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Data Collection with Accuracy-Aware
Congestion Control in Sensor Networks

Yan Zhuang, Lei Yu, Haiying Shen, William Kolodzey, Nematollah Iri, Gregori Caulfield, Shenghua He

Abstract—Data collection is a fundamental and critical function of wireless sensor networks (WSNs) for the cyber-physical systems
(CPS) to estimate the state of the physical world. However, unstable network conditions impose significant challenges in guaranteeing
the data accuracy that is essential for the reliable estimation of physical states. Without efficiently resolving congestion during data
transmission in WSNs, packet loss due to congestion can significantly degrade the data quality. Various congestion control schemes
have been proposed to address this issue. Most of them rely on reducing transmitted data samples to eliminate the congestion, which,
however, could lead to abysmally high estimation error. In this paper, we analyze the impact of congestion control on the data accuracy
and propose a Congestion-Adaptive Data Collection scheme (CADC) to efficiently resolve the congestion under the guarantee of data
accuracy. CADC mitigates congestion by adaptive lossy compression while ensuring a given overall data estimation error bound in a
distributed manner. Considering that for a CPS application different data items may have different priorities, we also propose a
weighted CADC scheme such that the data with higher priority has less distortion. We further adapt CADC to guarantee the accuracy
of specific aggregate computations. Extensive simulations demonstrate the effectiveness and efficiency of CADC.

Index Terms—Cyber-physical systems, wireless sensor networks, congestion control, data collection, data accuracy

F

1 INTRODUCTION

W IRELESS Sensor Networks (WSNs) enable the sensing
of physical phenomena in a large scale and have

been fundamental infrastructures in cyber-physical systems
(CPS), for example, for smart home/building/city [1] and
internet of vehicles [2]. The sensor nodes in a WSN sample
the physical world, such as ambient sensing signal (e.g,
lighting and temperature), and transmit the data to the
base station (or controllers) for the further analysis. This
data collection task, however, encounters various challenges
due to unstable network environment. A WSN typically
consists of hundreds to thousands of static or mobile sensor
nodes, which generate a tremendous amount of data that
need to be delivered to the base station through multi-
hop wireless transmission. The large amount of data, low-
speed and unstable wireless links and dynamic network
topology together can easily cause network congestion for
WSNs. The network congestion causes packet loss and thus
affect data accuracy and increase the state estimation error
of physical world. But in many applications it is critical
for controllers to have accurate estimation to make reliable
control decisions. Therefore, it is necessary to eliminate the
network congestion effectively and efficiently for CPS to
guarantee data accuracy.

To address the network congestion, a number of con-
gestion control schemes for WSNs have been proposed.
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Most schemes [3], [4], [5], [6], [7] [8], [9] either perform
rate control to reduce the data generation rate at source
nodes or compress the samples at the intermediate relay
nodes in a lossy way. By reducing the amount of data
to be transferred, these schemes can effectively avoid or
mitigate the network congestion. In the meantime, however,
the estimation error for the monitored physical state can
be largely increased due to the information loss during
the congestion control. These congestion control approaches
can be paradoxical with regard to the data accuracy since
they indeed try to improve the estimation accuracy in a
way that degrades data accuracy. Another type of solutions
employ redundant network resource to resolve the network
congestion [10], [11], [12]. When the congestion happens, the
network uses alternative transmission paths that are created
by unused/redundant nodes in the network, even at the
cost of more transmission hops to the destination. However,
the network resource of CPS systems is usually constrained,
which in practice may conflict with the assumptions of these
solutions, and the data accuracy is not explicitly considered
in their approaches. In this paper, we argue that the design
of a congestion control scheme should not solely aim at
the congestion avoidance and mitigation, but also need to
take into account the data accuracy, especially when given
the stringent reliability requirement and limited network
resources of CPS applications. Otherwise, the data collection
can be rendered useless due to accuracy-lossy network con-
gestion control. An ideal congestion control scheme should
work around a “sweet spot” that mitigate the congestion
while still satisfying the estimation accuracy requirement of
applications.

Therefore, a fundamental problem is how the congestion
control affects the data accuracy. As we can see from the
above discussion, understanding this problem is important
and necessary for the design of an efficient congestion
control scheme. However, the problem is not examined on
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previous works [3], [4], [5], [6], [7] for the congestion control
in WSNs. In this paper, we conduct a formal analysis on
the impact of congestion control on data accuracy. Our
numerical results demonstrate the two-sided effect of con-
gestion control on the data accuracy, manifests its cause, and
suggests that the trade-off between congestion mitigation
and data accuracy has to be considered for designing a
congestion control scheme.

Based on our analysis result, we consider the design
of a congestion control scheme that aims to mitigate the
congestion while still ensuring required data accuracy by
CPS applications. Given that nodes transmit data upwards
to the sink through a routing tree [7], we propose a
Congestion-Adaptive Data Collection scheme (CADC) with
data accuracy guarantee. In CADC, the congestion control
is conducted through lossy data compression/aggregation
to mitigate the congestion, and a CPS application specifies
the upper bound of data estimation error at the sink. During
the data collection, a maximum tolerable distortion for the
compression and a maximum tolerable error are determined
at each node, in order to finally guarantee the given esti-
mation accuracy at the sink. To reduce the data distortion
by compression, we propose to use the k-means clustering
algorithm to perform lossy data compression within the
maximum tolerable distortion bound at the nodes. When
congestion occurs, by adaptively adjusting the maximum
tolerable distortion and maximum tolerable error allowed
at sensor nodes, CADC makes best effort to achieve the
required estimation accuracy by the CPS application while
mitigating the congestion.

Besides, we also consider the different priorities of data
measurements. A CPS application may have different prior-
ities for data items in different value ranges. For example,
the safety monitoring system may be more sensitive to high
temperature readings, thus the temperature measurements
with higher values are more important and should have
lower distortion and hence compression degree. To address
this issue, we propose to extend CADC with a weighted
CADC scheme, which assigns weights to the measurements
according to their priorities and aims to minimize the
weighted estimation error. Another important issue for the
wireless sensor network is its dynamic network topology.
Because of the frequent node/link failure in a WSN or node
movement if it is a mobile sensor network, the network
topology for data dissemination is usually dynamically
maintained. Therefore, the adaptivity of congestion control
to the dynamic topology changes is an important factor for
its performance. We provide a simple but efficient solution
for CADC to handle the tree topology changes, which allows
CADC to effectively work with both static WSNs and mobile
WSNs. Furthermore, we investigate the effectiveness of our
solution to a type of aggregate functions over the collected
data, since in many scenarios the applications are interested
in the error of aggregated results instead of estimation
error of overall data. We conduct extensive simulations to
evaluate our CADC schemes in comparison with previous
schemes. Experimental results demonstrate the high effec-
tiveness and efficiency of CADC.

The rest of paper is organized as follows. Section 2
summarizes the related work. Section 3 defines our system
model, analyzes the effects of congestion control on the

data accuracy, and introduces our design objective. Section
4 presents our congestion-adaptive data collection schemes
in detail. Section 5 presents the performance evaluation of
our schemes in comparison with previous methods. Section
6 concludes this paper with remarks on our future work.

2 RELATED WORK

In this section, we present an overview of existing conges-
tion control schemes proposed for WSNs and several works
that propose to reduce data transmission rate through data
compression in WSNs.

2.1 Congestion Control in WSNs
The control congestion schemes can be classified into two
classes: centralized rate control schemes and distributed rate
control schemes. Event-to-Sink Reliable Transport (ESRT) [3]
lets the base station adjust the reporting frequency of sensor
nodes such that the required information can be obtained
with minimum energy considering one-hop communica-
tion between nodes and the base station. Bian et al. [13]
proposed a centralized rate allocation scheme that assigns
sending rates to all sensors in the routing tree based on
the wireless link characteristics. Zhou et al. [4] proposed a
source reporting rate control mechanism (PORT), which is
aware of transmission cost of the sources, and adjusts the
source reporting rates with a guarantee that the sink can
still obtain enough information. Paek et al. [5] proposed the
rate controlled reliable transport protocol (RCRT), where the
sink is responsible for congestion detection and rate alloca-
tion of sensor nodes based on AIMD (Additive Increase -
Multiplicative Decrease).

Wan et al. [6] proposed a distributed rate control scheme,
named CODA, for congestion avoidance that consists of
three key mechanisms: receiver-based congestion detection,
open-loop hop-by-hop backpressure and closed-loop multi-
source regulation. Brahma et al. [9] proposed a distributed
congestion control scheme for WSNs, where the network
is assumed to be tree structure. It adjusts the traffic in
WSNs by assigning a fair and efficient transmission rate
to each node. Specifically, the node itself decides to in-
crease or decrease the transmission rate by ”observing”
the difference between input traffic and output traffic rate.
Sergiou et al. [10] proposed a distributed hop-by-hop con-
gestion control algorithm, called Hierarchical Tree Alter-
native Path (HTAP), that resolves congestion by using al-
ternative sub-optimal transmission paths. Based on HTAP,
The authors proposed another similar but more dynamic
and lightweight scheme called Dynamic Alternative Path
Selection Protocol (DAlPaS) [11] for WSNs. It utilizes a soft-
stage technique to let each node serve only one transmis-
sion flow to reduce the buffer overflow probability and
hence the congestion probability in the network. Aghdam
et al. [8] developed a cross-layer WSN Congestion Con-
trol Protocol (WCCP) for multimedia content transmission
in WSNs based on Source Congestion Avoidance Protocol
(SCAP) and Receiver Congestion Control Protocol (RCCP).
At the source node, SCAP detects the network congestion
and avoids the congestion by adjusting the sending rate of
source node and transmission distribution of packets; at the
intermediate node, RCCP detects the congestion by monitor-
ing the queue length of intermediate node and notifies the
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source node. This work considers the traffic characteristics
and inter-arrival pattern of packets, but does not consider
the data accuracy. Chen et al. [12] proposed an exponential
weighted priority-based rate control (FEWPBRC) using the
fuzzy logical controller. The FEWPBRC scheme adjusts the
transmission rate of the children nodes according to the
output transmission rate of their parent nodes to meet the
QoS requirement while minimizing the network resource
consumption. It focuses on the multimedia application and
QoS requirement on the packet loss and delay, and thus they
consider the priority of traffic class and sensor node loca-
tion. In constract, our work focuses on the data collection
application and data accuracy requirement, and the priority
is defined based on the numerical value of sensing data.

The main issue of these existing rate control based
schemes [3], [4], [5], [6], [8], [9], [12] is that decreasing data
rate reduces the number of spatio-temporal samples but
their solutions did not consider the accuracy of the state
estimation. In this paper, we consider the congestion issue
in data collection and aim to design a congestion-adaptive
data collection scheme for WSNs with the goal to guarantee
the data accuracy. Our work is most related to [7] proposed
by Ahmadi et al. that took into account the estimation error
in the congestion control. Using least-error summarization,
their scheme eliminates congestion while incurring the least
possible overall error in sensing the physical environment.
However, the scheme in [7] is unaware of the accuracy
requirements of applications, and the data collection with
such congestion control scheme may fail to achieve the
required data accuracy. Instead, our scheme aims to ensure
the pre-specified error bound when congestion occurs.

2.2 Data Compression in WSNs
Our congestion control scheme exploits spatial data correla-
tion to effectively compress data to reduce data transmission
rate in WSNs. A lot of previous works have exploited data
correlation to compress data to reduce the data transmission
cost. Cristescu et al. [14] utilized the Slepian-Wolf coding to
compress correlated readings and addressed the problem
of finding the optimal rate allocation for each node to
minimize total data transmission cost. Silberstein et al. [15]
proposed CONCH, which exploits the spatio-temporal data
correlation to suppress unnecessary value transmissions in
continuous data collection to reduce energy cost. Luo et
al. [16] proposed to apply compressive sampling theory to
sensor data gathering to reduce global scale communication
cost. Gupta et al. [17] proposed to select a small subset
of sensor nodes that may be sufficient to reconstruct data
for the entire sensor network within a predefined error
bound. Wang et al. [18] proposed an approximate data
collection, in which the network is partitioned into clusters,
and cluster heads construct the local estimation model with
pre-specified error bounds to approximate the readings of
sensor nodes in the clusters. The sink then estimates the
data based on the model parameters sent by cluster heads.
These works focus on reducing the communication cost
and energy consumption of data transmission and do not
explicitly consider the network congestion especially data
accuracy aware congestion control. But in our paper, we
utilize data compression to adjust data transmission rate for
resolving network congestion, where the data compression

ratio is dynamically adjusted based on our congestion con-
trol decisions.

This paper is an extension of our previous conference
paper [19]. In addition to new experiment results to demon-
strate the protocol overhead for the congestion control,
we propose several extensions to our previous work: 1)
we conduct a formal analysis of the effects of congestion
control on the data accuracy. Based on the queue model,
we derive a formal relationship between the data accu-
racy and the lossy-compression based congestion control,
and numerically analyze the change of data accuracy with
varying compression efficiency under different loads; 2) we
consider how the proposed congestion control approach
guarantees the accuracy requirement of aggregate functions,
since many applications may just require the computation
of some aggregation functions over the collected data. We
propose to adapt the proposed CADC to accommodate the
accuracy requirement of such aggregate computations.

3 SYSTEM MODEL AND OBJECTIVE

3.1 System Model

We assume a WSN for data collection, in which N sensor
nodes are deployed to monitor a physical phenomenon of
the environment and periodically send their sensor readings
to a sink. Due to communication limitations of the sensor
nodes, they transmit their sensing data in a multi-hop
fashion to the sink (denoted by r), which is responsible for
collecting and processing the measurements. As shown in
Figure 1, we assume a routing tree rooted at the sink as
our network layer [20], [21], denoted by Tr . The depth of a
sensor node i is defined as the hop distance between node i
and the sink, denoted by hi,r . Node i is the ancestor of node
j if j is in the subtree rooted at i (denoted by Ti).

r

u1 u2 un

A,B,C,D

not B not A

not C

A,C,D B,C,D
not A not B

A,D C,D
not D

B,C

A D C B

(b)

u

Fig. 1. Routing tree.

To describe our scheme, we first assume that network
tree topology is fixed. We will discuss how our scheme
adapts to network topology changes in Section 4.5. Data
is forwarded along Tr to the sink. Each node periodically
sends its measured data and also forwards its received data
from children to its parent. We simply assume a reliable
wireless medium and a simple CSMA/CA based MAC pro-
tocol. Given this system model, the number of raw messages
to be delivered to the sink for any subtree is proportional to
the size of the subtrees. Congestion occurs at a node when
its data transmission rate is lower than the total data arrival
rate at it due to insufficient bottleneck resource like egress
bandwidth and link availability [7]. Our scheme is agnostic
to the nature of the bottleneck resource. One of the main
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TABLE 1
Notations

Parameter Description
Ti Subtree of the routing tree rooted at node i
r Sink node

u, ui, i Notations for sensor nodes other than the
sink

xi Data generated at sensor node i
x̂ui Value of xi reconstructed by i’s ancestor u

based on the received compressed data
eu Sum of the errors between received values of

data at sensor node u and their actual values
εu Maximum tolerable error at node u (upper

bound for eu)
du Sum of the errors between received data at

node u and their values after compression at
node u

ηu Maximum tolerable distortion of data due to
compression at node u (upper bound for du)

wi Priority coefficient of xi generated by node i

components in congestion control schemes is congestion de-
tection. For this purpose, we can use a previously proposed
congestion detection scheme [7]. That is, a node compares
its output buffer size with a threshold, and it is congested if
its buffer size is higher than a threshold.

3.2 Motivation and Objective
In this section, we analyze the effects of congestion control
on data accuracy and define our congestion control problem
for data collection with accuracy requirement.

3.2.1 The Impact of Congestion Control on Data Accuracy
The quality of collected data from wireless sensor network is
critical for the controllers to accurately estimate the state of
the monitored physical phenomenon. However, congestion
control has the two-sided influence on the data accuracy: (1)
it can reduce the data loss caused by network congestion
and thus improves the estimation accuracy, (2) the ways to
mitigate network congestion, such as reducing the source
rate at sensor nodes [3], [4], [5], [6], [13] and data aggre-
gation [7], are in the lossy manner and will increase the
estimation error.

We validate the two-sided effect of congestion control
on data accuracy through a simplified analysis based on
M/M/1/m queue model [22]. We assume the queue length
is m, service rate is µ and arrival rate is λ. The probability
of a packet being dropped, denoted by pd, is the probability
that the queue is full, that is,

pd =
ρm+1 − ρm

ρm+1 − 1
if ρ 6= 1

pd =
1

m+ 1
if ρ = 1

(1)

where ρ = λ
µ . Each packet only carries one data item.

Consider a set X consisting of n data items
x1, x2, . . . , xn that consecutively arrive at the queue. We
consider the data accuracy in two cases: without and
with congestion control respectively. For the second case,
we assume a congestion control scheme fcc that com-
presses/aggregates multiple data items to reduce the data

arrival rate in a lossy manner. The reconstructed value of
a data item xi is denoted by fcc(xi). Congestion control
through reducing sample rates at sources can be also re-
garded as this process, where multiple samples obtained at
original rate are reduced to one sample.

The packet drop causes missing data items at the re-
ceiver. Here, for simplicity, we do not assume any spatial
temporal correlation among data and thus do not consider
any sophisticated techniques to estimate the missing values.
To count the impact of the missing value on the data
accuracy, we simply replace the missing data items by the
mean of X AX = 1

n

∑n
i=1 xi.

Given that, the data accuracy is measured by the sum
of each item’s square error. In the case without congestion
control, xi is either received as it is with probability 1 − pd
or replaced by AX with probability pd. Then, the expected
error for xi, denoted by Erwoxi , and the total expected error
ErwoX without congestion control are computed as follows:

Erwoxi = pd(xi −AX)2 + (1− pd)(xi − xi)2 = pd(xi −AX)2

ErwoX = pd

n∑
i=1

(xi −AX)2

(2)

The congestion occurs when packet arrival rate exceeds
the service rate, i.e., λ > µ. The congestion control scheme
reduces λ by aggregating multiple data items into one data
item. Let λ′ be the arrival rate after aggregation and p′d
be the corresponding packet drop probability. A congestion
control scheme adjusts λ′ by varying compression ratio or
aggregation granularity to adaptively mitigate congestion,
thus, xi’s accuracy loss is correlated with λ′ and we use
fλ

′

cc (xi) to indicate that. Let gX be a group of multiple data
items that are aggregated into one packet. If the packet is re-
ceived, the total square error of gX is

∑
xi∈gx(xi−fλ

′

cc (xi))
2;

if the packet is dropped, it is
∑
xi∈gX (xi − AX)2. Then, the

expected total square error for gX and X with congestion
control are as follows:

ErwgX = (1− p′d)
∑
xi∈gx

(xi − fλ
′

cc (xi))
2 + p′d

∑
xi∈gX

(xi −AX)2

ErwX = (1− p′d)
n∑
i=1

(xi − fλ
′

cc (xi))
2 + p′d

n∑
i=1

(xi −AX)2

(3)

Based on these results, we study the impact of con-
gestion control on data accuracy in a numerical approach.
Suppose that X contains n = 100 data items randomly gen-
erated from normal distribution N(50, 100). Because fcc(xi)
depends on particular compression/aggregation methods,
we simplify |(xi − fλ

′

cc (xi)| by a lossy ratio α(1 − λ′

λ )

(λ′ < λ), that is, |(xi − fcc(xi)| = |α(1− λ′

λ )xi|. We use this
lossy ratio to simply model the fact that larger reduction
on the arrival rate indicates higher compression ratio and
higher accuracy loss. λ′ = λ represents no compression and
thus no congestion control. α depends on the capability of
compression methods. A compression method having less
accuracy loss under the same compression ratio has smaller
α. We vary α by 0.1, 0.3, and 0.5

A congestion control scheme reduces λ and thus ρ =
λ
µ to mitigate the congestion, so we evaluate the expected
total square error of X under different ρ. Initially let ρ =
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Fig. 2. Congestion control v.s. data accuracy.

2, which indicates a congestion state. Figure 2 shows our
numerical results. The horizontal dash line represents the
total square error of X when ρ = 2 without congestion
control. The other three lines shows the effect of congestion
control that reduces the data arrival rate at different degrees,
represented by ρ = λ/µ from 2 to 0.8. Different α indicates
different efficiency for their lossy compression method.

This figure demonstrates the two-sided effect of conges-
tion control. As we can see, the congestion control with the
best compression efficiency α = 0.1 is able to continuously
improve the data accuracy with decreasing ρ, although the
congestion actually remains under ρ > 1. For the congestion
control with the worst compression efficiency α = 0.5, it
cannot improve the data accuracy at all. The error becomes
significantly larger even when the congestion is mitigated
under ρ < 1. The result for the congestion control with the
compression efficiency α = 0.3 is more interesting. As we
can see, the minimum error occurs around ρ = 1.6 and
further mitigating congestion to ρ < 1 actually increases
the error. Therefore, there is a trade-off between resolving
congestion and improving data accuracy. The reason for
such trade-off is that the compression reduces the data
arrival rate in a lossy manner. Different compression effi-
ciency incurs different effects of congestion control on the
data accuracy. An efficient congestion control scheme cannot
solely depend on compression methods that are expected to
achieve high efficiency, even by exploiting spatial temporal
correlation among data, since data characteristics varies in
different applications and compression efficiency can vary a
lot.

Accordingly, the design of a congestion control scheme
in data-collection networks needs to handle the trade-off
between the data accuracy and the effectiveness of conges-
tion control such that the estimation error resulting from
collected data can be constrained into the tolerable range of
CPS applications.

3.2.2 Objective
With the above motivation, we propose the Congestion-
Adaptive Data Collection scheme (CADC), which reduces
congestion by reducing the data transmission rate with lossy
compression, while still guaranteeing the data accuracy
required by CPS applications.

In CADC, when congestion occurs at a node, to re-
duce the congestion, its children nodes reduce their data
transmission rates by lossy compression on the data to be
forwarded, which however causes data distortion. Formally,
we denote the measurement of sensor node i as xi, and

denote the value of xi reconstructed by i’s ancestor u based
on the received compressed data as x̂ui , which may not equal
to xi due to compression. We define the estimation error and
data distortion as follows:
Definition 3.1. (ESTIMATION ERROR) Estimation error

(error in short) at node u represents the sum of errors
between its received data values from its subtree Tu and
their actual values, i.e.,

eu =
∑
i∈Tu

(x̂ui − xi)2. (4)

|Tu| denotes the number of sensors in Tu.

Definition 3.2. (DATA DISTORTION) Data distortion at
node uk represents the sum of errors between its re-
ceived data values from its subtree Tukand their corre-
sponding values after compression that are sent to its
parent u, i.e.,

duk =
∑
i∈Tuk

(x̂ui − x̂
uk
i )2. (5)

The data accuracy requirement of a CPS application is
characterized by the maximum tolerable estimation error at
the sink node r, denoted by εr .
Objective: Our objective is to avoid congestion while ensur-
ing that the resulting estimation error at sink r, denoted by
er , is less than εr , i.e., er ≤ εr .

4 CONGESTION-ADAPTIVE DATA COLLECTION
WITH ACCURACY GUARANTEE

In this section, we first provide the overview of our scheme
CADC and use an example to explain the idea of its design.
Then, we introduce the details of CADC through Section
4.2 to Section 4.4. In Section 4.5 and 4.6, we adapt CADC
with the consideration of dynamic network topology and
the error bound for aggregate results of sensor data.

4.1 CADC Scheme Overview
Before introducing the proposed CADC scheme, we first
simply explain the rationale behind the design of CADC
by a toy example in Figure 3.

Figure 3 shows the data transmission from two child
nodes u1 and u2 to their parent v. We assume a data
compression scheme like data summarization [7] is used
to avoid the congestion and in such context each data
sample to transmit is a tuple (value, count), where the first
is the data value and the second is the number of raw
sensing readings being summarized and represented by this
sample. Suppose that during a time slot node u1 sends a
set of data {1, 4, 7} and u2 sends {2, 3} to v, and each
data item has count = 1. Node v has remaining buffer
space to accommodate four samples and no samples are
removed from the queue during this time slot. To avoid
the congestion as well as the tail drop at v, the child nodes
need to reduce their data transmission rates through data
compression. As in [7], the data summarization compression
here computes the average of consecutive pairs of values.
The table in the figure shows two different compression
choices: (1) node u1 summarizes data items (1,1) and (4,1) to
(2.5,2); or (2) node u2 summarizes data items (2,1) and (3,1)



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853159, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2017 6

v

au1 u2

v

{1,4,7} {2,3}

compression Distortion 
at u1

Distortion 
at u2

estimation error 
at v

{(1,1),(4,1)}->(2.5, 2) 4.5 0 4.5

{(2,1),(3,1)}->(2.5, 2) 0 0.5 0.5

Fig. 3. An example to show the rationale behind the design.

to (2.5,2). Both of them can avoid the congestion at node
v to the same extent (i.e., the queue length is increased by
four samples). However, as shown in the table, they incur
different data distortion and thus different estimation error
at v. Suppose that a CPS application receives data from node
v and has accuracy requirement that is represented by the
upper bound to the estimation error. If this bound is no
less than 4.5, both of compression choices are acceptable;
but the bound is less than 4.5 but no less than 0.5, only the
compression at node u2 satisfies the accuracy requirement.

This example indicates that the congestion control deci-
sion has to be aware of data accuracy. Different congestion
control solutions that even can mitigate the congestion sta-
tus at the same level of efficiency may lead to different data
accuracy. The congestion control mechanisms that make de-
cisions only based on the congestion status are not suitable
for the applications with data accuracy requirements. There-
fore, our CADC scheme attempts to enable a node that faces
congestion to dynamically guide the rate reduction of the
nodes at the lower layers for congestion control according
to its data accuracy goal. Suppose that node v has the
upper bound 0.5 for the estimation error in Figure 3. Within
CADC, v predicts the data distortion allowed at u1 and
u2 respectively, and based on that, u1 and u2 reduce their
data transmission rates by data compression to mitigate the
congestion at v. With allowing the data distortion 0 and 0.5
at u1 and u2 respectively, v can resolve its congestion status
and also satisfy its error bound.

To achieve the objective stated above, CADC introduces
two parameters for each node u, maximum tolerable error (εu)
and maximum tolerable distortion (ηu). εu and ηu are the upper
bounds for estimation error eu and data distortion du at
node u (defined by Definitions 3.1 and 3.2), respectively.
That is,

eu ≤ εu, du ≤ ηu. (6)

Consider a node u and its children u1, . . . , un in the rout-
ing tree (Figure 1). In CADC, node u uses εu to determine
ηuk of each of its children (uk). Node uk compresses its
data based on ηuk to reduce its data transmission rate for
congestion control. The value of ηuk for each child ensures
eu ≤ εu. Finally, the estimation error at the sink is no more
than the fixed maximum tolerable estimation error at the
sink (er ≤ εr), which means that CADC helps to satisfy the
constraint of the desired data accuracy of CPS applications.

CADC dynamically and distributedly determines proper
values of maximum tolerable error (εu) and maximum toler-
able distortion (ηu) for every node u based on the network
status and a given εr . During data collection, CADC first
determines the initial values of εu and ηu for each node
u, and then dynamically updates them based on the cur-
rent network congestion status and reduce the congestion

accordingly. If a node u is congested, it asks each child ui
to transmit data in a lower rate to avoid congestion through
data compression. But if the data compression with such
a lower rate incurs data distortion larger than ηui , node u
attempts to increase ηui to accommodate such compression
without violating the constraint of maximum tolerable error
εu. Only if there is no way to achieve the desired ηui while
satisfy εu, u requests its parent to update εu. Such parameter
update could repeat along the path to the sink to try to
make the error at the sink less than the given error bound
εr . As this error bound is fixed by the application, such case
indicates that the overall system is highly congested and
er ≤ εr cannot be satisfied in any way. Then, the sink will
inform the applications of the off-specification of data.

In the following, we present the details of CADC.
• Given εr , how to determine the maximum tolerable

error (εu) and distortion (ηu) for every node u to realize
our objective (Section 5.2.1)?

• How can a node compress its data based on its ηuk
while minimizing the data distortion (Section 4.3)?

• How to conduct congestion control and update εu and
ηu to achieve our objective in dynamic network status
(Section 4.4)?

• How to adapt to the dynamic network topology (Sec-
tion 4.5)?

• How to guarantee the accuracy of the aggregate func-
tions with CADC (Section 4.6)?

4.2 Determination of Maximum Tolerable Error and Dis-
tortion
As we can see, in CADC, a fundamental problem is: Given
maximum tolerable error εu at any node u and current network
status, how to determine maximum tolerable errors (εuk ) and
maximum tolerable distortions (ηuk ) for u’s children, u1, ..., un,
such that eu ≤ εu. After the problem solution is found, given
a εr on the sink, the (εu, ηu) of each of its children u can
be determined. Then, the (εuk , ηuk ) of each of u’s children
are determined and so on. Finally, the (εi, ηi) of each node
i are determined in the top-bottom manner to achieve our
objective. In this section, we address this problem in two
cases:
• Non-priority case, in which all of the sensor measure-

ments are equally important for an application (Sec-
tion 4.2.1).

• Priority case, in which the measurements have different
priorities (Section 4.2.2).

4.2.1 Non-Priority Case
The estimation error eu at node u equals the accumulated
errors from each of its children u1, ..., uk, ...un:

eu =
∑
i∈Tu

(x̂ui − xi)2

=
∑
i∈Tu1

(x̂ui − xi)2 + ...+
∑
i∈Tun

(x̂ui − xi)2

The error contribution of child uk, denoted by cuk , equals∑
i∈Tuk

(x̂ui − xi)
2. Based on the definition of cuk , we use

Cauchy-Schwartz inequality to get:

cuk =
∑
i∈Tuk

(x̂ui − xi)2
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=
∑
i∈Tuk

((x̂ui − x̂
uk
i ) + (x̂uki − xi))

2

=
∑
i∈Tuk

(x̂ui − x̂
uk
i )2 +

∑
i∈Tuk

(x̂uki − xi)
2

+ 2
∑
i∈Tuk

(x̂ui − x̂
uk
i )(x̂uki − xi)

≤
∑
i∈Tuk

(x̂ui − x̂
uk
i )2 +

∑
i∈Tuk

(x̂uki − xi)
2

+ 2
√ ∑
i∈Tuk

(x̂ui − x̂
uk
i )2.

∑
i∈Tuk

(x̂uki − xi)2

= duk + euk + 2
√
duk · euk (7)

where euk is the estimation error at child uk and duk is data
distortion due to data compression of uk.

As the maximum tolerable error (εuk ) and maximum tol-
erable distortion (ηuk ) are the upper bounds of euk and duk ,
respectively, we define maximum tolerable error contribution
of uk:

cmuk = ηuk + εuk + 2
√
ηuk · εuk . (8)

To guarantee eu =
∑

uk:ukis child of u
cuk ≤ εu, the determi-

nation of ηuk and εuk needs to ensure∑
uk:ukis child of u

cmuk ≤ εu ⇒
∑
uk

(ηuk+εuk+2
√
ηuk · εuk) ≤ εu

(9)
In this way, since duk ≤ ηuk and euk ≤ εuk , we can achieve
that eu =

∑
uk
cuk ≤ εu. As a result, Formula (9) gives

the principle to initialize and update parameters (εu, ηu) for
each node u. We present the parameter initialization below,
and present the parameter update in CADC’s congestion
control in Section 4.4.
Initialization of εuk and ηuk : With a priori knowledge
of network congestion status, we can properly initialize the
maximum tolerable error and distortion (εuk , ηuk ) for each
node uk. In the rooting tree for data collection, a subtree
with a larger size tend to suffer more congestions because
it needs to forward a larger amount of data to the sink. As
a result, a larger subtree may introduce higher estimation
error into the data to the upper node due to CADC’s lossy
compression. Thus, the root of a larger subtree needs a larger
maximum tolerable error to allow more data compression
within the subtree to mitigate the congestions. Based on
this rationale, node u initializes the (εuk , ηuk ) for each of
its children uk according to the size of each child’s subtree.

Based on Formula (9), to guarantee eu ≤ εu, we let

ηuk + εuk + 2
√
ηuk · εuk = αkεu (0 < αk < 1) (10)

where
∑
k=1,...,n αk = 1 such that

eu ≤
∑
uk

(ηuk + εuk + 2
√
ηuk · εuk) =

∑
k=1,...,n

αkεu = εu.

(11)
We choose αk by

αk =
|Tuk |∑

k=1,...,n |Tuk |
(12)

where |Tuk | is the size of subtree Tuk , such that any node
with a larger subtree size can have a higher maximum

tolerable error. To find subtree sizes |Tuk | in Equation (12),
we use the same procedure as in [20]. Particularly, each
sensor node sends its subtree size in its packet header. Each
parent node sums up subtree sizes of its children and adds
one to it to find its own subtree size, with subtree size of leaf
nodes being 1.

After αk (hence αkεu) is determined, based on Equa-
tion (12), node u needs to determine ηuk and εuk to satisfy
Equation (10). In order to maximize the estimation accuracy,
we let every node send raw data without data compression
initially, i.e., ηuk = 0. Later on, CADC adjusts ηuk to avoid
congestion when it occurs. With ηuk = 0 initially, from
Formula (10), we have εuk = αkεu. In CADC’s congestion
control (Section 4.4), when congestion occurs at node u, if
eu ≤ εu still can be satisfied by data compression for conges-
tion control, ηu does not need to update and only ηuk needs
to update. Therefore, setting εuk to the possible maximum
value (εuk = αkεu) can avoid frequent updates later on. As
a result, we find a solution for the problem indicated at the
beginning of this section. Using this solution, given a εr at
the sink, CADC can determine the (εu, ηu) of each node in
the system in the top-down matter to guarantee er ≤ εr .

4.2.2 Priority Case

In this section, we consider the scenario in which the data
has different priorities. For example, for a fire detection
or cooling application, high temperature values, which
may indicate abnormality, have higher priority than low
temperature values. High-priority data should suffer less
distortion, so that the event can be more accurately modeled
and quickly detected. We use priority coefficients to show the
importance degree of different data items. We assume that
the priority coefficient is a function of data value, which is
known to all sensor nodes. Approximate values will have
the same or close priority coefficients. Then, when a sensor
receives a data value, it determines its priority coefficient
based on the priority function and the data value. We need
to determine maximum tolerable error and distortion with
the goal that the higher-priority data has less estimation
error in order to achieve more accurate state estimation for
CPS control. If priority coefficients are equal for all data, the
problem is reduced to the previous non-priority case.

We define weighted estimation error and weighted data
distortion below with the consideration of data priority.

ewu =
∑
i∈Tu wi(x̂

u
i − xi)2, (13)

dwuk =
∑
i∈Tuk

wi(x̂
u
i − x̂

uk
i )2, (14)

where xi denotes the data measured by node i with priority
wi, x̂ui denotes the value of xi received by node u, and uk is a
child of u. Accordingly, we define weighted error contribution
of u’s child node uk as
cwuk =

∑
i∈Tuk

wi(x̂
u
i − xi)2. Similarly, we have

cwuk =
∑
i∈Tuk

wi((x̂
u
i − x̂

uk
i ) + (x̂uki − xi))

2

=
∑
i∈Tuk

wi(x̂
u
i − x̂

uk
i )2 +

∑
i∈Tuk

wi(x̂
uk
i − xi)

2

+ 2
∑
i∈Tuk

wi(x̂
u
i − x̂

uk
i )(x̂uki − xi)
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≤
∑
i∈Tuk

wi((x̂
u
i − x̂

uk
i )2 +

∑
i∈Tuk

wi(x̂
uk
i − xi)

2

+ 2.
√ ∑
i∈Tuk

wi(x̂ui − x̂
uk
i )2

∑
i∈Tuk

wi(x̂
uk
i − xi)2

= dwuk + ewuk + 2
√
dwuk · ewuk (15)

Equation (15) is derived with the assumption that the
priority coefficient of data xi at parent u and child uk
remains the same in CADC. This is reasonable because
the compression method in CADC (Section 4.3) constrains
the distortion of data in compression, and the data will
most likely have the same or close priority coefficient after
compression, which is confirmed in our experiments in
Section 5. As we can see from Formula (15), it has the same
form as the non-priority case. Thus, in the priority case, we
can use the same principle for determining the (weighted)
maximum tolerable error and distortion, and choose the
same initial values.

4.3 Data Compression

To reduce the congestion, the nodes compress the received
data based on their maximum tolerable distortion (ηu) be-
fore transmitting the data to their parents. Sensor readings
may be redundant because nodes in the same neighborhood
can have approximate readings in WSNs. Unlike the pre-
vious compression methods that do not focus on minimiz-
ing data distortion in compression, our data compression
scheme aims to select most representative data samples
that minimize the data distortion. Accordingly, we use
the k-means clustering algorithm (k-means in short) [23] for
data compression. Given a set of data points V in real d-
dimensional space Rd and an integer k, k-means clustering
is to partition the points into k clusters; each with a center
(i.e., cluster head) not necessarily belonging to the set of
points, with the goal of minimizing the mean squared
distances of each point to its nearest cluster head. Formally,
it is to minimize

C(V ) =
∑
x∈V

(x− c(x))2, (16)

where C(V ) is the cost of clustering and c(x) is the center
of the cluster that data x belongs to. C(V ) actually reflects
the data distortion.

Thus, in CADC, to compress the data, a node conducts
the k-means clustering on its received and generated data
and sends the values of cluster heads and correspond-
ing cluster sizes to its parent. CADC represents data in
the form of tuples < (v1, n1), . . . , (vi, ni), . . . , (vm, nm) >,
where vi is the sample value, and ni is the number of
sensor readings (each from a sensor node) with value vi.
n = 1 if the data represents a single sensor reading.
For example, if a node receives a set of sensor readings
{(3, 1), (4, 1), (6, 1), (8, 1), (10, 1), (12, 1)} from 6 nodes,
with 2-means clustering, this dataset is partitioned to two
clusters {3, 4, 6} and {8, 10, 12}, with centers equal to 4.33
and 10, respectively. Then, the compressed dataset is repre-
sented by {(4.33, 3), (10, 3)}.

In order to apply the k-means clustering method to the
priority case, we modify the cost function C(V ) for k-means

clustering to

C(V ) =
∑
x∈V

w(x)(x− c(x))2, (17)

where w(x) is the priority coefficient of data x. Thus, data
with higher priority will have less distortion.

In the congestion control (Section 4.4), CADC uses the
k-means clustering algorithm for data compression through
two methods under the constraint that the data distortion
after compression (i.e., cost of clustering) C(V ) is less than
a given bound. In the first method, a node needs to reduce
the available data into k samples with a given value of k.
For this purpose, we can directly use an existing k-means
clustering algorithm such as Lloyd’s algorithm [23]. In the
second method, a node needs to find minimum k for data
compression. For this purpose, we can simply enumerate
all possible values of k from 1 to the total number of data
points. For each value of k, we use Lloyd’s algorithm to
find k clusters and the cost of clustering. Once the cost
of clustering becomes no more than the given bound, the
algorithm returns current k and cluster heads.

4.4 Congestion Control
In this section, we introduce the procedure of congestion
control in CADC, including adaptive adjustments of the
maximum tolerable error and distortion (εu, ηu), and the
corresponding congestion control. A diagram of our CADC
approach is given in Figure 4 and Figure 5 shows the
overview of CADC algorithm. CADC involves three pro-
cedures: (1) for any node u, the congestion is detected by
comparing the data arrival rate rinu and output transmission
rate rou; (2) if the congestion is detected, CADC performs
the congestion management to resolve congestion; (3) in
the meanwhile, the data accuracy compliance is checked
to ensure that the accuracy requirement are not violated.
CADC involves distributed coordination between the child
nodes and parent node. Basically, for any congested node
u, u asks its children to reduce their transmission rate by a
certain factor and at the same time checks the data distortion
due to compression and adjust the tolerable error bound
when necessary to guarantee the accuracy requirement at
the base station. The details are presented in the following.

4.4.1 Congestion Control Algorithm
Consider an arbitrary node u and its children u1, ..., un
with maximum tolerable error and distortion, εui and ηui
(i = 1, ..., n) for each child respectively. When node u
is congested, u attempts to reduce its input data arrival
rate rinu to less than its output transmission rate rou to
avoid the congestion, by asking its children to reduce their
transmission rates through data compression. Node u first
computes the ratio of rinu to rou, rinu

rou
, and then sends a

congestion notification with this ratio to each of its children.
Since rinu is the sum of data transmission rates of all u’s
children, decreasing each child’s current transmission rate
by a factor of at least rinu

rou
can reduce rinu to less than rou.

When rinu becomes less than rou, node u’s buffer size will
decrease and the congestion can be resolved finally.

The data compression ratio is defined as the ratio of the
number of compressed samples to the number of available
data tuples to be transferred. The data compression ratio is 1
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Fig. 4. The diagram of CADC
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Fig. 5. CADC congestion control algorithm.

if the node sends data without compression. After receiving
the congestion notification from u, each child decreases
its current data compression ratio by a factor of rinu /r

o
u.

Suppose the set of all available data tuples to be forwarded
at node ui is < (v1, n1), . . . , (vi, ni), . . . , (vm, nm) > (fol-
lowing the notation in Section 4.3). Let Ni =

∑m
j=1 nj ,

which denotes the total number of sensor readings repre-
sented by this set. Node ui compresses data in compress
ratio γi by using the k-means clustering with k = Niγi
(as shown in Section 4.3). The data compression with γi
will cause data distortion (denoted by dγi ) that can be
calculated by Formulas (16) and (17) in the non-priority
and priority cases, respectively. Recall that to ensure the
estimator error not larger than the maximum tolerable error
at the sink, i.e., er ≤ εr, the node ui needs to ensure
maximum tolerable distortion ηui that is defined over all
data readings generated by the sensor nodes in its subtree
Tui . To this end, node ui needs to compress data with
distortion not exceeding Ni

ηui
|Tui |

. This bound is derived
as follows: ηui is the maximum tolerable distortion for all
sensor data from the subtree Tui , and accordingly ηui

|Tui |
is

the average maximum distortion allowed for each sensor
reading from nodes in the subtree; Since the set of data to
be forwarded represents Ni readings from the subtree, the
total distortion allowed for this set should be Ni

ηui
|Tui |

. Then,

if dγi ≤ Ni
ηui
|Tui |

, ui just sends the compressed samples to the

parent. If dγi > Ni
ηui
|Tui |

, which means that the compression
ratio required to reduce the congestion cannot satisfy the
distortion constraint hence er ≤ εr , the parameters (εu,
ηu) for congestion control then must be updated. Next, we
explain how to update parameters to ensure er ≤ εr while
reduce congestion in this case.

4.4.2 Congestion parameter update

When dγi > Ni
ηui
|Tui |

, node ui tries to compress data as much
as possible with data distortion not exceeding data distor-
tion constraint Ni

ηui
|Tui |

by finding the minimum number of
cluster heads for k-means clustering under the constraint
(Section 4.3). This data compression makes data distortion
smaller than dγi , so the compression ratio is still larger than
γi required to avoid congestion. Such data compression can
mitigate congestion but cannot eliminate it. In order to avoid
the subsequent congestions, i.e., to achieve γi, ui requests
its parent to increase its maximum tolerable distortion (ηui )
such that dγi ≤ Ni

ηui
|Tui |

. In this case, ηui ≥ dγi
|Tui |
Ni

.
To avoid frequent such requests and parameter updates,

ηui can be set to the historically largest value. Thus, we let
each node maintain two parameters: maximum necessary
distortion (η∗ui ) and maximum necessary error (ε∗ui ). η

∗
ui

keeps track of the maximum distortion required to remove
congestion within a fixed time window. If no congestion
occurs in a time window, η∗ui = 0. ε∗ui is derived based on
Formula (7) based on η∗ui . Given dγi , node ui computes its
η∗ui and ε∗ui as follows:

η∗ui(tγi) = max
tγi−w≤t≤tγi

{η∗ui(t), dγi
|Tui |
Ni
} (18)

ε∗ui =
∑
uik

(η∗uik
+ ε∗uik

+ 2
√
η∗uik
× ε∗uik ) (19)

where tγi is the current time, w is the time window, and
η∗uik

+ ε∗uik
+ 2

√
η∗uik
× ε∗uik is the upper bound of uik ’s

error contribution cuik according to Formula (7).
Node ui asks its parent u to update its ηui and εui to η∗ui

and ε∗ui , respectively, such that the desired data compression
ratio γi can be achieved to avoid congestion. At node u, the
parameters (εui , ηui ) always need to satisfy Formula (9) in
order to ensure eu ≤ εu, that is,∑
uk:ukis child of u

(ηuk+εuk+2
√
ηuk · εuk) ≤ εu ⇒

∑
uk

cmuk ≤ εu

However, the increase of (ηui , εui ) to (η∗ui , ε
∗
ui ) may

violate Formula (9). Note that though u’s other children
are assigned (εuk , ηuk ) hence maximum tolerable error
contribution (cmuk ), they may generate no or a little error
if they experience no or little congestion, i.e., (η∗uk , ε∗uk )
are 0 or small values. Thus, node u can reduce the cmuk
of uncongested children and increase the cmuk of congested
children to satisfy Formula (9). Accordingly, node u first
attempts to change (εuk , ηuk ) to (η∗ui , ε

∗
ui ) for each of its

children. It then calculates its ε∗u based on updated η∗uk and
ε∗uk by Equation (19), and then compare ε∗u and εu to decide
the next step as follows:

(1) If ε∗u ≤ εu, it means that updating each child uk’s
parameters with εuk = ε∗uk and ηuk = η∗uk can guarantee
Formula (9), because

εu ≥ ε∗u
=

∑
uk:ukis child of u

(η∗uk + ε∗uk + 2
√
η∗uk × ε∗uk)

=
∑

uk:ukis child of u

(ηuk + εuk + 2
√
ηuk × εuk).

(20)
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Therefore, u then updates each child uk’s parameters
with εuk = ε∗uk and ηuk = η∗uk Consequently, node ui has
ηui = η∗ui , allowing the data compression with ratio γi at ui.

(2) If ε∗u > εu, it is obvious that the previous updating
solution cannot guarantee Formula (9). Thus, node u at-
tempts to update each child uk’s parameters with εuk = ε∗uk
and ηuk = η∗uk , by requesting its parent node u′ to assign
ε∗u as u’s maximum tolerable error (εu) so that Formula
(9) can be satisfied. Node u′ updates maximum tolerable
distortion and error of its children in the same way of u
updating parameters of u’s children by considering two
cases ε∗u′ ≤ εu′ and ε∗u′ > εu′ . If ε∗u′ > εu′ , u′ will further
request update from its parent node. This process can repeat
along the path towards the sink until reaching either a
node that successfully reassigns these parameters for all its
children, or the sink. If the request reaches the sink, the sink
informs its application of the lower data accuracy than the
specified value.

After congested node u’s children decrease their com-
pression ratios to reduce their transmission rates, the input
data arrival rate to u starts to decrease until it is not
congested anymore. Once the congestion is eliminated, node
u notifies its children that it is not congested anymore and
they can increase their compression ratios. However, in
order to avoid oscillation, children do not abruptly increase
their compression ratio to 1 (which means no compression).
Instead, a node can gradually increase its compression ratio
by γi(t+ 1) = γi(t) + ρ times, where ρ is a constant value.

4.5 Adaptivity to Dynamic Network Topology

The setting of maximum tolerable errors and distortions (εu,
ηu) in CADC depends on the topology of the routing tree.
However, since the routing tree can dynamically change
because of common failures of nodes and links in WSNs,
CADC needs to adaptively adjust the parameters of (εu, ηu).

To handle the failures of nodes or links, the routing tree
is rebuilt, in which some nodes leave a subtree and join
in another subtree along with the subtrees rooted at them.
Suppose that node u leaves original parent u′ and chooses
another node u′′ as its new parent because the failure of u′

or the link between u and u′. CADC lets the setting of (εuk ,
ηuk ) remain the same for all nodes in u’s subtree Tu. In order
to have the same maximum tolerable error at node u in the
new subtree Tu′′ , based on Equation (9), u′′ needs to increase
its maximum tolerable error to εu′′ + εu + ηu + 2

√
εu.ηu.

Thus, u′′ requests update from its parent, following the
same updating procedure in Section 4.4.

4.6 Accuracy for Aggregate Functions

In CADC, we measure the estimation error by the sum
of square error over all the data items as represented by
Formula (3.1). The CPS applications need to specify the
maximum tolerable estimation error over the whole data set
where each data is from a sensor node. However, instead
of the total square error over the sensor measurements
received at the sink, many applications may be more in-
terested in the accuracy guarantee of computation results of
some types of functions, like sum, average and maximum,
which are computed over all the data. We refer to such
a function f : S → R that is computed over a set of

data S and the value is a real number, as an instance of
aggregate function. This means that the definition of the
maximum tolerable estimation error and data distortion in
CADC can be adapted to address the accuracy requirement
of the computation of aggregate functions over the collected
sensor data.

In this section, we adapt CADC to guarantee the data
accuracy for the computation results of a specific type of
aggregate functions which we call them linear decomposable
functions. We assume the domain of a sensor measurement
is X . Let fn : Xn → Y be the function of interest, where
n is the number of sensor nodes in the WSN, and Y is the
domain of output; for our application we can assume it is
R. We use f(·) instead of fn(·) for simplicity. Denote [n] =
{1, ..., n} and let S = {i1, ..., ik} ⊂ [n] where i1 < i2 < ... <
ik. Given x ∈ Xn, we denote xS = [xi1 , xi2 , ..., xik ] where
each xi is a data sample from sensor node i.

Definition 4.1. A function f : Xn → Y is linearly decompos-
able if there exist coefficients ai ∈ R (1 ≤ i ≤ k) such
that for any x ∈ Xn and partition Π(S) = {S1, ..., Sk} of
S ⊂ [n] we have:

f(xS) = a1f(xS1) + a2f(xS2) + ...+ akf(xSk)

Example: Average of measurements is linearly decompos-
able with f(xSi) =

∑
j∈Si

xj
|Si| and ai = |Si|∑

i |Si|
.

It can be shown that the bound for the sum of square
error

∑n
i=1(xi − x̂i)

2 cannot guarantee the accuracy of
such type of aggregation functions. Consider f(xS) =∑n
i=1 aif(xi),

∑n
i=1(xi − x̂i)

2 cannot provide an error
bound for |f(xS) − f(x̂S)|2 = (

∑n
i=1 ai(f(xi)− f(x̂i)))

2.
In order to bound the error, we use the following Inequality

b21 + b22 + · · ·+ b2n ≥
(b1 + b2 + · · ·+ bn)2

n

and we can get(
n∑
i=1

ai(f(xi)− f(x̂i))

)2

≤ n
(

n∑
i=1

a2i (f(xi)− f(x̂i))
2

)
Based on that, suppose

∑n
i=1 a

2
i (f(xi) − f(x̂i))

2 ≤ ε,
then |f(xS)− f(x̂S)|2 ≤ nε. Therefore, CADC can be easily
adapted to work with data accuracy requirement for such
type of aggregation functions, by applying f(·) to sensor
sample xi first and replacing (4) and (5) with

eu =
∑
i∈Tu

a2i (f(x̂ui )− f(xi))
2. (21)

duk =
∑
i∈Tuk

a2i (f(x̂ui )− f(x̂uki ))2. (22)

We can go through the same procedure as in Section 4.2
with replacing the data sample xi or its estimation x̂i with
aif(xi) and aif(x̂i) respectively. For data compression at
a node, we use the same compression method in Section
4.3 but over the data aif(xi). With setting the maximum
tolerable error ε for er at the sink (defined by (21)) in CADC,
the CPS application can have the accuracy guarantee for
the aggregation function, i.e., |f(xTr ) − f(x̂Tr )| ≤

√
Nε

where Tr represents the set of all sensor nodes and N is
the total number of sensor nodes. This means that CADC
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can be guided by the accuracy requirements of different
computation tasks at the sink.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of CADC
in the non-priority and priority cases through simulations
in comparison with previous schemes. In particular, we
measured the estimation error incurred at the sink, data
delivery ratio and the network overhead under different
network conditions. Data delivery ratio is measured by the
percentage of nodes whose sensor readings are received by
the sink (i.e., represented by compressed samples received
by the sink). Network overhead is measured by the total
number of packet (i.e., data tuple) transmissions of all nodes
in a round of data collection, in which each node generates
one sensor reading. We compared CADC with the following
data collection schemes with congestion control, which do
not have maximum error bound at the sink.

(1) Spatio-Temporal data collection (ST) [7]. It uses adaptive
summarization as a compression scheme to mitigate conges-
tion while aims to minimize the estimation error. Assume
node uk has m data values. The first level summarization
uses every two consecutive values to obtain m

2 samples.
Continuing this process yields k-th summarization, which
computes the average of every 2k consecutive values to
obtain

⌈
m
2k

⌉
samples.

(2) Spatio-Temporal data collection with sorted adaptive sum-
marization (ST-SortAdpSum). It is a variant of ST with sorting
available data at each node before performing adaptive
summarization. It is easy to see that under the same data
distortion constraint, sorted adaptive summarization leads
to fewer samples (i.e. higher compression) and consequently
a lower transmission rate.

(3) ESRT [3]. It is a rate based congestion control scheme,
which mitigates the congestion by adjusting the reporting
rate of sensor nodes.

(4) Pure congestion elimination (PureElimination). It is a
congestion control scheme, which just uses lossy compres-
sion to mitigate congestion. In particular, we let it use the
adaptive summarization method to compress data to the
extent that can eliminate congestion.

5.1 Experimental Setup
We implemented the above four schemes in the simulation,
which operate on the same routing tree in order to perform
comparable experiments. The simulation constructs a ran-
dom routing tree for the WSN with average 4 children for
each node. The size of Rx and Tx buffer for senor nodes
are 15 and 10 data samples respectively. The sensor reading
for each node is randomly generated following a Gaussian
distribution [24], [25] with mean µ = 50 and variance
σ2 = 5. In the priority case, the value of sensor readings
decides the priority coefficient. The entire range of sensor
readings is divided into several ranges, e.g., (−∞, µ/5),
[µ/5, µ/4), [µ/4, µ/3),. . ., [µ/2, µ/1), [µ, 2µ), [2µ, 3µ), . . .,
[4µ, 5µ), [5µ,+∞). Each is associated with a priority coef-
ficient in {20, 30, 40, 50, 60, 70, 80, 90, 100} respectively. We
assume that there is no non-congestion-induced loss for all
links to emulate a reliable wireless medium and CSMA/CA.
The measurement results for each scheme are the average
values over 100 runs.

5.2 Validity of CADC
In this simulation, the network size is set to 800. At the
default, the maximum tolerable error at the sink is set
to 2000; otherwise, it varies from 500 to 6500 with 500
increase in each step. The time window size w in (18) is
set as constant 30 for simplicity, because that when we
vary the network size, we actually affect the frequency of
network congestion and equivalently changes the number
of historical records that a window size can hold. Besides,
the CADC scheme is evaluated across various network sizes
in {100, 200, 400, 600, 800, 1000}. In the evaluation, the k-
means clustering and adaptive summarization method are
used as the compression schemes, which are referred as
CADC-k-means and CADC-AdpSum, respectively. More-
over, CADC is also evaluated in both the non-priority (using
the suffix ’-N’) and priority cases (using the suffix ’-P’).

5.2.1 Estimation Error Incurred At the Sink
We first verify the validity of CADC for achieving our
primary objective to keep estimation error at the sink be-
low the given assigned maximum tolerable error. Figure
6(a) shows the error incurred at the sink (er) versus the
maximum tolerable estimation error at the sink (εr) for dif-
ferent CADC methods. We see that in both the non-priority
and priority cases, the error incurred at the sink is lower
than the maximum tolerable error. Also, as the maximum
tolerable error increases, the incurred error increases. Figure
6(a) also demonstrates that in either priority case or non-
priority case, the k-means compression method incurs less
error compared with the adaptive summarization method.
The reason of k-means is that for a given compression
ratio, k-means scheme finds the best representative data
points among the data set by clustering, which leads to
less information loss but at higher computation cost. Note
for each data point in the figure that is the average of 100
experiments, its standard deviation ranges from 14.4 to 61.8
which mostly is two orders of magnitude smaller than the
corresponding data point.
5.2.2 Data Delivery Ratio and Network Overhead
Due to network congestion, packets carrying data tuples
may be dropped and the sensor readings they represent
are lost in the transmission. The effectiveness of congestion
control is indicated by the delivery ratio of sensor readings.
A sensor reading is delivered as long as it can be represented
by the data received at the sink. We are also interested in the
total number of packets that are actually transmitted in the
network, indicating the network overhead of data collection.
Figure 6(b) depicts the relationship between data delivery
ratio and the maximum tolerable error at the sink (εr).
The increasing εr indicates the higher compression ratio for
each node in CADC scheme, which mitigates the congestion
and thus reduces the number of missing sensor readings
caused by congestion. Therefore, data delivery ratio goes
up gradually with εr. Figure 6(c) shows that the network
overhead descreases with εr ,which is because that higher
compression ratio leads to smaller number of total packets
transmitted in the network. In terms of priority and non-
priority cases, as shown in the two figures, the priority case
has less delivery ratio and higher network overhead than
non-priority case, because more data packets are transmit-
ted in the priority case under weighted estimation error
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Fig. 7. Performance vs. the number of nodes.

given the same maximum tolerable error and thus more data
packets are dropped due to congestion. Furthermore, Figure
6(b) and 6(c) also demonstrate that k-means has a higher
data delivery ratio and a lower network overhead than
adaptive summarization in both non-priority and priority
cases. This is because k-means is able to achieve higher
compression ratio than adaptive summarization under the
same distortion bound.

Figure 7(a) and 7(b) show the performance of CADC in
term of delivery ratio and network overhead under different
network sizes. The network size configuration changes from
100 to 1000. With the increasing network size, the number of
data packet to be transmitted also increases, leading to more
transmission overhead inside the network, as shown in
Figure 7(b). Compared with a small-scale network, a larger
network has the higher probability to incur the congestion
due to the large amount of packet transmission, and thus
has lower delivery ratio, as indicated in Figure 7(a). We can
also observe that compared with CADC-AdpSum scheme,
the CADC-k-means has superior performance on reducing
network overhead and achieving higher delivery ratio. Also,
the performance under non-priority and priority setting
has the similar trend to Figure 6(b) and 6(c): non-priority
case has higher delivery ratio and lower network overhead
than corresponding priority case, due to the same discussed
before.

5.2.3 Performance in the Priority Case
We then validate that in the priority case, CADC indeed
incurs lower distortion to high priority data. We measured
the average overall distortion incurred to data with different
priorities as shown in Figure 8. We see that the experimental
results confirm that data with higher priorities does have
less distortion. Recall that when data is transmitted hop by
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Fig. 8. Distortion vs. priority coefficient.

hop along the routing tree from the sensing node to the
sink, each forwarding hop may compress the data. After
compression in a hop, some data values are changed, and if
a value belongs to a different range, its priority coefficient
may be changed. In our experiments, most of data has the
same priority coefficients at different hops in the forwarding
path. This is because the k-means method clusters the most
approximate data points, which have same or close priority
coefficients. This validates our assumption in Section 4.2.2
that the data compression does not change the priority of
data in different hops.
5.2.4 Update Overhead
In CADC, the adaptive adjustments of parameters for con-
gestion control (i.e., the maximum tolerable error and dis-
tortion) incur the communication cost between the parent
nodes and the child nodes. As described in Section 4.4,
when the compression ratio at child nodes required for con-
gestion elimination cannot satisfy the associated distortion
constraint, the child nodes request the parameter updates
and the parent nodes send the updated values to them. The
updates increase the network communication cost, which
may interfere the data collection task and degrade the
efficiency of congestion control especially when the updates
occur frequently. It is expected that such update overhead
can be as small as possible for CADC. In this section we
measure the update overhead by the number of messages
used for parameters update during the congestion control.

Figure 9(a) demonstrates the update overhead under
the network size of 800 in different configurations of the
maximum tolerable error at the sink (εr). When the εr be-
comes larger, the update overhead for all compress schemes
decreases correspondingly. Because the larger εr allows a
higher degree of data compression at each node, the fre-
quent parameters update for each node can be avoided
during the congestion control. Therefore the upload over-
head for both k-means and adaptive summarization goes
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Fig. 9. The update overhead of CADC.

down gradually. However, there is a larger upload overhead
reduce for adaptive summarization scheme compared with
k-means scheme. The reason is that the adaptive summa-
rization scheme generates larger estimation error for a given
distortion error bound in a single round of compression. The
CADC scheme updates the compression parameters more
frequently for AdpSum scheme to find the suitable com-
pression ratio that can meet the error bound at each node,
this intensive parameters update activities produce large
upload overhead for Adpsum method when εr is small. In
Figure 9(b), unlike the previous evaluation, we measure the
update overhead across different network sizes with a fixed
εr of 2000. The overall trend is that the update overheads
grows with the the increasing network size, because the
larger network size makes it higher probability to cause
congestion, leading to more frequent parameters update and
higher update overheads in the network. These experiment
results indicate that CADC incurs small protocol overhead
for congestion control during the data collection. In this
update overhead evaluation, the priority cases both for
CADC-AdpSum and the CADC-k-means has higher update
overhead because of the frequent parameters update. That
is, when the priority schemes produce more errors than non-
priority cases in a single round of compression, the CADC
method has to try different parameters update in order to
meet the error bound.
5.2.5 Accuracy for Aggregate Function
In Section 4.6, we propose the adaption of CADC to the
accuracy requirement of aggregate functions at the sink
instead of the sum of the square error for all sensor data.
To evaluate the effectiveness of such adaption, we choose
average as the aggregate function and measure its estima-
tion error at the sink in non-priority case. Since the average
is computed over the data from all sensor nodes, for each
senor data xi, we have ai = 1

N where N is the network size,
and it is used for Formula (21) and (22). The estimation error
of the average function is measured by

eavg =
∑
i∈Tr

|x̂i − xi|/N (23)

Accordingly, the maximum tolerable error at the sink is
set to be a desired upper bound of eavg , instead of the
bound of total squared error of all sensor readings given
in Definition 3.1. We measure the estimation error with
different maximum tolerable error for the average function
at the sink, and the results are shown in Figure 10 where
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Fig. 11. Performance comparison: error at the sink.

the maximum tolerable error for average aggregation ranges
from 5 to 20. As we can see, CADC is also able to achieve
the accuracy requirement of average aggregate function,
which validates the effectiveness of the adaption proposed
for aggregate functions in Section 4.6.

5.3 Performance Comparison

We compared CADC with the ST, ST-SortAdpSum, ESRT,
and PureElimination schemes. We varied the number of
nodes by {100, 200, 400, 600, 800, 1000} and set the maxi-
mum tolerable error (εr) at the sink to 2500. Figures 11(a)
and 11(b) show the performance of CADC scheme and
other schemes in term of estimation error at the sink in the
non-priority and priority cases, respectively. For all of the
schemes, the estimation error increases when the network
size grows. The CADC-k-mean achieves the smallest estima-
tion error, which is in the range of εr. The other non-CADC
schemes are unable to restrain the estimation error within
the range of εr as they mitigate the congestion without
considering any error bound requirement at the sink. We
also notice that the CADC-AdpSum incurs larger error than
CADC-k-means scheme. The reason is that when the εr is
fixed and the number of nodes is increasing, the CADC-
AdpSum is unable to compress the data effectively like
CADC-k-means method, which cause higher packet drop
and information loss, leading to the larger estimation error
at the sink.

Figure 12(a) and 12(b) compare the results between
CADC and other methods in term of network overhead
across various network sizes in non-priority and priority
cases respectively. It is observed that the total number of
packet transmissions increases with the number of nodes.
The number of packet transmissions of CADC is much
lower than that of the other schemes because of the higher
data compression in CADC. The PureElimination scheme
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Fig. 12. Performance comparison: network overhead.
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Fig. 13. Performance comparison: delivery ratio.

has lowest network overhead because it simply eliminates
congestion abruptly.

Figure 13(a) and 13(b) compare the results between
CADC with other methods in term of data delivery ratio
across various network sizes in non-priority and priority
cases. With the increasing number of nodes in the network,
the delivery ratio goes down. This is because that as the net-
work size grows, the number of data packet generated from
the node also increases, leading to more serious network
congestion and dropped packets. In both priority and non-
priority cases, the PureElimination and ST have the higher
delivery ratios, because they both greatly reduce the number
of transmissions by either compressing the packets to half
number or eliminating the extra packets directly, which
leads to higher delivery ratios but at the same time causes
higher estimation errors. The CADC-k-means has higher
deliver ratio than ST-SortAdpSum and ESRT. The deliver
ratio of CADC-AdpSum becomes worse than CADC-k-
means when the network size increases beyond 400. This
is because when εr is fixed and the number of nodes grows,
k-means can achieve better compression ratio, leading to
higher data delivery ratio than the AdpSum compression.

6 CONCLUSION AND FUTURE WORK

In CPS, it is critical to guarantee estimation accuracy of
the physical environmental phenomena. Although many
congestion control schemes have been proposed to reduce
congestion in order to increase estimation accuracy, they
also concurrently increase the estimation error due to data
sample reduction. Also, none of them can guarantee the
data accuracy at the sink. In this paper, we formally ana-
lyze the impact of congestion control on the data accuracy.
Our analysis results demonstrate the two-sided effect of
congestion control on the data accuracy and the trade-off
between resolving congestion and improving data accuracy.
To guarantee the estimation accuracy while controling con-

gestion, we presented a Congestion-Adaptive Data Collec-
tion scheme (CADC) with data accuracy guarantee. Based
on a given maximum tolerable error bound at the sink,
CADC reduces transmission rate of data while keeps the
estimation error below the given bound. It uses the k-means
clustering algorithm to reduce transmission rate in order to
reduce data distortion. CADC also distinguishes data with
different importance degrees so that more important data
has less distortion, which benefits the accurate environmen-
tal phenomena monitoring. Moreover, CADC is extended
with considering the dynamic network topology and the
application of aggregate functions in WSNs. Extensive ex-
perimental results show the superior performance of our
schemes in comparison with previous schemes.

In our future work, we will implement CADC and
investigate its performance in the real testbed. We will
also investigate extending CADC with other types of ac-
curacy measurement, since the CPS applications may have
error requirement for the results of specific state estimation
functions not limiting to square error over all the data.
Another important factor for congestion control is the un-
derlying MAC protocol, which we did not examine much
in this paper. It is worth to note the fact that the level
of congestion in a sensor network is a function of the
underlying MAC protocol. We will further investigate how
CADC works with different behaviors of the MAC protocol
and how to further optimize CADC with considering the
MAC contention. Besides, we note in this paper we only
measure the data accuracy loss due to congestion. We do
not consider the accuracy loss due to the link loss in WSNs.
Thus, it is worth to analyze the impact of packet loss on the
data accuracy and incorporate the data retransmission into
the data collection. However, the data retransmission may
occur extra bandwidth overhead and aggravate the network
congestion. With these considerations, we will analyze the
impact of data retransmission on the data accuracy and aim
to find the optimal data transmission solution to improve
the data accuracy while minimizing the adverse affects like
the network congestion.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, CNS-1249603, and
Microsoft Research Faculty Fellowship 8300751. An early
version of this work was presented in the Proceedings of
IEEE SECON 2015 [19].

REFERENCES

[1] K. Nellore and G. P. Hancke, “A survey on urban traffic man-
agement system using wireless sensor networks,” Sensors, vol. 16,
no. 2, p. 157, 2016.

[2] L. Yan, H. Shen, and K. Chen, “Mobit: A distributed and
congestion-resilient trajectory based routing algorithm for vehic-
ular delay tolerant networks,” in Proceedings of the Second Inter-
national Conference on Internet-of-Things Design and Implementation.
ACM, 2017, pp. 209–214.

[3] Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz, “Esrt:
event-to-sink reliable transport in wireless sensor networks.” in
Proc. of MobiHoc, 2003.

[4] Y. Zhou, M. R. Lyu, J. Liu, and H. Wang, “Port: A price-oriented
reliable transport protocol for wireless sensor networks.” in Proc.
of ISSRE, 2005.

[5] J. Paek and R. Govindan, “Rcrt: Rate-controlled reliable transport
protocol for wireless sensor networks.” TOSN, vol. 7, no. 3, 2010.



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853159, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2017 15

[6] C. Y. Wan, S. B. Eisenman, and A. T. Campbell, “Coda: congestion
detection and avoidance in sensor networks.” in Proc. of SenSys,
2003.

[7] H. Ahmadi, T. F. Abdelzaher, and I. Gupta, “Congestion control for
spatio-temporal data in cyber-physical systems.” in Proc. of ICCPS,
2010.

[8] S. M. Aghdam, M. Khansari, H. R. Rabiee, and M. Salehi, “Wccp:
A congestion control protocol for wireless multimedia communi-
cation in sensor networks,” Ad Hoc Networks, vol. 13, pp. 516–534,
2014.

[9] S. Brahma, M. Chatterjee, K. Kwiat, and P. K. Varshney, “Traffic
management in wireless sensor networks: Decoupling congestion
control and fairness,” Computer Communications, vol. 35, no. 6, pp.
670–681, 2012.

[10] C. Sergiou, V. Vassiliou, and A. Paphitis, “Hierarchical tree alterna-
tive path (htap) algorithm for congestion control in wireless sensor
networks,” Ad Hoc Networks, vol. 11, no. 1, pp. 257–272, 2013.

[11] ——, “Congestion control in wireless sensor networks through
dynamic alternative path selection,” Comput. Netw., vol. 75, no. PA,
pp. 226–238, Dec. 2014.

[12] Y.-L. Chen and H.-P. Lai, “Priority-based transmission rate control
with a fuzzy logical controller in wireless multimedia sensor
networks,” Computers & Mathematics with Applications, vol. 64,
no. 5, pp. 688–698, 2012.

[13] F. Bian, S. Rangwala, and R. Govindan, “Quasi-static centralized
rate allocation for sensor networks,” in Proc. of SECON, 2007, pp.
361–370.

[14] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “On network
correlated data gathering.” in Proc. of Infocom, 2004.

[15] A. Silberstein, R. Braynard, and J. Yang, “Constraint chaining: on
energy-efficient continuous monitoring in sensor networks.” in
Proc. of SIGMOD, 2006.

[16] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive data gather-
ing for large-scale wireless sensor networks.” in Proc. of MobiCom,
2009.

[17] H. Gupta, V. Navda, S. R. Das, and V. Chowdhary, “Efficient
gathering of correlated data in sensor networks.” TOSN, vol. 4,
no. 1, 2008.

[18] C. Wang, H. Ma, Y. He, and S. Xiong, “Adaptive approximate
data collection for wireless sensor networks.” IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 6, pp. 1004–1016, 2012.

[19] N. Iri, L. Yu, H. Shen, and G. Caulfield, “Congestion-adaptive data
collection with accuracy guarantee in cyber-physical systems,” in
Proc. of IEEE SECON, 2015.

[20] C. T. Ee and R. Bajcsy, “Congestion control and fairness for many-
to-one routing in sensor networks.” in Proc. of SenSys, 2004.

[21] S.Madden, M.J.Franklin, and J.Hellerstein, “TAG: a Tiny AGrega-
tion Service for Ad-Hoc Sensor Networks,” in Proc. of OSDI, 2002.

[22] A. O. Allen, Probability, Statistics, and Queueing Theory with Com-
puter Science Applications. San Diego, CA, USA: Academic Press
Professional, Inc., 1990.

[23] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu, “An efficientcient k-means clustering al-
gorithm: Analysis and implementation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 24, no. 7, pp. 881–892, 2002.

[24] A. Kansal, A. Ramamoorthy, M. B. Srivastava, and G. J. Pottie, “On
sensor network lifetime and data distortion,” in Proc. of ISIT, 2005.

[25] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor networks,” in
Proc. Of VLDB, 2004, pp. 588–599.

Yan Zhuang is a Ph.D. student in Computer
Engineering at University of Virginia, Char-
lottesville, VA, USA. He received the B.S. de-
gree from Tianjin Polytechnic University, Tianjin,
China, and the M.S. degree from the State Uni-
versity of New York (SUNY) at Buffalo, Buffalo,
NY, USA, in 2011 and 2014, respectively. His
interests are cyber-physical systems and body
sensor networks.

Lei Yu is a Ph.D student in Computer Science in
Georgia Institute of Technology. He received the
BS and MS degree in Computer Science from
Harbin Institute of Technology, China in 2004
and 2006, respectively. His research interests in-
clude sensor networks, wireless networks, cloud
computing and network security.

Haiying Shen is an associate professor in the
Department of Computer Science at Univer-
sity of Virginia, Charlottesville, VA, USA. Her
research interests include distributed computer
systems and computer networks, with an em-
phasis on peer-to-peer and content delivery net-
works, mobile computing, wireless sensor net-
works, and grid and cloud computing. She was
the Program Co-Chair for a number of interna-
tional conferences and member of the Program
Committees of many leading conferences. She

is a Microsoft Faculty Fellow of 2010, a senior member of the IEEE and a
member of the ACM. She received the BS degree in Computer Science
and Engineering from Tongji University, China in 2000, and the MS and
Ph.D. degrees in Computer Engineering from Wayne State University in
2004 and 2006, respectively.

William Kolodzey received a B.S.E degree
in Engineering Physics from the University of
Michigan in 2009. He is currently pursuing a
Ph.D. degree with the Department of Electri-
cal and Computer Engineering at Clemson Uni-
versity. His research interests include machine
learning, wireless networks, and data accuracy
in large sensor networks.

Nematollah Iri was a Ph.D student in Clemson
University, SC, United States during this work.

Gregori Caulfield received the BS degree in
Computer Science from Clemson University, SC,
United States in 2015. He is currently working in
the field of Software Development. His research
interests include wireless networks and cloud
computing.

Shenghua He received the BS degree in Elec-
tronic Science and Technology from Wuhan Uni-
versity of Technology, China in 2012, and the
M.S. degree in Electronics and Communication
Engineering from Beijing University of Posts and
Telecommunications, China in 2015. He is cur-
rently a Ph.D. student in the Department of
Electrical and Computer Engineering at Clem-
son University, SC, United States. His research
interests include cloud computing, data center
networks and mobile computing.


