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CompVM: A Complementary VM Allocation
Mechanism for Cloud Systems

Haiying Shen , Senior Member, IEEE, Member, ACM, and Liuhua Chen

Abstract— In cloud datacenters, effective resource provisioning
is needed to maximize the energy efficiency and utilization
of cloud resources while guaranteeing the service-level agree-
ment (SLA) for tenants. To address this need, we propose
an initial virtual machine (VM) allocation mechanism (called
CompVM) that consolidates complementary VMs with spatial/
temporal awareness. Complementary VMs are the VMs whose
total demand of each resource dimension (in the spatial space)
nearly reaches their host’s capacity during VM lifetime period
(in the temporal space). Based on our observation of the
existence of VM resource utilization patterns, the mechanism
predicts the resource utilization patterns of VMs. Based on the
predicted patterns, it coordinates the requirements of different
resources and consolidates complementary VMs in the same
physical machine (PM). This mechanism reduces the number
of PMs needed to provide VM service, hence increases energy
efficiency and resource utilization, and also reduces the number of
VM migrations and SLA violations. We further propose a utiliza-
tion variation-based mechanism, a correlation coefficient-based
mechanism, and a VM group-based mechanism to match the
complementary VMs in order to enhance the VM consolidation
performance. Simulation based on two real traces and real-world
testbed experiments shows that CompVM significantly reduces
the number of PMs used, SLA violations, and VM migrations
of the previous resource provisioning strategies. The results
also show the effectiveness of the enhancement mechanisms in
improving the performance of the basic CompVM.

Index Terms— Cloud, service-level agreement (SLA), virtual
machine (VM), resource provisioning.

I. INTRODUCTION

CLOUD computing has been intensively studied recently
due to its great promises [1]. Cloud providers use vir-

tualization technologies to allocate Physical Machine (PM)
resources to tenant Virtual Machines (VMs) based on their
resource (e.g., CPU, memory and bandwidth) requirements.
The scale of modern cloud datacenters has been growing
and current cloud datacenters contain tens to hundreds of
thousands of computing and storage devices running complex
applications. Energy consumption thus become critical con-
cerns. Maximizing energy efficiency and utilization of cloud
resources while satisfying Service Level Agreement (SLA) for
tenants requires effective management of resource.
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Previous server resource provisioning (or VM allocation)
strategies can be classified into two categories: static pro-
visioning and dynamic provisioning [2]. Static provisioning
[3]–[7] allocates physical resources to VMs only once based
on static VM resource demands, which can be reduced to a
bin-packing problem. However, reserving VM peak resource
requirement for the entire execution time cannot fully utilize
resources. In order to more fully utilize cloud resources,
dynamic provisioning [8]–[14] has been proposed, which first
consolidates VMs using a certain strategy with a resource
requirement lower than the peak and then uses live VM migra-
tion to handle PM overload to mitigate SLA violations [8].
VM migration generates overhead and degrades VM perfor-
mance. Therefore, when a PM is not overloaded, it may not
be necessary to conduct VM migration. These VM allocation
strategies only consider resource demands at one or each
time point. Therefore, they fail to coordinate the resource
requirements in different resource dimensions (in the spatial
space) for a period of time (in the temporal space); that
is, they are spatial/temporal-oblivious, which fails to con-
stantly fully utilize different resources. Some previously pro-
posed resource provisioning methods consider spatial balance
(e.g., [15]–[18]) or temporal correlations (e.g., [19], [20]) but
do not simultaneously consider both to fully utilize different
resources over time.

Our primary goal is to handle the aforementioned problems
and design a VM allocation mechanism to further reduce the
number of PMs needed for service provisioning, maximize
resource utilization and reduce the number of VM migrations,
while ensuring SLA guarantees. To this end, we propose
an initial VM allocation mechanism (called CompVM) that
predicts the VM resource utilization patterns and consolidates
complementary VMs with spatial/temporal-awareness. Com-
plementary VMs are the VMs whose total demand of each
resource dimension (in the spatial space) nearly reaches their
host PM’s capacity during VM lifetime period (in the temporal
space). For example, a low-CPU-utilization and high-memory-
utilization VM and a high-CPU-utilization and low-memory-
utilization VM can be consolidated in one PM to fully utilize
both of its CPU and memory resources. As shown in a simple
1-dimensional resource space (i.e., one resource type) in
Figure 1(a), the resource utilization patterns of VM1, VM2 and
VM3 are complementary to each other on the resource. Placing
these three VMs together in the PM can fully utilize this
resource of the PM and avoid PM overloads while still ensur-
ing the SLA guarantees. In Figure 1(b), by consolidating VM3,
VM4 and VM1, the CPU and memory resources of this PM are
fully utilized. Currently there are various types of VMs (e.g.,
CPU-intensive, memory-intensive, data-intensive) and they
consume different ratios of resource capacities for different
resource types. Therefore, it is reasonable to assume the exis-
tence of different VMs that are complementary to each other.
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Fig. 1. Consolidating complementary VMs in one PM. (a) In temporal space.
(b) In spatial space.

Application and job are interchangeable terms in this paper.
A job consists of a number of VMs (or tasks) (VM and
task are interchangeable terms in this paper). For example,
a MapReduce job consists of several tasks. A Web service
application consists of many VMs. Each job in the PlanetLab
and Google Cluster VM traces [21], [22] consists of many
of tasks. It was indicated that when VMs are configured
to run an application collaboratively, their workload pattern
variations can be predicted [23]. We notice that different VMs
running the same short-term job task (e.g., MapReduce) tend
to have similar resource utilization patterns, because each
VM executes exactly the same source code with the same
options. In long-term applications such as web services and file
services, the workloads on the VMs are often driven by human
requests determined by daily human activities. Therefore, these
VMs exhibit periodical resource utilization patterns. Thus,
based on the historical resource utilizations of VMs from a
tenant, the lifetime resource utilization patterns for short-term
VMs or periodical resource utilization patterns for long-term
VMs requested by this tenant to run the same job can be
predicted. The contribution of this paper can be summarized
as follows.

• We study VMs running short-term MapReduce jobs and
observe that the VMs running the same job task tend to
have similar resource utilization patterns over time. We
also study the PlanetLab and Google Cluster VM traces
and find that different VMs running a long-term job
exhibit similar periodical resource utilization patterns.

• We then design a practical algorithm to detect the
resource utilization patterns from a group of VMs.

• We propose an initial VM allocation mechanism that
consolidates complementary VMs based on the predicted
VM resource demand patterns. The mechanism coordi-
nates the requirements of different resources of the VMs
to realize spatial/temporal-aware VM consolidation.

• We propose a utilization variation based mechanism and
a correlation coefficient based mechanism to identify
complementary VMs and allocate them to PMs, and
also propose an alternative initial VM allocation mecha-
nism that combines complementary VMs considering all
resource dimensions into a group and assigns the whole
group to a PM. These enhancement mechanisms further
improve resource utilization.

• We conduct comprehensive simulation based on two real
traces and real-world experiments running a MapReduce
job. Experimental results show that CompVM signifi-
cantly reduces the number of PMs, SLA violations and
VM migrations.

Note that our work can be used for an environment with
any number of resource types and it does not limit the types

Fig. 2. VM resource utilization for TeraSort on three datasets. (a) CPU
utilization. (b) Memory utilization.

of resources. The rest of the article is organized as follows.
Section II introduces the VM resource demand pattern detec-
tion algorithm. Section III presents the details of CompVM
and our enhancement mechanisms. Section IV evaluates our
method in trace-driven simulation experiments. Section V
evaluates our method in real-world testbed. Section VI briefly
describes the related work. Finally, Section VII summarizes
the paper with remarks on future work.

II. VM RESOURCE UTILIZATION PROFILING

AND PATTERN DETECTION

A. Profiling VM Resource Demands

In order to predict the resource demand profiles of cloud
VMs, we conducted a measurement study on VM resource
utilizations. Workload arrives at the virtual cluster of a tenant
in the form of jobs. Usually all tasks in a job execute the
same program with the same options. Also, application user
activities have daily patterns. Thus, different VMs running the
same job tend to have similar resource utilization patterns.
To confirm this, we conducted a measurement study on both
short-term jobs (from MapReduce benchmarks) and long-term
jobs (from the Google Cluster Trace and PlanetLab trace).

1) Utilization Patterns of VMs for Short-Term Jobs:
MapReduce jobs represent an important class of applications
in cloud datacenters. We profile the CPU and memory utiliza-
tion patterns of typical MapReduce jobs. We conducted the
profiling experiments on our cluster consisting of 15 machines
(3.4GHz Intel(R) i7 CPU, 8GB memory) running Ubuntu
12.04. We constructed a virtual cluster of a tenant with
11 VMs; each VM instance runs Hadoop 1.0.4. We recorded
the CPU and memory utilization of each VM every 1 second.

We used Teragen to randomly generate 1G data, then
ran TeraSort to sort the data in the virtual cluster.
Figures 2(a) and 2(b) display the resource utilization
results of three VMs for different generated datasets. Figure 3
displays the resource utilizations of two VMs running
TestDFSIO write, which generates 10 output files with each
file having 0.1GB. Figure 4 displays the resource utilizations
of two VMs running TestDFSIO read, that reads 10 input
files generated by TestDFSIO write. From the figures, we can
find that the VMs collaboratively running the same job have
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Fig. 3. VM resource utilization for TestDFSIO write. (a) CPU utilization.
(b) Memory utilization.

Fig. 4. VM resource utilization for TestDFSIO read. (a) CPU utilization.
(b) Memory utilization.

similar resource utilization patterns. The VMs running the
same job on different datasets also have similar resource
utilization patterns. We repeatedly ran each experiment several
times and got similar resource utilization patterns for the
VMs, which indicates that VMs running the same job task at
different times also have similar resource utilization patterns.

2) Utilization Patterns of VMs for Long-Term Jobs: To
study the utilization patterns of VMs for long-term jobs,
we used publicly available Google Cluster trace [22] and
the PlanetLab trace [21]. The Google Cluster trace records
resource usage on a cluster of about 11000 machines from
May 2011 for 29 days. The PlanetLab trace contains the CPU
utilization of a subset of the VMs in PlanetLab every 5 minutes
for 24 hours in 10 random days in March and April 2011. We
considered a task in the Google Cluster trace as a VM. For the
PlanetLab trace, we identified the VMs for the same job by the
names of the trace file. For example, trace files with the same
file name are VMs that run the same job in different places
and times. In the Google Cluster trace, we analyzed 700 VMs
and found that different VMs running the same job tend to
have similar utilization patterns. Also, for a long-term VM,
daily periodical patterns can be observed from the VM trace.
We randomly chose two VMs running the same job as an
example to show our observations. Figure 5(a) shows the CPU
utilizations of two VMs every five minutes during three days
and Figure 5(b) shows their memory utilizations. We see that
both CPU and memory resource demands exhibit periodicity
approximately every 24 hours. Also, the two VMs exhibit
similar resource utilization patterns since they collaboratively
ran the same job. In the PlanetLab trace, we analyzed 900 VMs
and also found that they exhibit daily periodical patterns.
Figure 6 shows the CPU utilization of a randomly selected
VM to show their periodical patterns.

B. The VM Resource Utilization Pattern Detection Algorithm

The previous section shows the existence of similar resource
utilization patterns of VMs running the same job. Given the

Fig. 5. VM resource utilization from Google Cluster trace. (a) CPU
utilization. (b) Memory utilization.

Fig. 6. VM resource utilization from PlanetLab trace.

resource requirement pattern of VMs in an application, we can
potentially derive some complicated functions (e.g., high-order
polynomials) to precisely model the changing requirement
over time. However, such smooth functions significantly com-
plicate the process of VM allocation due to the complexity of
model formulation. Also, very accurate pattern modeling of an
individual VM cannot represent the general patterns of a group
of VMs for similar applications. To achieve a balance between
modeling simplicity and modeling precision, we choose to
model the resource requirement as simple pulse functions
introduced in [24] as shown in Figure 7. These four models
sufficiently capture the resource demands of the applications.
An actual VM resource demand that is much more complicated
usually exhibits a pattern which is a combination of these
simple types.

Next, we introduce how to detect the resource utilization
pattern for a VM. The cloud records the resource utilizations
of the VMs of a tenant. If the job on a VM is a short-term job
(e.g., MapReduce job), the cloud records the entire lifetime
of the job. If the job on a VM is a long-term job (e.g. Web
server VM), the cloud records several periods that show a
regular periodical pattern. From the log, the cloud can obtain
the resource utilization of VMs of a tenant running the same
application. When a tenant issues a VM request to the cloud,
based on the resource utilization pattern of previous VMs
from this tenant running the same application, the cloud can
estimate the resource utilization pattern of this requested VM.

Let Di(t)=(D1
i (t), .., D

d
i (t)) (t =T0, . . . ,T0 + T ) be

the actual d dimension resource demands of VM i at
time t. Given the resource demands of a set of N
VMs running the same job from a tenant, Di(t) (i =
1, 2, . . . , N), our pattern detection algorithm finds a pattern
P(t)=(P 1(t), .., P d(t)) (t=T0, . . . , T0 + T ). The derived pat-
tern will be considered as the future resource demand profile
of a requested VM from the tenant.
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Fig. 7. Time-varying resource utilization classification. (a) Type 1: Single peak. (b) Type 2: Fixed-width peaks. (c) Type 3: Varying-width peaks.
(d) Type 4: Varying height peaks.

Algorithm 1 VM Resource Demand Pattern Detection
1: Input: Di(t): Resource demands of VM i, i =

1, 2, . . . , N, t = T0, . . . , T0 + T
2: Output: P(t): VM resource demand pattern
3: /* Find the maximum demand at each time */
4: E(t) = maxi∈{1,...,N}Di(tj) for each time t
5: /* Smooth the maximum resource demand series */
6: E(t) ← LowPassFilter(E(t)) for each time t
7: /* Use sliding window W to derive pattern */
8: P(t) = maxt∈{tj ,tj+1,...,tj+W} E(tj) for each time t
9: /* Round the resource demand values */

10: P(t) ← Round(P(tj)) for each time t
11: return P(t) (t = T0, . . . , T0 + T )

Fig. 8. Fourier decomposition.

Algorithm 1 shows how to generate the resource demand
pattern for a requested VM. The algorithm first finds the max-
imum demand E(t) among the set of Di(t) (i = 1, 2, . . . , N)
at each time t (Line 4). Then, it passes E(t) through a low
pass filter (Line 6) to remove high frequency components
to smooth E(t). In this step, as shown in Figure 8, we use
Fast Fourier Transform (FFT) to decompose the pattern to
components with different frequencies and then remove the
high frequency components. The algorithm then utilizes a
sliding window of size W to find the envelop of E(t) (Line
8). Finally, it rounds the demand values (Line 10). In this step,
the demand fraction value is rounded to the demand absolute
value.

To evaluate the accuracy of our pattern detection algorithm,
we conducted an experiment on predicting VM resource
request pattern based on resource utilization records of a group
of VMs running the same application from the PlanetLab trace
and the Google Cluster trace. We randomly selected 700 jobs
and predicted the CPU utilization of a VM in each job during
24 hours. Specifically, in the PlanetLab trace, we used the
CPU utilizations of three VMs of a job on March 3rd, 6th
and 9th in 2011 to predict the CPU utilization of a VM and
compared it with the actual utilization of a VM of the job on
March 22nd, 2011. In the Google Cluster trace, we used the
CPU and memory utilizations of two VMs of a job on May 1st
and 2nd in 2011 to predict the CPU and memory utilizations

Fig. 9. Pattern detection using the PlanetLab trace. (a) Actual and predicted
CPU utilizations. (b) CDF of # of missed captures using the PlanetLab trace.

Fig. 10. Pattern detection using the Google Cluster trace. (a) Actual and
predicted CPU utilizations. (b) Actual and predicted memory utilizations.

Fig. 11. CDF of # of missed captures using the Google Clusster trace.

of a VM and compared them with the real utilizations of a
VM of the job on May 3rd, 2011.

Figure 9(a) displays the actual VM CPU utilization and the
predicted pattern generated by our pattern detection algorithm
using the PlanetLab trace. Figure 10(a) and Figure 10(b)
display the actual VM CPU and memory utilizations and the
predicted pattern using the Google Cluster trace. We see that
the pattern can capture the utilization most of the time except
for a few burst peaks. Most of these burst peaks are only
slightly greater than the pattern cap and are single bursts. This
means that the resources provisioned according to the pattern
can ensure the SLA guarantees most of the time, i.e., before
and after the burst points.

When the real VM CPU request from the trace is greater
than the predicted value, we say that a missed capture
occurs. Figure 9(b) and Figure 11 show the cumulated
distributed function (CDF) of the number of missed captures



1352 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

from our 700 predictions using the PlanetLab trace and the
Google Cluster trace, respectively. The three curves in the
figure correspond to the pattern detection algorithm with
different window sizes. We see that up to 90% of the detected
patterns have missed captures fewer than 25 during the
24 hours in PlanetLab trace, and up to 90% of the detected
patterns have missed captures fewer than 10 in Google Cluster
trace. We also see that the patterns generated by a bigger
window size generates fewer missed captures compared to
a small window size because a larger window size leads
to more resource provisioning. As the previous dynamic
provisioning strategies, VM migration upon SLA violation is
a solution for these missed captures. CompVM helps reduce
a large number of VM migrations in the previous dynamic
provisioning strategies.

III. INITIAL VM ALLOCATION MECHANISM

CompVM is suitable for an environment that the workloads
of the majority VMs can be predicted. CompVM can improve
the initial VM allocation of these VMs and hence improve
the whole system performance to a certain extent. We assume
that the tasks of a job are the same. CompVM can only be
used for VMs whose resource utilizations can be predicted
and can improve the VM allocation performance for these
VMs. Based on previous work [25] and our measurement in
the above section, we assume that the VMs of the same job
have similar resource utilization patterns. When a new VM is
created in the system, CompVM will check if the VMs of
this VM’s job were created before (based on the job name
and/or user ID). If yes, the resource utilization pattern of the
new VM can be predicted based on those VMs. If a job
has different tasks, CompVM needs to further identify the
same tasks in a job. For example, a user can be requested
to use an ID to mark the same tasks in a job. If a task’s
resource utilization is unpredictable, the task is allocated using
the original VM allocation algorithm. To consider prediction
confidence, we can adopt the method in our previous work
in [26]. To predict VM resource utilization without pattern
seasonality, we can use our proposed method in [27].

A. Initial VM Allocation Policy Based on Resource Efficiency

The goal of CompVM is to place all VMs in as few hosts
as possible, ensuring that the aggregated demand of VMs
placed in a host does not exceed its capacity across each
resource dimension. We consider the VM consolidation as
a classical d-dimensional vector bin-packing problem [28],
where the hosts are conceived as bins and the VMs as objects
that need to be packed into the bins. This problem is an NP-
hard problem [28]. We then use a dimension-aware heuristic
algorithm to solve this problem, which takes advantage of
cross dimensional complimentary requirements for different
resources as illustrated in Figures 1 in Section II-A.

Each host j is characterized by a d-dimensional vector
to represent its capacities Hj = (H1

j , H2
j , . . . , Hd

j ). Each
dimension represents the host’s capacity corresponding to a
different resource such as CPU and memory. Recall that
Di(t) = (D1

i (t), D2
i (t), .., Dd

i (t)) denotes the actual resource
demands of VM i. We define the fractional VM demand vector
of VM i on PM j as

Fij(t) = (F 1
ij(t), F

2
ij(t), . . . F

d
ij(t))

= (
D1

i (t)
H1

j

,
D2

i (t)
H2

j

, ..,
Dd

i (t)
Hd

j

). (1)

The resource utilization of PM j with N VMs on resource k
at time t is calculated by Uk

j (t) = 1
Hk

j

∑N
i=1 Dk

i (t).
In order to measure whether a PM has available resource

for a VM in a future period of time, we define the nor-
malized residual resource capacity of a host as Rj(t) =
(R1

j (t), R
2
j (t), . . . , R

d
j (t)), in which

Rk
j (t) = 1− Uk

j (t) = 1− 1
Hk

j

N∑

i=1

Dk
i (t). (2)

When a VM is allocated to a PM, the VM’s fractional
VM demand F k

ij and the PM’s normalized residual resource
capacity Rk

j must satisfy the capacity constraint below at each
time t and for each resource k:

F k
ij(t) ≤ Rk

j (t), t = T ′
0, . . . , T ′

0 + T, k = 1, 2 . . . , d. (3)

in order to guarantee that the host has available resource to
host the VM resource request for the time period [T ′

0, T
′
0 +T ].

For each resource k, we hope that a PM j’s Uk
j (t) at each

time t is close to 1, that is, its each resource is fully utilized.
To jointly measure a PM’s resource utilization across different
resources at each time, we define the resource efficiency during
time period [T ′

0, T
′
0+T ] as the ratio of the aggregated resource

demand over the total resource capacity:

Ek
j =

1
T ·Hk

j

T ′
0+T∑

t=T ′
0

N∑

i=1

Dk
i (t)dt. (4)

We use a norm-based greedy algorithm [29] to capture the
distance between the average resource demand vector and the
capacity vector of a PM (e.g., the top right corner of the
rectangle in the 2-dimensional space):

Mj =
d∑

k=1

{wk(1− Ek
j )}2, (5)

where wk is the assigned weight to resource k, which can be
determined by resource intensity aware algorithms [30]. For
simplicity, we can make all weights the same and set wk = 1.
This distance metric coordinately measures the closeness of
each resource’s utilization to 1.

To identify the PM from a group PMs to allocate a requested
VM i, CompVM first identifies the PMs that do not violate
the capacity constraint of Equ. (3). It then places the VM i
to a PM that minimizes the distance Mj , that is, this VM can
more fully utilize each resource in this PM.

Algorithm 2 shows the pseudocode for CompVM. This
mechanism refers to the resource demand pattern Pi(t) from
the library that approximately predicts the resource demands
of VMs from the same tenant for the same job. Based
on Pi(t) and the host capacity vector Hj , we can derive
predicted Fij(t). For each candidate host (Line 5, where m
is the number of host), we first check whether it has enough
resource for hosting the VM at each time t = T ′

0, . . . , T
′
0 + T

for each resource by comparing Fij(t) and Rj(t) (Line 6 and
Lines 19-26) in order to ensure that F k

ij(t) ≤ Rk
j (t) (Equ.(3))

during the VM lifetime or periodical interval [T ′
0, T

′
0 + T ].

If the host has sufficient residual resource capacity to host this
VM, then we calculate the resource efficiency (Lines 9-12)
after allocating this VM during time period [T ′

0, T
′
0 + T ]

using Equ. (4). Finally, we choose the PM that leads to the
minimum distance based on resource efficiency (Lines 13-17).
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Algorithm 2 Pseudocode for Initial VM Allocation

1: Input: Pi(t): Predicted resource demands
Rj(t): Residual resource capacity of candidates

2: Output: Allocated host of the VM. It is Null if it cannot
be found.

3: AllocatedHost=Null
4: M=Double.MAX_VALUE //initialize the distance
5: for j = 1 to m do
6: if CheckValid(P(t),Rj(t))==false then
7: continue
8: else
9: for k = 1 to d do

10: Ek
j = Ek

j + 1
T ·Hk

j

∑T ′
0+T

t=T ′
0

P k(t)dt

11: Mj+ = {wk(1− Ek
j )}2

12: end for
13: if Mj<M then
14: M=Mj

15: AllocatedHost=host j
16: end for
17: return AllocatedHost
18:

19: function CheckValid(P(t),Rj(t)):
20: for k = 1 to d do
21: for t = T ′

0 to T ′
0 + T do

22: if F k
ij(t) > Rk

j (t) (Equ.(3)==false)
23: return false
24: end for
25: end for
26: return true

It means this VM can make this PM most fully utilize its
different resources among the PM candidates. In this way,
the complementary VMs are allocated to the same PM, thus
fully utilizing its different resources.

B. Enhanced Initial VM Allocation Mechanisms

1) Basic Rationale: In the previous section, the VM allo-
cation mechanism tries to maximize the resource efficiency
during the monitoring time period based on Equ. (4). However,
Ek

j is the average utilization of PM j during the monitoring
time period, and it cannot reflect the deviation of the resource
utilization during this period. For example, the time period
consists of epochs t1 and t2. A PM with a resource usage
of 10 units at epoch t1 and a usage of 20 units at epoch t2 has
the same resource efficiency as a PM with usages of 15 units
at both t1 and t2. Let’s say we are selecting a PM for hosting
a VM from two candidates. The VM demands 10 units of
resource at epoch t1 and 20 units of resource at epoch t2.
The first PM’s available capacity is 100 units and 20 units for
the two epochs, respectively. The second PM’s total capacity
is 60 for both epochs. Both candidate PMs have the same
resource efficiency. If we choose the first PM, the capacity is
used up at epoch t2. It cannot host more VMs though it has
available capacity at epoch t1. Choosing the second PM is
preferred as it can still host extra VMs after accepting the VM.
In the following, we will introduce three methods to improve
the initial VM allocation mechanism.

2) Utilization Variation Based Mechanism: In order to
further distinguish PMs, we should measure other metrics
instead of only calculating the average Ek

j . We can exam the
utilization variation of the estimated utilization curve of a PM
j after accepting the VM. We define the variance of a PM j
with residual resource Rk

j (ti) as

σ2 =

∑d
k=1

∑T
i=1[R

k
j (ti)−Rk

j (ti)]2

T
(6)

where Rk
j (ti) is the residual type-k resource at time ti, and

Rk
j (ti) is the average residual type-k resource. σ2 is the

utilization variation, which measures how far a set of numbers
is spread out. We can select PMs that will have identical
resource utilization (σ2 = 0) between time epochs after
accepting the VM based on the utilization variation of the
resulting utilization of the PM.

Algorithm 3 Pseudocode for the Utilization Variation Based
VM Allocation Mechanism
1: Input: Pi(t): Predicted resource demands

Rj(t): Residual resource capacity of candidates
2: Output: Allocated host of the VM. It is Null if it cannot

be found.
3: AllocatedHost=Null
4: V ar=Double.MAX_VALUE //utilization variation
5: for j = 1 to m do
6: if CheckValid(P(t),Rj(t))==false then
7: continue
8: else
9: Update Rk

j (ti) and Rk
j (ti)

after allocating the VM

10: σ2 =
�d

k=1
�T

i=1[R
k
j (ti)−Rk

j (ti)]
2

T
11: if σ2<V ar then
12: V ar=σ2

13: AllocatedHost=host j
14: end for
15: return AllocatedHost

Algorithm 3 shows the pseudocode for the utilization varia-
tion based VM allocation mechanism. Similar to Algorithm 2,
this mechanism refers to the resource demand pattern Pi(t) of
VM i and the residual resource capacity Rj(t) of candidate
PM j. For each candidate host, the algorithm first checks
whether it has enough resource for hosting the VM for each
resource by calling CheckValid(P(t),Rj(t)) (Lines 5-7). If the
host has sufficient residual resource capacity to host this VM,
then we calculate the utilization variation of the utilization
curve after allocating this VM during time period [T ′

0, T
′
0 +T ]

using Equ. (6) (Lines 9-10). Finally, we choose the PM that
leads to the minimum utilization variation (Lines 11-15). It
means this VM can make this PM have similar resource
utilization between time epochs, and hence have the potential
to host more VMs in the future and fully utilizes its resources.

3) Correlation Coefficient Based Mechanism: The utiliza-
tion variation based algorithm ensures that the PM resource
utilization does not spread out around the mean. However,
it cannot fully reflect the complementariness of the VM utiliza-
tion and PM utilization during the time period. In the example
shown in Figure 12, we need to select a PM from two PMs to
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Fig. 12. Placing VM to PM1 and PM2. (a) VM. (b) PM1 and PM2.
(c) PM1 + VM, PM2 + VM.

allocate a VM. The utilizations of the VM and PMs are shown
in Figure 12(a) and Figure 12(b), respectively. Figure 12(c)
shows the resource utilization after allocating the VM to each
PM. Both curves have the same utilization variation value,
so the two PMs are equivalent in PM selection since selecting
either one will result in the same utilization variation according
to Algorithm 3. However, PM1 is a better choice because it is
more complementary to the VM, and will result in a more flat
resource utilization, which enables to allocation more VMs
in the PM. We then further propose a correlation coefficient
based initial VM allocation mechanism.

We calculate the statistical correlation coefficient (denoted
by cr) for a VM with predicted resource demands P(t) and a
PM j with residual resource capacity R(t) by (7), as shown
at the bottom of this page, where P k(ti) is predicted type-
k resource demand at time ti and Rk

j (ti) is residual type-k

resource at time ti, P k(ti) and Rk
j (ti) are the average value.

Therefore, for a VM, we aim to find a PM that has a correlation
coefficient most close to -1 (i.e., the smallest correlation
coefficient meaning the two traces are opposite to each other
in terms of magnitude) with the VM as the destination PM to
allocate this VM. Accordingly, we propose to select PMs based
on the correlation coefficient of the VM utilization and PM
utilization. As the VMs consume multiple types of resources,
the algorithm first calculates the correlation coefficient for each
resource and then calculates the average of all the correlation
coefficients of different resources. The algorithm finds the PM
that has the smallest average correlation coefficient (i.e., most
close to −1) with the VM to be allocated as the VM’s host.
A PM with the smallest average correlation coefficient with
the VM means that this VM allocation will result in resource
utilization that does not fluctuate severely and hence has higher
probability to accommodate more VMs.

Algorithm 4 shows the pseudocode for the correlation
coefficient based VM allocation mechanism. Similar to Algo-
rithm 2, this mechanism refers to the resource demand pattern
Pi(t) and the residual resource capacity of candidates Rj(t).
The algorithm first checks whether the candidate host has
enough resource (Lines 5-7). It then calculates the correlation
coefficient of the VM utilization and the residual resource
capacity of the candidates for each type of resource based
on Equ. (7) (Line 9). Specifically, the algorithm calculates
the correlation coefficient values that are obtained from the
utilization traces, and then selects the PM that has the smallest

Algorithm 4 Pseudocode for the Correlation Coefficient Based
VM Allocation Mechanism
1: Input: Pi(t): Predicted resource demands

Rj(t): Residual resource capacity of candidates
2: Output: Allocated host of the VM. It is Null if it cannot

be found.
3: AllocatedHost=Null
4: Cor=Double.MAX_VALUE
5: for j = 1 to m do
6: if CheckValid(P(t),Rj(t))==false then
7: continue
8: else
9: cr=

�d
k=1

�T
i=1(P k(ti)−P k(ti))(R

k
j (ti)−Rk

j (ti))��d
k=1

�T
i=1(P k(ti)−P k(ti))

2·�d
k=1

�T
i=1(Rk

j
(ti)−Rk

j
(ti))

2

10: end for
11: if cr<Cor then
12: Cor=cr

13: AllocatedHost=host j
14: end for
15: return AllocatedHost

Fig. 13. Placing VMs vs. placing the VM group to PM. (a) VMs.
(b) VM1 + VM2. (c) VM1 + VM3.

correlation coefficient (Lines 11-15). It means that this PM is
the most complimentary to the VM across different resource,
and allocating the VM to this PM can make this PM have
similar resource utilization between time epochs during time
period T . In this way, the algorithm is actually allocating
complementary VMs (e.g., the VM is complementary with the
existing VMs in the PM) to the same PM. As a result, the PM
will have similar resource utilization between time epochs, and
hence has potential to host more VMs in the future and fully
utilizes its resources (i.e., more accommodating).

4) VM Group Based Mechanism: Rather than considering
one VM, in this section, we try to place complementary VMs
together by combining complementary VMs into a group first
and then assigning the whole group to a PM. Compared
to allocating VMs individually, combining complementary
VMs into a group first for allocation has the advantage of
extensively exploring the complementariness of the VMs and
maximally consolidating complementary VMs, and hence can
reduce the number of PMs needed. For example, suppose we
allocate three VMs in the sequence of VM1, VM2 and VM3,
as shown in Figure 13(a). Since the allocation result depends

cr =

∑d
k=1

∑T
i=1(P

k(ti)− P k(ti))(Rk
j (ti)−Rk

j (ti))
√∑d

k=1

∑T
i=1(P k(ti)− P k(ti))2 ·

∑d
k=1

∑T
i=1(R

k
j (ti)−Rk

j (ti))2
(7)
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on the allocating order of the VMs, Algorithm 4 will end up
with placing VM1 and VM2 together as shown in Figure 13(b).
However, VM3 is more complementary than VM2 to VM1.
Placing VM3 and VM1 together is more preferred because it
will result in similar resource utilization between time epochs
in the PM, and hence make the PM more accommodating to
other VMs. If we group complementary VMs together and
then do the allocation, we can place VM1 and VM3 in one
PM as shown in Figure 13(c) and hence make the PM more
accommodating.

A question in grouping complementary VMs is which
VM we should start with. In online VM allocation algorithms,
it is difficult to find a PM to place a VM with high resource
utilization variations, especially when such VMs are allocated
later with less residual resources in PMs. Therefore, we give
higher priorities to the VMs with higher utilization variation
to start with in VM grouping, so that they will have more
chances in finding complementary VMs. Specifically, in order
to group complementary VMs together, we first sort the VMs
based on the utilization variation in descending order. Then,
we start from the first VM for VM grouping.

We can combine arbitrary number of VMs into one group,
as long as the group resource demand does not exceed the PM
resource capacity. We define the group resource demand as the
combined resource demands of each type of resource of the
VMs in the group. There is a tradeoff between the number of
VMs that are selected to form a group and the complexity of
the algorithm. In order to demonstrate the effectiveness of the
VM group based mechanism and also achieve time efficiency
of the mechanism, we combine two VMs in a group without
the loss of generality. The procedure of combining VMs to
groups is as follows. For each VM, we select the VM that
is most complementary to it, and then combine these two
VMs. For example, we calculate the correlation coefficients of
this VM with all remaining VMs and select the one with the
smallest correlation coefficient value. After that, we denote the
VM groups as Gn(n = 1, 2, . . .), and sort the groups based on
the group resource demand. Similar to the predicted resource
demand pattern Pi(t) of a VM, the group resource demand
is a d-dimension vector with each dimension representing its
demands in one resource type. Suppose a group Gn comprises
of m VMs, the combined resource demand of this group is:

PGn(t) = (
m′
∑

i=1

P 1
i (t),

m′
∑

i=1

P 2
i (t), . . . ,

m′
∑

i=1

P d
i (t)) (8)

where P k
i (t) is the type-k resource utilization of VM i, and

∑m′

i=1 P k
i (t) is the combined type-k resource demands of the

m′ VMs in the group. The group resource demand can be
calculated by

SGn =
d∑

k=1

{

wk
1
T

T ′
0+T∑

t=T ′
0

[
m′
∑

i=1

P k
i (t)]dt

}2

, (9)

where 1
T

∑T ′
0+T

t=T ′
0

[
∑m′

i=1 P k
i (t)]dt is the demand of type-k

resource of group Gn, and wk is the weight associated to
type-k resource as in Equ. (5).

The reason for sorting the groups is that it is more difficult
to find destination PMs to allocate the groups with large group
resource demands, especially if such a group is allocated later
after many other VM groups with few PM options left. Similar
as the first-fit decreasing algorithm [31] that allocates large

demand VM first, this algorithm can lead to fewer PMs used
by allocating the groups with larger group resource demands
first.

Similarly, we define the residual resource capacity of a PM
based on the normalized residual resource capacity of the
PM Rj(t) = (R1

j (t), R
2
j (t), . . . , R

d
j (t)). The residual resource

capacity of PM j is a positive scalar value representing the
magnitude of the resource utilization in multiple dimensions,
which can be calculated by

Sj =
d∑

k=1

{wk
1
T

T ′
0+T∑

t=T ′
0

Rk
i (t)dt}2, (10)

where 1
T

∑T ′
0+T

t=T ′
0

Rk
i (t)dt is the residual resource capacity of

type-k resource in the PM j; wk is the assigned weight to
resource k (the same with Equ. (5)).

Algorithm 5 shows the pseudocode for the VM group based
allocation mechanism, that is used to derive the decisions of
assigning VM groups to PMs, based on the residual resource
capacities of PMs and group resource demands of VM groups.
Given a list of VMs LV M with their predicted resource
demands Pi(t), and a list of PMs LPM with their residual
resource capacities Rj(t) (Line 1), the algorithm sorts the
VMs in the descending order of their utilization variations
calculated by Equ. (6) (Line 3). For each VM in the list LV M ,
the algorithm finds a VM that is the most complementary
to the first VM (Lines 6-10), combines them into a group
(Line 11), and then adds to the group list LG (Line 12).
The algorithm computes and sorts the groups based on their

Algorithm 5 Pseudocode for the VM Group Based Allocation
Mechanism
1: Input: LV M : list of VMs with predicted resource demands

Pi(t)
LPM : list of PMs with residual resource capacities
Rj(t)

2: Output: VM to PM mapping
3: Arrays.sort(LV M ) //sorts the VMs in the descending

order of utilization variations
4: LG = new Array()
5: while LV M not empty do
6: VM1=LV M .remove() // Removed VM from list
7: for VM2 in LV M

8: Compute correlation coefficient of VM1
and VM2

9: VM2=VM that has lowest correlation coefficient
with VM1

10: Remove VM2 from LV M

11: Create group G that comprises VM1 and VM2
12: LG.add(G)
13: Compute group resource demands and residual resource

capacities based on Equ. (9) and (10)
14: while LG is not empty do
15: The biggest group G → the smallest feasible PM
16: Remove the biggest group G from LG

17: if cannot find feasible PM then
18: return False
19: return VM to PM mapping
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Fig. 14. Performance under different workloads using the PlanetLab Trace. (a) The number of PMs used. (b) Total/average # of SLA violations. (c) The
number of VM migrations. (d) # of SLA violations and migrations.

group resource demands and sort the PMs based on their
residual resource capacities (Line 13), and then allocates the
group with the biggest group resource demand to a feasible
PM with the smallest residual resource capacity (Line 15).
If a feasible PM cannot be found, the algorithm returns false
(Lines 16-17), otherwise, it returns the VM-to-PM mapping
after all the groups are allocated to the PMs (Line 18).

Note that it is possible that two VMs can be individually
placed on PMs but when combined to a group, they do not fit
into any PM. When a combined group cannot find a PM to
host it, we will decompose the group to individual VMs and
allocate each VM to a PM. Finally, we can combine all of
these advanced algorithms in the VM allocation mechanism.
First, the VMs are combined into groups. Then, correlation
coefficient and utilization variation can be concurrently con-
sidered when selecting a PM to host a VM group. Different
weights can be used for the metrics to give different priorities
to them.

IV. TRACE-DRIVEN SIMULATION

PERFORMANCE EVALUATION

In this section, we conducted the simulation experiments to
evaluate the performance of CompVM using VM utilization
trace from PlanetLab [21] and Google Cluster [22]. We used
workload records of three days from the trace to generate
VM resource request patterns and then executed CompVM
for the fourth day’s resource requests. We randomly selected
the jobs and tasks from the traces. The window size was set to
15 in the pattern detection in CompVM. Note that our resource
utilization prediction does not have 100% accuracy, and the
actual resource demands may be higher than the predicted
values, which leads to SLA violations and VM migrations.
A higher prediction error leads to more SLA violations and
VM migrations and vice versa. For more details of the predic-
tion error, please refer to our publication in [32]. We compared
CompVM with Wrasse [33] and CloudScale [34], which are
dynamic VM allocation methods. All three methods first
conduct initial VM allocation and then periodically execute
VM migration by migrating VMs from overloaded PMs to
first-fit PMs every 5 minutes. In the initial VM allocation,
Wrasse and CloudScale place each VM to the first-fit PM
based on the expected VM resource demands. Note that the
expected demands are usually set to certain percentages of
the peak demands (e.g., 80%). As a result, SLA violations
can occur in the future due to VM workload fluctuation. In
the VM migration step, when a PM becomes overloaded,
it migrates out its VMs until it is no longer overloaded.
The destination PM for each migration VM is the first-fit
PM (i.e., the PM that has enough capacity to host the VM)
in the PM list in the system. In VM migration, CloudScale

first predicts future demands at a future time point and then
migrates VMs to achieve load balance in the future time point.
Next, we compared CompVM with enhancement mechanisms
(proposed in Section III-B) with CompVM in order to show
the effectiveness of the enhancement mechanisms.

In the default setup, we configured the PMs in the system
with capacities of 1.5GHz CPU and 1536 MB memory and
configured VMs with capacities of 0.5GHz CPU and 512 MB
memory. With our experiment settings, the bandwidth con-
sumption did not overload PMs due to their high network
bandwidth capacities, so we focus on CPU and memory
utilization. Unless otherwise specified, the number of VMs
was set to 2000 and each VM’s workload is twice of its
original workload in the trace. We measured the following
metrics after the simulation was run for 24 hours to report.

• The number of PMs used. This metric measures the
energy efficiency of VM allocation mechanisms.

• The number of SLA violations. This is the number
of occurrences that a VM cannot receive the required
amount of resource from its host PM.

• Average number of SLA violations. This is the average
number of SLA violations per PM. It reflects the effect
of consolidating VMs into relatively fewer PMs.

• The number of VM migrations. This metric presents the
cost of the allocation mechanisms that required satisfying
VM demands and avoiding SLA violations. Note this
paper only handles the VM initial allocation problem
and does not handle the problem of VM migration.
A better VM initial allocation algorithm will lead to fewer
VM migrations. Therefore, we measured this metric just
in order to show the performance of VM initial allocation.

A. Performance With Varying Workload

Figure 14 and Figure 15 show the performance of the three
methods under different VM workloads using the PlanetLab
trace and Google Cluster trace, respectively. We varied the
workload of the VMs through increasing the original workload
in the trace by 1.5, 2 and 2.5 times.

Figure 14(a) and Figure 15(a) show the total number of
PMs used, which follows CompVM<CloudScale=Wrasse.
CloudScale and Wrasse aim to avoid overloading each PM in
initial VM placement and subsequent VM migration at each
time point. This may result in some PMs that fully utilize one
resource but under-utilize other resources, failing to fully uti-
lize all resources. In contrast, in initial VM placement, Com-
pVM consolidates complementary VMs in different resource
dimensions, thus fully utilizing each resource in each PM.
Since it considers the resource periodical utilization patterns
during a certain time period, it reduces the VM migrations
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Fig. 15. Performance under different workloads using the Google Cluster Trace. (a) The number of PMs used. (b) Total/average # of SLA violations.
(c) The number of VM migrations. (d) # of SLA violations and migrations.

Fig. 16. Performance with different number of VMs using the PlanetLab Trace. (a) The number of PMs used. (b) Total/average # of SLA violations.
(c) The number of VM migrations. (d) # of SLA violations and migrations.

and constrains the number of PMs used. Both figures also
show that as the workload increases, the number of PMs of
CompVM increases, while those of Wrasse and CloudScale
remain the same. This is because as the actual workload
increases, CompVM’s predicted resource demands increase
in initial VM placement, while CloudScale and Wrasse still
allocate VM according to the labeled VM capacities.

Figure 14(b) and Figure 15(b) show the total number of
SLA violations and the average number of SLA violations.
We see that with the PlanetLab trace, when the workload
is low, all three methods can provide service without
violating SLAs. Both figures show that as the workload
increases, both metric results increase and they exhibit
CompVM<CloudScale<Wrasse. CompVM has fewer SLA
violations because its predicted patterns can capture the
time-varying VM resource demands and hence guarantee
the resource provisioning. CloudScale has fewer SLA
violations than Wrasse since CloudScale iteratively predicts
VM resource demands and proactively migrates VMs before
SLA violations occur. These results illustrate that CompVM
maintains a smaller average number of SLA violations per
PM even though it uses fewer PMs than CloudScale and
Wrasse, which confirms CompVM’s higher performance in
energy efficiency and SLA guarantees.

Figure 14(c) and Figure 15(c) show the total number of
VM migrations in the three methods. Since the workload in the
PlanetLab trace is relatively low compared to the Google Trace
trace, when the workload is low, there are no SLA violations
hence no VM migrations. Both figures show that as the
workload increases, the number of VM migrations increases
due to the increase of SLA violations as shown in Figure 14(b)
and Figure 15(b). CompVM always triggers significantly fewer
VM migrations than CloudScale and Wrasse due to its much
fewer SLA violations. This experimental result confirms the
effectiveness of CompVM in reducing VM migrations.

Figure 14(d) and Figure 15(d) show the accumulated num-
ber of SLA violations and VM migrations over time, respec-
tively. In Figure 14(d), as the workload is low relative to PM

capacity initially in the PlanetLab trace, all three methods have
similar number VM violations and migrations at the early
stage of simulation. As time goes on, due to the awareness
of future resource demand pattern of the VMs during initial
VM allocation, CompVM produces fewer VM violations and
migrations than Wrasse and CloudScale during the experiment.

In the Google Cluster trace, the workload is high relative
to PM capacity initially. Therefore, in Figure 15(d), due to
the unawareness of future VM resource demands, the initial
VM placement of Wrasse and CloudScale leads to around
60 VM migrations to guarantee enough resource provisioning.
In contrast, CompVM generates 0 SLA violations and
0 migrations until at 6000s when the workload becomes
higher. Recall that this experiment is for allocating one day’s
resource requests. Initially, all PMs do not have any VMs, and
as time goes on, there are more VMs being hosted in a PM.
At the beginning, due to CompVM’s VM allocation strategy
and low resource demands in the system, PMs are not likely
to be overloaded. When the number of VMs in a PM is high
to a certain extent, VMs’ resource demand variance leads
to PM overload, which triggers VM migrations. Therefore,
after around 60000 seconds, the number of VM migrations in
CompVM increases dramatically. The results in this figure are
quite different with those in Figure 14(d), which has a higher
number. As Section II-B indicates that the pattern of Google
Cluster trace is more obvious than PlanetLab trace and hence
is more suitable for pattern prediction by CompVM. We
also observe that when the workload is high relative to PM
capacity, most of the migrations are caused by inappropriate
initial VM placement. Therefore, CompVM is significant in
helping greatly reduce the SLA violations and VM migrations.

B. Performance With Varying Number of VMs

Figure 16 and Figure 17 present the performance of the three
methods when the number of VMs was varied from 1000 to
3000 using the PlanetLab trace and the Google Cluster trace,
respectively.
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Fig. 17. Performance with different number of VMs using the Google Cluster Trace. (a) The number of PMs used. (b) Total/average # of SLA violations.
(c) The number of VM migrations. (d) # of SLA violations and migrations.

Figure 16(a) and Figure 17(a) show the total number of PMs
used to provide service for the corresponding number of VMs.
We see the result follows CompVM<CloudScale=Wrasse due
to the same reasons as in Figure 14(a) and Figure 15(a).
Also, as the number of VMs increases, the number of PMs
used increases in each method since more PMs are needed
to host more VMs. These experimental results confirm the
advantage of CompVM in reducing the number of PMs used
hence achieving higher energy efficiency.

Figure 16(b) and Figure 17(b) show the number of
SLA violations and the average number of SLA violations
per PM. We see both metric results follow CompVM <
CloudScale<Wrasse due to the same reasons in Figure 14(b)
and Figure 15(b). Also, as the number of VMs increases, both
metric values in each method increase since more resource
demands from more VMs lead to more SLA violations.

Figure 16(c) and Figure 17(c) show the total number of
VM migrations in the three methods. As the number of VMs
increases, the number of VM migrations increases due to the
increase of SLA violations. CompVM always triggers signifi-
cantly fewer VM migrations than CloudScale and Wrasse due
to its much fewer SLA violations as shown in Figure 16(b)
and Figure 17(b). CloudScale has slightly more migrations
than Wrasse because it triggers VM migrations upon a pre-
dicted SLA violation, which may not actually occur. These
experimental results confirm the effectiveness of CompVM in
reducing VM migrations.

Figure 16(d) and Figure 17(d) show the number of migra-
tions and SLA violations over time. The figures show similar
trends of the three method as those shown in Figure 14(d) and
Figure 15(d) due to the same reasons.

C. Performance of Enhancement Mechanisms

We implemented the improved initial VM allocation mech-
anisms described in Section III-B, and then compared them
with CompVM, the original heuristic algorithm based on the
average resource efficiency. We denote the utilization variation
based mechanism as CompVM-Var (Algorithm 3), denote
the correlation coefficient based mechanism as CompVM-Cor
(Algorithm 4), and denote the VM group based mechanism
as CompVM-Grp (Algorithm 5). Because the enhancement is
only to more fully utilize PM resources while still ensuring
that the VM demands will be satisfied during a period of time
based on the demand prediction, we only measure the number
of PMs to reflect the effectiveness of the enhancement.

Figure 18 compares the performance of the improved initial
VM allocation mechanisms with CompVM using the Plan-
etLab trace. Figure 18(a) and Figure 18(b) show the total
number of PMs used, with varying workloads and varying
number of VMs, respectively. In both figures, the number

Fig. 18. The number of PMs used with PlanetLab trace. (a) Varying workload.
(b) Varying number of VMs.

of PMs follows CompVM-Grp≈CompVM-Cor<CompVM-
Var<CompVM. CompVM-Var consolidates VMs to PMs
based on the variation of resource utilization of PM after
accommodating the VM. Compared to CompVM that is based
on the average resource efficiency, CompVM-Var reduces the
number of used PMs due to the reason that CompVM-Var
tries to improve resource utilization by ensuring that the PM
resource utilization does not spread out around the mean,
and hence is able to consolidate more VMs, which leads to
fewer PMs needed to host the VMs. CompVM-Cor further
reduces the number of used PMs because the correlation
coefficient based method ensures that the selected PM has the
most complementary resource utilization to the VM and hence
results in a high resource utilization during every time epoch,
thus enabling a PM to host more VMs. CompVM-Grp has
similar number of PMs to CompVM-Cor since both of them
use correlation coefficient for mapping VMs to PMs.

Compared to CompVM-Cor, CompVM-Grp has a slightly
fewer PMs because it considers a group of VMs rather
than a single VM when assigning the VMs to the PMs.
Combining complementary VMs into groups before allocating
them to PMs has the advantage of extensively exploring the
complementariness of the VMs and maximally consolidating
complementary VMs, and hence enables a PM to host more
VMs, which further reduces the total number of PMs needed
to host all VMs. We also see that Figure 18(a) shows that as
the workload increases, the number of PMs of all methods
increases. This is because as the actual workload increases,
the predicted resource demands increase in initial VM place-
ment. Figure 18(b) shows that as the number of VMs increases,
the number of PMs used increases in each method since more
PMs are needed to host more VMs. These experimental results
confirm the effectiveness of the improved initial VM allocation
mechanisms in reducing the number of used PMs.

Similarly, Figure 19 compares the performance of the
improved initial VM allocation mechanisms with CompVM
using the Google Cluster trace. Figure 19(a) and Figure 19(b)
show the total number of PMs used, with varying workloads



SHEN AND CHEN: CompVM: COMPLEMENTARY VM ALLOCATION MECHANISM FOR CLOUD SYSTEMS 1359

Fig. 19. The number of PMs used with Google Cluster trace. (a) Varying
workload. (b) Varying number of VMs.

Fig. 20. # of PMs in testbed.

and varying number of VMs, respectively. We see that
the number of PMs follows CompVM-Grp≈CompVM-
Cor<CompVM-Var<CompVM, which is consistent with pre-
vious result using the PlanetLab trace due to the same
reasons mentioned before. Using the Google Cluster trace,
the improved initial VM allocation mechanisms do not reduce
as many PMs as using the PlanetLab trace in the previous
experiment. This is because the resource utilization from the
Google Cluster trace does not fluctuate as severely as the
resource utilization in the PlanetLab trace, hence the average
resource efficiency mechanism performs well in guiding initial
VM allocation. These experimental results again confirm effec-
tiveness of the improved initial VM allocation mechanisms.
The results also indicate that these mechanisms are more effec-
tive when the resource utilizations exhibit greater fluctuation.

V. REAL-WORLD TESTBED EXPERIMENTS

We deployed a real-world testbed to conduct experiments
to validate the performance of CompVM in comparison with
Wrasse and CloudScale. The testbed consists of 7 PMs
(2.00GHz Intel(R) Core(TM)2 CPU, 2GB memory, 60GB
HDD) and an NFS (Network File System) server with storage
capacity of 80GB. We implemented CompVM, Wrasse and
CloudScale in Java using the XenAPI library [35] running in
a management PM (3.00GHz Intel(R) Core(TM)2 CPU, 4GB
memory). We used the VM template of XenServer to create
VMs (1VCPU, 256MB memory, 8.0GB virtual disk, running
Debian Squeeze 6.0) in the cluster. We used publicly available
workload generator lookbusy [36] to generate VM workloads.

Figure 20 shows the number of PMs used to provide
the service of different number of VMs. Since Wrasse and
CloudScale are unable to predict workload at beginning, they
both use the maximum request resource of the VMs for
allocation and hence have similar results. We also monitored
the number of SLA violations during the experiment period,
and found that were no SLA violations in all three methods
during the experiment. These experimental results confirm that
CompVM is able to provide service with fewer number of PMs
than Wrasse and CloudScale.

TABLE I

VM ALLOCATION MAPPING

Fig. 21. Performance of running WordCount job on the real-world testbed.
(a) Job completion time. (b) % of missed captures in CompVM. (c) # of
missed captures in CompVM.

We then deployed a virtual cluster with 5 VMs collab-
oratively running the WordCount Hadoop benchmark job.
We first conducted a profiling run of such MapReduce job and
used the collected resource utilization to generate patterns for
initial VM allocation in CompVM. The 5 VMs were initially
allocated to different PMs by different methods. The initial
VM to PM mapping is shown in Table I. We see that CompVM
uses fewer PMs than Wrasse and CloudScale. During the
experiment, no SLA violations were detected in all three
methods. Figure 21(a) shows the median, 10th percentile and
90th percentile of the job completion time in ten experiments.
We see that though CompVM uses few PMs, it has a similar
completion time as Wrasse and CloudScale. This result verifies
the advantage of CompVM in requiring fewer PMs without
sacrificing the performance quality of the VMs.

Figure 21(b) shows the median, 10th and 90th percentiles
of the percent of missed captures of CompVM during the
experiment. Figure 21(c) shows the median, 10th and 90th
percentiles of the number of missed captures of CompVM
during the experiment. We see that CompVM produces very
few missed captures relative to the total number of predic-
tions at each time point, which verifies the effectiveness of
CompVM in resource demand pattern detection. We also see
that the percent of missed captures of CPU and its variance
are relatively larger than those of memory. This is due to the
reason that the memory utilizations of the VMs exhibit more
obvious patterns and hence are easier to be captured in pattern
detection.

VI. RELATED WORK

A significantly amount of attention has been paid to
VM allocation strategies recently [37]. Accordingly, many
static and dynamic VM allocation strategies have been
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proposed [2]. Static provisioning [3]–[7] allocates physical
resources to VMs only once based on static peak VM resource
demands. However, static provisioning cannot fully utilize
resources because of time-varying resource demands of VMs.
To fully utilize cloud resources, dynamic provisioning [8]–[13]
first consolidates VMs using a simple bin-packing heuristic
and then use live VM migrations, which however results in
high migration overhead.

Many VM placement methods have been proposed for
different purposes. Ahvar et al. [38] proposed a cost and
carbon emission-efficient VM placement method in distributed
clouds. Hao et al. [39] studied where to provision and place
a VM at the “right place” (i.e., data center, rack and host)
so that both the current and future needs for the VM can
be satisfied. Lin et al. [40] presented a VM placement
algorithm based on the peak workload characteristics and
measured the similarity of VMs’ workload with VM peak
similarity. Mann [41] investigated how mapping VMs to PMs
(i.e., VM placement) or mapping computational tasks to VMs
(i.e., VM selection) influence each other. Nejad et al. [42]
formulated the dynamic VM provisioning and allocation
problem for the auction-based model as an integer program
and proposed solutions. Ruan and Chen [43] leveraged the
performance-to-power ratios for various PM types to guarantee
that PMs run at the most power-efficient levels so that the
energy consumption can be tremendously reduced with little
sacrifice of performance. Wang et al. [44] proposed a stable
matching-based VM allocation mechanism to achieve better
resource utilization and thermal distribution while satisfying
SLA requirements. These strategies consider the current state
of resource demand and available capacity at a time point
rather than the trend state during a time period for VM migra-
tion, which is insufficient for maintaining a load balanced state
for a long time. Our idea of consolidating complementary VMs
for a certain time period can help these migration strategies
maintain the load balanced state for a longer time period.

Some works [34], [45]–[49] predict resource demands for
VM migration to avoid SLA violation in the future. All these
VM allocation strategies consider the current or future state of
resource demand and available capacity at a time point rather
than during a time period, which is insufficient for maintaining
a continuous load balanced state. Though our work focuses on
initial VM allocation rather than subsequent VM migration,
our idea of consolidating complementary VMs for a certain
time period can help the migration strategies maintain the load
balanced state for a longer time period.

Some previously proposed resource provisioning methods
consider spatial balance (e.g., [15]–[18]) or temporal cor-
relations (e.g., [19], [20]). Xiao et al. [15] introduced the
concept of “skewness” to measure the unevenness in the
multidimensional resource utilization of a server, and try to
minimize skewness by combining different types of workloads
to improve the utilization of server resources. He et al. [16]
proposed an algorithm that uses a multivariate probabilistic
model to select suitable PMs for VM re-allocation that can
capture the multi-dimensional characteristics of VMs and PMs.
Ni et al. [17] proposed a VM mapping policy based on multi-
resource load balancing. It uses the resource consumption of
the running VM and the self-adaptive weighted approach,
which resolves the load balancing conflicts of each inde-
pendent resource caused by different demand for resources
of cloud applications. Mishra and Sahoo [18] proposed a
VM allocation methodology based on vector arithmetic and

build theory which can be used not only to make the decisions
robust but also to make the process of choosing PMs easier
and more appropriate. Verma et al. [19] presented detailed
analysis of an enterprise server workload from the perspective
of finding characteristics for consolidation. Ganesan et al. [20]
proposed a tool iCirrus-WoP that determines VM capacity and
VM collocation possibilities for a given set of application
workloads.

VII. CONCLUSIONS

In this paper, we propose an initial VM allocation mecha-
nism (called CompVM) for cloud datacenters that consolidates
complementary VMs with spatial/temporal-awareness. This
mechanism consolidates complementary VMs into one PM,
so that in each dimension of the multi-dimensional resource
space, the sum of the resource consumption of the VMs nearly
reaches the capacity of the PM during the VM lifetimes.
Specifically, given a requested VM, CompVM predicts the
resource demand pattern of this VM, and then finds a PM
that has a remaining resource pattern complement to the
VM resource demand pattern, i.e., the PM has the least
residual capacity in each resource dimension big enough to
hold this VM. We propose an average resource efficiency
based VM allocation mechanism to coordinate the require-
ments of different resources and consolidates complementary
VMs in the same PM. We further propose an utilization
variation based and a correlation coefficient based mechanisms
to identify complementary VMs and allocate them to PMs.
We also propose a VM group based mechanism that com-
bines complementary VMs into groups before assigning. As a
result, CompVM helps fully utilize the cloud resources, and
reduce the number of PMs needed to satisfy tenant requests.
It also reduces the numbers of subsequent VM migrations
and SLA violations. These advantages have been verified by
our extensive simulation experiments based on two real traces
and real-world testbed experiments running a MapReduce job.
In our future work, we will explore how to enhance the pattern
detection method to catch peak bursts and how to complement
VMs with peak bursts in resource consumption.
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