimum
bandwidth guarantee. Then, the homogeneous SVC model can
be represented by ⟨N, µ, σ, b⟩ where b is the minimum band-
width guarantee. In the heterogeneous SVC model, each VM has
different minimum bandwidth guarantee. Here we focus on the
homogeneous SVC model.

In Section 4.1, the condition (2) for valid allocation in pre-
vious allocation algorithms needs to be adapted to take into
account the minimum bandwidth guarantee. Given a virtual cluster
ri = ⟨Ni, µi, σi, bi⟩ that has m VMs and Ni − m VMs respectively
located in two network components connected by a link L, the
minimum bandwidth to be reserved on L is min(m,Ni − m)bi,
denoted by bL

i . For K + 1 SVC requests served by link L, their
reserved bandwidth on L are bL

1 , b
L
2 , . . . , b

L
K+1 respectively, and

totally
∑K+1

i=1 bL
i of bandwidth are reserved. Considering their

total bandwidth demand BL =
∑K+1

i=1 BL
i are assumed to follow

the normal distribution N(
∑K+1

i=1 µi,L,
∑K+1

i=1 σ
2
i,L), we use truncated

normal distribution to characterize the bandwidth demand with
minimum guarantee. The truncated normal distribution is a part
of the distribution of a normally distributed random variable
with value bounded below or above. Here, we consider the one-
sided truncated normal distribution of BL with BL >

∑K+1
i=1 bL

i . Its
probability distribution should be normalized in order to make
sure the total probability over the restricted interval is unity. Let
µL =

∑K+1
i=1 µi,L and σL =

√∑K+1
i=1 σ

2
i,L. We can compute

Pr(BL >

K+1∑
i=1

bL
i) = 1 − Φ(

∑K+1
i=1 bL

i − µL

σL
) = 1 − Φ(αL) (13)

where αL =
∑K+1

i=1 bL
i −µL

σL
and Φ(·) is the standard normal cdf. Then,

the truncated normal distribution pdf is

f (BL|BL >

K+1∑
i=1

bL
i) =

f (BL)
1 − Φ(αL)

=

1
σL
ϕ(BL−µL

σL
)

1 − Φ(αL)
(14)

Based on this pdf, we can compute the probability Pr(BL > S L) by

Pr(BL > S L) =

 1, if S L ≤ ∑K+1
i=1 bL

i
1

σL(1−Φ(αL)) (1 − Φ(S L−µL
σL

)), if S L >
∑K+1

i=1 bL
i
(15)

and compare it with ϵ to decide whether it is a valid allocation.
If S L ≤ ∑K+1

i=1 bL
i , it is not a valid allocation. If S L >

∑K+1
i=1 bL

i ,
for a valid allocation, it should have 1

σL(1−Φ(αL)) (1 −Φ(S L−µL
σL

)) < ϵ.
Then, we can derive that

S L > µL + σLΦ
−1(1 − ϵσL(1 − Φ(αL))) (16)

Based on that, we can redefine effective amount of bandwidth in
(5) and redefine the bandwidth occupancy ratio in (6) by replacing
K∑

i=1
EL

i with the right side of (16). Accordingly, in the allocation

algorithms, a set of VMs are allocable only if S L >
∑K+1

i=1 bL
i and

the bandwidth occupancy ratio is less than one.
With the extension for minimum bandwidth guarantee, SVC

based allocation can be incorporated with existing bandwidth
enforcement approaches such as Elasticswitch [16] that provide
minimum bandwidth guarantee while exploiting underutilized
bandwidth reservation to achieve work-conserving bandwidth

c2c2c1c1

250

c3 c3

c1: <2, 100, 30, 100>

c2: <2, 100, 10, 100>

c3: <2, 100, 20, 100>

Fig. 5: Example for VM allocation.

allocation. Current work-conserving bandwidth guarantee ap-
proaches [14], [15], [16] assume the deterministic horse model and
allocate VMs based on that. Instead, the SVC model allows them
to take into account the traffic uncertainty during the allocation
phase, which can further improve the performance gain achieved
by dynamic rate adjustment. Considering an example in Figure 5.
The tree topology consists of four PMs each having two VM slots
and link capacity 250. There are three virtual clusters c1, c2 and c3
each containing two VMs and requiring the minimum bandwidth
of 100. c3 is to be allocated, either to the left subtree or to the
right subtree. Based on deterministic horse model with minimum
bandwidth guarantee 100, the approaches like Elasticswitch can
allocate c3 to the left subtree, sharing bandwidth resources with
c1. With SVC model and ϵ = 0.05, c3 has to be allocated to
the right subtree. This is because that the probability of total
bandwidth demand of c1and c3, denoted byBc1 + Bc3, being larger
than 250, is greater than ϵ; instead, the probability of total
bandwidth demand Bc2 + Bc3 being larger than 250, is less than ϵ.
Since the work-conserving approaches increase the rates of VMs
to exploit underutilized bandwidth, placing c3 in the left subtree
creates more competition than in the right subtree, leading to the
suboptimal performance.

7 EVALUATION
We use simulations of large scale datacenter networks to demon-
strate the benefits of SVC especially for cloud application work-
loads with highly volatile bandwidth demands. Our simulation is
implemented in Matlab.

7.1 Simulation Setup

We simulate a datacenter of three-level tree topology with no path
diversity. A rack consists of 20 machines each with 4 VM slots
and a 1Gbps link to connect to a Top-of-Rack (ToR) switch. Every
10 ToR switches are connected to a level-2 aggregation switch
and 5 aggregation switches are connected to the datacenter core
switch. There are total 1,000 machines at level 0. The default
oversubscription of the physical network is 2, which means that the
link bandwidth between a ToR switch and an aggregation switch
is 10Gbps and the link bandwidth between an aggregation switch
and the core switch is 50Gbps.
Workload. The workload models we use for tenant
jobs/applications are similar to those in Oktopus [6]. Each job
is modeled as a set of tasks to be run on individual VMs and a
set of flows of uniform length (L) between tasks. Each task is a
source and a destination for one flow. The completion time of a
job is max(Tc, Tn) where Tc is the job’s compute time and Tn is
the time for the last flow to finish. The number of VMs needed by
each job request, i.e., job size, is exponentially distributed around
a mean of 49 as in [6]. To simulate the random and dynamic
bandwidth demand, we change the data generation rates of the
source tasks in a job j every second, which are taken from a normal

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 11

distribution N(µd j , σ
2
d j

). Our SVC is derived from the distribution
of data generation rate.
Alternate abstractions. We compare our homogeneous SVC
abstraction with the virtual cluster (VC) abstraction ⟨N, B⟩ of
Oktopus [6]. Given the normal distribution of the data generation
rate of a job, we use the mean and 95th percentile of the rate as
the requested bandwidth B under VC. The resulting VC models
are called mean-VC and percentile-VC, respectively. We consider
them because we believe that they are common ways to accom-
modate the demand uncertainty under deterministic abstractions.
We do not consider TIVC (temporally-interleaved virtual cluster)
since our stochastic model does not assume any time-varying
patterns.
Bandwidth Enforcement. We consider two different bandwidth
enforcement methods that are used with the SVC-based allocation
and evaluate the benefit of SVC in these two scenarios. One is
a Elasticswitch-like [16] bandwidth enforcement approach which
dynamically sets the rate beyond the minimum guarantee accord-
ing to a weighted TCP-like rate adaption algorithm. In this case,
the SVC model with the minimum bandwidth guarantee is used
and incorporated with the Elasticswitch-like approach to achieve
work-conserving bandwidth guarantee. Based on such bandwidth
enforcement, we examine the benefits of SVC for practice. An-
other is to adjust the rate of VMs proportionally to their bandwidth
demands through weighted TCP-like rate adaption algorithm with
VMs’ bandwidth demands as the weights. It does not enforce the
minimum bandwidth guarantee for each virtual cluster, in which
case the bandwidth is actually guaranteed in a probabilistic way
by proper VM placement. It assumes the perfect prediction to the
bandwidth demand of VMs and thus is not practical. The reason
we introduce this impractical approach is that, if we compare two
alternate deterministic models with the SVC having Elasticswitch-
like [16] bandwidth enforcement, we cannot tell whether the
performance gain is from the SVC-based allocation or from the
Elasticswitch-like bandwidth enforcement. It has demonstrated
that Elasticswitch [16] can improve the performance compared
with the deterministic models with static bandwidth allocation.
Therefore, to effectively investigate the advantages of SVC, we
assume this ideal bandwidth enforcement method such that the
performance is largely decided by the SVC-based VM allocation.

7.2 Simulation Results
We compare our SVC with Oktopus within two scenarios: first,
we consider a large batch of tenant jobs placed in a FIFO queue
waiting to be allocated to run; second, tenant jobs dynamically
arrive over time and are accepted only if they can be allocated
at the moment of arrival. In each scenario, we simulate 500
tenant jobs. The compute time of each job is randomly chosen
from [200, 500]. For the data generation rate of job j, µd j is
randomly chosen from {100, 200, 300, 400, 500} and σd j is ρµd j

where ρ is a deviation coefficient to reflect the degree of the traffic
demand uncertainty and its value is randomly chosen form (0,1)
by default. The default risk factor ϵ is 0.05. To investigate the
potential benefits of SVC, we consider the SVC with no minimum
bandwidth guarantee and compare it with two alternate models.
Therefore, we choose the second bandwidth enforcement method
in our simulation.

7.2.1 Batched jobs
For batched jobs, we use the same job scheduling policy as in [6]:
jobs are placed in a FIFO queue, and once a job completes, the
topmost job(s) that can be allocated is scheduled to run. Fig. 6

shows the total completion time of 500 jobs in a batch. Fig.
7 shows the average running time per job with increasing the
deviation coefficient ρ in order to increase the demand variance.
Comparing these two figures, we note that mean-VC has the best
performance over other models for the total completion time of
batched jobs, but have the worst performance for the average
running time per job, which is critical for on-line processing
for dynamically arriving jobs. This is because that when large
increase of data traffic appears, the fixed bandwidth demand
reserved by mean-VC for each VM becomes the bottleneck,
which further increases the flow latency and the job completion
time. Other models reserve extra bandwidth, and thus incur less
running time per job. Compared with mean-VC, percentile-VC is
just the opposite. Percentile-VC reserves 95th percentile amount
of bandwidth with considering the demand distribution, thus it
achieves constant and smallest running time under different devia-
tion coefficients in Fig.7. However, the 95th percentile bandwidth
has to be reserved, which can be large especially under high
demand variance. Because percentile-VC reserves large amount
of bandwidth for each job, the job concurrency in the datacenter is
greatly limited, causing that percentile-VC has worst performance
for batched jobs in the total completion time. In contrast, mean-VC
reserves smallest bandwidth compared with others and has largest
concurrent jobs which effectively reduces the total completion
time.

The comparison results above between percentile-VC and
mean-VC actually shows the trade-off between the job concur-
rency and job running time. The increase in reserved bandwidth
reduces the flow latency and thus the job running time, but also
decreases the job concurrency, causing longer waiting time of jobs.
However, both the percentile-VC and mean-VC cannot achieve
such trade-off. But as we can see from Fig.6 and 7, our SVC
model actually achieves the trade-off. Compared with Percentile-
VC, SVC significantly increases the job concurrency indicated by
smaller total completion time of batched jobs, while obtaining
comparable job running time which is much less than mean-VC.
The reason for the improvement is that, in SVC, multiple jobs
share the bandwidth with total bandwidth demand not exceeding
the link capacity with a high probability (0.95 when ϵ = 0.05),
which ensures that sufficient bandwidth is reserved statistically
while each job can also exploit the unused bandwidth. With
smaller ϵ, SVC provides better bandwidth guarantee and thus
smaller job running time but reduces the job concurrency, which
means that we can tune ϵ to achieve the desired trade-off.

7.2.2 Dynamically arriving jobs

In cloud the tenants requests usually arrive over time. In our
simulation the job arrival follows a poisson process with rate λ,
then the load on a datacenter with M total VMs is λNTc

M where
N is the mean job size and Tc is the mean compute time. As
in previous works [6], [7], if a job cannot be allocated upon its
arrival, it is rejected. We compare the job rejection rates under
SVC with different risk factor ϵ = 0.02, 0.05, as well as the mean-
VC and percentile-VC. In Fig. 8, we can see that under low load
of 20%, all methods have zero or close to zero request rejection
rates. As the load increases, they have relationship mean-VC <
SVC(ϵ = 0.05) < SVC(ϵ = 0.02)< percentile-VC. With con-
sidering the demand uncertainty, the effective bandwidth amount
SVC reserves is larger than the mean of bandwidth demand, as
we can see from (5), thus SVC has higher rejection rates than
mean-VC. For SVC, smaller risk factor ϵ incurs higher bandwidth
reservation, and causes higher rejection rate, which also indicates

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 12

!"!

!"#

!"$

!"%

!"&

'"!

'"#

'"$

'"%

'"&

#"!

' # ($

!
"
#$
%&'
(
)
*
+
#$
#,
"
-
&!
,)
.
&/
0
.
1
2

3&456

7.#8"9:&(;.90+<019,*#,"-

)*+,-./

0*12*,345*-./

6./789!"!:;

6./789!"!#;

Fig. 6: Completion time with
varying oversub.

!""

!#"

$""

$#"

#""

##"

"%& "%# & &%# '!
"
#
$%
&
#
'(
)
*
+
,#
-.
)
/
'-
.*
#
'+
#
$'
0)
1
23
#
(
4

5#".%-.)/'()#66.(.#/-

()*+,-.

/)01)+234),-.

5-.678"%#9

5-.678"%'9

Fig. 7: Average completion
time per job with varying de-
viation coefficient.

0

5

10

15

20

25

30

20 40 60 80 100

R
e

je
ct

e
d

 R
e

q
.(

%
)

Load (%)

mean-VC

percentile-VC

SVC(

SVC(

Fig. 8: Percentage of rejected
requests with varying datacen-
ter load.

0 2000 4000 6000 8000
0

10

20

30

40

50

60

70

Time (sec)

N
u

m
 o

f
c
o

n
c
u

rr
e
n

t
jo

b
s

SVC

percentile−VC

Fig. 9: Concurrent jobs for
60% load.

that ϵ = 0.02 provides stronger bandwidth guarantee to stochastic
bandwidth demands. For percentile-VC, combined with the results
of job completion times stated earlier, we can see that percentile-
VC achieves similar completion time to SVC(ϵ = 0.05) but at
the cost of higher rejection rate. The reason is because it provides
deterministic but exclusive bandwidth to accommodate the varying
traffic demands. Instead, SVC uses the bandwidth statistically
shared with other tenant jobs under probabilistic bandwidth con-
straint (1), so it is possible to have higher job concurrency. To
understand this, we record the number of concurrent jobs under
percentile-VC and SVC (ϵ = 0.05) when a new job arrives at the
system. Fig. 9 show that SVC consistently achieves about 10%
higher job concurrency than percentile-VC.

7.2.3 Allocation Algorithms

In this section we compare our allocation algorithms for ho-
mogeneous SVC models with an adapted allocation algorithm
proposed for TIVC [7] to demonstrate the benefit of minimizing
the maximum bandwidth occupancy ratio described in Section
4.2.2 . In the following, we simply use SVC-alloc and TIVC-alloc
to refer the two allocation algorithms. It is worth to note that here
we are not comparing two different network abstractions. SVC-
alloc and TIVC-alloc are compared in terms of the performance
for allocating SVC.

We adapt the TIVC’s allocation algorithm [7] to serve SVC
allocation, by replacing the condition of valid allocation by ours
shown in (2) for computing the allocable VM sets, and addi-
tionally maintaining the information of the stochastic bandwidth
demands of every SVC allocation on each link (e.g., the means
and variances of BL

1 , . . . , B
L
K in Fig. 2). In this way, the key

difference between the TIVC-alloc algorithm and our SVC-alloc is
that TIVC-alloc does not consider the optimization on bandwidth
occupancy.

We assume the cloud scenario for dynamically arriving jobs as
above to evaluate the performance of two algorithms on the link
bandwidth occupancy. We sampled the maximum of bandwidth
occupancy ratios among all links every time when a new job
arrives. Fig. 10 shows the empirical cumulative probability distri-
bution of maximum bandwidth occupancy ratio in the datacenter
under different loads 20% and 60% for our homogeneous SVC
allocation algorithm and adapted TIVC algorithm. From the figure
we can easily see that SVC-alloc achieves better bandwidth
occupancy overhead than TIVC-alloc under both loads. Under
load 20%, among all the maximum bandwidth occupancy ratios,
SVC-alloc has 50% samples less than 0.996 but TIVC-alloc
has only about 10%. When the load increases to 60%, the link
bandwidth occupancy becomes higher for both algorithms. SVC-

alloc and TIVC-alloc have 80% and 95% of maximum bandwidth
occupancy ratios distributed on [0.997,1], respectively.

We further evaluate the request rejection rates of SVC-alloc
and TIVC-alloc under different loads and show the result in Fig.
11. We note that SVC-alloc and TIVC-alloc have almost the same
rejection rates, which means the optimization of link bandwidth
occupancy in SVC-alloc affects little on the optimization goal of
TIVC-alloc to maximize the ability to accommodate future tenant
requests.

Besides, we compared SVC-alloc and TIVC-alloc algorithms
in terms of their running time. SVC-alloc has the same time com-
plexity O(|V |∆N2) as TIVC-alloc that has been demonstrated to
achieve high scalability in previous works [7]. Following the same
methodology to evaluate scalability, we measured the running time
of SVC-alloc and TIVC-alloc algorithms for every arriving job on
4-core Intel i5 3.4Ghz processor and 8GB RAM. For SVC-alloc,
the median time is 1.8 seconds, 95th percentile is 38 seconds, 99th
percentile is 60 seconds in our simulation settings. TIVC-alloc has
similar running time with median time 1.7s, 95th percentile 36s
and 99th percentile 60s, because both SVC-alloc and TIVC-alloc
follow the same dynamic programming procedure. The algorithm
implementations with using other languages like C will further
shorten the running time. For the applications that do not require
instant deployment, like batch processing jobs for big data that
runs at the order of magnitude of minutes or hours, the running
time of allocation algorithms at the order of magnitude in seconds
may be negligible. However, when the job arrival rate is high,
the system can be very sensitive to the running time of allocation
algorithms, because scheduling one big job may delay scheduling
small jobs and cause those small jobs backlogged. In this case
a global cluster scheduler may optimize its scheduling strategy
accordingly with considering this scheduling delay.

We also compared our heterogeneous SVC allocation algo-
rithm (referred to as SVC-H) with the first-fit (FF) algorithm
that does not conduct dynamic programming optimization, with
using the similar simulation settings. The distribution of maximum
bandwidth occupancy ratio and request rejection rates are shown
in Fig. 13 and 14 respectively. As we can see, SVC-H and FF
have similar relationship to the relationship between SVC-alloc
and TIVC-alloc as shown in Fig. 10 and 11. With the optimization
on the bandwidth occupancy, SVC-H algorithm achieves better
bandwidth occupancy overhead and lower rejection rates com-
pared with FF algorithm. The running time of SVC-H has the
median 5.74s, 95th percentile is 68s, 99th percentile is 108s, 2-3
times higher than SVC-alloc, since SVC-H in Algorithm 2 has
time complexity O(|V |∆N4) that has extra O(N2) factor than SVC-
alloc in Algorithm 1.

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 13

0.983 0.986 0.989 0.992 0.995 0.998 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max bandwidth occupancy ratio

 c
um

ul
at

iv
e

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

TIVC, load=20%

SVC, load=20%

TIVC, load=60%

SVC, load=60%

Fig. 10: The Cumulative probability dis-
tribution(CDF) of sampled max band-
width occupancy ratio.

!

"

#!

#"

$!

$"

%!

$! &! '! (! #!!

!
"
#"
$%
"
&
'!
"
(
)*
+
,

-./&'*+,

)*+

,-*+

Fig. 11: Percentage of rejected requests
with varying datacenter load.

300

320

340

360

380

400

420

440

460

480

500

0.1 0.5 1 1.5 2

A
ve
ra
ge

co
m
p
le
ti
o
n
ti
m
e
p
er

jo
b

deviation coefficient

mean VC

Elasticswitch

SVC(=0.05)

SVC(=0.02)

Fig. 12: Average completion time per
job under work-conserving bandwidth
guarantee.

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Max bandwidth occupancy ratio

0

0.2

0.4

0.6

0.8

1

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
il
it
y
 d

is
tr

ib
u
ti
o
n

FF, load=20%

SVC-H, load=20%

FF, load=60%

SVC-H, load =60%

Fig. 13: The CDF of sam-
pled max bandwidth occu-
pancy ratio.

!

"

#!

#"

$!

$"

%!

$! &! '! (! #!!

!
"
#"
$
%"
&
'!
"
(
)*
+
,

-./&'*+,

))

*+,-.

Fig. 14: Percentage of re-
jected requests with vary-
ing datacenter load.

7.2.4 Improvement to Work-Conserving Bandwidth Guarantee

Based on the SVC model and allocation algorithms with minimum
bandwidth guarantee given in Section 6, we consider a work-
conserving bandwidth guarantee approach that combines the SVC-
based allocation and Elasticswitch-like bandwidth enforcement.
We compare it with Elasticswitch that allocates VMs based on
the deterministic hose model, and show the performance im-
provement of SVC-based allocation in an online scenario with
dynamically arriving jobs. We use the same simulation settings
in the above section and in addition we set the the mean of
the normal distribution as the minimum bandwidth guarantee
for a virtual cluster. We assume a light load of 20% such
that the rejected request ratio is negligible and sufficient spare
bandwidth can be exploited by adaptive rate adjustment for work-
conserving bandwidth enforcement. Figure 12 shows the average
job completion time with using different bandwidth guarantee
approaches. The difference between mean-VC and Elasticswitch
with the mean as the minimum bandwidth is that Elasticswitch
can adaptively increase the rate beyond the static reservation of
mean-VC. They have the same VM allocation algorithms. It is
obvious that Elasticswitch can increase the throughput of the tasks
and thus reduce the average job completion time compared with
mean-VC, as shown in Figure 12. This result is consistent with
the previous work [16]. The figure also shows that the SVC-
based approach with ϵ = 0.05 and ϵ = 0.02 have lower average
job completion time than Elasticswitch. The reason for that has
been demonstrated by Figure 5. SVC-based approaches allocate
virtual clusters with considering the traffic variance and avoid the
bottlenecks during the VM placement. In this way, it reduces the
bandwidth competition and increases the efficiency of adaptive
rate control for exploiting the spare bandwidth.

8 Conclusion and FutureWork
In this paper we explore a new virtual network abstraction,
SVC, which models the uncertainty of bandwidth demands of
cloud applications. Based on SVC, we introduce a VM allocation
framework which provides probabilistic bandwidth guarantee to
the tenants. To enforce the framework, we propose dynamic
programming based VM allocation algorithms which not only
achieve good locality of VMs but also minimize the maximum
of bandwidth occupancy ratio on links. Simulation results demon-
strate that SVC yields better performance for cloud application
workloads with highly volatile bandwidth demands, and achieves
the trade-off between the job concurrency and the job running
time. Besides, we propose to extend SVC with minimum band-
width guarantee and incorporate it with existing work-conserving
bandwidth enforcement approaches. We show its improvement
to the work-conserving bandwidth guarantee. For simplicity, we
assume normal distribution for the bandwidth demand in this pa-
per, but SVC can straightforwardly use other types of probability
distributions.

Note that SVC can be extended to characterize the time
varying bandwidth demand which means that the distribution of
bandwidth demand can change with time. As TIVC that specifies
different deterministic bandwidth demand during different time
intervals, we can extend SVC by allowing specific probability
distributions for VM bandwidth demand during different time
intervals. For normal distribution, time varying SVC can be
represented ⟨N, (Ti1, Ti2, ui, σi)|1 <= i <= I⟩ where each time in-
terval [Ti1,Ti2] is associated with a normal distribution of VM
bandwidth demand N(ui, σi). In this case, link L that carries the
traffic of this SVC should have enough residual bandwidth during
any time interval [Ti1, Ti2]. The inequality (1) should hold for
the VM bandwidth distributions of every virtual cluster across
link L during each of their time intervals. In this paper, we
focus on simple SVC model and leave time varying SVC in
our future work. Our future work also includes characterizing the
probability distributions of bandwidth demands from a variety of
real workloads, and implementing and evaluating SVC in a real
cloud environment.

Acknowledgements
This research was supported in part by U.S. NSF grants NSF
1547102, SaTC 1564097, CRISP 1541074, SAVI/RCN 1550379
and 1402266, CNS 1421561, NSF-1404981, IIS-1354123, CNS-
1254006, CNS-1249603, OAC-1724845, ACI-1719397, CNS-
1733596, Microsoft Research Faculty Fellowship 8300751, IBM
Faculty Award 2015-2017. An early version of this work was
presented in the Proceedings of ICDCS 2014 [25].

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 14

References

[1] “Hadoop,” hadoop.apache.org, 2016, [Online; accessed 19-August-2017].
[2] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in

the cloud: observing, analyzing, and reducing variance,” Proc. of VLDB
Endow., vol. 3, no. 1-2, pp. 460–471, Sep. 2010.

[3] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris, “Reining in the outliers in map-reduce clusters using
mantri,” in Proc. of ODSI. Berkeley, CA, USA: USENIX Association,
2010, pp. 1–16.

[4] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network,” in Proc. of the 8th USENIX conference on Networked
systems design and implementation (NSDI), Berkeley, CA, USA, 2011, pp.
23–23.

[5] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in Proc. of Co-NEXT. New York, NY, USA:
ACM, 2010, pp. 15:1–15:12.

[6] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards pre-
dictable datacenter networks,” in Proc. of ACM SIGCOMM. New York,
NY, USA: ACM, 2011, pp. 242–253.

[7] D. Xie, N. Ding, Y. C. Hu, and R. R. Kompella, “The only constant is
change: incorporating time-varying network reservations in data centers,”
in Proc. of ACM SIGCOMM, 2012, pp. 199–210.

[8] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma,
“Application-driven bandwidth guarantees in datacenters,” in Proceedings
of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14. New
York, NY, USA: ACM, 2014, pp. 467–478.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” SIGCOMM Comput. Commun. Rev., vol. 40,
no. 1, pp. 92–99, Jan. 2010.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proc. of ACM
IMC. New York, NY, USA: ACM, 2009, pp. 202–208.

[11] D. Mitra and Q. Wang, “Stochastic traffic engineering for demand
uncertainty and risk-aware network revenue management,” IEEE/ACM
Trans. Netw., vol. 13, no. 2, pp. 221–233, Apr. 2005.

[12] J. Cao, D. Davis, S. V. Wiel, B. Yu, S. Vander, and W. B. Yu, “Time-
varying network tomography: Router link data,” Journal of the American
Statistical Association, vol. 95, pp. 1063–1075, 2000.

[13] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,
“Traffic matrix estimation: Existing techniques and new directions,” in
Proceedings of the 2002 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, ser. SIGCOMM
’02. New York, NY, USA: ACM, 2002, pp. 161–174.

[14] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes,
“Gatekeeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks,” in Proceedings of the 3rd Conference on I/O Virtualization, ser.
WIOV’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 6–6.

[15] V. Jeyakumar, M. Alizadeh, D. Mazires, B. Prabhakar, and C.Kim,
“Eyeq: Practical network performance isolation for the multi-tenant
cloud,” in Proc. of Usenix HotCloud, 2012.

[16] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos, “Elasticswitch: Practical work-conserving bandwidth guarantees
for cloud computing,” in Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, ser. SIGCOMM ’13. New York, NY, USA:
ACM, 2013, pp. 351–362.

[17] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: sharing the network in cloud computing,” in
Proc. of ACM SIGCOMM. New York, NY, USA: ACM, 2012, pp. 187–
198.

[18] V. T. Lam, S. Radhakrishnan, R. Pan, A. Vahdat, and G. Varghese,
“Netshare and stochastic netshare: Predictable bandwidth allocation for
data centers,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 3, pp. 5–
11, Jun.

[19] J. Zhu, D. Li, J. Wu, H. Liu, Y. Zhang, and J. Zhang, “Towards bandwidth
guarantee in multi-tenancy cloud computing networks,” in Proc. of IEEE
ICNP, 2012, pp. 1–10.

[20] L. Yu and Z. Cai, “Dynamic scaling of virtual clusters with bandwidth
guarantee in cloud datacenters,” in IEEE INFOCOM, April 2016, pp. 1–9.

[21] J. Guo, F. Liu, J. Lui, and H. Jin, “Fair network bandwidth allocation in
iaas datacenters via a cooperative game approach,” TON, 2015.

[22] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc. of
IEEE INFOCOM, 2010, pp. 1–9.

[23] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with
dynamic bandwidth demand in data centers,” in Proc. of IEEE INFOCOM,
2011, pp. 71–75.

[24] S. Nadarajah and S. Kotz, “Exact distribution of the max/min of two
gaussian random variables,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 16, no. 2, pp. 210–212, 2008.

[25] L. Yu and H. Shen, “Bandwidth guarantee under demand uncertainty in
multi-tenant clouds,” in Proceedings of the 2014 IEEE 34th International
Conference on Distributed Computing Systems, ser. ICDCS ’14. Wash-
ington, DC, USA: IEEE Computer Society, 2014, pp. 258–267.

Lei Yu received his BS degree and MS degree in
computer science from Harbin Institute of Technol-
ogy, China. He is a Ph.D student in the School of
Computer Science at Georgia Institute of Technol-
ogy. His research interests include cloud comput-
ing, big data, privacy, sensor networks, wireless
networks, and network security.

Haiying Shen received the BS degree in Computer
Science and Engineering from Tongji University,
China in 2000, and the MS and Ph.D. degrees in
Computer Engineering from Wayne State Univer-
sity in 2004 and 2006, respectively. She is currently
an Associate Professor in the Computer Science
Department at the University of Virginia. Her re-
search interests include distributed computer sys-
tems and computer networks, cloud computing and
cyber-physical systems. She is a Microsoft Faculty
Fellow of 2010, a senior member of the IEEE and

a member of the ACM.

Zhipeng Cai received his PhD and MS degrees
from the Department of Computing Science at Uni-
versity of Alberta, and BS degree from the De-
partment of Computer Science and Engineering at
Beijing Institute of Technology. He is currently an
Assistant Professor in the Department of Computer
Science at Georgia State University. Prior to joining
GSU, Dr. Cai was a research faculty in the School
of Electrical and Computer Engineering at Georgia
Institute of Technology. Dr. Cai’s research areas
focus on Networking and Big data. Dr. Cai is the

recipient of an NSF CAREER Award.

Ling Liu is a Professor in the School of Computer
Science at Georgia Institute of Technology. She
directs the research programs in Distributed Data
Intensive Systems Lab (DiSL), examining various
aspects of large-scale data intensive systems, in-
cluding performance, availability, security, privacy
and trust. Prof. Liu is an elected IEEE Fellow,
a recipient of IEEE Computer Society Technical
Achievement Award (2012). She has published
over 300 international journal and conference ar-
ticles and is a recipient of the best paper award

from a number of top venues, including ICDCS, WWW, 2005 Pat Goldberg
Memorial Best Paper Award, IEEE Cloud, IEEE ICWS, ACM/IEEE CCGrid,
IEEE ICIOT, IEEE EDGE. In addition to serve as general chair and PC chairs
of numerous IEEE and ACM conferences in distributed computing, cloud
computing and database fields, Prof. Liu has served on editorial board of
over a dozen international journals, including the editor in chief of IEEE
Transactions on Service Computing (2013-2016). Her current research is
primarily sponsored by NSF and IBM.

Calton Pu received his PhD from University of
Washington in 1986 and served on the faculty of
Columbia University and Oregon Graduate Insti-
tute. Currently, he is holding the position of Pro-
fessor and John P. Imlay, Jr. Chair in Software
in the College of Computing, Georgia Institute of
Technology. He has worked on several projects in
systems and database research. He has published
more than 70 journal papers and book chapters,
200 conference and refereed workshop papers. He
served on more than 120 program committees. His

recent research has focused on big data in Internet of Things, automated N-
tier application deployment and denial of information. He is an elected IEEE
Fellow and a member of the ACM.

