
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 1

Popularity-aware Multi-failure Resilient and
Cost-effective Replication for High Data

Durability in Cloud Storage
Jinwei Liu, Member, IEEE, ACM, Haiying Shen, Senior Member, IEEE, Member, ACM, Husnu S. Narman,

Zongfang Lin, Member, IEEE, ACM, and Zhuozhao Li

Abstract—Large-scale data stores are an increasingly important component of cloud datacenter services. However,
cloud storage system usually experiences data loss, hindering data durability. Three-way random replication is commonly
used to lead better data durability in cloud storage systems. However, three-way random replication cannot effectively
handle correlated machine failures to prevent data loss. Although Copyset Replication and Tiered Replication can
reduce data loss in correlated and independent failures, and enhance data durability, they fail to leverage different data
popularities to substantially reduce the storage cost and bandwidth cost caused by replication. To address these issues,
we present a popularity-aware multi-failure resilient and cost-effective replication (PMCR) scheme for high data durability
in cloud storage. PMCR splits the cloud storage system into primary tier and backup tier, and classifies data into hot data,
warm data and cold data based on data popularities. To handle both correlated and independent failures, PMCR stores
the three replicas of the same data into one Copyset formed by two servers in the primary tier and one server in the
backup tier. For the third replicas of warm data and cold data in the backup tier, PMCR uses the compression methods
to reduce storage cost and bandwidth cost. Extensive numerical results based on trace parameters and experimental
results from real-world Amazon S3 show that PMCR achieves high data durability, low probability of data loss, and low
storage cost and bandwidth cost compared to previous replication schemes.

Index Terms—Cloud storage, Replication, Data durability, Cost-effectiveness, SLA.

F

1 INTRODUCTION

Large-scale data stores are an increasingly important compo-
nent of cloud datacenter services. Cloud providers, such as
Amazon S3 [1], Google Cloud Storage (GCS) [2] and Windows
Azure [3] offer storage as a service. In the storage as a service,
users store their data (i.e., files) into a cloud storage system
and retrieve their data from the system. It is critical for cloud
providers to reduce Service Level Agreement (SLA) violations
to provide high quality of service and reduce the associated
penalties for such services. High data durability is usually
required by cloud storage systems to meet SLAs. Durability
means the data objects that an application has stored into

• Corresponding Author. Email: hs6ms@virginia.edu; Phone: (434)
924-8271; Fax: (434) 982-2214.

• Jinwei Liu is with the Institute for Simulation and Training,
University of Central Florida, Orlando, FL 32826, USA.
E-mail: jliu@ist.ucf.edu.

• Haiying Shen is with the Computer Science Department at the
University of Virginia, Charlottesville, VA 22904, USA.
E-mail: hs6ms@virginia.edu.

• Husnu S. Narman is with the Computer Science Department at
Marshall University, Huntington, WV 25755, USA.
E-mail: narman@marshall.edu.

• Zongfang Lin is with the Huawei US R&D Center, Santa Clara,
CA 95050, USA.
E-mail: Zongfang.Lin@huawei.com.

• Zhuozhao Li is with the Department of Computer Science at
University of Chicago, Chicago, IL 60637, USA.
E-mail: zhuozhao@uchicago.edu.

the system are not lost due to machine failures (e.g., disk
failure) [4]. For example, services that use Amazon Dynamo
storage system typically require that 99.9% of the read and
writes requests execute within 300ms [5].

Data loss caused by machine failures typically affects
data durability. Machine failures usually can be categorized
into correlated machine failures and non-correlated machine
failures. Correlated machine failures refer to the events in
which multiple nodes (i.e., servers, physical machines) fail
concurrently due to the common failure causes [6], [7] (e.g.,
cluster power outages, workload-triggered software bug mani-
festations, Denial-of-Service attacks), and this type of failures
often occur in large-scale storage systems [8]–[10]. Significant
data loss is caused by correlated machine failures [11], [12],
which have been documented by Yahoo! [13], LinkedIn [6]
and Facebook [14]. Non-correlated machine failures refer to
the events in which nodes fail individually (e.g., individual disk
failure, kernel crash). Usually, non-correlated machine failures
are caused by factors such as different hardware/software
compositions and configurations, and varying network access
abilities.

The storage demand in a cloud storage system increases
exponentially [15]. Data popularity is skewed in cloud storage.
The analysis of traces from Yahoo!’s Druid cluster shows that
the top 1% of data is an order of magnitude more popular
than the bottom 40% [16]. Due to highly skewed data popu-
larity distributions [16], [17], popular data with considerably
higher request frequency (referred to as hot data) [18] could
generate heavy load on some nodes [16], which may result

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 2

in data unavailability at a time. Availability means that the
requested data objects will be able to be returned to users [4].
Actually, much of the data stored in a cloud system is rarely
read (commonly referred to as cold data [15], [18], [19]).
To enhance data availability and durability, data replication is
commonly used in cloud storage systems. Replicas of cold data
waste the storage resource and generate considerable storage
and bandwidth costs (for data updates and data requests) [18]
that outweigh their effectiveness on enhancing data durability.
Thus, it is important to compress and deduplicate unpopular
data objects and store them in low-cost storage medium [15],
[20].

Random replication, as a popular replication scheme, has
been widely used in cloud storage systems [11], [21]. Cloud
storage systems, such as Hadoop Distributed File System
(HDFS) [13], RAMCloud [22], Google File System (GFS) [23]
and Windows Azure [24] use random replication to replicate
their data in three randomly selected servers from different
racks to prevent data loss in a single cluster [11], [21], [22],
[25]. However, the three-way random replication cannot well
handle correlated machine failures because data loss occurs if
any combination of three nodes fail simultaneously [11]. To
handle correlated machine failures, Copyset Replication [11]
and Tiered Replication [21] have been proposed. However,
both methods do not try to reduce storage cost or bandwidth
cost caused by replication though data replicas bring about
considerably high storage and bandwidth costs. Although
many replication schemes have been proposed to improve
data durability [8], [9], [26]–[29], they do not concurrently
consider different data popularities and multiple failures (i.e.,
correlated and non-correlated machine failures) to increase
data availability and durability and reduce the storage and
bandwidth costs caused by replication without compromising
request delay greatly.

To address the above issues, in this paper, we aim to design
a cost-effective replication scheme that can achieve high data
durability and availability while reducing storage cost and
bandwidth cost caused by replication. To achieve our goal,
we propose a popularity-aware multi-failure resilient and cost-
effective replication scheme (PMCR), which has advantages
over the previous proposed replication schemes because it
concurrently owns the following distinguishing features: First,
it can handle both correlated and non-correlated machine
failures. Second, it compresses rarely used replicas of unpop-
ular data to reduce storage cost and bandwidth cost without
compromising the data durability, data availability, and data
request delay greatly. We summarize the contributions of this
work below.
• We conducted trace data analysis, and the analytical results

confirm the existence of read-intensive and write-intensive
data, data popularity and data similarity in cloud storage,
which lay the solid foundation of the design of PMCR.

• PMCR handles both correlated and independent failures
by storing the three replicas of the same data into one
Copyset formed by two servers in the primary tier and one
server in the backup tier. The primary tier resides close to
primary replicas and is used for recovering data with low
read latency, and the backup tier is located off-site (e.g.,
remote location) and serves as the disaster recovery site to
protect from site outage or to restore when the local backup
is not available.

• PMCR classifies data into hot data, warm data and cold
data based on data popularity, and it significantly reduces
the storage and bandwidth costs without compromising
data durability, data availability, and data request delay
greatly by selectively compressing the third replicas of
data objects based on data popularity in the backup tier.
For read-intensive data, PMCR uses the Similar Compres-
sion method (SC), which leverages the similarities among
replica chunks and removes redundant replica chunks; for
write-intensive data, PMCR uses the Delta Compression
method (DC), which records the differences of similar data
objects and between sequential data updates.

• Since Balanced Incomplete Block Design (BIBD) does
not always exist for any given combination of treatment
number, replication level and block size [11], [30], PMCR
uses Partially Balanced Incomplete Block Design (PBIBD)
to generate the sets of nodes for storing the replicas of
the data when the BIBD does not exist, which overcomes
the limitation of BIBD and greatly increases the chance of
generating the sets of nodes.

• PMCR enhances SC by eliminating the redundant chunks
between different data objects (rather than only within one
data object) and enhances DC by recording the differences
between different data objects (rather than only the differ-
ence between sequential updates), and it further reduces the
storage and bandwidth costs caused by replication.

• We analyzed the system performance of PMCR in com-
parison with other replication schemes in terms of storage
cost, data durability and bandwidth cost, which shows that
PMCR outperforms other schemes in these aspects.

• We have conducted extensive numerical analysis based on
trace parameters and experiments on Amazon S3 to com-
pare PMCR with other state-of-the-art replication schemes.
Both numerical and experimental results show that PMCR
achieves high data durability, low data loss probability and
low storage cost and bandwidth cost.
The remainder of this paper is organized as follows. Section

2 presents the analysis of the trace data. Section 3 presents the
design for PMCR. Section 4 describes the analysis of system
performance. Section 5 presents the numerical and experi-
mental results. Section 6 reviews the related work. Section 7
concludes this paper with remarks on our future work.

2 TRACE DATA ANALYSIS

We collected two real-world traces: a public cloud from Cloud-
VPS [31] and a substantial amount of block I/O traces from a
private cloud at Florida International University (FIU). The
CloudVPS trace consists of block I/O traces collected from
hundreds of VMs on the production system of the IaaS cloud
for several days.The FIU trace contains around two months of
block I/O traces collected from several production servers (i.e.,
webserver). It contains the trace for the homes workload, web-
vm workload and webserver workload which are for different
applications. The homes workload is from a NFS server that
serves the home directories of the research group at FIU.
The research group activities include software deployment,
testing, experimentation, plotting using software and technical
document preparation. The web-vm workload is collected from
a virtualized system hosting two Computer Science department

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 3

-0.03
0.02
0.07
0.12
0.17
0.22
0.27
0.32
0.37
0.42

Pe
rc

en
ta

ge
 o

f f
ile

s

Range for # of

(a) Different read/write rates in homes workload

-0.05
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85

Pe
rc

en
ta

ge
 o

f f
ile

s

Range for # of

(b) Different read/write rates in web-vm workload

Fig. 1: Percent of files with different number of reads/writes.

web-servers: webmail proxy and online course management
system.

2.1 Different Data Popularities
Figure 1(a) shows the different access (including read and
write) frequencies of files in the homes workload. We see that
around 41% files fall in the range of (0,2], and 10% files fall
in the range of (8,16]. The result shows that different files
have different access frequencies, and a small percentage of
files have very low access frequency or extremely high access
frequency. Figure 1(b) shows the different access frequencies
of files in the web-vm workload. We see that around 82% files
are in the range of (0,2], and 7% files fall in the range of
(2,4]. The result also shows that different files have different
access frequencies, and a small percentage of files have very
low access frequency or extremely high access frequency. Both
Figure 1(a) and Figure 1(b) indicate the skewness of popu-
larity distribution of files. Based on this observation, PMCR
considers the different popularities of files in file operation,
so that the storage and bandwidth costs can be reduced as
much as possible without compromising the data durability
and availability and file request delay greatly.

2.2 Different Data Intensiveness
To show the existence of write-intensive and read-intensive
data in cloud storage system, we measure the FIU webserver
trace and CloudVPS trace. Figure 2 shows the number of reads
and writes for the FIU webserver trace per week for a total of
35 days. Overall, across the entire trace, there are around 30%
of reads and 70% of writes. From this figure, we see that the
I/O patterns of FIU webserver are dominated by writes, that is,
the FIU webserver data is write-intensive.

Figure 3 shows the number of reads and writes for different
VMs in CloudVPS. From the figure, we see that the I/O
patterns of some VMs are dominated by reads and the I/O
patterns of some VMs are dominated by writes. The results

0

5

10

15

20

Nov 01 Nov 08 Nov 15 Nov 22 Nov 29

Re
ad

s/W
rite

s (
M

Fig. 2: I/O patterns of the FIU webserver.

0

5

10

15

20

2

 R
ea

ds
/W

rit
es

 (M

Fig. 3: I/O patterns of the VMs in CloudVPS.

from Figure 2 and Figure 3 confirm the existence of write-
intensive and read-intensive data in cloud storage systems.
Based on this observation, PMCR uses different compression
methods for write-intensive data and read-intensive data in
order to reduce the storage and bandwidth costs as much as
possible.

2.3 Chunk Similarity

We use two FIU workloads, homes workload and web-
vm workload, to analyze the similarity between chunks of
data objects. In cloud storage systems, data objects are usually
stored in the form of chunks. The chunks usually have some
similarity between each other [32], [33]. We grouped the
chunks that have no more than 10, 100 and 1000 replicas,
respectively, into each group. Then, we calculated the average
number of replicas per chunk in each group (called workload
similarity). The similarity between two chunks (say A and B)
is defined as

Sim(A,B) =
|A∩B|

A
(1)

Figure 4 shows the workload similarity of each group of the
homes workload and web-vm workload. From the figure, we
see that the workload similarity exists in each group. In the
group with no more than 1000 replicas is 8.7 and 4.5 in
the homes workload and web-vm workload, respectively. The
result shows that data similarity exists among data chunks as
indicated in [34]. This observation motivates the design of
PMCR, which leverages the similarities between data chunks
to eliminate the redundant data chunks in storage and data
transmission.

3 SYSTEM DESIGN

In this section, we first introduce some concepts and assump-
tions, and then formulate our problem. Finally, we present the
design of PMCR based on the observations from the workload
analysis.

Suppose there are m data objects and each data object
is split into M partitions (i.e., chunks) in the cloud storage
system [28], [34]–[36]. A data object is lost if any of its

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 4

0

2

4

6

8

10

10 100 1000

W
or

klo
ad

 si
mi

lar
ity

Max # of copies

homes web-vm

Fig. 4: Data similarity in homes workload and web-vm workload.

partitions is lost [11]. We assume there are N servers in the
cloud storage system. For analytical tractability, we assume
that a server belongs to a rack, a room, a data-center, a country
and a continent. We use the label in the form of “continent-
country-datacenter-room-rack-server” to identify the geograph-
ic location of a server [28], [37].

Problem Statement: Given data object request probabili-
ties, data object sizes, and failure probability, how to replicate
the chunks of data objects so that the node failure probability,
storage cost and bandwidth cost are minimized in both corre-
lated failures and non-correlated failures?

To solve this problem, we build a cost-effective replication
scheme with data compression to maximize the data durability
in both correlated and non-correlated failures while reducing
the cost (storage cost and bandwidth cost).

3.1 PMCR Replication Scheme
3.1.1 Classification of Data Types
PMCR classifies data into three types: hot data, warm data and
cold data based on data popularity. The popularity of a data
object is measured by its visit frequency, i.e., the number of
visits in a time epoch (denoted by vi) [17], [28], [38]. That is,
ji(·) = a · vi, where ji denotes the popularity of a data object,
a is a coefficient. Suppose the time is split into epoches, then
the popularity at epoch t + 1 can be estimated based on the
popularity value and coefficient b at epoch t:

j
t+1
i (·) = b ·j t

i (·)+a · vi (2)

To determine the popularity type of a data object, PMCR first
calculates the popularity of each data object, and then ranks
them based on their popularity values. PMCR considers the
data objects with popularity rank within top 25% as hot data,
the data objects with popularity rank between (25%,50%] as
warm data, and the data objects with popularity rank between
(50%,100%] as cold data.

PMCR also needs to determine whether a data object is
read-intensive or write-intensive in order to choose a compres-
sion method accordingly. For this purpose, it sets thresholds
for read rate and write rate. PMCR logs the number of reads
and writes of each data object in each time epoch. A data
object is write-intensive if its write rate is higher than the pre-
defined write rate threshold, and it is read-intensive if its read
rate is higher than the pre-defined read rate threshold. PMCR
determines the read-intensiveness and write-intensiveness of
each data object periodically.

3.1.2 Replica Placement
PMCR first splits the nodes in the system into two tiers:
primary tier and backup tier. As in the three-way replication,

Server0 Server1 Server2 Server3

Server0 Server2 Server1 Server3

Server0 Server1 Server2 Server3

Server0 Server4 Server5 Server6

Server0 Server1 Server2 Server3 Server4 Server5

Server0 Server2 Server3 Server1 Server4 Server5 Server1 Server2 Server3 Server7

Server4 Server5 Server6 Server7

 FTS 1 FTS 2

 FTS 3 FTS 4

 FTS 1 FTS 2

 FTS 3 FTS 4

 FTS 1

 FTS 3

 FTS 2

 FTS 4

Replication degree=d1 Replication degree=d2 Replication degree=d3

Server0 Server1 Server2 Server3 Server4 Server10

Server0 Server3 Server8 Server1 Server4 Server7

 FTS 1 FTS 2

 FTS 5 FTS 6

P
rim

a
ry T

ie
r

B
a

cku
p

 T
ie

r

Server0 Server1 Server2 Server3 Server4 Server5

Server0 Server2 Server3 Server1 Server4 Server5

 FTS 1 FTS 2

 FTS 3 FTS 4

Server0 Server1 Server2 Server3 Server4 Server5

Server0 Server2 Server3 Server1 Server4 Server5

 FTS 1 FTS 2

 FTS 3 FTS 4

P
rim

a
ry T

ie
r

B
a

cku
p

 T
ie

r

Server6 Server7 Server8 Server9 Server10 Server11

Server2 Server5 Server11 Server5 Server6 Server9

 FTS 3 FTS 4

 FTS 7 FTS 8

Server0 Server1 Server2 Server3 Server4 Server5

Server0 Server2 Server3 Server1 Server4 Server5

 FTS 1 FTS 2

 FTS 3 FTS 4

Server0 Server1 Server2 Server3 Server4 Server5

Server0 Server2 Server3 Server1 Server4 Server5

 FTS 1 FTS 2

 FTS 3 FTS 4

Server0 Server1 Server2 Server3 Server4 Server10

Server0 Server3 Server8 Server1 Server4 Server7

 FTS 1 FTS 2

 FTS 5 FTS 6

Server6 Server7 Server8 Server9 Server10 Server11

Server2 Server5 Server11 Server5 Server6 Server9

 FTS 3 FTS 4

 FTS 7 FTS 8

Server0 Server1 Server2 Server3 Server4 Server10

Server0 Server3 Server8 Server1 Server4 Server7

 FTS 1 FTS 2

 FTS 5 FTS 6

P
rim

a
ry T

ie
r

B
a

cku
p

 T
ie

r

Server6 Server7 Server8 Server9 Server10 Server11

Server2 Server5 Server11 Server5 Server6 Server9

 FTS 3 FTS 4

 FTS 7 FTS 8

Server0 Server1 Server2 Server3 Server4 Server10

Server0 Server3 Server8 Server1 Server4 Server7

 FTS 1 FTS 2

 FTS 5 FTS 6

Server6 Server7 Server8 Server9 Server10 Server11

Server2 Server5 Server11 Server5 Server6 Server9

 FTS 3 FTS 4

 FTS 7 FTS 8

 B P P P B P B P P B P P

B P P P B P P P B PB P

P: Primary Tier B: Backup Tier

Server0 Server1 Server2 Server3 Server4 Server10

Server0 Server3 Server8 Server1 Server4 Server7

 FTS 1 FTS 2

 FTS 5 FTS 6

Server6 Server7 Server8 Server9 Server10 Server11

Server2 Server5 Server11 Server5 Server6 Server9

 FTS 3 FTS 4

 FTS 7 FTS 8

 B P P P B P B P P B P P

B P P P B P P P B PB P

Fig. 5: Fault-tolerant sets (FTSs) in PMCR. (P: Primary tier, B:
Backup tier.)

in PMCR, the first two replicas of all data objects are stored
in primary tier, and the third replicas of data objects are stored
in backup tier. For load balance, the number of nodes in the
primary tier is twice of the number of nodes in the backup tier.
That is, PMCR assigns b 2N

3 c nodes to the primary tier, and
assigns bN

3 c to the backup tier.
To reduce the data loss caused by correlated machine

failures, PMCR adopts the fault-tolerant set (FTS) [11] (i.e.,
Copyset). An FTS is a distinct set of servers that holds all
replicas of a data object’s chunk. Each FTS is a single unit
of failure because at least one data object is lost when an
FTS fails. We will explain the details of FTS in Section 4.2.1.
PMCR then partitions the nodes and uses Balanced Incomplete
Block Design (BIBD)-based (or Partially Balanced Incomplete
Block Design (PBIBD)-based) to generate FTSs. As shown in
Figure 5, each FTS contains two nodes from the primary tier
and one node from the backup tier, which can protect against
correlated machine failures [21]. PMCR replicates each chunk
of every data object in a single FTS1. For example, in Figure 5,

Algorithm 1: Pseudocode for the PMCR algorithm
Input: Data objects’ visit frequencies, read and write rates,

thresholds for determining hot data, warm data and cold
data

1 Split the nodes (in the system) into primary tier and backup tier
2 Use BIBD-based (or PBIBD-based) method to generate FTSs,

each FTS contains two nodes from the primary tier and one
node from the backup tier

3 Compute the popularities of each data object
4 for each data object do
5 if the data is hot data then
6 Store its chunk replicas to the nodes in an FTS, the

first two chunk replicas are in primary tier and the
third one is in backup tier

7 else
8 if the data is read-intensive data then
9 Store its chunk replicas to the nodes in an FTS,

the first two chunk replicas are in primary tier and
the third one is in backup tier using SC

10 if the data is write-intensive data then
11 Store its chunk replicas to the nodes in an FTS,

the first two chunk replicas are in primary tier and
the third one is in backup tier using DC

12 servers are split into two tiers, and there are 8 FTSs across
the primary tier and the backup tier. The servers with red lines
(marked by “P”) are from the primary tier and the servers with
black lines (marked by “B”) are from the backup tier. PMCR
replicates the first two chunk replicas of data objects on the

1. Although putting all replicas of a chunk to the nodes in an FTS
can bring about the cost of inter-rack transfer (across oversubscribed
switches), it can significantly reduce data loss probability caused by
correlated machine failures by using BIBD-based method [11].

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 5

 DSP

Other methods

23456

Pro
1

23456

Pro
1

T6 T5 T4 T3 T2 T1

T6 T5 T4 T3 T2 T1

 D
23456 Pro 1

T6 T5 T4 T3 T2 T1

A B C D A' E C' D' A'' E...

A A' A'' B C C' D D' E E'...

(a) Grouping similar blocks

 DSP

Other methods

23456

Pro
1

23456

Pro
1

T6 T5 T4 T3 T2 T1

T6 T5 T4 T3 T2 T1

 D
23456 Pro 1

T6 T5 T4 T3 T2 T1

A B C D A' E C' D' A'' E...

A A' A'' B C C' D D' E E...

A B C D A' E C' D' A'' E...

A B C D

A B C D E...

(b) Removing redundant copies

Fig. 6: Similar compression.

primary tier, and replicates the third chunk replicas on the
backup tier. PMCR compresses the third replicas of warm data
and cold data on the backup tier to further reduce the storage
cost and bandwidth cost since they are not frequently visited.

Algorithm 1 shows the pseudocode of the PMCR replica-
tion algorithm. PMCR splits the nodes in the storage system
into primary tier and backup tier (Line 1) [21]. The primary
tier stores the first two chunk replicas of data objects and the
backup tier stores the third replicas of data objects [21]. This
three-way replication and help handle the correlated machine
failures. PMCR uses BIBD-based or PBIBD-based method
to generate FTS. Each FTS consists of two servers from
the primary tier and one server from the backup tier (Line
2). Each chunk will be replicated into one FTS to protect
against correlated machine failures. To reduce storage cost
and bandwidth cost without compromising data availability
of popular data, PMCR classifies data into hot data, warm
data and cold data based on popularities of data objects, and
determines whether each data object is read-intensive and (or)
write-intensive (Line 3), and uses different strategies to store
the third replicas of data objects in each data type. Accordingly,
PMCR places the replicas of each chunk into the nodes in an
FTS (Lines 5-11).

For hot data, PMCR puts the third replicas on the backup
tier without compression so that the data can be quickly
recovered when the nodes that store the first two replicas fail
(Lines 5-6). To further reduce storage cost and bandwidth cost,
for warm data and cold data, PMCR puts the third replicas
on the backup tier using compression (Lines 8-11). It uses SC
to compress read-intensive data (Lines 8-9) and uses DC to
compress write-intensive data (Lines 10-11). We will explain
the details of SC and DC in Sections 3.2 and 3.3, respectively.
The SC method removes the similar chunks within a file
or among the files for storage and transmission to the file
requester, and the file requester recovers the removed chunks
after it receives the compressed file. The DC method stores
a copy of a file and the different parts of other files that are
similar to this file. For a file request, the stored file copy
and the different parts are transmitted to the file requester. In
file update, only the updated parts need to be transmitted to
the replica nodes. As a result, rather than storing the entire
data object, the size of the stored data is greatly reduced with
the SC and DC methods. For read-intensive data, rather than
transmitting the entire file for a data request, the size of data
in transmission is reduced with the SC method. For write-
intensive data, rather than transmitting the entire file, only the
updated parts are transmitted with the DC method. As a result,
the storage and bandwidth costs are greatly reduced. The data
recovery for compressed parts may generate a certain delay and
overhead when processing a data request. However, the benefits
of storage and bandwidth cost saving from the compression

 DSP

Other methods

23456

Pro
1

23456

Pro
1

T6 T5 T4 T3 T2 T1

T6 T5 T4 T3 T2 T1

 D
23456 Pro 1

T6 T5 T4 T3 T2 T1

A B C D A' E C' D' A'' E...

A A' A'' B C C' D D' E E...

A B C D A' E C' D' A'' E...

A B C D

A B C D E...

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'C' E A''

F E' G C''

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'C' E A''

F E' G C''

A B C D

A'E C' B'

D' E' A'' F

A B C

E
' F

A B C

A'C' E

F E' G

D

D

D A' C'

B' D' E

A B A'

C A D

E B' D'

A B C

D E A'

C' D' B'

A

A B C

D A' C'

B' D' E

A B A'

C A D

E B' D'

A B C

D A' C'

B' D' E

A B A'

C A D

E B' D'

A B C

A' D C'

E D' E'

 DSP

Other methods

23456

Pro
1

23456

Pro
1

T6 T5 T4 T3 T2 T1

T6 T5 T4 T3 T2 T1

 D
23456 Pro 1

T6 T5 T4 T3 T2 T1

A B C D A' E C' D' A'' E...

A A' A'' B C C' D D' E E...

A B C D A' E C' D' A'' E...

A B C D

A B C D E...

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'C' E A''

F E' G C''

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'C' E A''

F E' G C''

A B C D

A'E C' B'

D' E' A'' F

A B C

E
' F

A B C

A'C' E

F E' G

D

D

D A' C'

B' D' E

A B A'

C A D

E B' D'

A B C

D E A'

C' D' B'

A

A B C

D A' C'

B' D' E

A B A'

C A D

E B' D'

A B C

D A' C'

B' D' E

A B A'

C A D

E B' D'

A B C

A' D C'

E D' E'

Fig. 7: Intra-file similarity.

 DSP

Other methods

23456

Pro
1

23456

Pro
1

T6 T5 T4 T3 T2 T1

T6 T5 T4 T3 T2 T1

 D
23456 Pro 1

T6 T5 T4 T3 T2 T1

A B C D A' E C' D' A'' E...

A A' A'' B C C' D D' E E...

A B C D A' E C' D' A'' E...

A B C D

A B C D E...

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'C' E A''

F E' G C''

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'C' E A''

F E' G C''

A B C D

A'E C' B'

D' E' A'' F

A B C

E
' F

A B C

A'C' E

F E' G

D

D

D A' C'

B' D' E

A B A'

C A D

E B' D'

A B C

D E A'

C' D' B'

A

A B C

D A' C'

B' D' E

A B A'

C A D

E B' D'

A B C

D A' C'

B' D' E

A B A'

C A D

E B' D'

Fig. 8: Inter-file similarity.

outweigh this downside since the warm and cold data objects
in the backup tier are rarely read.

3.2 Similar Compression
In SC, similar chunks are grouped together and a certain num-
ber of similar chunks form a block. Then, duplicate blocks or
near-duplicate blocks to a block are removed. Figure 6 shows
an example illustrating the process of grouping similar chunks
and compressing the similar chunks together. In Figure 6(a),
similar blocks including (A, A’, A”), (C, C’), (E, E’) are
grouped together and they are considered as redundant. In
Figure 6(b), for each similar block group, the redundant blocks
are removed and only the first block (including A, B, C, D, E) is
remained. The data within a data object sometimes are similar
to each other [39]. PMCR adopts the SC method to eliminate
the redundant chunks within each data object in order to reduce
the storage cost and bandwidth cost in data transmission for
data requests. Specifically, in PMCR, for read-intensive data
objects in the backup tier, for each group of similar blocks,
only the first block needs to be stored and all other similar
blocks are removed.

Also, PMCR extends the SC method originates from [39] to
eliminate the redundant chunks between different data objects
to further reduce the costs. We present examples for the intra-
file compression and inter-file compression. Figure 7 shows an
example of intra-file compression in a file. Similar blocks are
marked in the same color. For example, the blocks A and A′

are similar blocks; C and C′ are similar blocks; D and D′ are
similar blocks; E and E ′ are similar blocks. Figure 8 shows an
example of inter-file compression. Similar blocks are marked
in the same color. The blocks C and C′ in the left data object
are similar to the block C in the right data object. The block E
in the left data object is similar to the block E in the right data
object. Similar blocks within a file or between files are grouped
together for compression. That is, except the first block, other
similar blocks are removed in the storage of a server. An index
for a removed block is created to point to the first similar
block. When a file requester receives the compressed file, it
recovers the removed blocks from the intra-file compression
based on the indices. When a received compressed file contains
indices pointing to similar blocks in other files caused by inter-
file compression, if the file requester has the files, it simply
recovers the removed blocks. Otherwise, it requests for these
blocks from the cloud to recover the removed blocks. We will
explain how to calculate the similarity of blocks in Section 3.4.
SC can help reduce the data storage cost due to the reduction
of stored data size. It can also reduce the bandwidth cost in
responding requested data since removed blocks may not need
to transmit.

Algorithm 2 shows the pseudocode of the SC algorithm
conducted by each server. Each server first creates chunk
blocks with each block containing similar chunks in a file (Line
1). Then, it uses Bloom filter to measure the similarity between

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 6

Algorithm 2: Pseudocode for Similar Compression (SC)
conducted by each server

Input: Data chunks of data objects, threshold for determining
similarity (Sth)

1 Create blocks; each block contains similar chunks in a file
2 for each block blks do
3 Use Bloom filter to measure the similarity between block

blks and every other block blkt
4 if BF(blks) ·BF(blkt)> Sth then

//Dot product of the two Bloom
filters

5 blks and blkt are considered similar to each other
6 Group blks and blkt together
7 else
8 blks and blkt are considered not similar to each other

9 Use intra-file and inter-file compression for each block group

chunk blocks and group similar blocks into a group (Lines 2-
8). Specifically, it compares each chunk block with every other
chunk block (Line 3). If the two blocks are similar to each
other, SC groups the blocks together (Lines 4-6). Finally, the
server compresses the similar chunk blocks grouped together
(Line 9).

3.3 Delta Compression
Write-intensive data objects have frequent updates. To reduce
the cost caused by replication, PMCR uses Delta Compression
(DC) to compress the third replicas of the data objects in the
backup tier. Figure 9 uses an example to illustrate the process
of DC. In Figure 9, chunk B and chunk B’ are similar chunks.
The regions of difference between chunk B and chunk B’ are
marked in orange. DC stores chunk B and the differences for
chunk B’. When chunk B or chunk B’ is updated, only the
updated parts rather than the entire chunk are sent to the replica
servers. Then, the replica servers update the corresponding
parts accordingly. To send a chunk to a file requester, the stored
different parts of this chunk and the other parts from the stored
entire chunk (chunk B in the above example) are transmitted.
Since duplicated parts are removed in the storage, the storage
cost is reduced. Also, the bandwidth cost for data updates and
for data responses is reduced. We will explain how to calculate
the similarity of chunks in Section 3.4.

DSP

Other methods

23456

Pro
1

23456

Pro
1

T6 T5 T4 T3 T2 T1

T6 T5 T4 T3 T2 T1

D

23456 Pro1

T6 T5 T4 T3 T2 T1

A B C D A' E C' D' A'' E...

A A' A'' B C C' D D' E E...

A B C D

A'E C' B'

D' E' A'' F

A A'

A'

Chunk B

Chunk B'

Regions of difference

Ddifferences

Chunk B

Chunk B'

Regions of difference

Differences

Fig. 9: Delta compression.

A user in the cloud storage system sends a read request for
a data object. For each chunk of the data object, PMCR first
checks if it is in the primary tier. If it is in the primary tier,
PMCR chooses the replica of the chunk from the node with a
shorter geographic distance to the user and returns the chunk to
the user. Otherwise, PMCR fetches the replica from the nodes
located in the backup tier with shorter geographic distance to
the user, and sends it to the user. If the data object is warm data

 DSP

Other methods

23456

Pro
1

23456

Pro
1

T6 T5 T4 T3 T2 T1

T6 T5 T4 T3 T2 T1

 D
23456 Pro 1

T6 T5 T4 T3 T2 T1

A B C D A' E C' D' A'' E...

A A' A'' B C C' D D' E E...

A B C D A' E C' D' A'' E...

A B C D

A B C D E...

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'C' E A''

F E' G C''

A B C D

A'E C' B'

D' E' A'' F

A B C D

A'C' E G

F E' A'' C''

A B C D

A'E C' B'

D' E' A'' F

A B C D A' E C' D' A'' E...

{e1, e2, e3}

0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0

{e1, e2, e3}

0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0

v

{e1, e2, e3, e4}

0 1 0 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1

Fig. 10: An example of the Bloom filter of the set {e1,e2,e3,e4}.

or cold data, PMCR sends the compressed data object to the
user, then the data object will be decompressed on the client-
side. We will explain the method to measure the geographic
distance between servers in Section 3.5.

When a user sends a write request for a data object, PMCR
first checks the popularity type of the data object. If the data
object is hot data object, PMCR updates the first two replicas
and the third replica without compression. Otherwise, the data
object is warm or cold data object. Then, PMCR further checks
if the data object is read-intensive or write-intensive. If the data
object is read-intensive, PMCR uses SC to compress the third
replica in the backup tier. If the data object is write-intensive,
PMCR uses DC to compression the third replica.

3.4 Similarity Calculation
To remove the redundant replicas of the data chunks in the
backup tier, first we need to find the duplicate (identical) or
similar replicas. In this paper, we use the Bloom filter tech-
nique to detect the similarity between data blocks or chunks.
Compared to other similarity detection methods, Bloom filter
enables fast comparison as matching is a simple bitwise-AND
operation and generates lower computing overhead. Also, the
chunks can be uniquely identified by the SHA-1 hash signature,
also called fingerprint. As the amount of data increases, more
fingerprints need to be generated, which consume more storage
space and incur more time overhead for index searching. To
overcome the scalability of fingerprint-index search, PMCR
groups a certain number of chunks into a block, and detects
the similarity between blocks. Below, we introduce the Bloom
filter for detecting similarity between data blocks and will
extend this algorithm for detecting similarity between data
chunks.

Denote E = {e1, ...,e|E |} as a set of chunks of a block.
As shown in Figure 10, the Bloom filter for each set E is
represented as a bit array of u bits, with all bits initialized to
0 [40]. Each element e (e ∈ E) is hashed using k different
hash functions, i.e., h1, ...,hk. The hash functions return values
between 1 and u and each hash function maps e to one of
the u array positions with a uniform random distribution. To
add an element to the set, the Bloom filter feeds it to each
of the k hash functions to get k array positions, and sets
the k bits corresponding to the hash functions’ output, in the
Bloom filter to 1. If a bit has already been set to 1, it stays
1. Figure 10 shows an example of the Bloom filter of the
set {e1,e2,e3,e4} with u = 18 and k = 3. The colored arrows
indicate the positions in the 18 bit array that each set element
is hashed to.

The chunks of a block is a set in Bloom filter par-
lance whose elements are the chunks. Data blocks that are
similar to each other have a large number of common 1s
among their Bloom filters. To find similar blocks of a given
block, we compare the Bloom filter of the block with the
Bloom filter of all the other blocks. The blocks that have
the percentage of common 1s higher than a certain thresh-
old (e.g., 70%) are considered as similar blocks [33]. For
example, data block A has {0,1,1,0,1,1,1,1,0,1} as Bloom

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 7

Filter array for its A1, A2, and A3 chunks. Data block
B has {0,1,1,0,1,1,1,0,1,1} as Bloom Filter array for its
B1, B2, and B3 chunks. If threshold is 70%, then A and B
are similar blocks. If the threshold is 100%, then A and B are
not similar blocks. To detect similar chunks, we can consider
a block as a chunk and consider a chunk as a sub-chunk in the
above algorithm and use the same algorithm.

3.5 Distance Calculation
We adopt the method in [28] to compute the geographic
distance between servers. The method uses a 6-bit number
to represent the locations of servers. Each bit corresponds to
the location part of a server, i.e., continent-country-datacenter-
room-rack-server. To calculate the distance difference between
two servers, starting with the most significant bit, each location
part of both servers are compared one by one to compute
the geo-similarity between them. If the location parts are
equivalent, the corresponding bit is set to 1. Otherwise, the
corresponding bit is set to 0. Once a bit is set to 0, all of its
lower significant bits are automatically set to 0. For example,
given two particular and arbitrary servers Si and S j. If the
distance between them is represented as 111000 (as shown in
below), it indicates that Si and S j are in the same datacenter
but not in the same room.

continent country datacenter room rack server
1 1 1 0 0 0

The geographic distance is obtained by applying a binary
“NOT” operation to the geo-similarity. In this example, it is

111000 = 000111 = 7 (decimal)

4 ANALYSIS OF SYSTEM PERFORMANCE

4.1 Storage Cost Reduction
Different storage mediums have different costs per unit size.
For example, SSD is more expensive than disk, and disk is
more expensive than tape. To reduce the storage cost while
satisfying the SLA requirements of different applications, we
need to decide the storage mediums for different data objects in
different tiers (i.e., primary tier and backup tier). The primary
tier stores the data objects’ first two replicas that are for data
availability, and the backup tier stores the data objects’ third
replicas and it is mainly used to enhance durability. The first
two replicas of the data objects in the primary tier are always
used for failure recovery, and the third replica is used for
failure recovery only if the first two replicas in the primary
tier fail simultaneously. Thus, the replicas in the backup tier
have lower read frequency compared to the replicas in the
primary tier. Therefore, the replicas in the backup tier can be
stored on cheaper storage mediums (e.g., tape, disk), and the
replicas in the primary tier can be stored on relatively fast and
expensive storage mediums (e.g., Memory, SSD). Hot data with
considerably higher request frequency could generate heavy
load on some nodes, which may lead to data unavailability at
a time, and cold data with lower request frequency may waste
the storage resource and increase the storage cost. Thus, it is
important to choose the storage mediums for storing data based
on the popularities of data objects.

To reduce the storage cost (as shown in Figure 11), we
choose SSD to store the first two replicas of a hot data object

VM1 VM2 VM3

VM1

VM2
VM1 padding
VM2 padding

VM1 VM2 VM3

VM1
VM2

VM3

Common padding
Insufficient resource to hold VM3

(a) (b)

Job 1
Job 2

Job <16, 2, 17> Job <23, 1, 20>

<15, 1, 30> <25, 2, 30>

VM1 VM2 VM1 VM2

VM2 1 <15, 1, 20>

<30, 1, 20> <15, 2, 30>
Server 3 Server 4

Job 1 <10, 1, 10> Job 2 <10, 1.6, 20> Job 4 <1, 0.5, 5> Job 5 <8, 0.5, 15> Job 3 <15, 1.5, 12> Job 6 <15, 0.5, 5>

Job 1 <3, 4, 5> Job 2 <3, 3, 5>

First Second Third

0

Warm

Hot

Job 1 <3, 4, 5> Job 2 <3, 3, 5>

CPU Mem Storage

Job 1 <9, 1, 6> Job 2 <1, 9, 4>

CPU Mem Storage
0

5

10

0

5

10

Cold

Second Third

SSD

SSD

SSD

SSD

Disk

Disk

Tape

Tape

Tape

First

Warm

Hot

Cold

Second Third

SSD

SSD

SSD

SSD

Disk

Disk

Tape

Tape

Tape

Replica

Popularity

Fig. 11: Selecting storage mediums for data objects’ replicas based on
their popularities and the tiers where they are located.

and choose tape to store its third replica; we choose SSD to
store the first replica of warm data and cold data, and choose
disk to store their second replica, and choose tape to store their
third replica with compression.

In the following, we analyze the performance of storage
cost saving of PMCR. Denote si as the size of data object
di without compression. Define Ic as an indicator function
representing whether the third replica of a data object needs
to be compressed. Given a data object di, we have

Ic(di) =

�
1, i f data ob ject di is hot data
0, i f data ob ject di is warm data or cold data (3)

To represent the actual storage consumption of a data object,
we define an indicator function Is:

Is(di) =

�
1, i f data ob ject di is compressed
0, i f data ob ject di is not compressed (4)

Hence, the storage consumption of data object di with com-
pression can be calculated as follows:

s′i = Is(di) ·
si

g
+(1− Is(di)) · si (5)

where g is the compression ratio, which is defined as the ratio
between the uncompressed size and compressed size. The total
storage consumption for three-way replication is

Os =
m

å
i=1

(2 · si + Is(di) · s′i +(1− Is(di)) · si) (6)

where m is the number of data objects in the cloud storage
system.

Denote ci (i ∈ {1,2,3}) as the unit cost of SSD, disk and
tape, respectively. The total storage cost (denoted by Cs) of
PMCR is

Cs =
m

å
i=1

((c1 +(c1Ic(di)+ c2 · (1− Ic(di))))si + c3(Ic(di)si

+(1− Ic(di))s′i))
(7)

where s′i is the storage consumption of data object di with com-
pression. Compared to previous replication schemes with the
consideration of data popularity but without compression [9],
PMCR obtains the following storage cost savings:

Cs
s =

m

å
i=1

(c1 +(c1Ic(di))+ c2 · (1− Ic(di))+ c3)si−Cs (8)

Compared to the replication schemes without compression or
the consideration of data popularity (assume all replicas are
stored on SSD for fast recovery), PMCR obtains the following
storage cost savings:

Cs
s =

m

å
i=1

(c1si)−Cs (9)

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 8

4.2 Data Durability Enhancement
4.2.1 Correlated Machine Failures
Recall that PMCR adopts FTS [11] to correlated machine
failures. Each FTS is a single unit of failure because at least
one data object is lost when an FTS fails. As the number of
FTS increases, the probability of data loss caused by correlated
machine failures increases because the probability that the
failed servers constitute at least one FTS increases. Hence, the
probability data loss caused by correlated machine failures can
be minimized by minimizing the number of FTSs.

The probability of failure in correlated machine failures is
equal to the ratio of the number of FTSs over the maximum
possible number of sets.

#FT Ss
max{#sets}

(10)

Based on the work [11], the probability of failure in
correlated machine failures is

pcor =
S

R−1
N
R
/

�
N
R

�
(11)

where S denotes the scatter width (the number of servers that
could be used to store the secondary replicas of a chunk), R
denotes the size of FTS (i.e., the number of servers in one FTS).
Based on the work [11], the probability of failure in correlated
machine failures in random replication can be obtained by
substituting “#FT Ss” in Formula (10) by the number of FTSs
created in random replication.

The following example illustrates the process of generating
FTSs. Suppose a storage system has N = 12 servers, the size
of FTS R = 3, and S = 4. Using the BIBD-based method, one
solution for achieving less number of FTSs is as follows:

B1 = {0,1,2},B2 = {3,4,10},B3 = {6,7,8},B4 = {9,10,11},
B5 = {0,3,8},B6 = {1,4,7},B7 = {2,5,11},B8 = {5,6,9}.

The number of FTSs is 8. Therefore, the probability of data
loss caused by correlated machine failures is:

#FT Ss/
�

N
R

�
= 8/

�
12
3

�
= 0.036

However, the number of FTSs in random replication is
72. Hence, the probability of data loss caused by correlated
machine failure in random replication is:

#FT Ss/
�

N
R

�
= 72/

�
12
3

�
= 0.327

There are many methods for constructing BIBDs, but
no single method can create optimal BIBDs for any given
combination of N and R [41], [42]. Copyset Replication
combines BIBD and random replication to generate a non-
optimal design. When BIBD-based method cannot find BIBD,
PBIBD can be used to generate the sets of nodes for storing
the replicas of the data. PBIBD overcomes the limitation of
BIBD and greatly increases the chance of generating the sets
of nodes. Although the PBIBD is not an optimal approach,
it can increase the probability of successfully generating the
FTSs for the given combination.

4.2.2 Non-correlated Machine Failures
In non-correlated machine failures, the failure events of ma-
chines are statistically independent of each other. They can be

categorized into uniform and nonuniform machine failures. In
the scenario of uniform machine failures, each machine fails
with the same probability, denoted by p (0 < p < 1), possibly
due to the same computer configuration. The data object is lost
if any chunk of the data object is lost, and a chunk is lost
only if all the replicas of the chunk are lost. In this analysis,
we assume each data object has three replicas. Hence, a chunk
loss probability is puni = p3, and the expected number of chunk
loss per data object due to uniform machine failure is

Epuni = (
m

å
j=1

M · p3)/m (12)

where M is the number of chunks for each data object, and m
is the number of data objects.

In the scenario of nonuniform machine failures, each ma-
chine fails with different probabilities, denoted by pi (0 < pi <
1), possibly due to different hardware/software compositions
and configurations. We assume replicas of data objects are
placed on machines with no concern for individual machine
failures. Denote p1, ..., pN as the failure probabilities of N
servers in the cloud storage system, respectively. According
to the work [9], the expected data object failure probability
is the same as that on uniform failure machines with per-
machine failure probability equaling å

N
i=1 pi/N. Hence, an

approximation of chunk loss probability is pnon = (åN
i=1 pi/N)3

(the actual data chunk loss probability for certain machines
would be pi ∗ p j ∗ pk where i, j and k represent the machines
which store the data chunks and pi, p j, pk are the failure
probobalities of those machines). The approximate number of
expected data chunk loss per data object caused by nonuniform
machine failure is

Epnon = (
m

å
j=1

M · (
N

å
k=1

pk/N)3)/m (13)

4.2.3 Correlated and Non-correlated Machine Failures
Denote F as the event that failure occurs, U1 as the event that
correlated machine failures occur, U2 as the event that uniform
machine failure occurs, and U3 as the event that nonuniform
machine failure occurs. Based on previous works [11], [29],
both correlated and non-correlated machine failures (unifor-
m and nonuniform machine failures) exist in cloud storage
system, and any type of machine failures can incur data loss.
Then, the probability of data loss caused by machine failures
(correlated and non-correlated machine failures) is obtained as
follows

P(F) =
3

å
i=1

P(F |Ui)P(Ui) (
3

å
i=1

P(Ui) = 1) (14)

where P(F |U1) (pcor in Formula (11)), P(F |U2) (puni in
Formula (12)) and P(F |U3) (pnon in Formula (13)) are the
probabilities of a data object loss due to correlated machine
failures, uniform machine failure and nonuniform machine
failure, respectively. P(U1), P(U2), and P(U3) are the probabil-
ities of the occurrences of correlated machine failures, uniform
machine failure and nonuniform machine failure, respectively.

4.3 Bandwidth Cost Reduction
Replication can enhance data durability and availability but
may incur bandwidth cost because the bandwidth is required to
keep replicas synchronized [43]. To reduce bandwidth cost,

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 9

PMCR first categorizes data into read-intensive and write-
intensive data based on the historical operations (i.e., read and
write) on the data [44]. Then PMCR uses SC to compress the
third replicas of read-intensive data, and uses DC to compress
the third replicas of write-intensive data.

Based on the previous work [45], the data object write
overhead is linear with the number of data object replicas.
The bandwidth cost of a data object’s partition caused by
maintaining the consistency between the replicas of the par-
tition can be approximated as the product of the number of
replicas of the partition and the average communication cost
parameter (denoted by mcom) [28], i.e., 3mcom (for three-way
replication). Thus, the total bandwidth cost of all data objects
caused by maintaining the consistency between the replicas of
data objects can be calculated as follows:

Cc
b =

m

å
j=1

(3 ·M ·mcom) (15)

Based on the work [46], the fixed average communication
cost can be computed as follows:

mcom = suE[å
i, j

dis(Si,S j) ·s] (16)

where su is the average update message size, dis(Si,S j) is the
geographic distance between the server storing the original
copy Si (referred to as primary server) and a replica server
S j. The geographic distance is an expectation of all possible
distances between primary server and replica servers, which is
calculated from a probabilistic perspective. s is the average
communication cost of a unit data per unit distance.

A storage system should be capable of recovering from the
loss of data when failures occur, which preserves the reliability
guarantees of the system over time. Failure recovery also
results in bandwidth cost. When a node fails, all data chunks it
was hosting need to be recreated on a new node (We assume a
new node is available for replacing the faulty ones [18].), that
is, a new node needs to download the data stored on the faulty
node to repair the data and replace the failure node.

For simplicity, we assume the data in primary tier and
backup tier is evenly distributed over the servers. Hence, the
total bandwidth cost caused by recovering data, denoted by Cr

b,
is

Cr
b =(

å
m
i=1(2 · si)

b 2N
3 c

d2NP(F)

3
e

+
å

m
i=1(Is(di)s′i +(1− Is(di))si)

bN
3 c

bNP(F)

3
c) ·dd

(17)

where s′i and si are the size of the data object di with
and without compression, respectively, and N is the number
of nodes in the cloud storage system. å

m
i=1(2 · si)/b 2N

3 c and
å

m
i=1(Is(di)s′i +(1− Is(di))si)/bN

3 c are the average amount of
data stored on a server in the primary tier and the backup tier
for three-way replication, respectively. d 2NP(F)

3 e and bNP(F)
3 c

are the number of failure nodes in the primary tier and the
backup tier, respectively. dd is the average communication cost
per unit of data between primary servers and replica servers in
the storage system, and it is calculated as E[åi, j dis(Si,S j) ·s].

Based on Formulas (15) and (17), the total bandwidth cost
caused by consistency maintenance and data recovery is

Cb =Cc
b +Cr

b (18)

TABLE 1: Parameters from publicly available data [11].

System Chunks per node Cluster size Scatter width
Facebook 10000 1000-5000 10
HDFS 10000 100-10000 200

TABLE 2: Parameter settings.

Parameter Meaning Setting
N # of servers 1000-10000
M # of chunks of a data object 50 [47]
R # of servers in each FTS 3
l # of FTSs containing a pair of servers 1
S Scatter width 4
p Prob. of a server failure 0.5
m # of data objects 10000-50000

Compared to previous replication schemes without com-
pression [11], the bandwidth cost savings obtained by PMCR
is around:

Cs
b = (

å
m
i=1 si

bN
3 c
− å

m
i=1(Is(di)s′i +(1− Is(di))si)

bN
3 c

).dd (19)

5 PERFORMANCE EVALUATION

We conducted the numerical analysis based on the parameters
in [11] (Table 2) derived from the system statistics from
Facebook and HDFS [6], [11], [13], [14], [22], [48], and also
conducted real-world experiments on Amazon S3.

5.1 Numerical Analysis
We conducted numerical analysis under various scenarios. We
compare our method with the other replication schemes: Ran-
dom Replication (RR), Copyset Replication (Copyset) [11],
Tiered Replication (TR) [21] and WAN Optimized Replication
(WOR) [49]. RR is based on Facebook’s design, which chooses
secondary replica holders from a window of nodes around the
primary node. We use R to denote the number of replicas for
each data chunk. Specifically, RR places the primary replica
on a random node (say node i) in the system, and places
the secondary replicas on (R− 1) nodes around the primary
node (i.e., nodes i+1, i+2,...)2. Copyset splits the nodes into
a number of Copysets, and constrains the replicas of every
chunk to a single Copyset so that it can reduce the frequency of
data loss by minimizing the number of Copysets for correlated
machine failures. TR stores the first two replicas of a data
object in the primary tier for protecting against independent
node failures, and stores the third replica in the backup tier
for protecting against correlated failures. WOR uses three-way
random replication and Delta Compression for replication of
backup datasets. The storage medium for the third replica is
disk in RR, Copyset and WOR, and is disk or tape that is
randomly chosen in TR. The number of nodes that experience
concurrent failures in the system was set to 1% of the nodes
in the system [50]. We randomly generated 6 bit number from
reasonable ranges for each node to represent its location. The
distributions of the file popularity and updates follow those of
FIU trace. Table 2 shows the parameter settings in our analysis
unless otherwise specified.

We first calculate the probability of data loss for each
method. We use Formula (14) to calculate the probability of

2. RR is based on Facebook’s design, which chooses secondary
replica holders from a window of nodes around the primary node.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 10

0

0.05

0.1

0.15

0.2

0.25

0.3

1000 2000 3000 4000 5000

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

Number of nodes

PMCR TR Copyset
WOR RR

(a) Facebook

0

0.1

0.2

0.3

0.4

0.5

0.6

2000 4000 6000 8000 10000

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

Number of nodes

PMCR TR Copyset
WOR RR

(b) HDFS

Fig. 12: Probability of data loss vs. the number of nodes.

0.79

0.81

0.83

0.85

0.87

0.89

1000 2000 3000 4000 5000

A
va

ila
bi

lit
y

of
 re

qu
es

te
d

da
ta

 o
bj

ec
t

Number of nodes

PMCR TR Copyset
WOR RR

(a) Facebook

0.7

0.75

0.8

0.85

0.9

0.95

2000 4000 6000 8000 10000

A
va

ila
bi

lit
y

of
 re

qu
es

te
d

da
ta

 o
bj

ec
t

Number of nodes

PMCR TR Copyset
WOR RR

(b) HDFS

Fig. 13: Availability of requested data object vs. the number of
nodes.

data loss for PMCR and Formula (11) for Copyset. We use the
method in [11] to calculate the data loss probability of random
replication for RR and WOR, and use the method in [21] to
calculate the data loss probability for TR. Figure 12(a) and
Figure 12(b) show the relationship between the probability of
data loss and the number of nodes in the Facebook and HDFS
environments, respectively. We see that the probability of data
loss follows PMCR<TR<Copyset<RR≈WOR. PMCR, TR
and Copyset generate lower probabilities of data loss than RR
and WOR because they constrain the replicas of a data object
to an FTS which can reduce the probability of data loss in
correlated machine failures. TR and PMCR generate lower
probabilities of data loss than Copyset because they separate
the primary data from the backup data by storing the backup
data on a remote site, which can further reduce the correlation
in failures between nodes in the primary tier and the backup
tier [21]. The probability of data loss in PMCR is slightly lower
than TR because PMCR chooses different storage mediums for
data with different popularities, which decreases the probability
of the occurrence of correlated machine failures.

We then calculate the availability of request data object by
1−å

m
i=1 riM · (P(F))3, where ri is the normalized probability

of requesting data di. Figure 13(a) and Figure 13(b) show the
relationship between the availability of requested data objects
and the number of nodes in the Facebook and HDFS environ-
ments, respectively. We observe that the availability follows
PMCR>TR>Copyset>RR≈WOR. PMCR, TR and Copyset
produce greater data availability than RR and WOR because
they constrain the replicas of a data object to an FTS to reduce
the probability of data loss caused by correlated machine fail-
ures and thus increase the availability of data object requests.
PMCR and TR generate higher data availability than Copyset
because they separate the primary data from the backup data
by storing the backup data on a remote site, which can further
reduce the correlation in failures between nodes in the primary
tier and the backup tier [21]. Therefore, PMCR and TR have
higher availability of requested data objects than Copyset.

0

5

10

15

20

25

30

2000 4000 6000 8000 10000

B
an

dw
id

th
 c

os
t (

x1
07)

Number of data objects

PMCR TR Copyset
WOR RR

(a) Facebook

0

5

10

15

20

25

30

2000 4000 6000 8000 10000

B
an

dw
id

th
 c

os
t (

x1
07)

Number of data objects

PMCR TR Copyset
WOR RR

(b) HDFS

Fig. 14: Bandwidth cost vs. the number of data objects.

0
1
2
3
4
5
6
7
8

1 2 3 4 5

S
to

ra
ge

 c
os

t (
x1

0

(a) Facebook

0
1
2
3
4
5
6
7
8

1 2 3 4 5

S
to

ra
ge

 c
os

t (
x1

0

(b) HDFS

Fig. 15: Performance on storage cost of various methods.

We then use Formula (18) to calculate the bandwidth cost
for PMCR. For RR, Copyset and TR, we use Formula (18)
without considering compression. For WOR, we use Formula
(18) with the consideration of compression. Figure 14(a) and
Figure 14(b) show the relationship between the bandwidth cost
and the number of data objects in the Facebook and HDFS
environments, respectively. We observe that the bandwidth
cost increases as the number of data objects increases. This
is because more data objects lead to more data transfers for
data updates and for data requests, which results in higher
bandwidth cost. We also see that the bandwidth cost follows
PMCR<WOR<TR≈Copyset≈RR. PMCR and WOR generate
lower bandwidth cost than TR, Copyset and RR because they
use compression and deduplication to reduce the data size in
storage, which can reduce the bandwidth cost for data transfer.

We then use Formula (7) to calculate the storage cost for
PMCR. For RR and Copyset, we use Formula (7) without
considering compression or the selection of different storage
mediums for storing data objects. For WOR, we use Formula
(7) with the consideration of compression and without the
selection of different storage mediums for storing data in the
backup tier. For TR, we use Formula (7) without considering
compression but with the selection of different storage medi-
ums for storing replicas in the backup tier. Figure 15(a) and
Figure 15(b) show the relationship between the storage cost
and the number of data objects in the Facebook and HDFS en-
vironments, respectively. We see that the storage cost increases
as the number of data objects increases because the more the
data objects, the more storage resource needed for storing
the data objects. We also see that the storage cost follows
PMCR<WOR<TR<Copyset≈RR. TR has lower storage cost
than Copyset and RR and higher storage cost than WOR and
PMCR. This is because TR uses less expensive storage medium
to store the third replicas of data objects to reduce the storage
cost, which is not considered in Copyset and RR. WOR utilizes
data compression and data deduplication to reduce storage cost.
PMCR has the lowest storage cost because PMCR considers

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 11

10

100

1000

10000

100000

1000 2000 3000 4000 5000

M
T

T
F

(y
e

ar
s)

Number of nodes

PMCR TR Copyset
WOR RR

(a) Facebook

10

100

1000

10000

100000

2000 4000 6000 8000 10000

M
T

T
F

(y
e

ar
s)

Number of nodes

PMCR TR Copyset
WOR RR

(b) HDFS

Fig. 16: Performance on MTTF of different methods with scatter
width of 4.

0

100

200

300

400

500

1 2 3 4 5

R
u

n
ti

m
e

 (
m

in
u

te
s)

Number of data objects (x104)

PMCR PMCRW/oC

(a) Facebook

0

100

200

300

400

500

1 2 3 4 5

R
u

n
ti

m
e

 (
m

in
u

te
s)

Number of data objects (x104)

PMCR PMCRW/oC

(b) HDFS

Fig. 17: Performance on computational overhead on compression
of PMCR.

data popularity and uses compression to reduce the amount
of data stored in the system, and also chooses less expensive
storage mediums to store unpopular data objects.

Figure 16(a) and Figure 16(b) show the relationship be-
tween the MTTF (mean time to failure) and the number of
nodes in the Facebook environment and HDFS environment,
respectively. In Figure 16(a) and Figure 16(b), we see that the
MTTF decreases as the number of nodes increases. This is
because the probability of correlated machine failures increases
as the number of nodes increases, which increases the proba-
bility that the nodes fail. We also see that the MTTF follows
PMCR≈TR>Copyset≈RR≈WOR. The reason for the MTTF
in PMCR, TR and Copyset being greater than RR and WOR is
PMCR, TR and Copyset constrain the replicas of a data object
to an FTS to reduce the probability of data loss caused by
correlated machine failures and thus increase the availability
of data object requests.

To test the computational overhead on compression of
PMCR, we tested the runtime of PMCR and PMCR without
compression (PMCRW/oC), a variant of PMCR in which com-
pression is not used. Figure 17(a) and Figure 17(b) show the
relationship between the computational overhead (runtime) and
the number of objects in the Facebook environment and HDFS
environment, respectively. In Figure 17(a) and Figure 17(b),
we see that the runtime of PMCRW/oC is less than that
of PMCR, and the runtime increases as the number of data
objects increases. This is because the compression of data
objects introduces additional time consumption and the larger
the number of data objects the more the time required for
compression. We also see that the runtime of PMCR increases
faster than that of PMCRW/oC as the number of data objects
increases.

5.2 Real-world Experimental Results
To further verify the performance of our method in the real-
world environment, we conducted experiments on Amazon S3.
We used three regions of Amazon S3 in the U.S. to gener-
ate geo-distributed storage datacenters. We created the same

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10 15 20 25 30

P
ro

b
a

b
il

it
y

o
f

d
at

a
lo

ss

Number of nodes

PMCR TR Copyset
WOR RR

(a) # of replicas R=3

0

0.05

0.1

0.15

0.2

0.25

0.3

10 15 20 25 30

P
ro

b
a

b
il

it
y

o
f

d
at

a
lo

ss

Number of nodes

PMCR TR Copyset
WOR RR

(b) # of replicas R=2

Fig. 18: Probability of data loss vs. the number of nodes on
Amazon S3 with scatter width S=4.

number of buckets in each region and each bucket contains a
data server. We varied the number of buckets from 10 to 30
with step size 5. We generated 50000 data objects. The sizes
of data objects follow a normal distribution. We distributed
the data objects to servers randomly. We used the distributions
of read and writes from the FIU trace to generate reads and
writes. The requests were generated from servers in Windows
Azure eastern region. We consider the requests targeting each
region with latency more than 100ms as failed requests due
to unavailable data objects. In the test, N is the number of
simulated data servers. We used the actual price of the data
access of Amazon S3 [51] to calculate the storage cost and the
bandwidth cost.

We first measure the probability of data loss for each
method. Figure 18(a) and Figure 18(b) show the relationship
between the probability of data loss and the number of nodes
on Amazon S3 with R = 3 and R = 2, respectively. We see that
the probability of data loss increases as the number of nodes
increases. We also see that the probability of data loss approx-
imately follows PMCR≈TR<Copyset<WOR≈RR. Both our
numerical result and real-world experimental result confirm
that PMCR and TR generate the lowest probability of data
loss. PMCR and TR generate relatively lower probability of
data loss than Copyset because they separate the primary data
from the backup data by storing the backup data on a remote
site, which further reduces the correlation in failures between
nodes in the primary tier and the backup tier [21]. Copyset
generates lower probability of data loss than WOR and RR. The
reason is that Copyset constraints the replica nodes of every
chunk to a single Copyset and reduces probability of data loss
in correlated machine failures. WOR and RR cannot handle
correlated machine failures and thus have higher probability
of data loss. By examining Figure 18(a) and Figure 18(b), we
find that the probability of data loss in Figure 18(b) is higher
than that in Figure 18(a). This is because fewer replicas for a
chunk lead to a higher probability that all the servers storing
the chunk fail concurrently, hence a higher probability of data
loss.

Figure 19(a) and Figure 19(b) show the relationship
between the availability of requested data objects and the
number of nodes on Amazon S3 with R = 3 and R = 2,
respectively. We see that the availability of requested data
objects decreases as the number of nodes increases. We also
see that the availability of requested data objects follows
PMCR≈TR>Copyset>RR≈WOR due to the same reasons ex-
plained in Figure 13. Comparing Figure 19(a) and Figure 19(b),
we find that the availability of requested data objects in Fig-
ure 19(a) is higher than that in Figure 19(b). The reason is that

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 12

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

10 15 20 25 30

A
va

il
ab

il
it

y
o

f
re

q
u

e
st

e
d

d

at
a

 o
b

je
ct

Number of nodes

PMCR TR Copyset
WOR RR

(a) # of replicas R=3

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

10 15 20 25 30

A
va

il
ab

il
it

y
o

f
re

q
u

e
st

e
d

d

at
a

 o
b

je
ct

Number of nodes

PMCR TR Copyset
WOR RR

(b) # of replicas R=2

Fig. 19: Availability of requested data objects vs. the number of
nodes on Amazon S3 with scatter width S=4.

0

5

10

15

20

25

30

35

40

1 2 3 4 5

B
an

d
w

id
th

 c
o

st
 (

x1
0

3
)

Number of data objects (x104)

PMCR TR

Copyset WOR

RR

(a) # of replicas R=3

0

5

10

15

20

25

30

1 2 3 4 5

B
an

d
w

id
th

 c
o

st
 (

x1
03

)

Number of data objects (x104)

PMCR TR

Copyset WOR

RR

(b) # of replicas R=2

Fig. 20: Performance on bandwidth cost of various methods on
Amazon S3.

the more the replicas for a chunk, the lower the probability that
all the machines storing the chunk fail concurrently, leading to
higher availability of requested data objects.

Figure 20(a) and Figure 20(b) show the relationship be-
tween the bandwidth cost and the number of data objects
on Amazon S3 with R=3 and R=2, respectively. We ob-
serve that the bandwidth cost increases as the number of
data objects increases due to the same reasons explained
in Figure 14. We also see that the bandwidth cost follows
PMCR≈WOR<TR≈Copyset≈RR. TR generates higher band-
width cost than WOR and PMCR. This is because WOR and
PMCR compress data objects and reduce the size of data for
transfer for data requests and updates, and therefore reduce
the bandwidth cost. Both the numerical result in Figure 14
and the real-world experimental result in Figure 20 indicate
that compression (with deduplication) in replication is effective
in reducing bandwidth cost. By examining Figure 20(a) and
Figure 20(b), we see that the bandwidth cost increases as
the number of replicas for each data object increases. This
is because more replicas for each data object lead to more data
transfers for data requests and updates.

Figure 21(a) and Figure 21(b) depict the relationship be-
tween the storage cost and the number of data objects on Ama-
zon S3 with R=3 and R=2, respectively. We see that the storage

0

5

10

15

20

25

30

35

1 2 3 4 5

St
o

ra
ge

 c
o

st
 (

x1
0

3
)

Number of data objects (x104)

PMCR TR Copyset
WOR RR

(a) # of replicas R=3

1

6

11

16

21

1 2 3 4 5

St
o

ra
ge

 c
o

st
 (

x1
0

3
)

Number of data objects (x104)

PMCR TR Copyset
WOR RR

(b) # of replicas R=2

Fig. 21: Performance on storage cost of various methods on
Amazon S3.

10

100

1000

10000

100000

10 15 20 25 30

M
T

T
F

(y
e

a
rs

)

Number of nodes

PMCR TR Copyset
WOR RR

(a) # of replicas R=3

10

100

1000

10000

100000

10 15 20 25 30

M
T

T
F

(y
e

a
rs

)

Number of nodes

PMCR TR Copyset
WOR RR

(b) # of replicas R=2

Fig. 22: Performance on MTTF of different methods with scatter
width of 4 on Amazon S3.

cost increases as the number of data objects increases due to
the same reasons explained in Figure 15. We also find that
the storage cost follows PMCR<WOR<TR<Copyset≈RR.
WOR generates higher storage cost than PMCR and lower
storage cost than TR, Copyset and RR. This is because PMCR
and WOR compress data objects, which reduces the storage
cost, but other methods do not use compression. Moreover,
PMCR considers data popularity neglected in all the other
methods, and chooses less expensive storage media for storing
unpopular data objects, which further reduces the storage cost.
Comparing Figure 21(a) and Figure 21(b), we see that the
storage cost increases as the number of replicas for each data
object increases. The reason is that more replicas for each
data object lead to higher storage consumption for storing data
objects.

Figure 22(a) and Figure 22(b) shows the relationship be-
tween the MTTF and the number of nodes on Amazon S3 when
R = 3 and R = 2, respectively. We find that the MTTF follows
PMCR≈TR>Copyset>WOR≈RR. The results approximately
conform the numerical results. Copyset, TR and PMCR have
larger MTTF than WOR and RR because they constrain the
replica nodes of every chunk in a single FTS, which reduces the
failures in correlated machine failures. Copyset has relatively
smaller MTTF than TR and PMCR because TR and PMCR
separate the primary data from the the backup data and store
the backup data in a remote site, which reduces the correlation
in failures between nodes in the primary tier and the backup
tier.

6 RELATED WORK

Many methods have been proposed to prevent data loss caused
by correlated or non-correlated machine failures. Zhong et
al. [9] assumed independent machine failures, and proposed
a model that achieves high expected service availability under
given space constraint, object request popularities, and object
sizes. However, this model does not consider correlated ma-
chine failures and hence cannot handle such failures. Nath et
al. [8] identified a set of design principles that system builders
can use to tolerate failures. Cidon et al. [11] proposed Copyset
Replication to reduce the frequency of data loss caused by
correlated machine failures by limiting the replica nodes of
many chunks to a single Copyset. Chun et al. [4] proposed
the Carbonite replication algorithm for keeping data durable
at a low cost. Carbonite ensures that creating new copies of
data objects is faster than permanent disk failures. Cidon et
al. [21] proposed a Tiered Replication that splits the cluster into
a primary tier and abackup tier. The first two replicas of the data
are stored on the primary tier, which is used for protect against

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 13

independent node failures; the third replica is stored on the
backup tier, which is used to protect against correlated failures.
However, these methods do not try to reduce the storage cost
and bandwidth cost caused by replication.

There is a large body of work on enhancing data availability
and durability. Renesse et al. [52] proposed chain replication to
coordinate clusters of fail-stop storage servers for supporting
large-scale storage services that exhibit high throughput and
availability without sacrificing strong consistency guarantees.
Almeida et al. [53] proposed ChainReaction, a Geo-distributed
key-value datastore, to offer causal+ consistency, with high
performance, fault-tolerance, and scalability. Zhang et al. [54]
proposed Mojim to provide the reliability and availability
in large-scale storage systems while preserving the perfor-
mance of non-volatile main memory. Mojim uses a two-tier
architecture in which the primary tier contains a mirrored
pair of nodes and the secondary tier contains one or more
secondary backup nodes with weakly consistent copies of data.
Kim et al. [55] proposed SHADOW systems to provide high
availability. SHADOW systems push the task of managing
database replication into the underlying storage service, and
provide write offloading to free the active database system
from the need to update the persistent database. Colgrove et
al. [56] presented Purity, a all-flash enterprise storage system
to support compression, deduplication and high-availability.
Specifically, Purity leverages flash’s ability to perform fast
random reads and sequential writes by compressing data and
storing a single instance of duplicate blocks written to different
logical addresses. However, these works fail to consider data
popularity to reduce the storage cost and bandwidth cost
without compromising data request delay greatly.

In order to reduce the storage cost and bandwidth cost
caused by replication, many methods have been proposed. Shi-
lane et al. [49] proposed a new method for replicating backup
datasets across a wire area network (WAN). The method can
eliminate duplicate regions of files (deduplication) and also
compress similar regions of files with Delta compression. The
method leverages deduplication locality to also find similarity
matches used for delta compression. Puttaswamy et al. [57]
proposed FCFS, a storage solution that drastically reduces the
cost of operating a file system in the cloud. FCFS integrates
multiple storage services and dynamically adapts the storage
volume sizes of each service to provide a cost-efficient solution
with provable performance bounds. However, these methods
do not consider data popularity to reduce the storage cost
and bandwidth cost. Also, these methods neglect correlated
machine failures, which can result in data loss in such failures.

To resolve the problems in the existing replication schemes,
we propose PMCR that can effectively handle both correlated
and non-correlated machine failures and also considers differ-
ent file popularities to increase data durability and availability
and reduce the bandwidth cost and storage cost without com-
promising data request delay greatly.

7 CONCLUSION

Previous replication schemes for cloud storage systems con-
sider correlated machine failures or non-correlated machine
failures to reduce data loss. However, although data replicas
bring about additional storage and bandwidth costs, few meth-
ods aim to maximize data durability and availability while

reducing the cost caused by replication (i.e., storage cost and
bandwidth cost) with the consideration of data popularity. In
this paper, in order to improve data durability and availability,
and meanwhile reduce costs caused by replication, we propose
a popularity-aware multi-failure resilient and cost-effective
replication scheme (PMCR). PMCR classifies data into hot
data, warm data and cold data based on the data popularity.
PMCR puts the first two replicas of data objects to primary tier
and puts the third replicas to backup tier. The replicas of the
same data are put into one fault-tolerant set to handle correlated
failures. PMCR uses SC for read-intensive data and uses DC
for write-intensive data to compress the third replicas of warm
data and cold data in the backup tier to reduce both storage cost
and bandwidth cost. Our extensive numerical analysis and real-
world experimental results on Amazon S3 show that PMCR
outperforms other replication schemes in different performance
metrics. In the future, we will further consider network failures
to further reduce the data loss and improve the data durability.
Also, we will consider the effects of node joining and node
leaving. Further, we will consider energy consumption of
machines and design a replication scheme to save energy.

ACKNOWLEDGMENT

This research was supported in part by U.S. NSF grants OAC-
1724845, ACI-1719397 and CNS-1733596, and Microsoft Re-
search Faculty Fellowship 8300751. An early version of this
work was presented in the Proceedings of Big Data 2016 [58].
We would like to thank Dr. Rajkumar Buyya, Dr. Kuang-Ching
Wang, Dr. James Z. Wang, Dr. Adam Hoover, Dr. Wingyan
Chung, Dr. Svetlana Poznanović and Dr. Warren Adams for
their help on this work.

REFERENCES

[1] “Amazon S3,” http://aws.amazon.com/s3 [accessed in Jan.
2016].

[2] Google cloud storage. http://cloud.google.com/storage [accessed
in Jan. 2016].

[3] “Windows azure,” http://www.microsoft.com/windowsazure [ac-
cessed in Jan. 2016].

[4] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient replica
maintenance for distributed storage systems,” in Proc. of NSDI,
2006.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels, “Dynamo: Amazon’s highly available key-value store,” in
Proc. of SOSP, 2007.

[6] R. Chansler, “Data availability and durability with the hadoop
distributed file system,” The USENIX Magazine, 2012.

[7] J. Dean, “Evolution and future directions of large-scale storage
and computation systems at google,” in Proc. of ACM SoCC,
2010.

[8] S. Nath, H. Yu, P. Gibbons, and S. Seshan, “Subtleties in
tolerating correlated failures in wide-area storage systems,” in
Proc. of NSDI, San Jose, CA, May 2006, pp. 225–238.

[9] M. Zhong, K. Shen, and J. Seiferas, “Replication degree cus-
tomization for high availability,” in Proc. of EuroSys, 2008.

[10] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly
durable, decentralized storage despite massive correlated fail-
ures,” in Proc. of NSDI, 2005.

[11] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum, “Copysets: Reducing the frequency of data loss
in cloud storage,” in Proc. of USENIX ATC, 2013.

[12] J. Liu and H. Shen, “A low-cost multi-failure resilient replication
scheme for high data availability in cloud storage,” in Proc. of
HiPC, 2016, pp. 242–251.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 14

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop distributed file system,” in Proc. of MSST, 2010.

[14] D. Borthakur, J. Gray, J. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, R. Schmidt, and A. Aiyer, “Apache Hadoop
goes realtime at Facebook,” in Proc. of SIGMOD, 2011.

[15] S. Balakrishnan, R. Black, A. Donnelly, P. England, A. Glass,
D. Harper, S. Legtchenko, A. Ogus, E. Peterson, and A. Row-
stron, “Pelican: A building block for exascale cold data storage,”
in Proc. of OSDI, 2014, pp. 351–365.

[16] M. Ghosh, A. Raina, L. Xu, X. Qian, I. Gupta, and H. Gupta,
“Popular is cheaper: Curtailing memory costs in interactive
analytics engines,” in Proc. of EuroSys, 2018.

[17] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg,
I. Stoica, D. Harlan, and E. Harris, “Scarlett: Coping with
skewed content popularity in mapreduce clusters,” in Proc. of
EuroSys, Salzburg, April 2011.

[18] F. André, A. Kermarrec, E. Merrer, N. Scouarnec, G. Straub, and
A. Kempen, “Archiving cold data in warehouses with clustered
network coding,” in Proc. of EuroSys, 2014.

[19] “March, a. storage pod 4.0: Direct wire drives - faster, simpler,
and less expensive,” http://blog.backblaze.com/2014/03/19
/backblaze-storage-pod-4/, March 2014 [accessed in Jan. 2016].

[20] G. A. N. Yasa and P. C. Nagesh, “Space savings and design
considerations in variable length deduplication,” SIGOPS Oper.
Syst. Rev., vol. 46, no. 3, pp. 57–64, 2012.

[21] A. Cidon, R. Escriva, S. Katti, M. Rosenblum, and E. G. Sirer,
“Tiered replication: A cost-effective alternative to full cluster
geo-replication,” in Proc. of ATC, 2015, pp. 31–43.

[22] D. Ongaro, S. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum, “Fast crash recovery in ramcloud,” in Proc. of
SOSP, 2011, pp. 29–41.

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” in Proc. of SOSP, 2003, pp. 29–43.

[24] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas,
C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, and
K. M. L. Rigas, “Windows azure storage: a highly available
cloud storage service with strong consistency,” in Proc. of SOSP,
2011.

[25] Y. Zhang, C. Guo, D. Li, R. Chu, H. Wu, and Y. Xiong,
“Cubicring: Enabling one-hop failure detection and recovery for
distributed in-memory storage systems,” in Proc. of NSDI, 2015.

[26] H. Abu-Libdeh, R. Renesse, and Y. Vigfusson, “Leveraging
sharding in the design of scalable replication protocols,” in Proc.
of SoCC, 2013.

[27] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta, “Making cloud
intermediate data fault-tolerant,” in Proc. of SoCC, 2010.

[28] N. Bonvin, T. Papaioannou, and K. Aberer, “A self-organized,
fault-tolerant and scalable replication scheme for cloud storage,”
in Proc. of SoCC, Indianapolis, 2010.

[29] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan, “Availability in globally
distributed storage systems,” in Proc. of OSDI, 2010.

[30] S. Welham, S. Gezan, S. Clark, and A. Mead, Statistical Methods
in Biology: Design and Analysis of Experiments and Regression.
CRC Press, 2014.

[31] “Cloud vps. https://www.cloudvps.nl/ [accessed in Jan. 2016].”
[32] R. Koller and R. Rangaswami, “I/o deduplication: Utilizing

content similarity to improve i/o performance,” in Proc. of FAST,
2010.

[33] N. Jain, M. Dahlin, and R. Tewari, “Taper: Tiered approach for
eliminating redundancy in replica synchronization,” in Proc. of
USENIX FAST, 2005, pp. 281–294.

[34] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Silo: A similarity-
locality based near-exact deduplication scheme with low ram
overhead and high throughput,” in Proc. of ATC, 2011.

[35] G. You, S. Hwang, and N. Jain, “Scalable load balancing in
cluster storage systems,” in Proc. of Middleware, 2011.

[36] Y. Fu, H. Jiang, and N. Xiao, “A scalable inline cluster d-
eduplication framework for big data protection,” in Proc. of
Middleware, 2012.

[37] N. Bonvin, T. Papaioannou, and A. Aberer, “Autonomic sla-
driven provisioning for cloud applications,” in Proc. of CCGRID,
2011.

[38] K. Chen and H. Shen, “Dsearching: Distributed searching of
mobile nodes in dtns with floating mobility information,” in
Proc. of INFOCOM, 2014.

[39] X. Lin, G. Lu, F. Douglis, P. Shilane, and G. Wallace, “Mi-
gratory compression: Coarse-grained data reordering to improve
compressibility,” in Proc. of USENIX FAST, 2014.

[40] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–226, 1970.

[41] J. J. S. Houghten, L. Thiel and C. Lam., “There is no (46, 6, 1)
block design*,” Journal of Combinatorial Designs, vol. 9, no. 1,
pp. 60–71, 2001.

[42] P. Kaski and P. Östergård, “There exists no (15, 5, 4) RBIBD,”
Journal of Combinatorial Designs, vol. 9, pp. 227–232, 2001.

[43] L. Xu, A. Pavlo, S. Sengupta, J. Li, and G. Ganger, “Reducing
replication bandwidth for distributed document databases,” in
Proc. of SoCC, 2015.

[44] D. Arteaga and M. Zhao, “Client-side flash caching for cloud
systems,” in Proc. of ACM SYSTOR, Haifa, June 2014.

[45] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “Oceanstore: An architecture for global-scale persistent
storage,” in Proc. of ASPLOS, 2000.

[46] M. Wittie, V. Pejovic, L. Deek, K. Almeroth, and B. Zhao,
“Exploiting locality of interest in online social networks,” in
Proc. of CoNEXT, Philadelphia, 2010.

[47] S. Acedański, S. Deb, M. Médard, and R. Koetter, “How good
is random linear coding based distributed networked storage,” in
WINMEE, RAWNET and NETCOD, 2005.

[48] Intelligent block placement policy to decrease probability of data
loss. https://issues.apache.org/jira/browse/HDFS-1094 [accessed
in Jan. 2016].

[49] P. Shilane, M. Huang, G. Wallace, and W. Hsu, “Wan optimized
replication of backup datasets using stream-informed delta com-
pression,” in Proc. of FAST, 2012.

[50] V. Rawat, “Reducing failure probability of cloud storage services
using multi-clouds,” in Proc. of CoRR, 2013.

[51] “Amazon S3 Pricing,” http://aws.amazon.com/s3/pricing/ [ac-
cessed in Jan. 2016].

[52] R. Renesse and F. Schneider, “Chain replication for supporting
high throughput and availability,” in OSDI, 2004.

[53] S. Almeida, J. Leitao, and L. Rodrigues, “Chainreaction: a
causal+ consistent datastore based on chain replication,” in Proc.
of EuroSys, Prague, 2013, pp. 85–98.

[54] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, “Mojim:
A reliable and highly-available non-volatile memory system,” in
Proc. of ACM ASPLOS, Istanbul, 2015.

[55] J. Kim, K. Salem, K. Daudjee, A. Aboulnaga, and X. Pan,
“Database high availability using shadow systems,” in Proc. of
SoCC, 2015.

[56] J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller, C. Sandvig,
R. Sears, A. Tamches, N. Vachharajani, and F. Wang, “Purity:
Building fast, highly-available enterprise flash storage from
commodity components,” in Proc. of SIGMOD, 2015.

[57] K. P. N. Puttaswamy, T. Nandagopal, and M. Kodialam, “Frugal
storage for cloud file systems,” in Proc. of EuroSys, 2012.

[58] J. Liu and H. Shen, “A popularity-aware cost-effective replica-
tion scheme for high data durability in cloud storage,” in Proc.
of IEEE BigData, Washington D.C., 2016.

Jinwei Liu Jinwei Liu received the MS
degree in Computer Science from Clem-
son University, SC, USA and University of
Science and Technology of China, China.
He received his Ph.D. degree in Comput-
er Engineering from Clemson University,
SC, USA, in 2016. He was a Research
Associate at University of Virginia in 2017.
He is currently a Postdoctoral Associate at
University of Central Florida. His research
interests include cloud computing, big data,

machine learning and data mining, wireless sensor networks,
social networks, HPC and IoT. He was the member of the
Program Committees of several international conferences. He
is a member of the IEEE and the ACM.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2873384, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 15

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen received the BS degree in
Computer Science and Engineering from
Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer En-
gineering from Wayne State University in
2004 and 2006, respectively. She is cur-
rently an Associate Professor in the Com-
puter Science Department at the Univer-
sity of Virginia. Her research interests in-
clude cloud computing and cyber-physical
systems. She was the Program Co-Chair

for a number of international conferences and member of the
Program Committees of many leading conferences. She is a
Microsoft Faculty Fellow of 2010, a senior member of the IEEE
and a member of the ACM.

Husnu S. Narman received his B.S. de-
gree in Mathematics from Abant Izzet
Baysal University, Turkey, in 2006, M.S. de-
gree in Computer Science from University
of Texas at San Antonio, San Antonio TX,
USA in 2011, and PhD degree in Comput-
er Science from University of Oklahoma,
Norman OK, USA, in 2016. Currently, he
is a faculty member at Marshall University,
Huntington WV, USA. His research inter-
ests include queuing theory, network man-

agement, network topology, Internet of Things, LTE and Cloud
Computing.

Zongfang Lin Zongfang Lin received the
BS from Sun Yat-sen University, the ME in
Information Science from Peking Universi-
ty, and the MS in Computer Science from
University of Massachusetts, Amherst, and
reached PhD/ABD in Computer Science
with academic excellence at Amherst be-
fore leaving for his technical startup. He
has worked at the United Nations, and Mi-
crosoft, and founded NConnex Inc. He is
currently a principal architect at Huawei US

R&D Center. His research interests include distributed and par-
allel computing, deep learning, and software engineering. He is
a member of the IEEE and the ACM.

Zhuozhao Li Is currently a postdoc in De-
partment of Computer Science at Univer-
sity of Chicago. He earned his Ph.D. in
Department of Computer Science at Uni-
versity of Virginia, 2018. He received the
B.S. degree in Optical Engineering from
Zhejiang University, China in 2010, and the
M.S. degree in Electrical Engineering from
University of Southern California in 2012.
His research interests include distributed
computer systems, with an emphasis on

cloud computing, resource management in cloud networks, and
parallel computing.

