
GreedyFlow: Distributed Greedy Packet Routing between Landmarks in DTNs

Kang Chena, Haiying Shenb

aDepartment of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL, 62901 USA e-mail: kchen@siu.edu
bDepartment of Computer Science, University of Virginia, Charlottesville, VA, 22904 USA USA e-mail: hs6ms@virginia.edu

Abstract

Delay Tolerant Networks (DTNs) have attracted much research interest recently due to its adaptability in areas without
infrastructures. In such scenarios, moving data from one place (landmark) to another place (landmark) is essential for
data communication between different areas. However, current DTN routing algorithms either fail to fully utilize node
mobility or have additional requirements that cannot be satisfied easily in DTNs. Therefore, in this paper, we propose
a distributed greedy routing algorithm, namely GreedyFlow, for efficient packet routing between landmarks in DTNs.
GreedyFlow builds a local traffic map and a global landmark map on each node. The local traffic map indicates the
node’s knowledge about the amount of traffic (node transition) between landmarks in the area where it primarily visits.
The global landmark map shows the distribution of landmarks in the system and is built offline. In packet routing,
the global landmark map shows the general packet forwarding direction, while the local traffic map helps determine the
next-hop landmark on the fastest path in the forwarding direction. As a result, packets are greedily forwarded toward
their destination landmarks. We also propose advanced components to enhance the consistency of local traffic maps and
exploit node-based forwarding, both of which help improve the packet routing efficiency. Extensive real trace driven
experiments demonstrate the high efficiency of GreedyFlow.

Keywords: Delay tolerant networks, Landmark, Routing

1. Introduction

In delay tolerant networks (DTNs) [1], mobile nodes
communicate with each other directly without the need of
infrastructures during the encountering. Therefore, DTNs
are suitable for areas where infrastructures are either un-5

available or too costly. In these scenarios, it is desirable
to be able to forward packets from one place (landmark)
to another place (landmark), i.e., packet routing between
landmarks, to support many practical applications.

For example, people living in mountainous villages may10

wish to communicate with each other through their com-
puters. However, it is costly to build needed infrastruc-
tures or enable satellite connection in each village. In this
case, DTN can be exploited to transfer data between these
villages using mobile devices carried by people or vehi-15

cles moving in the area [2]. We can also enable the satel-
lite connection in one village and rely on the DTN based
packet routing to support delay tolerant applications such
as email. Similarly, such a communication structure can
be used to collect data from sensors attached to animals in20

mountain areas without infrastructures [3]. Even in areas
with infrastructures, it can be an effective backup scheme
to support the dissemination of important messages in ex-
treme scenarios such as disaster and outage [4].

Packet routing between landmarks in DTNs can be im-25

plemented by always forwarding a packet to the node that

∗Corresponding author

is more likely to move to its destination landmark [5, 6, 7,
8, 9]. This indicates that nodes that can frequently visit a
packet’s destination landmark to deliver the packet. As a
result, the mobility of nodes that rarely visit a packet’s des-30

tination landmark often is not used to forward the packet.
Thus, when the number of nodes that frequently visit the
destination landmarks is limited, the packet routing effi-
ciency is also limited.

To solve this problem, some researchers have proposed35

to forward a packet along a sequence of landmarks (called
landmark path) to better utilize node mobility for packet
routing between landmarks [10, 11, 12, 13]. In each hop,
the packet is carried by a node to move from current land-
mark to the next landmark in the path. With such a de-40

sign, all nodes moving between two consecutive landmarks
on the landmark path can help forward the packet, even
for nodes that rarely or never visit the packet’s destina-
tion landmark. This means that node mobility is better
utilized to forward packets.45

However, the major drawback of these methods is that
they require either base stations [10, 11] or the global traf-
fic distribution [12] to calculate the optimal landmark path
for each packet. Such requirements cannot be satisfied
easily in real DTNs. First, due to the long delay in DTN50

routing, the global traffic information cannot be updated
timely on each node. Second, in some DTN scenarios, such
as battlefields and mountain areas, it is hard to build base
stations. Such a limitation poses a significant challenge

Preprint submitted to Ad Hoc Networks September 16, 2018

L1

L2

L3

L4

Des: L8

…...

Local traffic map

Global landmark map

Pkt for L8

Figure 1: Illustration of the design rationale.

on realizing efficient packet routing between landmarks in55

DTNs.
To solve the above challenge, we propose a distributed

packet routing algorithm in DTNs, denoted GreedyFlow.
We assume that the network is split into sub-areas rep-
resented by landmarks. GreedyFlow follows the idea of60

landmark-by-landmark forwarding to better utilize node
mobility. It builds a global landmark map and a local
traffic map on each node (Figure 1). The global landmark
map indicates the distribution of landmarks in the net-
work and is built offline. The local traffic map reflects a65

node’s knowledge about how frequently nodes transit be-
tween landmarks where it primarily visits. When a node
meets another node, it collects the other node’s transit
frequencies between landmarks covered by its local traffic
map to update the traffic map.70

The global landmark map and local traffic map are
used to guide packet routing. The basic idea is to greedily
forward a packet to a landmark closest to the destination
landmark within current packet holder’s local traffic map
(called temporary destination landmark). When a node75

(say Ni) receives a packet, it first determines the tempo-
rary destination landmark for the packet. Then, the node
determines the fastest landmark path to the temporary
destination landmark on its local traffic map and selects
the next landmark on the path as the next-hop landmark.80

Next, Ni forwards the packet to the node that is predicted
to move to the next-hop landmark.

For example, as shown in Figure 1, suppose a node in
L1 receives a packet that is destined to far-away landmark
L8. The node uses its global landmark map to identify the85

landmark that is closest to L8, which is L4. It further uses
the local traffic map to find the fastest path to L4, which
is L1 → L3 → L4. Then, the packet is expected to be for-
warded along this path to L4. This process repeats when
the packet arrives at a new node. With such a design,90

the packet is always forwarded towards the landmark clos-
est to the destination landmark through the fastest path
based on local information.

The above routing paradigm is further improved from

two aspects. First, we allow nodes to exchange not only95

their own transit frequencies but also those they have learned
from others, thus improving the consistency of the dis-
tributively collected local traffic maps. Second, instead
of purely relying on the landmark-by-landmark forward-
ing, we allow packets to be carried by nodes to reach their100

destination landmarks directly when the expected delay is
reduced. Both the two features are designed as optional
components for GreedyFlow.

GreedyFlow makes packet forwarding decisions locally
without the requirement of base stations or global traffic105

distribution. This is the major contribution of this work
over current works [10, 11, 12] that also adopt landmark-
based forwarding. In summary, the contributions of this
paper include

• We propose a distributed traffic map generation method110

that enables each node to learn the node transition
frequencies between landmarks in the area where it
primarily visits. We also design a feature to enhance
the consistency of those traffic maps.

• We propose a fully distributed greedy algorithm that115

routes packets in a landmark-by-landmark manner
with the local traffic map and the global landmark
map, thus better taking advantage of node mobility
to realize efficient packet routing between landmarks
in DTNs. In addition, an advanced component is120

proposed to exploit node-based forwarding appropri-
ately to further improve the routing efficiency.

• Extensive real trace based experiments demonstrate
the efficiency of the proposed algorithm.

The remaining of this paper is arranged as follows. Sec-125

tion 2 introduces related work. Section 3 presents the de-
tailed system design. Section 4 conducts performance eval-
uation through real trace driven experiments. Finally, Sec-
tion 5 concludes the paper with remarks on future work.

2. Related Work130

2.1. Packet Routing between Landmarks in DTNs

Packet routing between landmarks in DTNs[5, 6, 7,
8, 9, 10, 11, 12, 13, 14] has been extensively studied re-
cently. The authors in [5] observe the long term mobility135

pattern of each node and use such information to forward
packets to nodes that frequently move to their destina-
tions. GeoOpps [6] routes packets to geographical loca-
tions through vehicle networks. It always forwards pack-
ets to vehicles on the route with the smallest minimal es-140

timated time of delivery (METD). In the work of [7], a
packet is always forwarded to the node that has closer dis-
tance to its destination landmark. Both the works of [8]
and [9] exploit multi-copy relay to efficient forward packets
to areas that may cover destination nodes. The next-hop145

2

carrier of a packet is selected according to nodes’ move-
ment range estimated from historical location records [8]
and homogeneous/heterogeneous mobility parameters [9],
respectively. These methods mainly rely on nodes that are
likely to visit the destination landmarks/areas. When the150

number of such nodes is limited, the routing efficiency is
also limited.

In order to improve the efficiency of routing between
landmarks, researchers have proposed to better utilize node
mobility by forwarding packets in a landmark-by-landmark155

manner [10, 11, 12, 13, 14]. In LOUVER [10], base sta-
tions are built on road intersections for packet relay. Vehi-
cle mobility is exploited to forward packets from one base
station to another to reach the destination area. DTN-
FLOW [11] expands to general DTNs. It splits the whole160

network into sub-areas represented by landmarks. Then,
predicted node mobility is used to carry packets from one
landmark to another landmark. Geomob [12] utilizes the
global traffic distribution to forward packets to different
areas through the landmark based relay. AAR [13] de-165

cides the weights of road segments based on the traffic
distribution and uses such information to find the fastest
path to reach sub-areas in vehicular delay tolerant net-
works. MobiT [14] takes advantage of the trajectories of
different types of vehicles to forward packets to landmarks170

that can deliver packets to destination vehicles.
This paper follows the idea of landmark-by-landmark

forwarding to improve the routing efficiency between land-
marks. However, current methods need either base sta-
tions or the global traffic distribution that can not be easily175

satisfied in DTNs. This constraints the feasibility of these
methods. This work then proposes a distributed routing
protocol that makes forwarding decisions locally without
the need of base stations or global traffic map, which is
more suitable for DTNs.180

2.2. Packet Routing between Nodes in DTNs

There are already many algorithms for packet routing
between nodes in DTN [15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26]. PROPHET [15] updates two node’s future meeting
probability upon their encountering and ages it over time.185

It always forwards a packet to the node that has a higher
probability of meeting its destination. RAPID [16] and
MaxContribution [17] specify different packet forwarding
and storage priorities to realize different routing perfor-
mances, e.g., maximal success rate and minimal delay. The190

work in [18] proposes to exploit transient contact patterns
to select packet forwarder. EER [19] splits the replication
quote of a message between encountered nodes according
to their ability to meet nodes.

Considering that mobile device owners often belong195

to certain social networks, social networking properties
have been utilized for packet routing in DTNs [20, 21, 22,
23, 24]. MOPS groups frequently encountered nodes as
communities and assigns different roles to nodes with dif-
ferent community visiting patterns to facilitate the pub-200

lish/subscribe service in DTNs. BUBBLE [21] first for-

wards a packet to the community that contains its des-
tination and then routes the packet within the commu-
nity. SimBet [22] considers both a node’s centrality and
its similarity with the packet destination to evaluate a205

node’s suitability to carry the packet. The works in [23]
and [24] exploit fixed community and transient community
structure in DTNs for efficient packet routing, respectively.
CAF [25] enables individual nodes to discover community
structures through a Hidden Semi-Markov Model (HSMM)210

over historical node contact records, which is used to im-
prove the routing efficiency. The work in [26] evaluates
nodes’ closeness and centrality for packet routing in mo-
bile opportunistic networks through predicting temporal
social contact patterns.215

There are also some works that utilize location/movement
information for packet routing between nodes in DTNs [27,
28]. GeoDTN [27] predicts two nodes’ possibility of be-
coming neighbors based on the similarity between their
geographical movement information, which is organized as220

a vector. Such information is then used to guide packet
routing. DTFR [28] first forwards a packet to the area
that its destination node is likely to appear, which is de-
termined by the historical movement information of the
node. The packet is then spread in the area to reach the225

destination node.
Those algorithms target on routing packets between

mobile nodes and can be indirectly applied to the rout-
ing between landmarks by regarding landmarks as static
nodes in the network. However, with those algorithms,230

nodes that rarely visit a landmark usually are not used
to carry packets for the landmark. This limits the rout-
ing efficiency. Our method thus follows the landmark-by-
landmark idea to better utilize node mobility for a better
routing efficiency.235

3. System Design

In this section, we first introduce the network modeling
and design rationale. We then present how to construct
the global landmark map and the local traffic map. Fi-
nally, we introduce the detailed packet routing algorithm.240

3.1. Network Modeling and Design Goal

We assume a DTN consisting of n nodes, denoted by Ni

(i ∈ [1, n]). We also assume that the network is split into
sub-areas, each of which is represented by a landmark. A
landmark is often selected as the area where nodes gather245

together, such as a village in the rural area and a building
on the campus. This means that the landmark is just the
notation of an area and does not require any base stations
to be built. We assume there are m landmarks, denoted
by Lj (j ∈ [1,m]). Then, node mobility can be regarded250

as continuous transit between landmarks. We also assume
that nodes present certain landmark visit patterns, which
exists in many DTNs. For example, in DTNs consisting of
mobile devices carried by people in rural areas or students

3

on a campus, a person or a student may mainly transit255

between a few landmarks (i.e., villages or buildings).
The goal of this paper is to realize efficient and dis-

tributed packet routing between identified landmarks in
DTNs. Such a function can support many interesting ser-
vices or applications, such as data communication between260

rural villages, where infrastructures are too costly to build.

3.2. Rationale of System Design

In this work, we relay packets in a landmark-by-landmark
manner to reach their destination landmarks. Such a strat-
egy can better utilize node mobility for routing packet265

to landmarks. For example, suppose we need to forward
packets from L1 to L16. With the landmark based routing
strategy, these packets are forwarded through a landmark
path, say L1 → L6 → L12 → L16. As a result, nodes mov-
ing between any two neighboring landmarks on the path,270

e.g., L1 and L6, can forward these packets one step closer
to destination L16 even though these nodes rarely or never
visit L16. This means that more node mobility is utilized
for packet routing between landmarks, leading to better
routing efficiency.275

3.2.1. Challenges

The key problem is how to select a suitable landmark
path for each packet. It is not hard to see that the more
frequently nodes move from one landmark to a neighbor
landmark, say L1 to L6, the more quickly a packet can be280

forwarded from L1 to L6, and the smaller the expected
delay of this forwarding step. Then, the expected de-
lay of a landmark path can be calculated as the sum of
the expected delays on each hop. However, how to find
the landmark path with the smallest expected delay effi-285

ciently and accurately is non-trivial. This is because nodes
often are sparsely distributed in DTNs. Previous meth-
ods [10, 11, 12] realize this step by either building extra
base stations on each landmark [10, 11] or requiring that
each node knows the global traffic distribution [12]. Un-290

fortunately, both requirements cannot be satisfied easily
in real DTNs.

3.2.2. Our Solution

GreedyFlow routes packets through landmark path in a
distributed manner. Without global information, GreedyFlow295

does not try to determine the whole relay path for each
packet. Rather, it only selects the next-hop landmark for
each packet based on the local information on current car-
rier to greedily route it to its destination landmark. To
realize this goal, GreedyFlow builds a global landmark300

map and a local traffic map on each node, which represent
the node’s understanding of the landmark distribution in
the network and node transition frequencies between land-
marks in the area where the node primarily visits, respec-
tively. The two maps help decide the next-hop landmark305

for each packet.
Such a design rationale matches with our daily expe-

riences. People usually know the traffic delays on roads

connecting places they visit frequently and the general di-
rection to reach a far-away unfamiliar place (e.g., in south310

or north). Then, people can use such knowledge to greed-
ily relay a message to a far-away place efficiently.

3.2.3. Why not Build a Global Traffic Map

Intuitively, it would be beneficial to have a global traf-
fic map to guide the landmark-by-landmark forwarding.315

However, this is not adopted since a global traffic map can
hardly be maintained accurately in the context of DTN
in which nodes usually are sparsely distributed. As a re-
sult, the global traffic map cannot guarantee the routing
efficiency but incurs much extra overhead. Therefore, we320

choose to build the local traffic map only. We see later in
the experiment that the local traffic map can also support
efficient packet routing.

3.3. Global Landmark Map

The global landmark map shows the distribution of325

landmarks in the network. It includes the GPS position of
each landmark and the neighboring relationships between
landmarks, i.e., the neighbor landmarks of each landmark.
It is designed to ensure that packets are forwarded on the
right direction towards their destination landmarks.330

The global landmark map is generated and maintained
by the network administrator. When a DTN is deployed,
the administrator selects landmarks in the network. It
can collect the mobility information of nodes in the sys-
tem to determine landmarks. When a node joins in the335

system, it first obtains the global landmark map from the
network administrator. The global landmark map usually
remains unchanged for a relative long period of time, which
means that the global landmark map on each node does
not need frequent updates. When the global landmark340

map changes, each node can obtain the updated version
when it has access to the network administrator, e.g., when
moving to a place with network connection.

We split the network into sub-areas based on land-
marks and let each landmark be responsible for the sub-345

area it resides in. The area between two landmarks is
evenly split to the two neighboring sub-areas (i.e., the bor-
derline passes through the midpoint of the line connecting
the two landmarks and is perpendicular to it), as shown in
Figure 2(a). Each sub-area is stored as the list of vertices350

in clockwise direction. When a node enters the sub-area of
a landmark, we regard it as transiting to the landmark. As
a result, node mobility can be summarized as consecutive
transitions between landmarks.

3.4. Local Traffic Map355

Each node maintains a local traffic map to record
its knowledge about how frequently nodes transit between
landmarks in the area where it primarily visits. It is de-
signed to select the locally optimal landmark path on the
direction to the destination landmark for packets carried360

by the node.

4

L1 L2

L5

L3 L4

L6

(a) Global landmark map.

L1 L2

L6 L7

L3

L5

(b) Coverage of local traffic map.

Figure 2: Example of global landmark map and local traffic map
coverage.

3.4.1. Local Traffic Map Coverage

As previously introduced, the local traffic map helps
determine the next-hop landmark on the path that can
lead to the destination landmark quickly. Therefore, the365

more landmarks the local traffic map includes, the more
likely that the next-hop landmark that can lead to smaller
expected delay can be found. However, nodes often have
limited storage resources, and the information dissemina-
tion often has a long delay in DTNs. This means that370

a node can neither store the node transit frequencies be-
tween all landmarks nor collects such information timely in
DTNs. Therefore, we need to determine which landmarks
to be included in the local traffic map.

To solve this problem, we first examine how nodes375

visit landmarks in DTNs. We analyzed three real DTN
traces: Dartmouth Campus Trace (DART) [29], Diesel-
Net AP Trace (DNET) [30], and Roma taxi mobility trace
(ROMA) [31]. The DART trace shows the association
record of the WiFi access points (APs) and students’ de-380

vices on Dartmouth campus. The DNET trace includes
the AP association record of 34 buses in a college town
(UMass). The ROMA trace records the GPS position of
320 taxis in the Roma city for one month on 2014. We
used the first 10 days of the ROMA trace in this paper for385

two reasons. First, we want to keep the trace length/size
in the same level as the other two traces. Second, the
patterns (i.e., measured statistics) identified in the first 10
days of the trace are consistent with the whole trace.

The three traces show DTN scenarios in small (i.e.,390

DNET), medium (i.e., DART), and large (i.e., ROMA)
scales with both human mobility (i.e., DART) and vehicle
mobility (i.e., DNET and ROMA). Therefore, we believe
the results obtained from these traces are representative
to a vast amount of DTNs. We preprocessed the three395

traces to abstract landmarks, i.e., a building or an area
with a certain size, and merged neighboring records with
the same device and landmark. Finally, the DART trace
contains 320 nodes and 159 landmarks, the DNET trace
has 34 nodes and 18 landmarks, and the ROMA trace has400

320 nodes and 1030 landmarks.
For each trace, we measured the total number of land-

marks a node visits and the number of landmarks that
account for 70% of a node’s landmark visits. The test re-
sults with the three traces are shown in Figures 3(a), 3(b),405

and 3(c), respectively. We ranked nodes in descending or-
der of the two metrics in the two figures. From the three
figures, we find that more than 80% of nodes in the DART,
DNET, and ROMA traces visit fewer than 20, 5, and 220
landmarks. Besides, most nodes spend their 70% of vis-410

its on fewer than 5, 5, and 50 landmarks, respectively, in
DART, DNET, and ROMA traces. Such results demon-
strate that nodes often only frequently transit between a
limited number of landmarks.

Besides, since DTNs are featured by slow information415

dissemination, a node cannot timely learn the node transit
frequencies between landmarks it rarely visits. Therefore,
we can only rely on nodes to forward packets and learn the
overall node transit frequencies between landmarks, which
is costly and inefficient. The above finding is similar to our420

daily experiences: people often commute between a few
places and are familiar with these places, i.e., knowing the
traffic volumes between these places. However, they may
not know the traffic volumes in unfamiliar places where
they rarely visit.425

Therefore, we let the local traffic map of each node
only include landmarks in the area where the node pri-
marily visits. Specifically, each node ranks the landmarks
in decreasing order of its visit frequencies and selects the
first k landmarks that account for Vf% of its total land-430

mark visits. The area covered by these landmarks, i.e., the
area covered by the most left-up landmark and the most
right-bottom landmark, is defined as the coverage of the
local traffic map. Figure 2(b) shows an example of the cov-
erage of a local traffic map. In this example, the primarily435

visited landmarks are L1, L2, L6, and L7. Then, the shad-
owed area is determined as the coverage of the local traffic
map, which includes L1, L2, L3, L5, L6, and L7. We can
see that the larger Vf is, the more information the local
traffic map provides, but also the more overhead incurred.440

Therefore, a suitable Vf can be determined based on the
requirement on routing efficiency and overhead. Based on
empirical measurement, we set vf to 70% in this paper.

3.4.2. Local Traffic Map Construction

Each node updates the local traffic map upon encoun-445

tering other nodes. Specifically, suppose the coverage of a
node’s local traffic map is Ci = {La, Lb, Lc, Ld}, {a, b, c, d} ∈
[1,m], it queries each encountered node about how fre-
quently it transits between these landmarks, i.e., from Lx

to Ly, x, y ∈ {a, b, c, d} and x 6= y. To enable such a450

function, each node builds an individual landmark transit
table to record its transit frequencies between landmarks,
as shown in Table 1. Each row represents the node’s tran-
sit frequency (i.e., how many transits per day) between
two neighboring landmarks. The third column and the455

fourth column are the transit frequencies from Lx to Ly

and from Ly to Lx, respectively.
Each node collects encountered nodes’ transit frequen-

cies to update its local traffic map. For example, suppose
a node’s local traffic map contains landmark L1 and land-460

mark L2. Then, to get the overall transit frequency from

5

0

10

20

30

40

50

60

70

80

1 51 101 151 201 251 301

N
um

be
r o

f L
an
dm

ar
ks

Node Sequence

All Visits
70% of Visits

(a) DART trace.

0

4

8

12

16

20

1 6 11 16 21 26 31

N
um

be
r o

f L
an
dm

ar
ks

Node Sequence

All Visits
70% of Visits

(b) DNET trace.

0
50

100
150
200
250
300
350
400

1 51 101 151 201 251 301

Nu
m

be
r o

f L
an

dm
ar

ks

Node Sequence

All Visits
70% of Visits

(c) ROMA trace.

Figure 3: Distribution of the # of visited landmarks.

Table 1: Landmark transit table.

Landmarkx Landmarky Frequencyxy Frequencyyx
L1 L5 3 2.5
L2 L13 8 9
L15 L24 7 4
· · · · · · · · · · · ·

L1 to L2, the node gets every encountered node’s transit
frequency from L1 to L2 and sums up these transit fre-
quencies. However, in this process, a node may meet an-
other node and obtain its transit frequency multiple times.465

Then, to avoid summing up a node’s transit frequency mul-
tiple times, each node maintains a record on which nodes’
transit frequencies have already been included in the cal-
culation of the overall transit frequency from one landmark
to another. We name such a record as the transit element470

table. Table 2 shows an example of transit element table
on a node for the transition from L1 to L2.

Table 2: Transit element table.

Transit Node Frequency

L1 → L2

N8 0.7
N5 2
N7 1.5
· · · · · ·

Overall 10.5

The “overall frequency” in each transit element table
finally is stored in the local traffic map. Table 3 shows the
traffic map following the example in Figure 2(b).

Table 3: Local traffic map.

Landmark ID Neighbor Landmark Frequency

L1
L2 10.5
L5 13

L2

L1 9
L6 4
L3 10.2

L3
L2 4.2
L7 5.5

· · · · · · · · ·

475

In summary, in GreedyFlow, when a node, say Ni,
meets another node, say Nj , Ni obtains Nj ’s transit fre-
quencies between each pair of landmarks covered in Ni’s

L1 L2

L6 L7

L3

L5

L15

Temp
des.

Des.

(a) Temporary destination land-
mark.

L1 L2

L6 L7

L3

L5

L15

Temp
des.

Des.

Fastest path to temp des.

(b) Fastest path to the temp des.

Figure 4: Determining the next-hop landmark.

local traffic map to update its local traffic map. In detail,
for Lx → Ly, if Nj ’s transit frequency (denoted by f jxy) is480

not 0, Ni first checks whether it has a transit element table
for this transit. If not, it creates a transit element table for
this transit with only one entry, i.e., the entry for Nj . Ni

then updates Nj ’s entry in the transit element map to f jxy.
Ni also updates the overall frequency for transit Lx → Ly485

accordingly in both the transit element table and the local
traffic map.

For example, suppose a node’s transit element table for
L1 → L2 is as shown in Table 2, and its local traffic map
is as shown in Table 3. When the node meets N8 and finds490

that N8’s transit frequency for L1 → L2 has changed to
1.4, it first updates the entry for N8 accordingly. Then, it
updates the overall transit frequency for L1 → L2 to 11.2
in both the transit element table and the local traffic map.

3.4.3. Consistency of Local Traffic Maps495

As introduced in the previous section, each node builds
its local traffic map independently. Since nodes may meet
different sets of nodes, the transit frequencies between the
same pair of neighboring landmark maintained in the local
traffic maps of different nodes may be different. However,500

as mentioned later in Section 3.5, each node makes packet
forwarding decisions sorely based on its local traffic map.
This means that the inconsistency in the local traffic maps
may potentially deteriorate the packet routing efficiency.

Therefore, we measure the consistency of local traffic505

maps with the three real traces to show how current de-
sign performs. Specifically, for each landmark hop, e.g.,
Lx to Ly, we collect its overall transit frequency stored in
all local traffic maps that contain this landmark hop and

6

0.0

0.2

0.4

0.6

0.8

1.0

1 6 11 16 21 26

Fl
uc

tu
at

io
n

Fa
ct

or

Observation Point

DNET
DART
ROMA

(a) Inconsistency among local
traffic maps with the three traces.

0.0

0.2

0.4

0.6

0.8

1.0

1 6 11 16 21 26

Fl
uc
tu
at
io
n
Fa
ct
or

Observation Point

DART‐Imp
DART

(b) Improvement with the ad-
vanced method on the DART
trace.

Figure 5: Illustration of inconsistency and improvement.

calculate the standard deviation of all transit frequencies.510

To reflect the significance of the deviation, we further di-
vide the standard deviation by the average frequency, i.e.,
deviation/average, and denote such a value as the fluctu-
ation factor. Finally, we calculate the average fluctuation
factor of all landmark hops to show the consistency of local515

traffic maps. We measured the average fluctuation factor
at 29 evenly distributed observation points and showed the
results in Figure 5(a).

We see from the figure that with all the three traces, the
fluctuation factor is large in the beginning and decreases520

as more trace data is analyzed. This is because, as time
goes one, different local traffic maps converge when each
node meets more nodes. However, the fluctuation factor
in the DART and ROMA trace is still high (> 10%) even
at the end of the trace, while that in the DNET trace525

becomes very small quickly (< 3%). This is because both
DART and ROMA represent a much larger scenario than
the DNET trace in which nodes are more distributively
distributed. Therefore, even when each node can collect
more data, the inconsistency among local traffic maps is530

still obvious in the two traces. Such a result shows that
the inconsistency among local traffic maps may not always
be well controlled.

3.4.4. Enhancing the Consistency of Local Traffic Maps

The results in the previous section show that inconsis-535

tency commonly exists in the local traffic maps generated
through the default method introduced in Section 3.4.2.
Therefore, we propose an advanced local traffic map up-
date method to enhance the consistency between local traf-
fic maps. In this method, when two nodes meet, each node540

contributes not only its own transit frequencies but also
the records in its transit element tables to the other node.
Specifically, we expand the transit element table to in-
clude the most recent update time of the transit frequency
of each node, as shown in Table 4. Then, when two nodes545

meet, they first update the advanced transit element table
following the same way as introduced in Section 3.4.2. Af-
ter this, they merge their advanced transit element tables
for all common transits in their local traffic maps with the
following rules. For each common transit, 1) if the transit550

frequency of a node exists in the advance transit element

table of both nodes, the one with the more recent update
time is kept in both nodes. 2) If the transit frequency of
a node only exists in the advance transit element table of
one node, it is copied to the element table of the other555

node with associated update time.

Table 4: Advanced transit element table.

Transit Node Frequency Update Time

L1 → L2

N8 0.7 10
N5 2 40
N7 1.5 100
· · · · · · · · ·

Overall 10.5 100

For example, suppose when Ni and Nj meet, they both
have the landmark hop L1 → L2 in the local traffic map.
Suppose the advanced transit element table for L1 → L2

on Ni includes the transit frequencies of N1, N4, and N9560

with update time 10s, 15s, and 30s, respectively. We also
suppose the advanced transit element table for L1 → L2

on Nj includes the transit frequencies of N4, N9, and N17

with update time 11s, 35s, and 40s, respectively. Then,
the final merged advanced transit element table on both565

nodes will include transit frequencies of N1, N4, N9, and
N17 with update time 10s, 15s, 35s, and 40s, respectively.
The basic rule is that the one with the more recent change
or only exists in one node is kept.

With the above steps, the two nodes converge on the570

advanced transit element table for common transits in
their local traffic maps. Consequently, different nodes will
maintain better consistency on their local traffic maps.
We further evaluate the performance of such an advanced
method following the same metric in Section 3.4.3. Since575

the DART trace presents the most inconsistency previ-
ously, we focus on it in this test. The result is shown in
Figure 5(b), in which DART-Imp demotes the result with
the advanced method.

We see from the figure that when the advanced local580

traffic map update method is enabled, the “Fluctuation
Factor” is reduced by almost half in the beginning and
reaches almost 0 after half of the observation points in
the DART trace. This shows that the advanced update
method owns the ability to effectively improve the con-585

sistency among local traffic maps. However, such an im-
provement comes at additional communication costs. In-
stead of only exchanging each node’s transit frequencies
in the baseline method (introduced in Section 3.4.2), two
encountered nodes now have to exchange their advanced590

transit element tables for all shared links in their local traf-
fic maps. Fortunately, the size of the local traffic map of a
node often is limited (i.e., Section 3.4.1), and the amount
of shared links may only account for partial of the map.
This avoids the additional communication overhead to be-595

come uncontrollable. Consequently, the advanced update
method is more suitable in DTNs in which nodes own rel-
atively abundant communication resources.

Furthermore, even with abundance resources, it would

7

be a waste if the advanced method is enabled blindly. This600

is because some DTNs may lead to a good consistency be-
tween the local traffic maps even with the baseline scheme
introduced in Section II-D2. The DNET trace is such an
example, as shown in Figure 5(a). Therefore, to handle
this issue, we further propose the following scheme to bet-605

ter balance the overhead and benefit.

• When two nodes meet, they follow the advanced
method to update their local traffic map with a prob-
ability of Pu ∈ [0, 1]. The value of Pu is propor-
tional to the inconsistency (i.e., fluctuation factor)610

observed in the past update.

• As a result, the advanced method is more frequently
used when there is a large inconsistency among lo-
cal traffic maps and less frequently otherwise. This
makes sure that the cost is paid off by the benefit.615

3.5. Packet Routing in GreedyFlow

We introduce the packet routing algorithm in this sec-
tion. We first give out the overview and then the details.

3.5.1. Overview

The packet routing works in a greedy manner. When a620

node generates or receives a packet, it checks its local traf-
fic map and the global landmark map to decide the next-
hop landmark for the packet. Specifically, since a node’s
local traffic map may not include the destination landmark
of the packet, it first selects a temporary destination land-625

mark in the local traffic map that has the closest distance
to the destination landmark, which is calculated with the
information from the global landmark map. This ensures
that the packet forwarding is always on the right direc-
tion. We introduce this step in Section 3.5.2. Then, the630

node finds the fastest path to the temporary destination
landmark based on the local traffic map and as well as
the next-hop landmark on the path. We introduce how to
determine such a path in Section 3.5.3. Figure 4(b) shows
that the fastest path from L1 to temporary destination635

landmark L7 is L1 → L5 → L6 → L7 and the next-hop
landmark is L5.

Then, the packet is forwarded to the selected next-hop
landmark L5. In detail, the node queries its neighbors
about where they are predicted to move to and forwards640

the packet to the node that is predicted to move to the
selected next-hop landmark L5. The details on how each
node predicts the next landmark it is going to transit to is
introduced in Section 3.5.4. When the node arrives at L5,
it repeats the above process to further forward the packet.645

Finally, the packet is greedily forwarded toward its des-
tination landmark. However, a node that is predicted to
move to the next-hop landmark may not always be found.
A node may not always move to the predicted landmark.
A packet may revisit the same landmark during the for-650

warding. We discuss how to handle these exceptions in
Section 3.5.5.

L1 L2 L3

L5 L6 L7

0.5 0.2
0.3 0.1

0.7
1.5 0.8

0.4
0.9 0.4 2.5 2

0.6 0.3

Current
landmark

Temp des.
landmark

(a) Abstracted local traffic map.

L1 L2 L3

L5 L6 L7

0.2
0.3 0.1

Current
landmark

Temp des.
landmark

(b) The selected fastest path.

Figure 6: Determine the fastest path to the temporary destination.

3.5.2. Selecting Temporary Destination Landmark

The packet carrier first checks whether its local traf-
fic map contains the destination landmark of the packet655

or not. If yes, the temporary destination landmark is the
destination landmark. Otherwise, the temporary destina-
tion landmark is the landmark in the local traffic map that
has the closest distance to the destination landmark. The
distance between two landmarks is calculated as the min-660

imal number of landmark hops between them. As shown
in Figure 4(a), suppose the destination landmark is L15,
landmark L7 is selected as the temporary destination land-
mark since it has the closest distance to L15.

3.5.3. Determine the Fastest Path to the Temporary Des-665

tination

As introduced in Section 3.2, the expected delay to
a forwarding hop is determined by the frequency of node
transition on the hop. We use such a property to find the
fastest path to the temporary destination landmark.670

For better illustration, we abstract each landmark as
a circle. Two circles are connected if are neighbors. We
also abstract the node transition from one landmark to
another landmark as a link connecting the two landmarks.
Therefore, two neighbor circles are connected by two links675

in two direction. Each link has a weight, which represents
the delay to forward a packet through the link. It is calcu-
lated as 1/ft, where ft is the frequency of node transition
in the direction of the link. Figure 6(a) shows the ab-
stracted local traffic map in which each link has a weight.680

Note that there are two weighted links (one for each di-
rection) between each pair of neighbor landmarks. This
is because the frequency of node transitions in different
directions may be different.

Using such a graph, the problem of finding the fastest685

path to the temporary destination landmark turns into
the problem of finding the shortest path to the temporary
destination landmark. We use the Dijkstra algorithm [32]
to fulfill this task. In detail, we take the current landmark
L1 as the root and iteratively find the shortest path to the690

temporary destination landmark L7, i.e., the bold lines in
Figure 6(b) (i.e., L1 → L5 → L6 → L7). Then, the next
landmark after current landmark on the shortest path, i.e.,
L5, is identified as the next-hop landmark.

Note that the local traffic map is not static. As intro-695

duced in Section 3.4.2, each node updates its local traf-
fic map upon collecting the landmark transit information
from encountered nodes. Thus, the change on the path

8

weights will be reflected in the local traffic map. Then,
the Dijkstra based path selection algorithm will be able to700

identify the best path dynamically, even when it is not the
physically shortest one.

3.5.4. Predicting Node Mobility

In order to forward a packet from current landmark
to the determined next-hop landmark, the current packet
holder queries its neighbors about where they are most
likely to transit to and forwards the packet to the node that
is going to move to the next-hop landmark. To fulfill this
function, each node predicts its next transit upon moving
to a new landmark. In detail, each node uses its historical
landmark visit information to feed the Order-1 Markov
predictor to deduce the landmark it is going to transit to.
In detail, suppose a node’s landmark visit history can be
represented by VH = Lx1

Lx2
Lx3
· · ·Lxn−1

Lxn
. Then, the

probability that the node is going to visit landmark Lxn+1

can be calculated by

Pr(LxnLxn+1 |Lxn−1Lxn) =
Pr(Lxn−1LxnLxn+1)

Pr(Lxn−1Lxn)
, (1)

where

Pr(Lxn−1LxnLxn+1) =
N(Lxn−1LxnLxn+1)

N(All3)
(2)

and

Pr(Lxn−1Lxn) =
N(Lxn−1Lxn)

N(All2)
(3)

where N(Lxn−1LxnLxn+1) is the number of times that the
node visits landmarks Lxn−1

, Lxn
, and Lxn+1

consecu-705

tively, N(Lxn−1
Lxn

) denotes the number of times that the
node visits landmarks Lxn−1

and Lxn
consecutively, and

N(Allk) (k = 2, 3) means the number of visits on consecu-
tive k landmarks. Finally, the landmark that leads to the
largest transit probability in Equation (1) is selected as710

the landmark that the node is going to move to.

3.5.5. Handle Exceptions

As mentioned in previous sections, GreedyFlow relies
on predicted node mobility to forward a packet from cur-
rent landmark to the next-hop landmark. However, such715

predictions may not always be correct. As a result, packet
forwarding may face three exceptions. Firstly, after deter-
mining the next-hop landmark for a packet, the current
packet carrier may not be able to find a neighbor node
that is predicted to move to that landmark. Secondly,720

even when such a node is found, it may actually moves to
a landmark that is different from the predicted one, mak-
ing the packet deviated from the planned forwarding path.
Thirdly, due to prediction errors, a packet may return to a
landmark that it has already visited. We then design three725

additional schemes to handle the three exception cases.
When the first exception case happens, we simply let

the current carrier of the packet continue carrying it un-
til arriving at another landmark. If this landmark is the
next-hop landmark of the packet, the exception is solved730

automatically. If not, the first exception turns into the

second exception, i.e., the packet carrier moves to an un-
expected landmark, the handling of which is discussed in
the next paragraph.

When the second exception happens, the current car-735

rier first checks whether it can find a node from neighbor
nodes that is predicted to move to the expected next-hop
landmark of the packet. If yes, the packet is forwarded
to the node. This node is expected to carry the packet
to the next-hop landmark, thus resuming the planned for-740

warding path. If no such nodes can be found, the packet
is forwarded to the neighbor node that has the highest
centrality. Such a node starts over the packet forwarding
process from the current landmark by following the proce-
dures presented in Sections 3.5.2, 3.5.3,and 3.5.4 to handle745

the packet. The centrality of a node is defined as the num-
ber of nodes it can meet in a unit time. We select such a
node to carry the packet since it can meet more nodes and
thus has more options on potential packet forwarders.

Although GreedyFlow uses the global landmark map750

to determine the packet forwarding direction, the third
exception can still happen. The reason is the same as that
for the second exception, i.e., the node movement predic-
tion may not always be correct. When such an exception
happens, we do not try to resume the planned forwarding755

path but let the current packet carrier start over the packet
handling process directly (i.e., trying to select a new path
for the packet). This is because such an exception means
that nodes’ movement to the previous next-hop landmark
is hard to predict.760

3.5.6. Summary

We summarize the process of packet routing in GreedyFlow
as follows. We also show the pseudo-code of the case when
a node tries to forward a packet in Algorithm 1.

• When a node generates a packet or carries a packet to765

its next-hop landmark, the node follows the method
introduced in Section 3.5.2 to determine its tempo-
rary destination landmark.

• The node determines the fastest path to the tem-
porary destination landmark based on its local traf-770

fic map and selects the next-hop landmark for the
packet by following the method in Section 3.5.3

• Then, the node checks whether a neighbor node is
predicted to move to the next-hop landmark. If yes,
it forwards the packet to the neighbor node. The775

prediction of node transition is introduced in Sec-
tion 3.5.4.

• If no suitable carrier can be found or the selected
carrier moves to a landmark other than the next-
hop landmark, the packet is handled by the schemes780

in Section 3.5.5.

• The above process repeats until the packet arrives at
the destination landmark.

9

Algorithm 1 Pseudo-code of the GreedyFlow routing
when node Ni tries to forward a packet p destined to land-
mark Ld.

1: procedure exchangeTopFriendsWith(b)
2: Ni.determineTemporaryDst(p)
3: Ni.selectNextHopLM(p)
4: Ni.forwardPacket(p)
5: end procedure
6: procedure determineTemporaryDst(p)
7: mindist = max;
8: for each landmark l in local traffic map do
9: if dist(l, Ld) < mindist then

10: mindist = dist(l, Ld);
11: tempDst = l;
12: end if
13: end for
14: end procedure
15: procedure selectNextHopLM(p)
16: path = findFastestPath(tempDst);
17: Lnext = path.returnNextLandmark() ;
18: end procedure
19: procedure forwardPacket(p)
20: forwarder = Ni;
21: prob = getProb(Ni, Lnext); //calculate Ni ’s probability to

transit to the Lnext

22: for each neighbor node n in current landmark do
23: if prob < getProb(n,Lnext) then
24: forwarder = n
25: prob = getProb(n,Lnext)
26: end if
27: end for
28: forward(p, forwarder);

29: end procedure

3.6. Cost and Applicability Analysis

We analyze the cost of the GreedyFlow in terms of785

storage, communication, and computing in this subsection.
We also discuss the applicability of GreedyFlow and the
tradeoff on routing performance and cost.

3.6.1. Storage Cost

According to the design in Section 3.3 and 3.4, the in-790

formation that has to be stored in each node under GreedyFlow
includes a global landmark map (e.g., Figure 2(a)), a local
traffic map (e.g., Table 3), a transit element table (e.g.,
Table 2), and a landmark transit map (e.g., Table 1). The
four maps/tables store the locations and neighbor rela-795

tionships of all landmarks, the overall transit frequencies
within a node’s local traffic map, individual nodes’ transit
frequencies within a node’s local traffic map, and a node’s
transit frequencies among all landmarks, respectively.

Therefore, suppose there are m landmarks in the DTN,800

the four tables each has a storage cost of m∗G∗S, where G
is the average amount of neighbor landmarks a landmark
has (e.g., 3 or 4), and S represents the average size of the
recorded data between a pair of neighbor landmarks in a
table (which can be up to 0.5 KB). This makes GreedyFlow805

own a higher storage cost than probabilistic DTN routing
algorithms [15, 16, 17, 18] that require nodes to only record
the encountering frequencies with others. However, the
absolute storage cost of a table in a large DTN with 1000

landmarks is around a few megabytes. We believe this is810

affordable for nowadays’ mobile devices.

3.6.2. Communication Cost

The communication between encountered nodes serves
two functions in GreedyFlow: update the local traffic map
(Section 3.4.2) and conduct packet forwarding (Section 3.5.1).815

For the traffic map update, two encountered nodes ex-
change their transit frequencies between landmarks in their
local traffic maps. For the packet forwarding, two encoun-
tered nodes exchange their predicted next-hop landmark
and packets destined for the other node. Thus, the overall820

communication cost in an encountering can be represented
as m∗St+Sn+Sp, where m is the number of landmarks, St

denotes the size of the transit frequency data between two
landmarks, and Sn is the size of the next-hop landmark
ID, and Sp is the size of packets.825

We see that GreedyFlow does not incur excessive com-
munication overhead when compared with probabilistic
routing algorithms as St and Sn often are a few bytes, and
Sp is standard for all DTN routing algorithms. This makes
GreedyFlow resilient to intermittent contacts in DTNs.830

3.6.3. Computing Cost

GreedyFlow introduces computing costs in updating
the local traffic map (Section 3.4.2) and conducting packet
forwarding (Section 3.5.1). The former just updates the
transit frequencies of neighbor landmark pairs and thus835

incurs a computing cost of O(m). The latter mainly does
two tasks: 1) finds the temporal destination landmark fol-
lowing the Dijkstra algorithm in the local traffic map (Sec-
tion 3.5.3); and 2) calculate the probability of transiting
to other landmarks (Section 3.5.4). The two tasks have a840

computing cost of O(m2) and O(m), respectively, where
m is the average number of landmarks in a local traffic
map, and m is the total number of landmarks.

Consequently, the overall computing cost is O(m2+m).
Since a local traffic landmark only includes landmarks that845

a node primarily visits, m often is small. This shows that
the computing cost is acceptable to current mobile devices.

3.6.4. System Applicability

The above analysis shows that GreedyFlow presents a
high storage cost and a normal communication and com-850

puting cost, when compared with current probabilistic DTN
routing algorithms. However, storage is not the major
challenge for mobile devices currently. Actually, nodes in
DTNs are challenged by limited power and communication
opportunities, which raises the need of controlling the com-855

puting and communication cost of the routing algorithm.
The analysis results illustrate that GreedyFlow satisfies
this requirement.

Therefore, GreedyFlow is best applied in DTNs in which
nodes own sufficient storage resources. Actually, there860

is a tradeoff on routing performance and the cost (ap-
plicability). Particularly, to extend the applicability of
GreedyFlow, the communication and computing cost has

10

been carefully controlled in current design, which limits
the routing performance. When there is more communi-865

cation/computing resource, the routing efficiency could be
further enhanced. For example, the advanced component
in Section 3.4.4 could improve the routing efficiency at the
cost of more communication overhead. The accuracy of
the prediction of the next-hop landmark in Section 3.5.4870

can also be enhanced with more complex algorithms. We
leave the research on how to optimally balance or flexibly
tradeoff the two goals to future work.

3.7. Advanced Enhancement on Packet Routing

We further design one optional advanced enhancement875

that can improve the packet routing efficiency at addi-
tional costs. As introduced in Section 3.2, GreedyFlow re-
lies on the landmark-by-landmark path to forward a packet
to its destination landmark. In this process, node mobility
is modeled and used as consecutive transits between land-880

marks. Actually, as revealed in literatures [5, 6, 7] and our
investigation (introduced in Section 3.4.1), if we look at
node mobility from the perspective of visiting landmarks,
nodes usually visit a few landmarks frequently. This is
the basis of node-based forwarding strategy. However, as885

introduced in Section 3.2, purely relying on such a feature
can lead to limited routing efficiency since the number of
nodes that can frequently visit a landmark often is limited.

However, this does not mean that node-based forward-
ing has no value. In case nodes that can frequently visit890

the destination landmark are found (though the number
of such nodes may be small), we should take advantage of
it to further enhance the routing performance. We then
propose an advanced component to effectively synergize
the landmark-based forwarding (as proposed earlier) and895

node-based forwarding. Generally, the landmark based
scheme is adopted first to gradually forward a packet to-
wards its designation landmark. In this process, whenever
a node that is not overloaded and can bring the packet
to its destination landmark faster than following the land-900

mark based path is encountered, the packet is forwarded
to the node for node-based forwarding. As a result, packet
routing efficiency can be further enhanced. We carefully
design the requirements for such a switch to happen, thereby
guaranteeing the benefits.905

3.7.1. Maintain Visiting Frequencies

In order to support the advanced enhancement, each
node needs to maintain its visiting frequencies with land-
marks. The visiting frequencies also decay over time to
reflect the change of a node’s landmark visiting pattern.
Specifically, node Ni’s visiting frequency with landmark
Lx (denoted Vix) is updated every Tf seconds by the fol-
lowing formula.

Vix = α ∗ Vix + (1− α) ∗Mix/Tf

where α is a decay factor and Mix denotes the number of
times that Ni visits Lx in the past Tf seconds. To reflect

the importance of recent visits, α is set to 0.6 and Tf is
set to 18000 in this paper. They can be adjusted to fit the910

requirements in different DTN scenarios.

3.7.2. Delay Estimation

To optimally determine whether a packet should be
forwarded to a node that can frequently visit its destina-
tion landmark (i.e. node-based forwarding) or continue be915

forwarded through the landmark-based path (landmark-
based forwarding), we need to estimate the expected de-
lay through the two ways. The estimated delay for the
former case (i.e., node-based forwarding) is calculated as
1/Vix, where Vix denotes the node’s visiting frequency to920

the destination landmark Lx.
For the latter case (i.e., landmark-based forwarding),

we can only calculate the expected delay to reach the tem-
porary destination (introduced in Section 3.5.2). This is
because we can only obtain the transit frequencies between925

landmarks in the local traffic map. However, this informa-
tion is still useful for us to make a decision, which will
be introduced in the next subsection. Such a delay is cal-
culated by summing up the expected delay on each hop
on the landmark based path. Note that the weight of the930

link representing a hop introduced in Section 3.5.3 (i.e.,
1 over the overall transit frequency on the hop) actually
represents the delay on this hop.

Note that though the above delay estimation is not de-
terministic, the benefit is guaranteed on average as long as935

node mobility is not completely random. Kindly note that
forwarding decisions generally are made on the expected
possibility/delay of delivery in the context of DTN with
opportunistic mobility (not scheduled mobility). Such a
rationale is followed by all existing probabilistic/social net-940

work based DTN routing protocols mentioned in the re-
lated work.

3.7.3. Switching to the Node-based Forwarding

With the advanced enhancement, the handling of a
packet turns to the node-based forwarding when it can945

deliver the packet faster. Specifically, the node-based for-
warding is adopted when the following two requirements
are satisfied.

• The current packet carrier meets a node that can
carry the packet to the destination landmark faster950

than forwarding the packet through the landmark
based path.

• The packet buffer of the node is not full.

The first requirement means that the expected delay
when the packet is forwarded by the node, denoted Dn, is955

smaller than that when the packet is forwarded through
the landmark based path, denoted Dd. As mentioned in
the previous section, we can hardly estimate the delay of
a packet when it is forwarded through the landmark based
path due to the limitation of the local traffic map. We960

11

therefore use the expected delay to the temporary desti-
nation landmark (denoted Dtd), which can be easily de-
duced based on the local traffic map, to check whether the
first requirement is satisfied. This is because Dtd must be
smaller than or equal to Dd. Then, as long as Dn < Dtd,965

we can have Dn < Dd, which means that the first require-
ment is satisfied. The second requirement is simply used
to prevent overloading nodes.

It is true that using Dtd in evaluating the first re-
quirement may miss some cases when Dn is larger than970

Dtd but smaller than Dd. However, we argue that such
a design brings about certain benefits. First, this limits
the frequency that the node-based forwarding is adopted,
i.e., it is used when it clearly shows lower expected de-
lay than the landmark-based forwarding. This follows our975

motivation in the introduction that node-based forward-
ing cannot fully utilize node mobility. Second, Dtd usually
is smaller than Dn when the packet is far away from the
destination landmark. This is because, in this case, the
packet’s distance to the temporary destination is much980

shorter than the distance to the actual destination (since
the local traffic map often is small). As a result, node-
based forwarding is adopted mainly when the packet is
close to its destination, which follows our design rationale.

985

4. Performance Evaluation

We first evaluate the performance of GreedyFlow with-
out advanced schemes in comparison three state-of-art meth-
ods. We then evaluate the enhancement of the two ad-
vanced schemes, which are proposed in Section 3.4.4 (i.e.,990

advanced local traffic map update) and Section 3.7 (i.e.,
advanced packet routing), in section 4.4.

4.1. Experiment Settings

We conducted event driven experiments with the three
real traces, namely Dartmouth campus trace (DART) [29],995

DieselNet AP trace (DNET) [30], and Roma taxi mobility
trace (ROMA) [31]. Section 3.4.1 introduces the details of
the three traces. We adopted three representative compar-
ison algorithms: Geomob [12], PER [33] and SimBet [34].
Geomob is similar to GreedyFlow that it also routes pack-1000

ets in a landmark-by-landmark manner. However, it re-
quires that all nodes know the traffic distribution in the
network to decide the landmark path for each packet. As
mentioned in the introduction, such a requirement is not
practical. We still use it to measure whether GreedyFlow1005

can lead to comparable performance with Geomob. PER
estimates each node’s probabilities to visit each landmark
and forwards packets to nodes that have a high probabil-
ity to visit their destination landmarks before they expire.
SimBet evaluates a node’s suitability to carry a packet by1010

considering both its centrality and its visit frequency with
the packet’s destination landmark.

In the experiment, we used the first 1/3 of testing
traces for initialization, in which nodes build the local

traffic map in GreedyFlow and accumulate related met-1015

rics, e.g., landmark visit frequencies, in comparison meth-
ods. After this step, packets are generated with randomly
selected destination landmarks at the rate of rp packets
per landmark per day. The TTL (Time to Live) of each
packet was set to 30 days, 6 days, and 2 days in the DART,1020

DNET, and ROMA trace, respectively. When a packet’s
TTL expires, it is dropped directly. We assume that each
packet has the size of 1 KB and the available storage on
each node is mn KB. We set rp and mn to 50 and 150 by
default and varied them for extensive performance evalua-1025

tion. When the storage on a node is full, the oldest packet
is dropped. We set Vf to 70 since we find that it is suf-
ficient for efficient packet routing. We set the confidence
interval to 95%.

We used four metrics in the experiments: success rate,1030

average delay, forwarding cost, and maintenance cost. The
success rate refers to the percentage of packets that are
successfully delivered within the TTL. The average delay
refers to the average delay of successfully delivered pack-
ets. The forwarding cost refers to the number of packet1035

forwarding operations. The maintenance cost refers to the
number of messages exchanged between nodes to support
packet routing (e.g., transit information in GreedyFlow
and landmark visit frequencies in comparison methods).

4.2. Performance with Different Packet Rates1040

We first conduct performance evaluation with different
packet rates (rp). We varied rp from 30 to 80 in the test.

4.2.1. Success Rate

Figures 7(a), 8(a), and 9(a) show the success rates of
the four methods in the experiments with different packet1045

rates using the DART, DNET, and ROMA trace, respec-
tively. We see from the three figures that the success rates
follow: Geomob≈GreedyF low>SimBet≈PER.

Geomob and GreedyFlow lead to higher success rate
than the other two methods because they forward packets1050

in a landmark-by-landmark manner, thereby better utiliz-
ing node mobility for more efficient packet routing. Such
a result demonstrates the advantage of the landmark path
based routing strategy in routing packets to different land-
marks. GreedyFlow shows slightly lower success rate than1055

Geomob. This is because nodes in Geomob are assumed
to know the global traffic distribution beforehand, while
nodes in GreedyFlow only know the traffic distribution
in the area they often visit. However, the assumption in
Geomob is not practical in real DTNs. We see that the1060

difference on success rate is very marginal. This means
that GreedyFlow can also effectively select a fast land-
mark path for each packet even without the global infor-
mation. In other words, the performance of the distributed
GreedyFlow is comparable to that of Geomob.1065

We also find that SimBet shows slightly higher success
rate than PER. This is because SimBet considers not only
a node’s visiting frequency with the destination landmark

12

0.20

0.30

0.40

0.50

0.60

30 40 50 60 70 80

Su
cc
es
s
R
at
e

Packet Rate

GreedyFlow Geomob
PER SimBet

(a) Success rate.

8

9

10

11

12

13

14

30 40 50 60 70 80
A
ve
ra
ge
 D
el
ay
 (x
10

5 s
)

Packet Rate

GreedyFlow Geomob
PER SimBet

(b) Average delay.

0

6

12

18

24

30

36

42

30 40 50 60 70 80

Fo
rw

ar
di
ng

 C
os
t
(x
10

6)

Packet Rate

GreedyFlow Geomob
PER SimBet

(c) Forwarding cost.

1

2

3

4

5

6

7

8

30 40 50 60 70 80

M
ai
nt
en

an
ce
 C
os
t
(x
10

7)

Packet Rate

GreedyFlow Geomob
PER SimBet

(d) Maintenance cost.

Figure 7: Performance with different packet rates using the DART trace.

0.70

0.75

0.80

0.85

0.90

30 40 50 60 70 80

Su
cc
es
s
R
at
e

Packet Rate

GreedyFlow Geomob
PER SimBet

(a) Success rate.

8.0

8.5

9.0

9.5

30 40 50 60 70 80

A
ve
ra
ge
 D
el
ay
 (x
10

4 s
)

Packet Rate

GreedyFlow Geomob
PER SimBet

(b) Average delay.

0

1

2

3

4

30 40 50 60 70 80

Fo
rw

ar
di
ng

 C
os
t
(x
10

5)

Packet Rate

GreedyFlow Geomob
PER SimBet

(c) Forwarding cost.

0

1

2

3

4

5

30 40 50 60 70 80

M
ai
nt
en

an
ce
 C
os
t
(x
10

6)

Packet Rate

GreedyFlow Geomob
PER SimBet

(d) Maintenance cost.

Figure 8: Performance with different packet rates using the DNET trace.

but also its centrality in the network, while PER only con-
siders the visit frequency. Then, in addition to nodes that1070

frequently visit packet destinations, SimBet also utilizes
nodes with a high centrality to route packets. As a result,
SimBet utilizes more mobile nodes for routing, leading to
higher success rate.

4.2.2. Average Delay1075

Figures 7(b), 8(b), and 9(b) show the average delays of
the four methods in the experiments with different packet
rates using the DART, DNET, and ROMA trace, respec-
tively. We find from the three figures that the average
delays follow: Geomob<GreedyF low<SimBet<PER.1080

Geomob has the least average delay because each node
knows the global traffic distribution, which enables it to al-
ways select the landmark path with the minimal expected
delay for each packet. In GreedyFlow, each node only
knows the node transit frequencies between landmarks in1085

the area where it primarily visits. Therefore, it has slightly
higher average delay than Geomob. However, we see that
the difference is very small. Since GreedyFlow does not re-
quire the global traffic information as Geomob, it is more
suitable for DTNs.1090

SimBet and PER exhibit much higher average delay
than Geomob and GreedyFlow. This is because they rely
on nodes that frequently visit destination landmarks for
packet routing, and such nodes may not always exist. On
the contrary, Geomob and GreedyFlow forward packets in1095

the landmark-by-landmark manner to reach their destina-
tions. Nodes that rarely visit the destination landmark of
a packet can still be utilized to forward it to a landmark

closer to the destination landmark, leading to a small av-
erage delay of successfully delivered packets.1100

4.2.3. Forwarding Cost

Figures 7(c) and 8(c) show the forwarding costs of the
four methods under different packet rates using the DART
trace and the DNET trace, respectively. The result with
the ROMA trace is similar and thus is not shown. We1105

find from the two figures that the forwarding costs follow:
Geomob>GreedyF low>SimBet>PER.

PER generates the least packet forwarding cost because
it only forwards a packet to the node that has a high prob-
ability of delivering the packet before it expires, leading to1110

few forwarding opportunities. SimBet works in a similar
manner as PER but additionally considers centrality for
forwarder selection, resulting in more packet forwarding
than PER.

GreedyFlow and Geomob generate more packet for-1115

warding than PER and SimBet because they forward pack-
ets in a landmark-by-landmark manner, which exploits
more nodes to carry packets. However, we can see that
the amount of increase is not significant, which is worth-
while considering the improvement on routing efficiency.1120

4.2.4. Maintenance Cost

Figures 7(d) and 8(d) show the maintenance costs of
the four methods under different packet rates using the
DART trace and the DNET trace, respectively. The result
with the ROMA trace is similar and thus is not shown. We1125

see from the two figures that the maintenance costs follow:
GreedyF low>SimBet>PER>Geomob.

13

0.25

0.30

0.35

0.40

0.45

0.50

30 40 50 60 70 80

Su
cc

es
s

Ra
te

Packet Rate

GreedyFlow Geomob
PER SimBet

(a) Success rate under packet rates.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

30 40 50 60 70 80
Av

er
ag

e
D

el
ay

 (x
10

4 s
)

Packet Rate

GreedyFlow Geomob
PER SimBet

(b) Average delay under packet
rates.

0.20

0.25

0.30

0.35

0.40

0.45

100 120 140 160 180 200

Su
cc

es
s

Ra
te

Memory Size (KB)

GreedyFlow Geomob
PER SimBet

(c) Success rate under memory
sizes.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 120 140 160 180 200

Av
er

ag
e

D
el

ay
 (x

10
4 s

)

Memory Size (KB)

GreedyFlow Geomob
PER SimBet

(d) Average delay under memory
sizes.

Figure 9: Performance with different packet rates/memory sizes using the ROMA trace.

GeoMob generates the least maintenance cost because
it assumes that nodes already know the global traffic dis-
tribution beforehand. Therefore, nodes only need to ex-1130

change their probabilities of going to neighbor landmarks
to support packet routing. In PER, encountering nodes
exchange their probabilities to visit all landmarks to de-
termine packet forwarders, leading to more maintenance
cost than Geomob. In addition to landmark visit frequen-1135

cies, nodes in SimBet also exchange centrality informa-
tion. Therefore, it has higher maintenance cost than PER.
GreedyFlow has more maintenance cost than others be-
cause nodes need to exchange transit frequencies for local
traffic map update. However, we see that the maintenance1140

cost of GreedyFlow is on the same level with others.
Combining all above results, we conclude that the two

methods that forward packets through landmark paths
lead to better performance than other methods. This justi-
fies the correctness of such a packet routing strategy. We1145

also see that GreedyFlow shows close performance with
Geomob, which requires global traffic distribution. Such a
result demonstrates that GreedyFlow can realize efficient
packet routing in a fully distributed manner.

4.3. Performance with Different Memory Sizes1150

We further evaluate the performance of the four meth-
ods with different memory sizes on each node (mn). We
varied mn from 100 to 200 in the test.

4.3.1. Success Rate

Figures 10(a), 11(a), and 9(c) illustrate the success1155

rates of the four methods in the experiments with different
memory sizes using the DART, DNET, and ROMA trace,
respectively. We see from the three figures that the suc-
cess rates follow: Geomob≈GreedyF low>SimBet≈PER.
Such a result is consistent with those in Figures 7(a), 8(a),1160

and 9(a) for the same reasons. We also find that when the
memory size on each node increases, the success rates of all
methods increase. This is because when the memory size
increases, each node can carry more packets. This means
that the capacity of the network is enhanced, leading to1165

more successful packets.

4.3.2. Average Delay

Figures 10(b), 11(b), and 9(d) plot the average delays
of the four methods in the experiments with different mem-
ory sizes using the DART, DNET, and ROMA trace, re-1170

spectively. We find from the three figures that the average
delays follow: Geomob<GreedyF low<SimBet<PER. We
see that this relationship is the same as in Figures 7(b),
8(b), and 9(b) due to the same reasons. Similarly, when
the memory size on each node increases, the average delay1175

in all methods decreases. This is because when the mem-
ory size increases, more packets can be carried by nodes
that are most likely to deliver them to their destinations,
thereby reducing the average delay of successfully deliv-
ered packets.1180

4.3.3. Forwarding Cost

Figures 10(c) and 11(c) show the forwarding costs of
the four methods in the experiments with different mem-
ory sizes using the DART trace and the DNET trace, re-
spectively. The two figures show that the average forward-1185

ing costs follow: Geomob>GreedyF low>SimBet >PER.
Again, this is the same as in Figures 7(c) and 8(c) due
to the same reasons. We also find that when the memory
size increases, the forwarding costs of all methods increase.
This is because when each node can carry more packets,1190

there are more packet forwarding.

4.3.4. Maintenance Cost

Figures 10(d) and 11(d) show the maitenance costs of
the four methods in the experiments with different memory
sizes using the DART trace and the DNET trace, respec-1195

tively. The two figures show that the maintenance costs
follow: GreedyF low>SimBet>PER>Geomob

We can find that this relationship is the same as in Fig-
ures 7(d) and 8(d). Also, the maintenance costs remain un-
changed with different packet rates or memory sizes. This1200

is because the maintenance costs of these methods are only
affected by the number of node encountering. Since we use
the same traces in the each test, the maintenance costs re-
main the same. The results with different memory sizes
further confirm the superior performance of GreedyFlow.1205

14

0.20

0.30

0.40

0.50

0.60

100 120 140 160 180 200

Su
cc
es
s
R
at
e

Memory Size (KB)

GreedyFlow Geomob
PER SimBet

(a) Success rate.

8

10

12

14

100 120 140 160 180 200
A
ve
ra
ge
 D
el
ay
 (x
10

5 s
)

Memory Size (KB)

GreedyFlow Geomob
PER SimBet

(b) Average delay.

0

5

10

15

20

25

30

35

100 120 140 160 180 200

Fo
rw

ar
di
ng

 C
os
t
(x
10

6)

Memory Size (KB)

GreedyFlow Geomob
PER SimBet

(c) Forwarding cost.

1

2

3

4

5

6

7

8

120 120 140 160 180 200

M
ai
nt
en

an
ce
 C
os
t
(x
10

7)

Memory Size (KB)

GreedyFlow Geomob
PER SimBet

(d) Maintenance cost.

Figure 10: Performance with different memory sizes using the DART trace.

0.75

0.80

0.85

0.90

0.95

100 120 140 160 180 200

Su
cc
es
s
R
at
e

Memory Size (KB)

GreedyFlow Geomob
PER SimBet

(a) Success rate.

8.0

8.5

9.0

9.5

10.0

10.5

100 120 140 160 180 200

A
ve
ra
ge
 D
el
ay
 (x
10

4 s
)

Memory Size (KB)

GreedyFlow Geomob
PER SimBet

(b) Average delay.

0

1

2

3

100 120 140 160 180 200

Fo
rw

ar
di
ng

 C
os
t
(x
10

5)

Memory Size (KB)

GreedyFlow Geomob
PER SimBet

(c) Forwarding cost.

0

1

2

3

4

5

100 120 140 160 180 80

M
ai

nt
en

an
ce

 C
os

t (
x1

06)

Memory Size (KB)

GreedyFlow Geomob
PER SimBet

(d) Maintenance cost.

Figure 11: Performance with different memory sizes using the DNET trace.

4.4. Evaluation of Advanced Schemes

In this section, we evaluate the two advanced compo-
nents for better local traffic map consistency (Section 3.4.4)
and higher routing efficiency (Section 3.7). We denote
the GreedyFlow with the two components as GreedyFlow-1210

AdvC and GreedyFlow-AdvR, respectively.

4.4.1. Settings

We followed the settings in Section 4.1 to compare
GreedyFlow, GreedyFlow-AdvC, and GreedyFlow-AdvR
under different packet rates and different memory sizes.1215

Since the experiments with the three traces show a similar
trend (as shown in previous experiments), we only show
the results with the DART trace in this section.

4.4.2. Different Packet Rates

We first test the two advanced components’ perfor-1220

mance with different packet rates. The results are shown
in Figures 12(a), 12(b), 12(c), and 12(d). We see from
those figures that the two advanced schemes lead to bet-
ter routing performance. On average of all data rates,
GreedyFlow-AdvC and GreedyFlow-AdvR improves the1225

success rate by 6.1% and 9.7%, respectively, and reduces
the average delay by 19000s and 26000s, respectively.

GreedyFlow-AdvC improves the routing performance
by offering a better consistency among local traffic maps,
so that packets can be more steadily forwarded towards1230

destinations. GreedyFlow-AdvR leads to better routing
performance by further exploiting individual nodes’ pref-
erences on visiting certain landmarks. As a result, packets
can be forwarded to their destinations more quickly when

they are close to their destinations. Since GreedyFlow-1235

AdvR improves the routing performance more directly, it
generates higher success rate and lower average delay than
GreedyFlow-AdvC.

The two advanced components reduce the forwarding
cost (i.e., number of forwarding operations) by 449360 and1240

1395182 on average, respectively, as shown in Figure 12(c).
In GreedyFlow-AdvC, better consistency among local traf-
fic maps reduces the chance of detour in the forwarding
path. In GreedyFlow-AdvR, when a packet is forwarded
to a node that can frequently visit its destination land-1245

mark, it will be carried by the node without being further
forwarded. Thus, the forwarding cost is reduced.

The benefits of the two advanced components come
at the cost of higher maintenance cost, which increases by
114% and 32%, respectively, as illustrated in Figure 12(d).1250

In GreedyFlow-AdvC, encountered nodes exchange not only
their transit frequencies among landmarks in local traf-
fic maps but also accumulated transit frequencies of other
nodes. As a result, it doubles the maintenance cost. In
GreedyFlow-AdvR, two encountered nodes further exchange1255

their visiting frequencies to top frequently visited land-
marks. The amount of such information can be controlled
by limiting the number of frequently visited landmarks.
Therefore, GreedyFlow-AdvR only leads to moderate main-
tenance cost increase.1260

4.4.3. Different Memory Sizes

We further evaluate the performance of the two ad-
vanced components with different memory sizes. The re-
sults are shown in Figures 13(a), 13(b), 13(c), and 13(d).
We find that the performance relationship between GreedyFlow,1265

15

0.30

0.40

0.50

0.60

0.70

30 40 50 60 70 80

Su
cc
es
s
R
at
e

Packet Rate

GreedyFlow
GreedyFlow‐AdvC
GreedyFlow‐AdvR

(a) Success rate.

8

9

10

11

12

13

30 40 50 60 70 80
A
ve
ra
ge
 D
el
ay
 (x
10

5 s
)

Packet Rate

GreedyFlow
GreedyFlow‐AdvC
GreedyFlow‐AdvR

(b) Average delay.

6

12

18

24

30

36

30 40 50 60 70 80

Fo
rw

ar
di
ng

 C
os
t
(x
10

6)

Packet Rate

GreedyFlow
GreedyFlow‐AdvC
GreedyFlow‐AdvR

(c) Forwarding cost.

4

6

8

10

12

30 40 50 60 70 80

M
ai
nt
en

an
ce
 C
os
t
(x
10

7)

Packet Rate

GreedyFlow
GreedyFlow‐AdvC
GreedyFlow‐AdvR

(d) Maintenance cost.

Figure 12: Evaluation of advanced components with different packet rates.

0.20

0.30

0.40

0.50

0.60

100 120 140 160 180 200

Su
cc
es
s
R
at
e

Memory Size (KB)

GreedyFlow
GreedyFlow‐AdvC
GreedyFlow‐AdvR

(a) Success rate.

9.5

10.5

11.5

12.5

100 120 140 160 180 200

A
ve
ra
ge
 D
el
ay
 (x
10

5 s
)

Memory Size (KB)

GreedyFlow
GreedyFlow‐AdvC
GreedyFlow‐AdvR

(b) Average delay.

15

20

25

30

100 120 140 160 180 200

Fo
rw

ar
di
ng

 C
os
t
(x
10

6)

Memory Size (KB)

GreedyFlow
GreedyFlow‐AdvC
GreedyFlow‐AdvR

(c) Forwarding cost.

4

6

8

10

12

100 120 140 160 180 200

M
ai
nt
en

an
ce
 C
os
t
(x
10

7)

Memory Size (KB)

GreedyFlow
GreedyFlow‐AdvC
GreedyFlow‐AdvR

(d) Maintenance cost.

Figure 13: Evaluation of advanced components with different memory sizes.

GreedyFlow-AdvC, and GreedyFlow-AdvR follows the same
trend as in the test with different packet rates. On average
of all memory sizes, the two components increases the suc-
cess rate by 8% and 15%, decreases the average delay by
17000s and 22000s, reduces the forwarding cost by 440001270

and 135000, increases the maintenance cost by 114% and
32%, respectively. Such a result further demonstrates that
both advanced components can enhance the routing effi-
ciency at the cost of more maintenance cost.

Combine all above experiment results, we think the two1275

advanced components further improve the performance of
GreedyFlow by improving the consistency of local traffic
maps and by taking advantage of the node-based forward-
ing. However, the benefits come at more maintenance cost.
Therefore, they can be implemented as optional features1280

that can be enabled by the network operator based on ac-
tual needs. For example, the application that utilizes vehi-
cles to transfer data in the mountain area would require a
high routing efficiency and can tolerate more maintenance
cost, as resources on vehicles often are abundant.1285

5. Conclusion

Data transmission between different places (landmarks)
in a DTN can be used in many applications. In this pa-
per, we propose a novel algorithm, namely GreedyFlow, to
route packets between landmarks in DTNs in a fully dis-1290

tributed manner. To better utilize node mobility, GreedyFlow
forwards packets in a landmark-by-landmark manner to let
them gradually reach their destination landmarks. Each
node collects node transit frequencies between landmarks
in the area it primarily visits and uses such information to1295

build a local traffic map. A global landmark that shows
the distribution of landmarks is also built on each node
off-line. The two maps are used to greedily forward pack-
ets toward their destination landmarks. The routing effi-
ciency is further improved by two advanced components1300

that enhance the consistency of distributively maintained
local traffic maps and exploit node-based forwarding to
reduce the expected delay, respectively. Extensive real
trace driven experiments show that GreedyFlow has better
performance than state-of-art routing algorithms and can1305

achieve performance comparable to the routing algorithm
that requires the global traffic information on each node.
In the future, we plan to further enhance routing efficiency
by considering social communities in DTNs.

Acknowledgements1310

This research was supported in part by U.S. NSF grants
OAC-1724845, ACI-1719397 and CNS-1733596, Microsoft
Research Faculty Fellowship 8300751, IBM Ph.D. fellow-
ship award 2017 and the startup fund of SIU. A short
version of this paper has been published in the Proc. of1315

MASS’15 [35].

References

[1] S. Jain, K. R. Fall, R. K. Patra, Routing in a delay tolerant
network, in: Proc. of SIGCOMM, 2004.

[2] K. Fall, A delay-tolerant network architecture for challenged1320

internets, in: Proc. of SIGCOMM, 2003.
[3] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, D. Ruben-

stein, Energy-efficient computing for wildlife tracking: Design
tradeoffs and early experiences with ZebraNet, in: Proc. of
ASPLOS-X, 2002.1325

16

[4] U. Weinsberg, A. Balachandran, N. Taft, G. Iannaccone,
V. Sekar, S. Seshan, CARE: Content aware redundancy elimina-
tion for disaster communications on damaged networks, CoRR.

[5] J. Kurhinen, J. Janatuinen, Geographical routing for delay tol-
erant encounter networks, in: Proc. of ISCC, 2007.1330

[6] I. Leontiadis, C. Mascolo, GeOpps: Geographical opportunistic
routing for vehicular networks, in: Proc. of WOWMOM, 2007.

[7] J. Lebrun, C. nee Chuah, D. Ghosal, M. Zhang, Knowledge-
based opportunistic forwarding in vehicular wireless ad hoc net-
works, in: Proc. of VTC, 2005.1335

[8] Y. Cao, Z. Sun, N. Wang, M. Riaz, H. Cruickshank, X. Liu,
Geographic-based spray-and-relay (gsar): an efficient routing
scheme for dtns, IEEE Transactions on Vehicular Technology
64 (4) (2015) 1548–1564.

[9] Y. Cao, K. Wei, G. Min, J. Weng, X. Yang, Z. Sun, A geographic1340

multicopy routing scheme for dtns with heterogeneous mobility,
IEEE Systems Journal 12 (1) (2018) 790–801.

[10] K. C. Lee, M. Le, J. H01rri, M. Gerla, LOUVRE: Landmark
overlays for urban vehicular routing environments., in: Proc. of
VTC Fall, 2008.1345

[11] K. Chen, H. Shen, DTN-FLOW: Inter-landmark data flow for
high-throughput routing in DTNs., in: Proc. of IPDPS, 2013.

[12] L. Zhang, B. Yu, J. Pan, GeoMob: A mobility-aware geocast
scheme in metropolitans via taxicabs and buses., in: Proc. of
INFOCOM, 2014.1350

[13] B. Wu, H. Shen, K. Chen, Exploiting active sub-areas for multi-
copy routing in vdtns, IEEE Transactions on Vehicular Tech-
nology.

[14] L. Yan, H. Shen, K. Chen, Mobit: Distributed and congestion-
resilient trajectory-based routing for vehicular delay tolerant1355

networks, IEEE/ACM Transactions on Networking.
[15] A. Lindgren, A. Doria, O. Schelén, Probabilistic routing in in-

termittently connected networks., Mobile Computing and Com-
munications Review 7 (3).

[16] A. Balasubramanian, B. N. Levine, A. Venkataramani, DTN1360

routing as a resource allocation problem., in: Proc. of SIG-
COMM, 2007.

[17] K. Lee, Y. Yi, J. Jeong, H. Won, I. Rhee, S. Chong, Max-
Contribution: On optimal resource allocation in delay tolerant
networks., in: Proc. of INFOCOM, 2010.1365

[18] W. Gao, G. Cao, On exploiting transient contact patterns for
data forwarding in delay tolerant networks., in: Proc. of ICNP,
2010.

[19] H. Chen, W. Lou, Contact expectation based routing for delay
tolerant networks, Ad Hoc Networks 36 (2016) 244–257.1370

[20] F. Li, J. Wu, MOPS: Providing content-based service in
disruption-tolerant networks, in: Proc. of ICDCS, 2009.

[21] P. Hui, J. Crowcroft, E. Yoneki, Bubble rap: social-based for-
warding in delay tolerant networks, in: Proc. of MobiHoc, 2008.

[22] E. M. Daly, M. Haahr, Social network analysis for routing in1375

disconnected delay-tolerant MANETs, in: Proc. of MobiHoc,
2007.

[23] J. Wu, M. Xiao, L. Huang, Homing spread: Community home-
based multi-copy routing in mobile social network, in: Proc. of
INFOCOM, 2013.1380

[24] X. Zhang, G. Cao, Transient community detection and its appli-
cation to data forwarding in delay tolerant networks., in: Proc.
of ICNP, 2013.

[25] B. Ravaei, M. Sabaei, H. Pedram, S. Valaee, Community-aware
single-copy content forwarding in mobile social network, Wire-1385

less Networks (2017) 1–17.
[26] H. Zhou, V. C. Leung, C. Zhu, S. Xu, J. Fan, Predicting tempo-

ral social contact patterns for data forwarding in opportunistic
mobile networks, IEEE Transactions on Vehicular Technology
66 (11) (2017) 10372–10383.1390

[27] J. Link, D. Schmitz, K. Wehrle, GeoDTN: Geographic routing in
disruption tolerant networks, in: Proc. of GLOBECOM, 2011.

[28] A. Sidera, S. Toumpis, DTFR: A geographic routing protocol
for wireless delay tolerant networks, in: Proc. of Med-Hoc-Net,
2011.1395

[29] T. Henderson, D. Kotz, I. Abyzov, The changing usage of a

mature campus-wide wireless network, in: Proc. of MOBICOM,
2004.

[30] A. Balasubramanian, B. N. Levine, A. Venkataramani, Enhanc-
ing interactive web applications in hybrid networks, in: Proc.1400

of MOBICOM, 2008.
[31] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici,

A. Rabuffi, CRAWDAD dataset roma/taxi (v. 2014-07-17),
Downloaded from https://crawdad.org/roma/taxi/20140717

(Jul. 2014). doi:10.15783/C7QC7M.1405

[32] E. W. Dijkstra, A note on two problems in connexion with
graphs, Numerische Mathematik.

[33] Q. Yuan, I. Cardei, J. Wu, Predict and relay: an efficient routing
in disruption-tolerant networks., in: Proc. of MobiHoc, 2009.

[34] E. M. Daly, M. Haahr, Social network analysis for routing in1410

disconnected delay-tolerant MANETs, in: MobiHoc, 2007.
[35] K. Chen, H. Shen, Greedyflow: Distributed greedy packet rout-

ing between landmarks in dtns, in: Mobile Ad Hoc and Sensor
Systems (MASS), 2015 IEEE 12th International Conference on,
IEEE, 2015, pp. 199–207.1415

Kang Chen received the BS de-
gree in Electronics and Information
Engineering from Huazhong Univer-
sity of Science and Technology, China
in 2005, the MS in Communica-1420

tion and Information Systems from
the Graduate University of Chinese
Academy of Sciences, China in 2008,
and the Ph.D. in Computer Engineer-
ing from the Clemson University in1425

2014. He is currently an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering at Southern
Illinois University. His research interests include emerging
wireless networks and software defined networking.

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen received the BS1430

degree in Computer Science and Engi-
neering from Tongji University, China
in 2000, and the MS and Ph.D. de-
grees in Computer Engineering from
Wayne State University in 2004 and1435

2006, respectively. She is currently
an Associate Professor in the Depart-
ment of Computer Science at Univer-

sity of Virginia. Her research interests include distributed
computer systems and computer networks, with an em-1440

phasis on content delivery networks, mobile computing,
wireless sensor networks, cloud computing, big data and
cyber-physical systems. She is a Microsoft Faculty Fellow
of 2010, a senior member of the IEEE, and a member of
the ACM.1445

17

https://crawdad.org/roma/taxi/20140717
http://dx.doi.org/10.15783/C7QC7M

	Introduction
	Related Work
	Packet Routing between Landmarks in DTNs
	Packet Routing between Nodes in DTNs

	System Design
	Network Modeling and Design Goal
	Rationale of System Design
	Challenges
	Our Solution
	Why not Build a Global Traffic Map

	Global Landmark Map
	Local Traffic Map
	Local Traffic Map Coverage
	Local Traffic Map Construction
	Consistency of Local Traffic Maps
	Enhancing the Consistency of Local Traffic Maps

	Packet Routing in GreedyFlow
	Overview
	Selecting Temporary Destination Landmark
	Determine the Fastest Path to the Temporary Destination
	Predicting Node Mobility
	Handle Exceptions
	Summary

	Cost and Applicability Analysis
	Storage Cost
	Communication Cost
	Computing Cost
	System Applicability

	Advanced Enhancement on Packet Routing
	Maintain Visiting Frequencies
	Delay Estimation
	Switching to the Node-based Forwarding

	Performance Evaluation
	Experiment Settings
	Performance with Different Packet Rates
	Success Rate
	Average Delay
	Forwarding Cost
	Maintenance Cost

	Performance with Different Memory Sizes
	Success Rate
	Average Delay
	Forwarding Cost
	Maintenance Cost

	Evaluation of Advanced Schemes
	Settings
	Different Packet Rates
	Different Memory Sizes

	Conclusion

