


1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824831, IEEE
Transactions on Services Computing

11

0.E+0

1.E+4

2.E+4

3.E+4

4.E+4

5.E+4

6.E+4

10% 20% 30% 40% 50%

D
a

ta
 t

ra
n

s
m

is
s
io

n
 

c
o

s
t 

(G
B

*
h

o
p

)

Arrival rate variance degree

DGCloud-LB
DGCloud (w/o DPO)
DGCloud

(a) Simulation

0.E+0

2.E+3

4.E+3

6.E+3

8.E+3

10% 20% 30% 40% 50%

D
a

ta
 t

ra
n

s
m

is
s
io

n
 

c
o

s
t 

(G
B

*
h

o
p

)

Arrival rate variance degree

DGCloud-LB
DGCloud (w/o DPO)
DGCloud

(b) Amazon EC2
Fig. 9: Data transmission cost vs. the arrival rate.

0

5000

10000

15000

10% 20% 30% 40% 50%
Arrival rate variance degree

DGCloud-LB
DGCloud (w/o DPO)
DGCloud

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
m

s
)

(a) Simulation

0

1000

2000

3000

4000

10% 20% 30% 40% 50%
Arrival rate variance degree

DGCloud-LB
DGCloud (w/o DPO)
DGCloud

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
m

s
)

(b) Amazon EC2
Fig. 10: Computation time vs. the arrival rate.

0%

50%

100%

150%

10% 20% 30% 40% 50%

S
y
s
te

m
 s

e
r
v

ic
e

 
s
a

ti
s
fa

c
ti

o
n

 l
e

v
e

l 

Arrival rate variance degree 

TR=100% TR=75%
TR=50% TR=25%

(a) Service satisfaction level

0

2000

4000

6000

10% 20% 30% 40% 50%

D
a

ta
 t

ra
n

s
m

is
s
io

n
 

c
o

s
t 

(G
B

*
h

o
p

) 

Arrival rate variance degree 

TR=100% TR=75%

TR=50% TR=25%

(b) Data transmission cost

Fig. 11: Performance with different TR values

0

1000

2000

3000

4000

5000

10% 20% 30% 40% 50%

S
a

v
e

d
 e

n
e

rg
y

 
(s

e
r
v
e

r
*

h
o

u
r
) 

Arrival rate variance degree 

Tu=70% Tu=65%

Tu=60% Tu=55%

(a) Saved energy

0

2000

4000

6000

8000

10000

10% 20% 30% 40% 50%

D
a

ta
 t

ra
n

s
m

is
s
io

n
 

c
o

s
t 

(G
B

*
h

o
p

) 

Arrival rate variance degree 

Tu=70% Tu=65%
Tu=60% Tu=55%

(b) Data transmission cost

Fig. 12: Performance with different TU values

As in [45], we then evaluate the saved energy by sum-
ming up the sleeping time of all servers in a checking period
(server∗hour). Figures 8(a) and 8(b) show that saved energy
follows 0=Random<DGCloud-LB<DGCloud<CapLmt. Such a
result is caused by the same reasons as explained in Fig-
ure 7(a), since with the same total request rate, a higher sys-
tem utilization means fewer active servers. Though CapLmt
saves the most energy, it cannot provide deadline guaran-
teed service as shown in Figure 5(a). The figures indicate
that Random cannot save energy, and DGCloud saves more
energy than DGCloud-LB which confirms the effectiveness
of the workload consolidation algorithm.

6.3 Transmission Cost
In the following experiments, there were 5000 tenants in
simulation and 50 tenants on EC2 in the system and the
average request rate of tenants was set to 1500 and 150 in
simulation and EC2, respectively. We use DGCloud (w/o
DPO) to denote DGCloud without the data placement op-
timization algorithm. We varied the request arrival rate
of each data item, λc, to a value randomly chosen from
[λc ∗ (1 − β), λc ∗ (1 + β)], where β was varied from 10%
to 50% with step size of 10%. We do not include Random
and CapLmt in this experiment because they do not provide
deadline guaranteed service.

We measured the transmission cost in GB ∗ hop as de-
fined in Section 5.2. Figures 9(a) and 9(b) show the median,
5th and 95th percentiles of data transmission cost. Each re-
sult follows DGCloud-LB>DGCloud (w/o DPO)>DGCloud.
DGCloud produces lower transmission cost than DGCloud
(w/o DPO), because the data placement optimization algo-
rithm helps reduce the communication cost in data repli-
cation. DGCloud-LB does not have the data placement op-
timization algorithm. Also, in the deadline-aware load bal-
ancing algorithm, DGCloud sorts the data partitions from
overloaded servers in descending order of their request
arrival rates to reduce the number of data replications, and
further sorts those with equal request arrival rate in ascend-
ing order of data size to reduce the data transmission size.

DGCloud-LB does not have such a sorting procedure. Thus,
DGCloud (w/o DPO) generates lower transmission cost than
DGCloud-LB. These results verify the low transmission cost
of DGCloud and the effectiveness of the data placement
optimization algorithm. Also, our experiment results show
that the data replication time is bounded by 20s for the
50% arrival rate variance degree. The replication latency
affects the how much improvement can be gained from data
replication. Before a data partition is replicated, its request is
responded by its old storage server, so its data access latency
performance cannot be improved, and after replication, its
request is responded by its new storage server, and its data
access latency performance is improved.

6.4 System Overhead
Computation time is the load balancing method running
time until the new data placement schedule and new request
rate on each data replica are determined. Figures 10(a)
and 10(b) show the median, 5th and 95th percentiles of
the computation time of each method in 20 experiments.
We see that the computation time and its variance follows
DGCloud-LB<DGCloud (w/o DPO)<DGCloud. This is be-
cause DGCloud-LB only moves excess load to a server that
can afford this load, while DGCloud has both request redirec-
tion and new replica allocation procedures as well as sorting
operations. The data placement optimization also introduces
computation time. The figures show that half of the calcu-
lations in DGCloud are completed within 7.48s, and most
of the calculations are completed within 9.84s, which are
acceptable. The slightly longer computation time brings the
benefits of much lower transmission cost as shown above.

6.5 Performance of Different Thresholds
We first evaluated DGCloud in simulation by setting the re-
quest arrival rate of each data item, λc, to a value randomly
chosen from [λc, λc ∗ (1 + β)], where β was varied from
10% to 50% with step size of 10%. TR was increased from
25% to 100% with step size of 25%. Figures 11(a) and 11(b)



1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824831, IEEE
Transactions on Services Computing

12

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50%S
e

r
v

ic
e

 s
a

t
is

f
a

c
t
io

n
 

le
v
e

l

Arrival rate variance bound

DGCloud-LB

DGCloud

DGCloud-DLB

(a) Simulation

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50%S
e

r
v
ic

e
 s

a
t
is

f
a

c
t
io

n
 

le
v
e

l 

Arrival rate variance bound

DGCloud-LB

DGCloud

DGCloud-DLB

(b) Amazon EC2
Fig. 13: Performance of Service satisfaction level.

0%

50%

100%

150%

10% 20% 30% 40% 50%

S
e

r
v

ic
e

 s
a

t
is

fa
c
t
io

n
 

le
v
e

l

Arrival rate variance bound

DGCloud-LB DGCloud
DGCLoud-DLB

(a) Simulation

0%

50%

100%

150%

10% 20% 30% 40% 50%

S
e

r
v

ic
e

 s
a

t
is

fa
c
t
io

n
 

le
v
e

l

Arrival rate variance bound

DGCloud-LB DGCloud
DGCLoud-DLB

(b) Amazon EC2
Fig. 14: Performance of tenant satisfaction level.

1

10

100

1000

10000

10% 20% 30% 40% 50%

T
h

e
 n

u
m

b
e

r
 o

f
 

B
r
o

a
d

c
a

s
t
s

Arrival rate variance bound

DGCloud-LB DGCloud DGCLoud-DLB

(a) Simulation

1

10

100

1000

10% 20% 30% 40% 50%

T
h

e
 n

u
m

b
e

r
 o

f
 

B
r
o

a
d

c
a

s
t
s

Arrival rate variance bound

DGCloud-LB DGCloud DGCLoud-DLB

(b) Amazon EC2

Fig. 15: Performance of the number of broadcasts.

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50%S
e

r
v

ic
e

 s
a

t
is

f
a

c
t
io

n
 

le
v
e

l

Arrival rate variance bound

DGCloud-DLB/DQ

DGCloud

DGCloud-DLB

(a) Simulation

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50%S
e

r
v
ic

e
 s

a
t
is

f
a

c
t
io

n
 

le
v
e

l 

Arrival rate variance bound

DGCloud-DLB/DQ

DGCloud

DGCloud-DLB

(b) Amazon EC2
Fig. 16: Performance of the data request queue improvement
method.

show the service satisfaction level and data transmission
cost, respectively. They show that a higher TR can invoke
the load balancing at a lower request arrival rate variance
degree. The load balancing is invoked at β ≥ 30% with
TR = 0.75, and invoked at β ≥ 10% with TR = 1. Thus,
a larger TR helps maintain higher service satisfaction level,
but it also introduces higher transmission cost.

We then evaluated DGCloud with different TU by setting
the request arrival rate of each data item, λc, to a value
randomly chosen from [λc ∗ (1 − β), λc], where β was
varied from 10% to 50% with step size of 10%. TU increases
from 55% to 70% with step size of 5%. Figures 12(a) and
12(b) show the data transmission cost and saved energy
for DGCloud, respectively. They show that a higher TU
can invoke the workload consolidation process at a lower
request arrival rate variance degree. It is invoked when
β ≥ 30% with TU = 0.6, and is invoked when β ≥ 10%
with TU = 0.7. The workload consolidation helps save
more energy but introduces transmission cost. Thus, a
larger TU helps maintain higher system utilization, but
introduces higher transmission cost.

6.6 Performance of Dynamic Load Balancing Scheme

In the following experiments, we show the performance
of our dynamic load balancing method (DLB). We use
DGCloud-DLB to denote DGCLoud with the DLB method.
In the experiments, we simulated 5000 tenants and used 50
tenants in Amazon EC2. In order to evaluate the dynamic
variance of request arrival rates of data partitions, in every
ten minutes, we set the request arrival rate of each data
partition, λc, to a value randomly chosen from [λc ∗ (1−β),
λc ∗ (1 +β)], where β is the arrival rate variance bound. β is
increased from 10% to 50% by 10% at each step. Random
and CapLmt cannot supply deadline guaranteed services,
and they do not schedule data reallocation when the re-
quest arrival rate varies. Also, we only want to show the
enhancement performance of the DLB method. Therefore,
we only compare the performance of DGCloud-LB, DGCloud
and DGCloud-DLB.

Figure 13(a) and 13(b) show the system service satis-
faction level versus the arrival rate variance bound (β) in
simulation and on Amazon EC2. We see that the system
service satisfaction of these three methods follows DG-
Cloud≈DGCloud-LB<DGCloud-DLB≈1. DGCloud-DLB pro-
duces higher system service satisfaction level than the other
two methods. DGCloud-DLB is 50% higher than other two
methods with the 50% arrival rate variance bound. This is
because DGCloud and DGCloud-LB just have deadline-aware
load balancing based upon the previous request arrival
rates. Both of them cannot react to the arrival rate vari-
ance. Also, there is no big difference between DGCloud and
DGCloud-LB because they use similar strategy in load bal-
ancing and data placement optimization. In DGCloud-DLB,
with our dynamic load balancing method, these servers can
quickly offload their excess loads (i.e., redirect requests) to
the servers that have enough available capacity.

Figure 14(a) and 14(b) show the median, 5th and 95th
percentiles of all tenants’ satisfaction levels defined in Equa-
tion (7). It shows that the median satisfaction level also
follows DGCloud≈DGCloud-LB<DGCloud-DLB=1. The 5th
and 95th percentiles of DGCloud-DLB remain at 100%. Due
to the same reasons as in Figures 13(a) and 13(b), without
the dynamic load balancing method to react to the variable
request arrival rates, DGCloud and DGCloud-LB cannot pro-
vide high tenant satisfaction levels under random arrival
rate variance. As the arrival rate increases, the tenant satis-
faction level of these two methods decreases. In DGCloud-
DLB, an overloaded server can quickly offload its excess
load to the servers that have sufficient available capacities.
Thus, it can achieve 100% tenant satisfaction level. The
experimental results indicate that DGCloud-DLB constantly
supplies services with high tenant satisfaction levels even
under request arrival rate variance.

Recall that in the dynamic load balancing method, when
the servers in the server candidate list of server sn do
not have enough available capacities for sn to offload its
excess load, sn needs to broadcast to all servers to final
underloaded servers. In DGCloud and DGCloud-LB, once
a server becomes overloaded, it broadcasts to find under-



1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824831, IEEE
Transactions on Services Computing

13

loaded servers to offload its excess workload. Figures 15(a)
and 15(b) show the number of broadcasts versus the request
arrival rate variance bound. We can see that the number of
broadcasts follows DGCloud≈DGCloud-LB>DGCloud-DLB.
Also, as the request arrival rate variance bound increases,
the number of broadcasts of these three methods grows.
When the workload on one server exceeds its capability,
the servers in DGCloud and DGCloud-LB broadcast to all the
servers in the data center to find destination servers to host
the excess workload of the overloaded servers. In DGCloud-
DLB, the overloaded server does not need to broadcast
first and it can quickly offload its excess workload to the
servers in its server candidate list. Only when these server
candidates do not have enough available capacities, the
overloaded server needs to broadcast to all the servers.

6.7 Performance of Data Request Queue Improvement
In this section, we evaluate the performance of the data
request queue improvement method. We use DGCloud-
DLB/DQ to denote DGCloud-DLB with this method. Fig-
ures 16(a) and 16(b) show the system service satisfaction
level versus the arrival rate variance bound in simulation
and implementation on Amazon EC2. The result in both
figures follow DGCloud<DGCloud-DLB<DGCloud-DLB/DQ.
DGCloud-DLB/DQ can achieve higher system service sat-
isfaction level than the other two methods. The data re-
quest queue improvement method sets different priorities
on different data partitions so that it can reduce the average
queuing latency in the sending queue of a server and more
responses can satisfy the SLO requirement. As a result,
DGCloud-DLB/DQ makes more requests satisfy the dead-
line guarantee and increases the system satisfaction level.
Without this method, in DGCloud-DLB, some responses
are unable to satisfy the deadline guarantee because of
the longer queuing latency in the servers. DGCloud-DLB
achieves higher system service satisfaction level than DG-
Cloud due to the same reasons as in Figures 13(a) and 13(b).

6.8 Performance of Checking Period Variance
In this section, we use DGCloud-DLB/DQ to evaluate the
performance of the variant checking period versus the

0

2000

4000

6000

8000

0%

20%

40%

60%

80%

100%

0.25 0.5 1 1.5 2S
e

r
v

ic
e

 s
a

t
is

fa
c
t
io

n
 

le
v
e

l 

Checking period (hours)

SLA

Computing time

O
v

e
r
h

e
a

d
 (m

s
)

Fig. 17: Performance of check-
ing period variance.

overhead (total computing
time per hour). We varied
the checking period from
0.25 hours to 2 hours. The
arrival rate variance bound
is set to 50%. Figure 17
shows the system service
satisfaction level and com-
puting time per hour ver-
sus the variant checking pe-
riod in simulation. The re-
sults show that service sat-
isfaction level is guaranteed
when the checking period is no longer than 1 hour. Mean-
while, the computing time per hour (system overhead)
decreases while the length of checking period increases.
It demonstrates that the length of checking period makes
DGCloud be sensitive to the variation of request rates lead-
ing better SLO, but it introduces heavier system overhead.
According to the simulation results, in order to guarantee
the SLO and minimize the system overhead, the checking
period is set to be one hour.

6.9 Performance of Wakeup Server Selection

We use DGCloud-WSS to denote DGCloud with the wakeup
server selection method. Figure 18 shows that the saved en-
ergy follows DGCloud<DGCloud-DLB<DGCloud-WSS. Be-
cause of workload consolidation algorithm, DGCloud re-
duces the number of active servers. Compared with DG-
Cloud, DGCloud-DLB allows an overloaded server to quickly

0

2000

4000

6000

8000

10% 20% 30% 40% 50%

S
a

v
e

d
 e

n
e

rg
y

 
(s

e
rv

e
r*

h
o

u
r)

DGCloud-WSS DGCloud DGCloud-DLB

Arrival rate variance bound

Fig. 18: Performance of the
wakeup server selection
method.

offload its excess load to
underloaded servers with a
high probability. The fewer
occurrences of server over-
loads reduce the necessity
to wake up sleeping servers.
DGCloud-WSS always wakes
up the server with more pop-
ular data partitions. There-
fore, overloaded servers can
redirect requests to this
wakeup server without data
replication in load balanc-
ing with a high probability.
Thus, the wakeup server is unlikely to use up its storage
capacity, which reduces the necessity to wake up other
sleeping servers. As a result, DGCloud-WSS saves the most
energy among the three methods. The experimental results
confirm the effectiveness of the wakeup server selection
method.

7 CONCLUSIONS

In order to improve the deadline guaranteed performance
in cloud storage services, in this paper, we first propose
a deadline-aware load balancing scheme. It dynamically
redirects requests and creates data replicas in servers to
ensure a current form of SLO. We enhance our scheme
with work consolidation to maximize the system resource
utilization, and data placement optimization to minimize
the transmission cost in data replication. We further propose
three enhancement methods to further improve the perfor-
mance of DGCloud. Our enhancement methods also reduce
energy cost and transmission cost of data replication. In our
future work, we will design a load balancing scheme that
dynamically redirect requests and replicate data to ensure
SLO under a request burst. Also, we will make DGCloud be
suitable for other storage systems such as the Hadoop file
system in the MapReduce platform.

REFERENCES
[1] H. Stevens and C. Pettey. Gartner Says Cloud Computing Will

Be As Influential As E-business. Gartner Newsroom, Online Ed.,
2008.

[2] N. Yigitbasi A. Iosup and D. Epema. On the Performance Variabil-
ity of Production Cloud Services. In Proc. of CCGrid, 2011.

[3] S. L. Garfinkel. An Evaluation of Amazons Grid Computing
Services: EC2, S3 and SQS. Technical Report TR-08-07, 2007.

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving MapReduce Performance in Heterogeneous Environ-
ments. In Proc. of OSDI, 2008.

[5] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware
Datacenter TCP (D2TCP). In Proc. of SIGCOMM, 2012.

[6] R. Kohavl and R. Longbotham. Online Ex-
periments: Lessons Learned., 2007. http://exp-
platform.com/Documents/IEEEComputer2007Online
Experiments.pdf, [accessed in Nov. 2016].

[7] B. F. Cooper and et al. PNUTS: Yahoo!s Hosted Data Serving
Platform. In Proc. of VLDB, 2008.



1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824831, IEEE
Transactions on Services Computing

14

[8] G. You, S. Hwang, and N. Jain. Scalable Load Balancing in Cluster
Storage Systems. In Proc. of Middleware, 2011.

[9] Amazon Elastic Load Balancing.
http://aws.amazon.com/documentation
/elasticloadbalancing/, [accessed in Nov. 2016].

[10] A. K. Singh, X. Cui, B. Cassell, B. Wong, and K. Daudjee. Mi-
croFuge: A Middleware Approach to Providing Performance Iso-
lation in Cloud Storage Systems. In Proc. of ICDCS, 2014.

[11] N. Bonvin, T. G. Papaioannou, and K. Aberer. A Self-Organized,
Fault-Tolerant and Scalable Replication Scheme for Cloud Storage.
In Proc. of SoCC, 2010.

[12] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan. Robust and Flexible Power-Proportional Storage. In
Proc. of SoCC, 2010.

[13] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanandam,
L. Alvisi, and M. Dahlin. Robustness in the Salus scalable block
store. In Proc. of NSDI, 2013.

[14] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum. Copysets: Reducing the Frequency of Data Loss in
Cloud Storage. In Proc. of USENIX ATC, 2013.

[15] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: Practical
Power-Proportionality for Data Center Storage. In Proc. of Eurosys,
2011.

[16] A. J. Gonzalez, B. E. Helvik, P. Tiwari, D. M. Becker, and O. J.
Wittner. GEARSHIFT: Guaranteeing Availability Requirements in
SLAs using Hybrid Fault Tolerance. In Proc. of INFOCOM, 2015.

[17] D. Shue and M. J. Freedman. Performance Isolation and Fairness
for Multi-Tenant Cloud Storage. In Proc. of OSDI, 2012.

[18] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.
Madhyastha. SPANStore: Cost-Effective Geo-Replicated Storage
Spanning Multiple Cloud Services. In Proc. of SOSP, 2013.

[19] C. Peng, M. Kim, Z. Zhang, and H. Lei. Dynamo: Amazon’s
Highly Available Key-value Store. In Proc. of SOSP, 2007.

[20] W. Cook and A. Rohe. Computing Minimum-Weight Perfect
Matchings. INFORMS Journal on Computing, 1999.

[21] S. Liu, S. Ren, G. Quan, M. Zhao, and S. Ren. Profit aware load
balancing for distributed cloud data centers. In Proc. of IPDPS,
2013.

[22] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew. Greening
geographical load balancing. In Proc. of the ACM SIGMETRICS,
2011.

[23] M. Mitzenmacher. The power of two choices in randomized load
balancing. TPDS, 2001.

[24] L. Kleinrock. Queueing Systems. Wiley-Interscience, 1975.
[25] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible
data center network. In Proc. of SIGCOMM, 2009.

[26] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu. Bcube: a high performance, server-centric network
architecture for modular data centers. Proc. of SIGCOMM, 2009.

[27] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. Detail:
reducing the flow completion time tail in datacenter networks.
In Proc. of SIGCOMM, 2012.

[28] J. Liu, S. Wang, A. Zhou, F. Yang, and R. Buyya. Availability-aware
virtual cluster allocation in bandwidth-constrained datacenters.
Trans. on TSC, 2017.

[29] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J. Kang, and
P. Sharma. Application-driven bandwidth guarantees in datacen-
ters. In Proc. of SIGCOMM, 2014.

[30] X. Li, J. Wu, S. Tang, and S. Lu. Let’s stay together: Towards
traffic aware virtual machine placement in data centers. In Proc. of
INFOCOM, 2014.

[31] S. Wang, A. Zhou, C. Hsu, X. Xiao, and F. Yang. Provision of data-
intensive services through energy-and qos-aware virtual machine
placement in national cloud data centers. Trans. on ETC, 2016.

[32] Amazon DynamoDB. http://aws.amazon.com/dynamodb/, [ac-
cessed in Nov. 2016].

[33] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[34] O. Kay, W. Patrick, Z. Matei, and S. Ion. Sparrow: distributed, low
latency scheduling. In Proc. of 24th ACM Symposium on Operating
Systems Principles, 2013.

[35] D. Wu, Y. Liu, and K. W. Ross. Modeling and Analysis of
Multichannel P2P Live Video Systems. TON, 2010.

[36] C. Giovanna, G. Massimo, M. Luca, and P. Diego. Pending
interest table sizing in named data networking. In Proc. of the 2nd
International Conference on Information-Centric Networking, 2015.

[37] K. claffy, P. Josh, A. Alexander, B. Jeff, and Z. Lixia. The first
named data networking community meeting:(ndncomm). ACM
SIGCOMM Computer Communication Review, 2015.

[38] W. J. Stewart. Probability, Markov Chains, Queues, and Simula-

tion: The Mathematical Basis of Performance Modeling. Princeton
University, 2009.

[39] A. Beloglazov and R. Buyya. Optimal Online Deterministic Al-
gorithms and Adaptive Heuristics for Energy and Performance
Efficient Dynamic Consolidation of Virtual Machines in Cloud
Data Centers. CCPE, 2011.

[40] C. Peng, M. Kim, Z. Zhang, and H. Lei. VDN: Virtual Machine
Image Distribution Network for Cloud Data Centers. In Proc. of
INFOCOM, 2012.

[41] Apache Hadoop FileSystem and its Usage in Facebook.
http://cloud.berkeley.edu/data/hdfs.pdf, [accessed in Nov.
2016].

[42] CTH Trace, 2009. http://www.cs.sandia.gov/Scalable IO/SNL Trace
Data/, [accessed in Nov. 2016].

[43] Amazon EC2. http://aws.amazon.com/ec2/, [accessed in Nov.
2016].

[44] H. Shen and G. Liu. A lightweight and cooperative multifactor
considered file replication method in structured p2p systems. TC,
2013.

[45] S. Seny, J. R. Lorch, R. Hughes, C. G. J. Suarez, B. Zill, W. Cordeiroz,
and J. Padhye. Don’t Lose Sleep Over Availability: The GreenUp
Decentralized Wakeup Service. In Proc. of NSDI, 2012.

Guoxin Liu received the BS degree in BeiHang
University 2006, and the MS degree in Insti-
tute of Software, Chinese Academy of Sciences
2009. He is currently a Ph.D. student in the De-
partment of Electrical and Computer Engineer-
ing of Clemson University. His research interests
include distributed networks, with an emphasis
on Peer-to-Peer, data center and online social
networks.

 

Haiying Shen received the BS degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Associate Professor in the
Computer Science Department of the University
of Virginia. Her research interests include cloud
computing, Big data, Distributed systems, and
Cyber-physical systems. She is a Microsoft Fac-
ulty Fellow of 2010, a senior member of the IEEE

and a member of the ACM.

Haoyu Wang received the BS degree in Univer-
sity of Science & Technology of China, and the
MS degree in Columbia University in the city of
New York. He is currently a Ph.D student in the
Computer Science Department of the University
of Virginia. His research interests include data
center, cloud and distributed networks.

Lei Yu Lei Yu received the B.S. and M.S. de-
gree in computer science from Harbin Institute of
Technology, China. He is a Ph.D. student in the
School of Computer Science at Georgia Institute
of Technology, GA, United States. His research
interests include sensor networks, wireless net-
works, cloud computing and network security.


