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Abstract—Hybrid data center network architectures,
which combine electrical packet switches (EPSs) with op-
tical circuit switches (OCSs), have been proposed to handle
the inter-rack link oversubscription problem in a cost- and
power-efficient manner. However, the high reconfiguration
delay of optical switching technologies makes it challeng-
ing to effectively leverage OCSs in these hybrid networks.
In our prior work, we proposed a modified version of
Hadoop, called Hadoop for hybrid networks (HHN), to cre-
ate network traffic patterns that match the characteristics
of OCSs. This paper presents a comprehensive comparative
evaluation of HHN on hybrid networks and the original
Hadoop on conventional EPS-only networks. Numerical re-
sults validate our hypothesis that it is feasible to achieve
similar system-level and user-level performance with
HHN while simultaneously achieving power and cost sav-
ings with the hybrid network. When the percentage of shuf-
fle-heavy (SH) jobs is small, e.g., 5%, HHN performance is
the same as that of the original Hadoop on an EPS-only net-
work. When the percentage of SH jobs is large, e.g., 20%, the
HHN performance is almost the same even at high loads,
and even with a smaller number of input-block replicas
when we placed an upper bound on the per-job input-data
size. For large SH jobs with input-data sizes larger than the
upper bound, the performance of HHN could be improved
significantly when storing a larger number of replicas for
each input block.

Index Terms—Hadoop; Hybrid data center networks;
Optical circuit switching.

I. INTRODUCTION

C onventional fat-tree-based data center networks
(DCNs), consisting of only electrical packet switches

(EPSs), are commonly oversubscribed at the higher layers.
While there is full bisection bandwidth within a rack,
inter-rack bandwidth is typically a fraction of intra-rack
bandwidth. This design choice is made to limit capital
expenditures (CAPEX) and operating expendi-
tures (OPEX).

Big-data applications are constrained by such oversub-
scribed networks when they involve network-intensive op-

erations such as shuffle or join in which large amounts of
data are transferred between racks. Consider, for example,
Hadoop [1], which is an implementation of the MapReduce
framework and used extensively for analysis of large data
sets. Map tasks are typically run on hosts where input data
blocks are stored. As the input data are spread over the
cluster randomly in the distributed Hadoop file system,
a subsequent shuffle phase is required to move map-task
output to hosts on which reduce tasks are scheduled.
This shuffle phase often requires data movement across
oversubscribed inter-rack links. To overcome this problem,
research papers [2–4] proposed methods to reduce inter-
rack traffic by having the resource scheduler optimize
task-placement strategies. For example, ShuffleWatcher
[3] attempts to localize shuffling to one or a few racks
but sometimes requires inter-rack communications to
move input data.

An alternative approach to solving this problem is to add
optical circuit switches (OCSs) to create hybrid EPS-OCS
DCNs. Proposals for such hybrid DCN architectures [5–9]
have been evaluated and shown to offer higher inter-rack
capacity in a cost- and power-efficient manner when
compared with EPS-only DCN designs.

While OCSs offer cost and power advantages over their
EPS counterparts, OCSs suffer from a disadvantage of re-
quiring high reconfiguration delays (e.g., μs-to-ms [8]).
Such delays are significantly higher than the budget al-
lowed for packet switching. The implication of this disad-
vantage is that dynamic optical circuits can only be used for
data transfers that are large enough to make the circuit
setup delay a small fraction of the data transmission
(emission) delays.

The above-cited prior work on hybrid networks [5–9]
uses techniques such as buffering packets at top-of-rack
(ToR) switches to collect a sufficiently large amount of data
before dynamically provisioning an optical circuit between
two ToR switches. But without an application-level view of
traffic demands and dependencies, circuit utilization and
application performance could be poor [10].

Therefore, in recent work [11], we proposed a set of adap-
tations for Hadoop named Hadoop for hybrid networks
(HHN). HHN is a “cross-layer” approach that modifies
the application to match its network traffic better to hybrid
EPS-OCS networks and dynamically configures optical cir-
cuits for the application when needed. The requiredhttps://doi.org/10.1364/JOCN.10.000C50
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changes in Hadoop are in input data block placement, map-
task scheduling, reduce-task scheduling, and shuffling. The
key idea is to concentrate blocks of data sets that are likely
to receive shuffle-heavy (SH) Hadoop MapReduce jobs to a
few racks and to assign map tasks to containers on these
racks so that map output is concentrated on a few racks.
Correspondingly, reduce tasks are also assigned to contain-
ers in a limited number of racks so that map output can be
shuffled from map racks to reduce racks via high-speed dy-
namic optical circuits.

In this paper, we present a simulation-based evaluation
of HHN on hybrid networks and compare its performance
with that of the original Hadoop on EPS-only networks.
Portions of this work were presented at the 2017 IEEE
GLOBECOM conference [12]. For this paper, we extended
our prior work as follows: (i) quantified the cost- and power-
savings achievable in hybrid networks when compared
with EPS-only networks; (ii) designed and validated an ap-
proach for improving the performance of very large SH jobs
in HHN; (iii) tested our performance-comparison conclu-
sions by running simulations with multiple traces; and
(iv) demonstrated the benefits of shuffle-phase decoupling
in our proposed HHN.

Our simulation approach for performance comparison of
HHN and the original Hadoop on EPS-only networks con-
sisted of (i) creating a variety of workloads by mixing syn-
thetic regular jobs (those with a shuffle size less than 2 GB)
with SH jobs drawn from the real-world Facebook-2010
traces [13], with different ratios of regular jobs to SH jobs;
(ii) using different system (network) configurations, e.g.,
four-rack and 12-rack systems, and 75 and 100 for the per-
centage of ToR switches that are connected to the OCS in
the hybrid network; and (iii) changing the job arrival rate
to study the system under high levels of CPU utilization.
The performance metrics used for the comparative evalu-
ation included systemmetrics, such as makespan and CPU
utilization, and per-job metrics, such as response times and
unfairness.

Given the cost and power advantages of hybrid networks
over EPS-only networks, we identified workloads in which
HHN performance was worse than the original Hadoop
performance on EPS-only networks and characterized
the performance degradation under different system con-
figurations and different CPU loads. We then evaluated
the benefit of changing a critical Hadoop parameter, i.e.,
the number of replicas used for storing data sets. A small
increase from two to three yielded significant performance
improvements for HHN.

Our key findings are as follows: (i) hybrid networks can
achieve significant savings in cost and power consumption
when compared with EPS-only networks; (ii) restricting SH
data sets to a few racks in order to concentrate map output
so that optical circuits can be used in the shuffle phase of
MapReduce jobs can cause increased waiting delays for
containers and, consequently, increase SH job response
times and job unfairness; (iii) as a consequence, if the per-
centage of SH jobs in a workload is high, e.g., 20%, or there
are large SH jobs (i.e., jobs that require processing of large
data sets), the limitation on the number of racks from

which containers can be assigned to SH-job map tasks
could result in longer makespans and lower CPU utiliza-
tion because hosts in racks that do not have SH data sets
could be idle; (iv) the relative degradation of per-job re-
sponse times in HHN is smaller in larger systems, i.e., net-
works with more racks, and lowering the percentage of ToR
switches connected to the core OCS favors regular jobs over
SH jobs and vice versa; (v) HHN performance can be im-
proved significantly by increasing the number of input-
block replicas even by just one, e.g., from two to three;
and (vi) in small systems at high loads, without container
preemption, the original Hadoop could enter a deadlock
leading to significantly longer response times and make-
span, while, in contrast, HHN handles the problem
elegantly by decoupling the shuffle phase from
reduce tasks.

The rest of the paper is organized as follows: Section II
provides the reader background information on Hadoop
and reviews related work. Section III reviews our proposed
modifications to Hadoop for matching traffic to the charac-
teristics of hybrid networks. Our comparative evaluation of
this modified Hadoop with the original Hadoop is pre-
sented in Section IV. Section V presents our conclusions.

II. BACKGROUND AND RELATED WORK

Section II.A offers a brief tutorial on Hadoop. Section II.B
reviews other work on how hybrid EPS-OCS DCNs are used
and on Hadoop techniques for avoiding inter-rack network
traffic in EPS-only DCNs.

A. Background

Hadoop is used for storing and processing large data sets
[1]. Hadoop has three elements: (i) Hadoop distributed file
system (HDFS) for storage support; (ii) yet another re-
source negotiator (YARN) for resource scheduling; and
(iii) MapReduce for processing stored data sets.

Each MapReduce job has an application master (AM).
For a job to access its input data, the AM locates the nodes
on which blocks of the data set are stored. The AM then
submits requests for containers to YARN. Hadoop uses
the approach of “bringing-code-to-data” rather than
“data-to-code.” Thus, transfers of input data blocks are
avoided. However, data movement cannot be avoided in
the shuffle phase because map output needs to be moved
to the nodes on which reduce tasks are scheduled.

To decrease the impact of communication delay in the
shuffle phase, a technique called “reduce slow start” is used
in which reduce tasks are initiated after a specified per-
centage (default: 5%) of map tasks have completed [1].
This ensures that the output of completed map tasks is
transferred to the nodes on which reduce tasks are sched-
uled, even while other map tasks are running. This ap-
proach reduces total job execution time by hiding most
of the shuffle delay. But a disadvantage is that CPU resour-
ces could be wasted if reduce tasks have to wait for map
tasks to complete.
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B. Related Work

Hybrid electrical/optical data center network architec-
tures using OCS include Helios [5], c-Through [6],
OSA [7], Mordia [8], and REACToR [9], among others.
Free-space optics-based reconfigurable interconnects, e.g.,
FireFly [14], Diamond [15], Graphite [16], and ProjecToR
[17], have also been proposed for DCN. In most of these
approaches, traffic is aggregated and/or monitored to deter-
mine the pairs of ToR switches that should be intercon-
nected. For example, ProjecToR proposes to derive
probabilities that two ToR switches will communicate from
historical traffic matrices. While the advantage of these ap-
proaches is that applications do not need to be modified,
unlike in our approach, the disadvantage is that these
solutions cannot fully leverage optical circuits.

Yamashita et al. [18] proposed a Hadoop-triggered
hybrid data center orchestration architecture for reducing
power consumption. The architecture identifies shuffle-
heavy jobs by estimating shuffle data sizes and redirects
the shuffle traffic onto optical circuits. While this approach
uses application-level information to trigger circuit setup,
reconfiguring circuits for small shuffle flows may introduce
high reconfiguration overhead.

A third track of related work comes from the cloud com-
puting research community. Besides delay scheduling [2],
there are other solutions that try to avoid inter-rack trans-
fers. The ShuffleWatcher solution [3] proposes to monitor
network traffic and to use shuffle-aware maps and reduce
task placement algorithms in a manner that reduces shuf-
fle traffic. Another network-aware scheduling approach [4]
proposes handling large jobs with predictable job charac-
teristics with an offline planned scheduling solution to re-
duce shuffle traffic. Wang et al. [19] propose scheduling
reduce tasks near the nodes where map output is gener-
ated so that inter-rack shuffle traffic can be reduced.
Hybrid EPS-OCS networks, with dynamic circuit manage-
ment, offer an alternative solution to this inter-rack
shuffling problem.

III. OUR PROPOSED HADOOP FOR HYBRID NETWORKS

Figure 1 illustrates an example hybrid network architec-
ture for which HHN is designed. Lower-rate (10 GE) links
that connect ToR EPSs and the core EPS are used for gen-
eral-purpose traffic, while higher-rate (100 GE) links
between ToR EPSs and the OCS are used in ToR-to-ToR

dynamic optical circuits setup/released through the OCS
by a controller (not shown in Fig. 1). Not all ToR switches
need to be connected to the OCS, e.g., ToR1 is not connected
to the OCS. Our model assumes that ToR EPSs in Ko racks
in a system of K racks, where K0 ≤ K, are connected to
the OCS.

To make Hadoop work effectively in such a hybrid net-
work, we proposed modifications to the following [11]:
(i) how a data set is stored by HDFS; (ii) how the scheduler
assigns containers to map tasks of SH jobs; (iii) how the
scheduler assigns containers to reduce tasks of SH jobs;
and (iv) how map output is shuffled over optical circuits.
The different operations for SH and regular jobs in HHN
are summarized in Fig. 2.

The starting point is that, during HDFS storage, blocks
of an SH data set, which is a data set that is likely to be
processed by SH jobs, are concentrated to a few racks.
User-provided input or historical job-data analysis can
be used to determine which data sets are likely to receive
SH jobs.

Next, map tasks are scheduled only on nodes in racks
where the SH data set blocks are stored (this avoids
input-data movement between racks just as in the original
Hadoop). With data set replication (HDFS default is three
replicas), map tasks could be executed on any rack contain-
ing the required blocks. Nevertheless, because the number
of containers on a rack is limited (when compared with
the number of containers across the whole cluster), the
wait times for map tasks of an SH job could be high.
Therefore, we propose maintaining per-rack queues (see
Fig. 3), in addition to the cluster queue, and giving priority

Fig. 1. Example of hybrid EPS-OCS data center network (DCN)
architecture.

Fig. 2. Flow chart of HHN.
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to SH jobs by submitting task-container requests for
these jobs to the corresponding per-rack queues. All the
container requests (CR) for regular jobs are submitted to
the lower-priority cluster queue. A free container on a rack
r is allocated to a regular job only when the per-rack queue
of rack r is empty. System parameters (such as the number
of racks to which SH datasets are limited) will impact
fairness of resource allocation between regular jobs and
SH jobs.

By concentrating blocks of an SH data set to a few
racks and running map tasks on these racks, map output
becomes concentrated on a few racks. The goal is to make
the size of map output on a rack large enough so that the
transfer delay is several times longer than the optical cir-
cuit setup delay. This allows the shuffling to occur over an
optical circuit that has been dynamically setup between
two ToR switches via the OCS (see Fig. 1).

But before shuffling can occur, YARN must assign con-
tainers for the reduce tasks. Just as map tasks were as-
signed containers on a few racks (i.e., the few racks on
which the job’s data set blocks were stored), reduce tasks
must also be concentrated to a few racks so that rack-to-
rack map output can be transferred on an optical circuit.
To avoid a co-scheduling problem among map task comple-
tions, reduce-task container assignments, and optical-
circuit availability, the shuffling phase is decoupled
from the reduce tasks. As soon as YARN notifies the job’s
AM of the racks on which it plans to assign containers for
its reduce tasks, the AM initiates the shuffling over an op-
tical circuit using node managers on the map and re-
duce racks.

When the shuffling is completed, and all the map output
is available on the planned reduce-task racks, YARN
makes the container assignments for the reduce tasks.

In summary, HDFS, YARN, application managers,
and node managers are modified in HHN, so that
MapReduce jobs can successfully leverage the high-
bandwidth optical circuits of hybrid networks.

IV. EVALUATION

We evaluate the performance of the HHN solution by
comparing it against the original Hadoop in an EPS-only
network. To achieve a fair comparison, we assume that
the ToR-to-core links in the EPS-only network have the
same capacity as the transceiver rates in the OCS segment
of the hybrid network. Our hypothesis is that, compared
with the EPS-only network, the HHN solution can offer
almost equivalent job performance but with power and cost
savings.

To test the hypothesis, we first analyze the price and
power consumption of the two types of DCN architectures
(see Section IV.A), then conduct a detailed simulation study
to compare job performance, which could potentially be
worse in the HHN solution. In the EPS-only network, all
links are of high-rate and are always available; in contrast,
in the hybrid network solution, the high-rate circuits have
to be set up dynamically across the OCS when needed;
therefore, we expect job performance to be worse in HHN.

The purpose of our simulation is to quantify job perfor-
mance and recommend parameter settings to achieve the
same level of performance as with the original Hadoop on
EPS-only networks. Results showed the validity of our
hypothesis.

Section IV.A compares the price and power consumption
of hybrid and EPS-only DCN architectures. Section IV.B
describes our simulator, input parameters, workloads,
and evaluation metrics. Section IV.C provides an in-depth
analysis of a single SH job execution, while the remaining
subsections present simulation studies with multiple SH
and regular jobs. Section IV.D presents the results of our
comparison of HHN and the original Hadoop for a baseline
setting of system parameters. Section IV.E presents the ef-
fects of changing two key system parameters. Section IV.F
presents the effect of changing one key Hadoop parameter.
Section IV.G presents generalized results for multiple
traces with the same parameter settings.

A. Power and Cost Evaluation

This subsection presents a differential power and cost
comparison of example hybrid and EPS-only DCNs.
Because the downlink ToR switch ports (ports connected
to the servers) are the same in all DCNs, these ports are
omitted from the comparison.

Two configurations of the hybrid architecture with K
ToR switches, as illustrated in Fig. 1, are modeled here: hy-
brid 100% and hybrid 75%, where the 100% and 75% values
denote the percentage of ToR EPS connected to OCS in the
two configurations, respectively.

Table I lists the number of different types of ports in the
hybrid 100%, hybrid 75%, and EPS-only DCNs. The OCS is
present only in the hybrid DCNs, and the number of OCS
ports in these hybrid DCNs depends on the percentage of
ToR EPS connected to the OCS. The total number of 10G
EPS ports (including all the ToR switch and core EPS

Fig. 3. Per-rack queueing for shuffle-heavy jobs in HHN. AM, ap-
plicationmaster; CR, container requests for map and reduce tasks.
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ports) is 2K in all three DCNs. For a fair comparison, we
assumed that the ToR-to-core capacity in the EPS-only
DCN is 110G (100G� 10G) per ToR switch to match the
total ToR-to-core capacity in the hybrid 100% architecture.
The number of 10G and 100G transceivers is the same as
the number of 10G and 100G ports, respectively. The num-
ber of 100G EPS ports is 2K in the EPS-only DCN because
100G ports are required in the ToR switches (for the up-
links) and the core EPS. But, in the hybrid DCNs, the
OCS ports terminate the 100G uplinks from the ToR
switches; hence, only K and 0.75K 100G EPS ports are
required at the ToR switches, in the hybrid 100% and hy-
brid 75% DCNs, respectively. The number of fiber links re-
quired in the EPS-only DCN is 2K because, as stated
above, we assumed that each ToR switch has two uplinks:
10G and 100G. In the hybrid DCNs, one fiber is required
from each ToR switch to the core EPS, and a second fiber
is required from each of the ToR switches that is connected
to the OCS.

Next, we explain how we obtained the price and power-
consumption values listed in Table I. The OCS-port price
was obtained in June 2018 for a 320 × 320 switch.
Because the total number of 10G EPS ports is 2K in all
three DCNs, the price and power-consumption values
are not required for our differential comparison and thus
not listed in Table I. Because price and power consumption
values are variable, we offer two values and mark them as
“lower” and “higher.” These values are not necessarily the
minimum and maximum values because some vendors of-
fer discounts, and other vendors offer products without
warranties or maintenance contracts. Table I shows two
June 2018 prices for a 100G EPS port: $900 and $2000,
which correspond to per-port prices of a standard switch
versus a deep-buffer switch. The amount of buffer space
and the switch sizes account for the difference in per-port
prices. Transceiver prices vary significantly. Third-party
vendors offer lower-priced transceivers but without war-
ranties. The transceiver price listed in Table I was obtained
directly from a switch vendor in June 2018. All prices are
retail values, including warranties, and are without
discounts.

Table II compares the cost and power consumption of the
hybrid and EPS-only DCNs, assuming a system size of 100
racks. We present a baseline cost and power-consumption
value for the EPS-only DCN (these values do not represent
total price or total power consumption because 10G ports
were omitted) and the savings achieved in the hybrid DCNs
when compared with the EPS-only DCN. The cost savings
of the hybrid 100% DCN over EPS-only network were
$300,000 and $410,000, when using the lower and higher
values for component prices, respectively. For the hybrid
75% DCN, the cost savings are even higher. Similarly,
the power savings of hybrid 100% and hybrid 75% DCN
over EPS-only DCN are 4.3 and 5.4 kW, respectively, when
using the higher numbers for component power-consump-
tion values. The additional cost and power savings of hy-
brid 75% DCN over the hybrid 100% DCN come from
the smaller number of OCS ports needed in the hybrid
75% DCN. Finally, because optical switches generate less
heat than electrical switches, hybrid DCN architectures
can achieve additional cost savings in cooling systems.

B. Simulation Methodology

Simulator. We implemented an event-based simulator
model of HHN. The HDFS-simulation module allows all
blocks of an SH data set to be stored in a specified number
of racks. The YARN-simulation module supports per-rack
queues for SH jobs to request containers for map and
reduce tasks, while regular jobs enqueue their container

TABLE I
INPUT PARAMETERS FOR A COMPARISON OF THREE DCNS

Components

Number of Ports Needed in Different Architectures

Price (USD) per Port Power (W) per PortHybrid 100% Hybrid 75% EPS-only

OCS porta K 0.75K — 400 0.15 (lower), 0.6 (higher)
10G EPS port 2K 2K 2K — —

10G SR transceiver 2K 2K 2K — —

100G EPS portb K 0.75K 2K 900 (lower), 2000 (higher) 12.5 (lower), 42 (higher)
100G SR transceiverc K 0.75K 2K 2500 1.5
Fiberd 2K 1.75K 2K 13 0
aThe price and power consumption values for an OCS port were obtained from Calient for the S320 OCS [20] and for Glimmerglass
Intelligent Optical System 600 [21], respectively.
bThe lower and higher prices for a 100G EPS port were obtained for Arista 7160 and 7280SRAM-48C6 [22], respectively. Power
consumption values were obtained from data sheets for Cisco Nexus 7700 [23], Juniper QDX10002 [24], Arista 7280SRAM-48C6
[22], and Huawei CloudEngine 12800 [25].
cThe price and power consumption values for a 100G transceiver were obtained for Arista QSFP-100GBASE-SR4 [26] and Cisco QSFP-
100G-SR4 [27], respectively.
dThe price of fiber was obtained from fs.com [28].

TABLE II
COST AND POWER CONSUMPTION COMPARISON OF THREE

100-RACK DCNS

Architectures

Cost (USD) Power (kW)

Lower Higher Lower Higher

EPS-only (baseline) $682.6K $902.6K 2.8 8.7
Hybrid 100% (savings) $300.0K $410.0K 1.4 4.3
Hybrid 75% (savings) $470.3K $532.8K 1.7 5.4
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requests in a cluster queue. Hadoop fair scheduler with
delay scheduling is used to allocate containers for tasks
in the cluster queue.

The network model is fairly coarse. The required optical
links are assumed to be available whenever needed. To es-
timate the time to move map output for SH jobs, the size of
map output is divided by the optical network transceiver
rates, and a switch reconfiguration delay of 10 ms is added.
For map output of regular jobs, which is transferred on
paths traversing only the ToR and core EPS, flow instanta-
neous rates are computed by dividing the rate of the link
carrying the maximum number of concurrent flows by the
number of flows. Flow rates are updated every 1 ms. Map
output transfer time for regular jobs is computed from the
total map output size and the per-ms transfer sizes.

For comparison, we also simulated the original Hadoop
on an EPS-only DCN. In the original Hadoop system,
resource requests of both shuffle-heavy jobs and regular
jobs are enqueued in a single cluster queue, which is served
by the Hadoop fair scheduler with delay scheduling.

The simulator, written in Python, has 1000+ lines of
code. All simulation runs were executed on a University
of Virginia HPC cluster called Rivanna [29].

Parameters. The default values of simulation parame-
ters are shown in Table III. Unless otherwise specified,
these default values are used in all the runs.
Specifically, we chose the EPS-only link rates (110 Gbps)
to be the sum of the EPS-link (10 Gbps) and OCS-link rates
(100 Gbps) of the hybrid network. The intra-rack link rate
used in computing transfer times is 8 Gbps because we
assumed the background traffic rate to be 2 Gbps on the
10 Gbps intra-rack links.

Workloads. We started with the Facebook 2010
(FB-2010) workload, which provides the following informa-
tion for each job: (i) arrival time instant; (ii) input data set
size; (iii) shuffle data size; and (iv) reduce output size.
Assuming that each map task processes one input block
of size 128 MB, and that the number of reduce tasks is
equal to the number of map tasks divided by 8, we derived
the number of map tasks and number of reduce tasks for
each job from the size of its input data set.

In the FB-2010 workload, more than 50% of the jobs are
small jobs, with only one or two map tasks. With the given
job arrival times, the original workload results in low CPU
utilization, i.e., around 10%, in our simulation. To achieve
higher CPU utilization levels, we generated two trace sets,
TS1 and TS2, which consist of larger (artificially created)
regular jobs and SH jobs that were directly drawn from the
FB-2010 workload. The composition of two regular job sets
(RJS) is shown in Table IV. Uniform distributions are used
to select the group (based on number of map tasks) and the
specific number of map tasks within the selected group.
Uniform distribution is used similarly to select the shuffle
size of a regular job. We defined jobs with a shuffle-data
size larger than 2 GB as shuffle-heavy jobs because the du-
ration to transfer this data on 100 Gbps links is sufficiently
longer than the 10 optical circuit setup delay overhead. The
compositions of trace sets TS1 and TS2 are shown in
Table IV. We used the first 40 SH jobs from the FB-2010
workload in TS1. For TS2, we included the first 60 SH jobs
whose input-data sizes were smaller than 800 GB because
we found that one very large SH job can skew the results,
as described in Section IV.D.

Each trace in the trace sets was generated by varying
two parameters, i.e., job arrival rate λ and SH-job percent-
age ps. The inter-arrival times of jobs were decided by
drawing samples of an exponentially distributed random
variable with parameter λ. The SH-job percentage ps was
used to set the percentage of SH jobs in a trace. For each
job, a Bernoulli distributed sample with parameter ps was
drawn to decide whether the job should be an SH job or a
regular job. If it was an SH job, then its parameters were
taken from one SH job in the FB-2010 workload following
certain rules, as shown in Table IV. For example, all traces
in TS1 have the same 40 SHJs, in the same relative order.
When generating traces for TS2, the SH jobs in each trace
are randomly selected from the SH jobs in the FB-2010
workload that have input-data sizes smaller that 800 GB.

TABLE III
SIMULATION PARAMETERS

System Parameters Value

Number of racks 2a, 4, 12
Number of hosts per rack 20
Number of containers per host 16
Ko∕K (percentage of ToR EPS connected to OCS) 75%, 100%
Intra-rack link rate 8 Gbps
Inter-rack EPS link rate in hybrid network 10 Gbps
Optical link rate in hybrid network 100 Gbps
Inter-rack link rate in EPS-only network 110 Gbps

Hadoop parameters Value
Number of replicas of each input block 2, 3b

Reduce slow start 90%
aOnly in Section IV.C.
bNumber of replicas set to three only in Section IV.F.

TABLE IV
TRACE COMPOSITION; RJS, REGULAR JOB SETS

Number of Maps

Percentage of Job Types

RJS1 RJS2

1–9 40% 20%
10–99 40% 50%
100–499 18% 28%
500–10,000 2% 2%

Shuffle size
0 10%
0–0.8 GB 70%
0–2 GB 20%

TS1 TS2
Regular jobs RJS1 RJS2
SH jobs in
Sections IV.D–IV.F

First 40 SH
jobs in FB-2010

workload

First 60 SH jobs in
FB-2010 workload with
input size <800 GB

SH jobs in
Section IV.G

— Randomly picked SH jobs
in FB-2010 workload with

input size <800 GB
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Evaluation metrics. We used two types of metrics, i.e.,
per-job metrics and systemmetrics. Per-job metrics include
job response time and per-job unfairness. The system met-
rics used to characterize the overall performance of the
system are makespan and CPU utilization.

Job response time is defined as tcj − taj , where taj is the
arrival instant of job j and tcj is the job completion time.
Per-job unfairness is defined as:

f j �
Z

tcj

taj

max
�
dj�t� −

aj�t�
R

, 0
�
dt, (1)

where:

dj�t� � min
�

1
N�t� ,

rj�t�
R

�
: (2)

At time instant t, the percentage of resources deserved,
dj�t�, by job j (from a fairness point of view), depends upon
the number of jobs N�t� in the system and the ratio of the
resources requested rj�t� to the number of system resources
R. For example, if a system has only two jobs, and one job
requires five containers, and the second job requests and
receives the remaining 10 containers in the system, the
percentage of resources deserved by the first job is 1/3,
not 1/2. The instantaneous unfairness of a job is the differ-
ence between the amount of its deserved resources and the
amount of its allocated resources, aj�t�. Per-job unfairness
f j is computed by integrating its instantaneous unfairness
over the job’s lifetime.

Makespan is defined for a trace consisting of J jobs as
tcJ − ta1. CPU utilization for a trace of J jobs is the average
utilization of all containers in the system over the time
period of �ta1, tcJ �.

C. Effect of Clumping on a Single Shuffle-Heavy
Job

Using the modified data-block placement policy, the in-
put data set of a shuffle-heavy job is concentrated to a few
racks, which limits the amount of computing resources
accessible for the job. To study the effect of input-data
clumping, we start with a single shuffle-heavy job in a
small system. We simulated a cluster of two racks, in which
there are a total of 16 containers indexed from 0 to 15. The
SH job consists of 36 map tasks and five reduce tasks. In
HHN, the input data set is stored only in the first rack,
while the data set is stored in both racks for the original
Hadoop. The optical link rate is 5 Gbps in HHN. The
inter-rack electrical link rate is 500Mbps in the hybrid net-
work and 5.5 Gbps in the EPS-only network. Here, we use
lower link rates when compared with the values listed in
Table III because we simulate only one job and use a
smaller system (with only 16 containers).

Figure 4 illustrates how containers are allocated to the
SH job when it runs on the two networks. The dashed
line represents the AM container. The thin and thick
lines in green correspond to map-task containers and

reduce-task containers, respectively. The black segments
show the time period when map output is being shuffled.
The job is completed faster in the original Hadoop
than in HHN (75s versus 113s). This is because the job
can only use the eight containers in the first rack to execute
map tasks due to its concentrated input data set in HHN,
while it can use all 15 containers (except for container 0
used by the AM) to execute map tasks. On the other hand,
thanks to the decoupled shuffle phase from reduce tasks,
reduce containers do not need to sit idle when waiting
for the shuffle phase to finish with the modified Hadoop
[see shorter black segments in Fig. 4(a) than in Fig. 4(b)].
Next, we study how multiple SH jobs and regular jobs
interact.

D. Comparison in a Baseline Setting

The system parameters and Hadoop parameters in this
baseline setting are as specified in Table III, with the num-
ber of racks set to 12 and the percentage of ToR EPS con-
nected to OCS set to 75%. The notation “HHN 75%” is used
to represent this configuration.

The job traces used for these runs were generated with
TS1 settings. A total of nine different traces were gener-
ated by combining three values of λ and three values of
ps. Generation of jobs for a trace was terminated when
the 40 SH jobs from the FB-2010 workload were included
as per our TS1-workload specification (see “Workloads”
paragraph in Section IV.B).

Fig. 4. Start and finish times of map tasks, reduce tasks, and
shuffling of a single shuffle-heavy job. (a) HHN in the hybrid net-
work. (b) Original Hadoop in the EPS-only network.
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Table V first shows two trace properties and then com-
pares makespan and CPU utilization for the two Hadoop
versions. The last-job arrival time is useful to interpret
the makespan. The reason for the difference in the number
of jobs in traces is as follows. When SH jobs constitute only
5% of the trace, approximately 800 jobs were required be-
fore the 40 SH jobs from FB-2010 could be included, while,
with 10% and 20% of the trace being SH jobs, approxi-
mately 400 and 200 jobs, respectively, were required to
include the 40 SH jobs.

System metrics. The makespan in the two solutions,
HHN 75% and original Hadoop (in the EPS-only network),
are almost the same when the trace has a large number of
jobs, e.g., 800. This is because, in all nine traces (recall that
the same 40 SH jobs were included in all TS1 traces), there
was one large SH job with 19,000 map tasks, which arrives
in the second half of the traces. In HHN, each SH job can
use containers in only two racks (because each data set has
only two replicas; see Table III). This results in longer job
response times for SH jobs than in the original Hadoop
solution where SH jobs can use containers in any rack.

With the longer traces, this large SH-job response time
was hidden by the large number of jobs that came after it,
resulting in the same makespan. However, with shorter
traces (i.e., the 200-job traces), the large SH job was still
running when all the other jobs had completed. The make-
span difference between the two networks is 324 s under
the setting ps � 20% and λ � 0.6∕s. This difference is al-
most equal to the job response time difference for the large
SH job.

Table V also shows CPU utilization of the two types of
systems for each trace. When the percentage of SH jobs
in the trace is small, e.g., 5%, CPU utilization is the same
in the HHN 75% and original Hadoop solutions because
regular jobs dominate, and these jobs can be assigned con-
tainers in any rack. But when that percentage increases to
20%, with the constraint of assigning containers in only
two racks for each SH job, CPU utilization is lower in
the HHN 75% solution.

Per-job metrics. Figure 5(a) shows the difference in job
response time between the original Hadoop and HHN 75%
for a range of 51 jobs (job 100 to job 150) in the trace. Most
of the jobs with longer response times in HHN 75% than in
original Hadoop were SH jobs. This is because containers in
a maximum of two racks can be assigned to SH-job map
tasks. On the other hand, this constraint sometimes helps
the regular jobs that arrive near SH jobs to finish faster in

HHN 75%, e.g., job 135 finishes 2.9 s earlier in HHN 75%.
Job 134, which has the largest response time difference
(i.e., 324 s), is the large SH job that caused the makespan
difference discussed earlier.

Figure 5(b) shows per-job unfairness for the two solu-
tions. Overall, the Hadoop fair scheduler with delay sched-
uling used in the EPS-only original Hadoop solution
achieves better fairness. In the HHN 75% solution, the un-
fairness of large SH jobs is higher because these jobs are
constrained to use containers in only two racks. Even
though the modified YARN in the HHN solution offers
SH jobs preferential treatment by allowing only SH jobs
to place container requests in per-rack queues, SH jobs ex-
perience higher unfairness. Comparing Figs. 5(a) and 5(b),
we observe a mirror-like pattern in the two metrics, i.e.,
unfairly treated SH jobs usually have longer comple-
tion times.

E. Sensitivity to System Parameters

We examined the impact of two system parameters on sys-
tem and per-job metrics: (i) system size, and (ii) the percent-
age of ToR EPSs connected to OCS in the hybrid network.
Two system sizes were used: four racks and 12 racks. Two
values of the percentage of ToR EPSs connected to OCS were
assumed: 75% and 100% (see Table III). These two cases are
denoted by HHN 75% and HHN 100%. In HHN 100%, SH
data sets are allowed to be stored on all racks, but the num-
ber of replicas per data set is still only two.

Two types of job traces were used: TS1 and TS2 (see
“Workloads” paragraph of Section IV.B). Job arrival rate
λ was increased in these runs relative to the values used
in the runs described in Section IV.D. In selecting λ, we
tried to make the CPU utilization in the EPS-only (original
Hadoop) solution the same for the four-rack and 12-rack
cases. For the TS1 trace, approximately the same CPU uti-
lization was achieved with λ values of 0.3/s and 1.6/s for the
four-rack and 12-rack cases, respectively. For TS2, these
numbers were 0.25/s and 1.2/s for the four-rack and 12-rack
cases, respectively.

System metrics. Table VI compares the system met-
rics, makespan, and CPU utilization, under different
settings. First consider the values obtained for traces gen-
erated with the TS1 input. The effect of system size on
makespan is as follows. The percentage difference in make-
span between the original Hadoop and HHN solutions in

TABLE V
COMPARISON OF HHN WITH ORIGINAL HADOOP IN THE EPS-ONLY NETWORK FOR TS1 TRACES ON A 12-RACK SYSTEM

SH-Job Percentage ps
5% 10% 20%

Job Arrival Rate λ (/s) 0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9

Trace properties Last-job arrival time (s) 3097 1767 1354 1579 890 688 754 438 332
Number of jobs in trace 800 804 801 397 399 402 197 201 202

Makespan (s) HHN 75% 3140.4 1810.4 1403.5 1644.1 1151.0 1092.0 1132.3 922.4 830.0
Original Hadoop 3139.7 1809.8 1397.0 1622.2 954.8 1005.2 797.1 598.1 560.1

CPU utilization (%) HHN 75% 28.4 50.0 63.3 29.2 48.0 57.3 29.9 46.3 60.7
Original Hadoop 28.4 49.9 64.1 29.7 50.7 59.0 34.9 57.3 72.8
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a four-rack system was smaller than in the 12-rack system.
This is because the time taken for all jobs to complete in the
four-rack system provided more overlap of the large SH-job
execution time with the execution times of other jobs. The
effect of the percentage of ToR EPS connected to OCS in
the hybrid network, 75% versus 100%, on makespan was
not significant because the number of overlapping SH jobs
was not high.

The CPU utilization in the 12-rack case is lower in the
HHN solutions. This is because of the two-rack constraint
on SH jobs.

Next, consider the results obtained with TS2 traces.
Recall that SH jobs with more than 800-GB input data sets
were excluded in TS2. The effects of the one large SH job
(the input data set size for this job was 2.375 TB), which
were described in Section IV.D, are not seen in the results
for TS2. The makespan is almost the same in the original
Hadoop and HHN solutions in both four-rack and 12-rack
cases. Also, the CPU utilization is slightly better in the
HHN solution.

We conclude that, for large input data sets, either more
than two replicas should be created to spread out blocks on
more racks (replicas of a block should necessarily be stored
on different racks for reliability reasons), or even with just
two replicas, the data sets should be spread out to more
than two racks. However, the input data sets should not
be so splintered between racks that the per-rack map out-
put becomes too small to justify the use of optical circuits
for shuffling.

Job response time. Figure 6 shows boxplots to com-
pare job response times for various configurations.1 The
TS1 input was chosen, as it had worse results than TS2
(as shown in Table VI).

We make the following observations: (i) larger systems,
i.e., systems with more racks outperform smaller systems
(the job arrival rate λ values were chosen to make the
CPU utilization the same in the four-rack and 12-racks
cases for the original Hadoop configuration); (ii) in smaller
systems, increasing the percentage of ToR EPS connected
to OCS in the hybrid network affects regular jobs adversely,
e.g., the job response time is longer for regular jobs in HHN
100% configuration than in the HHN 75% configuration,
while the opposite is true for SH jobs.

Per-job unfairness. To gain better insight into per-job
unfairness, we present this metric along with job response
time for a particular setting: four-rack system, TS2 trace,
ps � 20%, and λ � 0.3. Intuitively, if SH data sets are stored
in all the racks of a hybrid network, regular jobs are likely
to be treated unfairly because SH jobs receive preferential
treatment with their use of per-rack queues. This effect
should be more obvious in a system with a smaller number
of racks because, with a larger number of racks, it is less
likely for multiple shuffle-heavy jobs to be scheduled on
all the racks at the same time. Thus, we choose the four-
rack configuration to present the results.

Figure 7 presents the results. The original Hadoop on an
EPS-only network offers the best fairness. Regular jobs suf-
fer higher unfairness in HHN 100% when compared with
HHN 75%. This is reversed for SH jobs.

This simulation run illustrates the effects on job re-
sponse time of the system parameter, i.e., percentage of
ToR EPS connected to OCS in the hybrid network.
Therefore, Fig. 7(b) has been added to the job unfairness
figure. It is apparent that SH jobs enjoy shorter response
times in HHN 100% than in HHN 75% because all four
racks in HHN 100% can be used to store SH data sets;
hence, there is a smaller likelihood of multiple concurrent
SH jobs competing for containers in the same two racks.
With this trace, this exact scenario occurs when three con-
secutive SH jobs (job 35–37) have to share the same two
racks based on the location of their data set replicas.
Figure 7 shows that the unfairness level shoots up in
the HHN 75% (blue) configuration for these three jobs;
simultaneously, job response time increases.

Regular jobs enjoy the same short completion times in
HHN 75% as they do in the original Hadoop on EPS net-
work because there is always one rack out of the four racks
that does not run SH jobs.

F. Sensitivity to a Hadoop Parameter

Here, we study the impact of one Hadoop parameter, i.e.,
number of replicas of each input block, on the system and
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1One SH job in the four-rack instance of the HHN 75% configuration took
846.3 s. This point was dropped from the graph for better visualization of the
differences.
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per-job metrics. Two values of the number of replicas were
used: 2 and 3 (see Table III). The traces used in this
subsection are from TS1.

Job response time. Figures 8 and 9 illustrate the effect
of the number of data set replicas on job response time in
a four-rack system and a 12-rack system, respectively.

We make the following observations: (i) in the smaller
system with four racks, if only 75% of the ToR switches
are connected to the OCS, and three replicas are used, re-
sponse times for both regular jobs and SH jobs are sta-
tistically similar to the response times with the original
Hadoop on an EPS-only DCN; and (ii) in the larger system
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TABLE VI
COMPARISON OF SYSTEM METRICS IN TWO HHN CONFIGURATIONS AND ORIGINAL HADOOP ON EPS-ONLY NETWORK; ps � 20%

Trace Metrics

4 Racks; λ � 0.3�TS1�, 0.25�TS2� 12 Racks; λ � 1.6�TS1�, 1.2�TS2�
HHN 75% HHN 100% Original Hadoop HHN 75% HHN 100% Original Hadoop

TS1 Makespan (s) 1351.3 1346.6 1141.7 773.4 771.2 446.3
CPU utilization (%) 80.7 80.1 82.7 72.8 72.4 83.9

TS2 Makespan (s) 1409.8 1403.3 1409.0 487.8 489.6 486.8
CPU utilization (%) 83.0 82.7 82.4 81.2 80.8 80.4
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with 12 racks, SH-job response times are reduced when
using three replicas when compared with the two-replica
configuration, while regular-job response times are almost
the same in all configurations.

Makespan. In Section IV.D, we observed that the make-
span in HHN 75% is higher than that in the original
Hadoop when the SH-job percentage is high (i.e., 20%).
This is mainly due to the longer response time of a large
SH job in HHN than in the original Hadoop. This occurs
because, in HHN, each SH job can use containers in only
two racks when the number of replicas is two. Because
having three replicas helps to reduce response times of
SH jobs in a 12-rack system (see Fig. 9), we expect it to also
reduce makespan in HHN.

Table VII compares the makespan of TS1 traces in HHN
and the original Hadoop under two settings for the number
of replicas. When the SH-job percentage is small, i.e., 5%,
the makespan in both HHN and the original Hadoop is not
affected by the number of replicas. In contrast, the make-
span in both HHN 75% and HHN 100% is reduced when
having more replicas when 20% of the jobs are SH, while
the makespan in the original Hadoop remains roughly the
same for two and three replicas.

In summary, if the percentage of SH jobs is high, using a
higher number of input-block replicas (e.g., 3) improves
both job response time andmakespan performance inHHN.

G. Multiple Traces With the Same Trace
Parameters

The simulation results presented previously were all ob-
tained using a single trace for each trace-parameter com-
bination (SH-job percentage and job arrival rate). To test

whether our conclusions were independent of the specific
traces used, we generated multiple traces, i.e., 30 traces,
for each trace-parameter pair (see Section IV.B). All the
traces used in this subsection are from TS2.

We first compare the makespan performance for various
configurations. Figure 10 shows boxplots of makespan for a
12-rack system at high load (λ � 1.5). Under both 5% and
20% SH-job scenarios [Fig. 10(a) and 10(b), respectively],
the original Hadoop achieves shorter makespan than
the two HHN configurations, but the difference is less
significant when SH-job percentage is 5%. These observa-
tions are consistent with those made in Section IV.D.
The longer makespan in HHN occurs because HHN
limits SH jobs to run tasks on only a few racks even when
there are idle containers in other racks. In addition,
HHN 75% and HHN 100% have virtually the same
performance.
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TABLE VII
MAKESPAN COMPARISON OF DIFFERENT NUMBER OF REPLICAS FOR TS1 TRACES IN A 12-RACK SYSTEM

SH-Job Percentage ps 5% 20%

Job Arrival Rate λ (/s) 0.3 0.6 0.9 0.3 0.6 0.9

Number of replicas 2 3 2 3 2 3 2 3 2 3 2 3

HHN 75% 3140.4 3140.2 1810.4 1810.2 1403.5 1399.3 1132.3 1010.1 922.4 803.1 830.0 701.2
HHN 100% 3140.4 3140.2 1810.4 1810.2 1403.5 1402.4 1132.3 1010.1 922.4 803.1 830.0 699.5
Original Hadoop 3139.7 3140.1 1809.8 1810.0 1397.0 1397.1 797.1 796.8 598.1 599.2 560.1 560.0
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Fig. 10. Makespan comparison in a 12-rack system with different
SH-job percentages; Original, original Hadoop on EPS-only net-
work; 75% and 100%, HHN 75% and HHN 100%; TS2 input;
λ � 1.5. (a) ps � 5%. (b) ps � 20%.
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Figure 11 shows the makespan performance in a four-
rack system. When the load is high (λ � 0.3), the original
Hadoop ends up with much longer makespans than HHN
for some traces. This is because, when the system is small,
if there are several jobs with a large number of reduce
tasks, most or even all of the containers could be allocated

to those reduce tasks, leaving insufficient containers for
map tasks. The system could enter a deadlock, i.e., reduce
task wait for all map tasks to complete before starting ex-
ecution, while map tasks wait for reduce tasks to complete
in order to obtain containers to run. This problem is
handled in the original Hadoop by preempting reduce con-
tainers, i.e., killing reduce tasks and allocating the freed
containers to map tasks, which, however, leads to wasted
CPU resources. The possible deadlock results in worse
makespan performance for the original Hadoop than
HHN. When the job arrival rate is lower (λ � 0.1), the
original Hadoop on the EPS-only network works slightly
better than HHN.

Next, we consider job response times. Figure 12 shows
boxplots of the maximum response time of regular jobs
and SH jobs in each of the 30 traces. For regular jobs in
the four-rack system, the distribution of maximum job
response time is further spread for the original Hadoop
than HHN, which could be explained by the deadlock
situation described above. The original Hadoop and
HHN have similar distributions for maximum regular-
job response time in the 12-rack system. For SH-jobs in
the four-rack system, the maximum job response time is
smaller for HHN than for the original Hadoop because
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the priority given to SH-jobs allows these jobs to obtain con-
tainers faster than they deserve in a fair scheduler. In con-
trast, large SH-jobs finish slower in HHN than in the
original Hadoop in the 12-rack system. Although SH-job
container requests are placed in per-rack queues, the
map tasks of each SH-job are limited to use containers
in only two racks. However, the worse performance of large
SH jobs in HHN would be largely improved by using more
input-block replicas (see Section IV.F).

As maximum job response time indicates the perfor-
mance of very large jobs, we use median job response time
to capture the performance of medium-sized jobs. There are
two interesting findings in the median job response times
shown in Fig. 13. The first is that, in both the four-rack and
12-rack systems, regular jobs perform worse in HHN 100%
than in HHN 75%. This occurs because, when SH jobs are
allowed to use all the racks in a system, regular jobs are
likely to wait longer to obtain containers. The second find-
ing is that, with both system sizes, medium-sized SH jobs
finish slower in HHN 75% than in the original Hadoop and
HHN 100%. This is because SH jobs need to wait in per-
rack queues for service. The extra waiting time is longer
in HHN 75% than in HHN 100%, and this waiting time
is a larger portion of the response time for medium-sized
jobs than for very large jobs.

V. CONCLUSIONS

The paper showed that it is feasible to modify certain
data center applications so that the network traffic
generated by these modified applications are better able
to handle the high reconfiguration delays of OCS in hybrid
electrical packet switch (EPS)/OCS networks. Specifically,
this work proposed and evaluated a modified Hadoop de-
signed for hybrid networks (HHN). Our evaluation results
show that the HHN solution can achieve almost the same
system-level performance metrics, makespan, and CPU
utilization and per-job performance metrics such as re-
sponse time and fairness, as the original Hadoop running
on an EPS-only network with the same high-rate links as in
the optical subsystem of the hybrid network. Because these
high-rate links are always on in the EPS-only network and
require more expensive high-speed transceivers in the
EPS-only network, power consumption and costs are
higher for the EPS-only network when compared with
those of the hybrid network.
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