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Abstract— Previous resource provisioning strategies in cloud
datacenters allocate physical resources to virtual machines (VMs)
based on the predicted resource utilization pattern of VMs. The
pattern for VMs of a job is usually derived from historical utiliza-
tions of multiple VMs of the job. We observed that these utiliza-
tion curves are usually misaligned in time, which would lead to
resource over-prediction and hence over-provisioning. Since this
resource utilization misalignment problem has not been revealed
and studied before, in this paper, we study the VM resource
utilization from public datacenter traces and Hadoop benchmark
jobs to verify the commonness of the utilization misalignments.
Then, to reduce resource over-provisioning, we propose three
VM resource utilization pattern refinement algorithms to improve
the original generated pattern by lowering the cap of the pattern,
reducing cap provision duration and varying the minimum value
of the pattern. We then extend these algorithms to further
improve the resource efficiency by considering periodical resource
demand patterns that have multiple pulses in a pattern. These
algorithms can be used in any resource provisioning strategy that
considers predicted resource utilizations of VMs of a job. We then
adopt these refinement algorithms in an initial VM allocation
mechanism and test them in trace-driven experiments and real-
world testbed experiments. The experimental results show that
each improved mechanism can increase resource utilization, and
reduce the number of PMs needed to satisfy tenant requests. Also,
our extended refinement algorithms are effective in improving
resource efficiency of the refinement algorithms.

Index Terms— Resource management, cloud datacenter, load
balancing, resource over-provisioning.

I. INTRODUCTION

THE rapid development of cloud computing brings about
the requirement of high resource utilizations in big

datacenters in order to save energy consumption [1]–[3].
Maximizing energy efficiency and resource utilization while
satisfying Service Level Objective (SLO) [4] for tenants
require effective management of resource provisioning. Exist-
ing works for improving resource utilization in cloud
datacenter mainly focus on Virtual Machine (VM) consol-
idation, i.e., an approach for efficient usage of computer
server resources in order to reduce the total number of
servers. Due to the largely oversubscribed nature of today’s

Manuscript received May 31, 2017; revised February 4, 2018; accepted
March 12, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor S. Mascolo. Date of publication May 3, 2018; date of current version
June 14, 2018. This work was supported in part by U.S. NSF under Grant
OAC-1724845, Grant ACI-1719397, and Grant CNS-1733596, and in part
by the Microsoft Research Faculty Fellowship under Grant 8300751. This
paper was presented at the Proceedings of the IEEE INFOCOM 2017 [59].
(Corresponding author: Haiying Shen.)

H. Shen is with the Computer Science Department, University of Virginia,
Charlottesville, VA 22904 USA (e-mail: hs6ms@virginia.edu).

L. Chen is with the Department of Electrical and Computer Engineering,
Clemson University, Clemson, SC 29634 USA.

Digital Object Identifier 10.1109/TNET.2018.2823642

Fig. 1. Demand misalignment.

datacenters [5], resources such as CPU and bandwidth can
become scarce resources shared across many tenants. When
VMs with intensive resource consumptions are located in the
same physical machine (PM), they compete for the scarce
resources, which may lead to extended execution time and
violations of SLOs [6].

Considerable research efforts have been devoted to effective
resource provisioning. Some works [7]–[11] show that the
VMs (or tasks) for the same job share similar resource
utilization patterns (e.g., the patterns of the two VMs in Fig-
ure 1) and use the derived pattern of VMs for each job
for resource provisioning to increase resource utilization. The
pattern derivation of a job’s VM is always conducted based on
the historical resource utilization traces of many VMs of this
job using techniques such as fast fourier transform [12]. It first
finds the maximum demand at each time to get the envelop,
and then smoothes the envelop [9]. However, we found that
the utilization curves for different VMs in the same job are
misaligned in time, which would generate a pulse wider than
the actual pulse in the pattern (e.g., the blue part in Figure 1).
We use pulse deviation between VMs to measure the demand
misalignment, which is defined as the time difference of the
same rising or falling edges of the pulses of the VMs of a job.
Using such a pattern to guide resource provisioning will lead
to resource over-provisioning. For example, in Figure 1, if the
actual demand is similar to trace 1, the provisioned resource
from t3 to t4 is wasted. However, previous resource provision-
ing strategies neglect these resource utilization misalignments,
which would lead to low resource efficiency. Here, resource
efficiency is defined as the ratio between utilized and allocated
amount of resource during the provision time.

We also implemented a previous resource provisioning strat-
egy in [9], and conducted experiments with Google Cluster
trace [13] and PlanetLab trace [14]. This algorithm generates
the pattern based on the maximum utilization among a group
of similar VM resource utilization traces at each time point,
and hence the misalignments of the traces tend to yield a
pattern with a pulse width larger than the actual pulse width.
Figure 2 shows that it can only achieve resource efficiencies
of 66% and 32% for the two traces, respectively.
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Fig. 2. Resource efficiency.

This resource utilization misalignment problem has not been
revealed and studied before, so in this paper, we study the
VM resource utilization from public datacenter traces and
Hadoop benchmark jobs. Our study verifies the commonness
of misalignments of the resource utilization. In order to
improve resource utilization, we propose three VM resource
utilization pattern refinement algorithms that improve the
original generated pattern by lowering the cap of the pattern,
reducing cap provision duration and varying the minimum
value of the pattern, respectively.

The time sharing resources (e.g., CPU, bandwidth) have a
feature that they can be elastically provided to a VM. That
is, the amount of resource allocated to a VM within a short
time period (e.g., 1 second) will not obviously affect the
job completion time in the VM as long as the total amount
allocated to the VM is no less than the required amount within
the required time period. The first algorithm lowers the cap of a
pulse in the original pattern, so that the amount of provisioned
resource during the pulse period exactly equals the demanded
resource amount. The second algorithm reduces the provision
during of the cap so that the actual subsequent resource
utilization pattern matches the predicted pattern. As shown
in Figure 1, each pattern has a minimum base value. The
third algorithm finds the minimum base value that leads to the
maximum resource efficiency to refine the original pattern.

The contribution of this paper can be summarized as:
• We study the VM resource utilization from public dat-

acenter traces and Hadoop benchmark jobs and find
that different VMs running the same job exhibit similar
periodical resource utilization patterns, but their resource
utilization curves exhibit misalignments in time.

• To avoid overestimation in generated resource utilization
pattern caused by the misalignments, we propose three
algorithms to refine the resource utilization patterns.

• We then extend these algorithms to further improve the
resource efficiency by considering periodical resource
demand patterns that have multiple pulses in a pattern.

• We apply our three algorithms to the initial VM allocation
mechanism [9] based on the predicted patterns. We con-
duct comprehensive trace-driven simulation and real-
world testbed experiments to measure this mechanism
with and without each of our algorithms. Experimental
results show that the allocation mechanism based on the
refined patterns significantly reduces the number of PMs
and SLO violations, and increases resource efficiency.
We further compare our extended refinement algorithms
with the refinement algorithms through experiments, and
the experimental results confirm the effectiveness of the
extended refinement algorithms in further improving the
resource efficiency.

The rest of the article is organized as follows. Section II
studies the VM resource utilization from public datacenter

traces and Hadoop benchmark jobs to verify the commonness
of the misalignment feature of the resource utilizations of
the VMs of the same job. Section III presents the rationale
of pattern refinement, the three refinement algorithms and
the extended refinement algorithms. Section IV evaluates our
algorithms in trace-driven simulation experiments. Section V
evaluates our algorithms in a real-world testbed. Section VI
presents the related work. Finally, Section VII summarizes the
paper with remarks on our future work.

II. TRACE STUDY

In this section, we first statistically study the VM resource
utilizations from public datacenter traces, and then study
the resource utilization trace from the execution of Hadoop
benchmarks in a cluster consisting of twelve machines. We aim
to find the answers for the following questions.

• Whether VMs running the same application have similar
resource utilization patterns in terms of magnitude and
the timing of demand arrivals?

• Whether the resource utilization misalignments widely
exist in VMs running the same job (or application)?

• Whether the patterns generated by a previous pattern
detection algorithm [9] tend to generate low resource
efficiency?

A. Google Cluster Trace
We first analyze the resource utilization from the Google

Cluster trace [13]. The Google Cluster trace records the
CPU and memory resource usages on a cluster of about
11000 machines from May 2011 for 29 days. In this mea-
surement, we randomly selected 100 jobs with 29920 tasks in
total. For each job, we found all of its tasks from the trace
and parsed the CPU and memory utilization of these tasks
during this period. We calculated the statistical correlation
coefficient (denoted by cr) for each pair of the task resource
utilization traces x and y of the same job to show their
similarities.

cr =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2 ·∑n
i=1(yi − ȳ)2

(1)

where xi and yi are the utilization values at position i in the
corresponding trace, x̄ and ȳ are the average utilizations of
the corresponding trace and n is the total number of positions.
The correlation coefficient illustrates a quantitative measure of
the correlation (i.e., statistical relationships) between the two
utilization traces. A correlation coefficient closer to 1 means
that the two traces are more similar, a correlation coefficient
closer to -1 indicates a more perfect negative correlation, that
is, the two traces are opposite to each other in terms of
magnitude, and a correlation coefficient closer to 0 means less
relationship between the two traces.

Figure 3 shows the cumulative distribution functions (CDF)
of task pairs corresponding to the correlation coefficient.
Figure 3(a) shows the results from the CPU utilization trace
and Figure 3(b) shows the results from the memory utilization
trace. For CPU utilization, 80% of the task pairs have correla-
tion coefficient spanning from 0 to 0.5. For memory utilization,
80% of the task pairs have correlation coefficient spanning
from 0 to 0.6. These results indicate that tasks running the
same application may not have similar resource utilization
patterns. This might be caused by the reason that the traces
are misaligned in time, that is, the exact timing of rising and
falling of the resource demands may not be exactly the same,
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Fig. 3. CDF of correlation coefficient of Google trace. (a) Google CPU
trace. (b) Google memory trace.

Fig. 4. CDF of pulse deviation of Google trace. (a) Google CPU trace.
(b) Google memory trace.

though their patterns in one seasonal period are similar as
observed in previous works [7]–[11]. In order to study how
much these resource utilizations are misaligned, we conducted
experiments to measure the pulse deviation of each pair of
the resource utilizations for the same job. Figure 4 shows the
CDF of the task pairs corresponding to the absolute pulse
deviation. We see that the resource utilizations have pulse
deviation spanning from 0 to 10 minutes. Only 30% of the
task pairs have pulse deviation 0. A majority (e.g., 70%) of
the task pairs have absolute pulse deviation values greater than
5 minutes, indicating that there exist many pulse deviations in
the trace and the deviation is relatively high.

B. PlanetLab Trace

In this section, we analyze the resource utilization from
the PlanetLab trace [14]. The PlanetLab trace contains the
CPU utilization of each VM in PlanetLab every 5 minutes for
24 hours in 10 random days in March and April 2011. In the
experiment, we selected VM CPU utilization time series from
the trace, and categorized the VMs running the same job into
one group. We identified the VMs for the same job by the
names of the trace file. For example, trace files with the same
file name are VMs that run the same job in different places
and times. Figure 5 shows the CDF of VM pairs corresponding
to the correlation coefficient. We see that around 70% (e.g.,
from 0.2 to 0.9) of the VM pairs have correlation coefficient
from 0 to 0.2, which indicates that, compared to Google
trace, the similarity between VMs running the same job in
PlanetLab trace is much lower. It confirms the conjecture
that there might exist resource utilization misalignments since
their patterns in one seasonal period are similar as observed
in previous works [7]–[11]. Figure 6 shows the CDF of the
VM pairs corresponding to the pulse deviations. We see that
the resource utilizations have pulse deviation spanning from
0 to 10 minutes. Only 5% of the VM pairs have pulse
deviation 0. The result confirms that there exist many pulse

Fig. 5. CDF of correlation coefficient of PlanetLab trace.

Fig. 6. CDF of pulse deviation of PlanetLab trace.

deviations in the utilization traces and the pulse deviation can
be high.

C. Hadoop Benchmarks

We then conducted MapReduce experiments on Clem-
son Palmetto high-performance computing (HPC) clus-
ter [15]–[17] to measure the resource utilization traces and
analyzed the traces. In the experiments, we implemented a
Hadoop MapReduce framework. The framework is imple-
mented on a cluster consists of twelve machines, each of
which has two 4-core 2.3GHZ AMD Opteron 2356 processors,
16GB RAM, 193GB hard disk, and 10Gbps Myrinet inter-
connections [18]. We conducted representative Hadoop bench-
marks [19] including Wordcount, Grep, Terasort, TestDFSIO
and PiEstimator. Among them, Wordcount, Grep and Terasort
are typical data-intensive applications since they need to
read/write and process a large amount of data. We gener-
ated 64GB input data by BigDataBench [20] based on the
Wikipedia datasets for Wordcount, Grep, Terasort. TestDFSIO
write and read tests are typical I/O-intensive applications. They
complete a large amount of read/write operations during the
map tasks and only do some calculations like calculating
the I/O rate in the reduce tasks. In the experiment, we use
TestDFSIO write to generate 64GB data and then use TestDF-
SIO read to read the generated data. PiEstimator is CPU-
intensive applications, which uses a statistical (quasi-Monte
Carlo) method [21] to estimate the value of Π.

Figure 7 shows the CDF of task pairs corresponding to the
correlation coefficient of the CPU, RX bandwidth, I/O and
memory utilizations of the Hadoop benchmarks, respectively.
Figure 7(a) shows the results from the CPU utilization. We see
that most 80% (e.g., from 0.2 to 1) of the task pairs have
correlation coefficient larger than 0.9. These results indicate
that most tasks running the same application have similar
CPU utilizations. We also see that all of the task pairs
have correlation coefficient larger than 0.6. It means that
the CPU utilizations of some tasks of the same application
are not similar. Figure 7(b) shows the results from the RX
bandwidth utilization. We see that the correlation coefficient
spanning from 0 to 1 almost evenly. Similarly, Figure 7(c)
and Figure 7(d) show the results from the I/O and memory
utilizations, respectively. We see that 80% of the task pairs
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Fig. 7. CDF of correlation coefficient of Hadoop benchmarks. (a) CPU utilization. (b) RX bandwidth utilization. (c) I/O utilization. (d) Memory utilization.

Fig. 8. CDF of pulse deviation of Hadoop benchmarks. (a) CPU utilization. (b) RX bandwidth utilization. (c) I/O utilization. (d) Memory utilization.

have correlation coefficient larger than 0.5 for I/O utilization,
and 80% of the task pairs have correlation coefficient larger
than 0.6 for memory utilization. They confirm that the tasks
running the same application tend to have similar resource
utilizations. Also, some VMs’ utilizations are not similar,
which may be caused by the misalignments.

Figure 8 shows the CDF of the task pairs corresponding to
the pulse deviation of the CPU, RX bandwidth, I/O and mem-
ory utilizations of the Hadoop benchmarks, respectively. We
see that the resource utilizations have pulse deviation spanning
from 0 to 10 seconds. Figure 8(a) shows that around 15% of
the task pairs have pulse deviations greater than 0, and 10%
of the task pairs have pulse deviations greater than 2 seconds.
It indicates that CPU utilizations of VMs are not exactly
aligned even though they are running the same application.
Figure 8(b), Figure 8(c) and Figure 8(d) show that the RX
bandwidth utilization, I/O utilization and memory utilization
have worse alignments compared to Figure 8(a). Specifically,
around 50%, 59% and 30% of the task pairs have pulse
deviations greater than 0, and around 36 %, 39% and 18%
of the task pairs have pulse deviations greater than 2 seconds,
respectively. These results confirm that utilization misalign-
ments are common for tasks running the same application.

D. Resource Efficiency
In the previous predictive-based resource provisioning

methods, the resource demand pattern of a job’s VM is
derived from the demand patters of multiple VMs of this
job. We take Algorithm 1 in [9] as an example. We use
Di(t) to denote the amount of resource demand of VM i
among N VMs at time t (e.g., every one second). The
algorithm first finds the maximum demand E(t) among the
set of Di(t) (i = 1, 2, . . . , N) at each time t (Line 4). Then,
it passes E(t) through a low pass filter (Line 6) to remove
high frequency components to smooth E(t). The algorithm
then utilizes a sliding window of size W to find the envelop of
E(t) (Line 8). Finally, it rounds the demand values (Line 10).

In this experiment, we used Algorithm 1 to determine
the resource demand pattern and evaluated its resource effi-
ciency. Specifically, we conducted experiments on predicting

Algorithm 1 VM Resource Demand Pattern Detection

1: Input: Di(t): Resource demands of a set of VMs
2: Output: P(t): VM resource demand pattern
3: /* Find the maximum demand at each time */
4: E(tj) = maxi∈N{Di(tj)} for each time tj
5: /* Smooth the maximum resource demand series */
6: E(tj) ← LowPassFilter(E(tj)) for each time tj
7: /* Use sliding window W to derive pattern */
8: P(tj) = maxtj∈[tj ,tj+W ]{E(tj)} for each time tj
9: /* Round the resource demand values */

10: P(tj) ← Round(P(tj)) for each time tj
11: return P(t) (t = T0, . . . , T0 + T )

VM resource demand pattern based on resource utilization
records of a group of VMs running the same application.
We randomly selected a number of jobs, derived the CPU
utilization of a VM in each job using all of its VMs and
compared it with the real utilizations of each VM. The
resource efficiency is calculated by dividing the amount of
the provisioned resource based on the predicted pattern by
the amount of real utilized resource. For example, given the
demand time series D(tj) (j = 1, 2, ...) and allocated resource
time series A(tj) (j = 1, 2, ...), which is determined by the
generated pattern of the algorithm, we need to determine the
utilization time series U(tj) (j = 1, 2, ...), which is calculated
by U(tj) = D(tj) if D(tj) < A(tj); U(tj) = A(tj) if
D(tj) ≥ A(tj). The resource efficiency is calculated by�U(tj)�A(tj)

. Finally, these resource efficiencies of all VMs are
used to plot the cumulative distribution figure.

Specifically, for the Google Cluster trace, PlanetLab trace
and the Grep Hadoop benchmark, we randomly selected 100,
1000 and 100 jobs, and tested the resource efficiency of 1550,
4695 and 121 VMs, respectively. Figure 9 shows the CDF of
tasks corresponding to the resource efficiency of the Google
Cluster trace. Figure 9(a) and Figure 9(b) present the results of
CPU utilization and memory utilization, respectively. We see
that around 80% of the results have resource efficiencies
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Fig. 9. CDF of resource efficiency of Google trace. (a) CPU efficiency.
(b) Memory efficiency.

Fig. 10. CDF of resource efficiency of Planetlab trace.

Fig. 11. CDF of resource efficiency of Hadoop bandwidth.

smaller than 0.3 for CPU, and 80% of the results have resource
efficiencies smaller than 0.25 for memory. It indicates that
there is a large amount of over-provisioning and the resource
efficiencies of the previous predictive-based resource alloca-
tion algorithm can be further improved. Similarly, Figure 10
shows the CDF of the VMs corresponding to the resource
efficiency of the PlanetLab trace. We see that 80% of the
results have resource efficiencies smaller than 0.6, which is
low. Figure 11 shows the CDF of the VMs corresponding
to the resource efficiency from the CPU utilization trace of
the Grep Hadoop benchmarks. We see that there are 40%
of the VMs that have resource efficiencies lower than 0.4,
which confirms the resource over-provisioning due to the
reason that the generated pattern tend to have more resource
demand.

III. PATTERN REFINEMENT ALGORITHMS

In the above section, we verified that the resource utilization
patterns of multiple VMs of a job may have misalignments
in time. Such misalignments may lead to resource over-
provisioning and low resource efficiency. Many types of hard-
ware resources (e.g., CPU, bandwidth and I/O resources) are
shared by VMs in temporal manners, that is, VMs take turns
to use the resources. This time sharing feature enables elastic
resource provisioning. In Section III-A, we show that the
elastic resource provisioning makes it possible for the original
pattern detection algorithm to further increase the resource
efficiency by reducing the provided resource. In Section III-B,
we propose three refinement algorithms based on Algorithm 1.
The first and second refinement algorithms leverage the

elastic provisioning feature of resource to further improve the
resource efficiency. The third refinement algorithm refines the
generated pattern by varying the shape of the original pattern
until it achieves the highest resource efficiency. Note that one
VM can run multiple tasks since our algorithms only need
a VM’s resource demand, which is the sum of the resource
demands of all tasks running in the VM.

A. Elastic Resource Provisioning
In this section, we discuss the feature of resource pro-

visioning for time-sharing resources. This feature lays the
foundation for our proposed pattern refinement algorithms.
The time sharing resources have a feature that they can be
flexibly provided to VMs. Take CPU resource as an example,
VMs take turns to use the physical processing core. Suppose
a VM requires 5 CPU time slots during a 3 seconds time
period to complete its job. The resource provider can either
schedule (1 slot, 2 slots, 2 slots) or (2 slots, 2 slots, 1 slot)
for the VM in the three consecutive seconds. That means,
the amount of resource (e.g., CPU time slots) allocated to a
VM within a short time period (e.g., 1 second) is elastic and
will not obviously affect the job completion time in the VM as
long as the total amount allocated to the VM is the same (e.g.,
5 slots) within its required time period (e.g., 3 seconds). The
completion time of a job running in a VM is estimated by
C × T × I , where C is the average number of cycles per
instruction, T is the time per cycle, and I is the number of
instructions per job.

We define the fraction of CPU time (and hence the number
of cycles) that a VM is allowed to use within a unit time
as its cap. Within a unit time period, as we limit the cap,
the CPU time and hence the number of cycles received by
the VM is decreased, resulting in an increase of the time per
cycle (T ) of the VM. As a result, the limitation of the cap leads
to an elongation of the completion time. On the other hand,
the completion time of a VM’s job is the same as long as the
total amount of time slots allocated to the VM (i.e., the number
of CPU cycles) is no less than the requested amount during the
required time period. These two features enable us to lower
the pulse of the original pattern generated by Algorithm 1 to
reduce the amount of provisioned resource to improve resource
efficiency.

As shown in Figure 12(a), suppose a job requires r
amount of resource that can complete its work using time
Thigh (from t1 to t2). Based on the original pattern of
this job, Algorithm 1 suggests providing chigh (chigh > r)
resource for Tpro time (from t1 to t3). Since chigh > r,
the job will consume r amount of resource and complete
within time Thigh (from t1 to t2). In this case, the provisioned
resource from t2 to t3 is wasted. In order to improve resource
efficiency, we can limit the provision resource amount to
clow (clow < r) that makes the job complete using time
Tpro (at t3). Since clow < r, the job is allowed to consume
clow amount of resource. Due to the insufficient resource,
the job will prolong the completion time and complete in time
Tlow (from t1 to t3) when all required amount of resource
is received. That is, the cumulative resource consumption
r×Thigh = clow ×Tpro or when the sizes of the two shadow
parts in Figure 12(a) equal to each other, i.e.,

(chigh − clow)× Tpro = (chigh − b)× (Tpro − Thigh), (2)

where b is the base value of the provisioned resource which
is the minimum resource amount provided to the VM. Then,
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Fig. 12. Resource demand misalignment. (a) Elastic resource provisioning.
(b) Rising, falling edges and pulse deviation.

the resource efficiency is improved from r×Thigh

chigh×Tpro
to

clow×Tpro

clow×Tpro
= 1.

B. Pattern Refinement Methodology

Using the elastic resource provisioning feature, we propose
three pattern refinement algorithms to improve the resource
efficiency of the generated patterns from Algorithm 1. The
algorithms allow the cloud provider to provide resource effi-
ciently and to potentially host more VMs in the datacenter.
We present the details of each algorithm in the following.

1) Lowering Cap: Algorithm 1 generates the pattern for one
VM of a job from historical utilizations of multiple VMs of
the job. Since these VMs have pulse deviations (as confirmed
in Section II), the algorithm will result in a pattern with an
expansion on each pulse width, which is larger than the width
of the actual demand pulse of a single VM. As a result,
the resulting pattern tends to have low resource efficiency since
a VM may not fully use its provided resource based on the
pattern, which leads to resource over-provisioning. Inspired by
the time sharing feature of resource as explained previously,
we propose pattern refinement algorithms to improve resource
efficiency. For every pulse in the generated pattern from
Algorithm 1, we can further lower the cap to a level that saves
the over-provided resource due to trace pulse deviation. The
starting and ending time of the pulses in a pattern can be
detected by finding the time for each pair of rising and falling
edges as we explained previously (Figure 12(b)). The amount
to lower the cap can be calculated based on Equation (2).
For example, as shown in Figure 13(a), suppose traces 1 and
2 have pulse deviation s, the original pattern has width Tpro

and the cap before refinement is chigh, then we can lower the
cap to clow so that (chigh − clow)× Tpro = s× (chigh − b).

Algorithm 2 shows how to improve resource efficiency
by reducing the cap of the original derived pattern. The
algorithm first finds the envelop of the time series of resource
utilizations of VMs E(tj) (Line 3) and derives the resource
demand pattern P(t) (Line 4) based on Algorithm 1. Then,
it calculates the pulse deviations of each pair of the VMs based
on the first rising edges as discussed in Section II (Line 5),
and then selects the maximum pulse deviation (Line 7). The
algorithm calculates the width of the pulse of the derived
pattern P(t) (Line 8) by measuring the duration between the
time stamps of two consequent rising and falling edges. The
algorithm then determines the amount of reduction of cap
chigh − clow based on (chigh − clow)× Tpro = s× (chigh −
b) (Line 9). Finally, it derives the refined demand pattern by
lowering the value of the pulse of P(t) by the amount of
chigh − clow (Line 10) and returns the new pattern (Line 11).

Fig. 13. Pattern refinement. (a) Lowering cap. (b) Varying the base provision.

Algorithm 2 Improve Resource Efficiency By Lowering Cap

1: Input: Di(t) (i = 1, 2, . . . , N): Resource demands of a
set of VMs

2: Output: P ′(t): Refined resource demand pattern
3: Find the maximum demand at each time E(tj)
4: Derive resource demand pattern P(t) using Algorithm 1
5: Calculate the pulse deviation of the VMs
6: for every pulse in P(t)
7: Calculate maximum pulse deviation s of the edges
8: Measure the width of cap Tpro

9: Determine reduction of cap chigh − clow

10: Update the cap of the current pulse in P ′(t) to
clow

11: return P ′(t)

2) Reducing Pulse Width: If the pulse demand of a
VM arrives later than the refined pattern from Algorithm 2,
then the VM cannot receive all its requested resource within
the provision time, i.e., the length of the pattern. Suppose
the demand pulse of the VM comes after the beginning
of the derived pulse (e.g., the rising edge of the pattern),
the resource provisioned at the beginning is not fully used
by the VM, hence the VM cannot receive its total requested
amount of resource by the end of the pulse. To handle this
problem, we propose another algorithm, which reduces the
duration of each pulse of the pattern to avoid the over-
provisioning.

We use Figure 14 to demonstrate the impact of such
reducing on the extension of job execution time of the VM.
Given a sufficient amount of resource, a VM has a resource
utilization profile as shown in Figure 14(a), where the blue
area indicates the provisioned resource and the curve indicates
the used resource. Suppose from time t1 to t3, we reduce
the amount of provisioned resource from cap value cmax to
base value b as shown in Figure 14(b), which results in an
under-provisioning and hence a prolonged job execution time.
By t3, the provisioned amount of resource can only satisfy
the original demands that arrive between time t1 and time t2.
As a result, the demand profile is postponed by t3 − t2.
After t3, as provision increases to cmax, the demand profile
E(tj) follows the shape of the VM’s original demand profile
without an expansion as shown in Figure 14(b). Given enough
provisioned resource (i.e., without this algorithm), the original
demand profile was developing from point B as indicated by
the dashed curve. After reducing the provisioned resource (i.e.,
with this algorithm), the demand at point B will not receive
its requested amount of resource until point D. After that,



SHEN AND CHEN: RESOURCE DEMAND MISALIGNMENT: AN IMPORTANT FACTOR TO CONSIDER 1213

Fig. 14. Pattern refinement by (a) posting the cap provision and (b) reducing
the cap width.

the demand profile follows the shape of the original profile
without any extension or deformation as indicated by the solid
curve. In conclusion, the reduced provisioning results in a
delay of the utilization profile.

Algorithm 3 Improve Resource Efficiency by Reducing Cap
Width
1: Input: Di(t) (i = 1, 2, . . . , N): Resource demands of a

set of VMs
2: Output: P ′(t): Refined resource demand pattern
3: Find the maximum demand at each time E(tj)
4: Derive resource demand pattern P(t) using Algorithm 1
5: for every pulse in P(t)
6: Calculate maximum pulse deviation s of the edges
7: ti ← t1, Sum← 0
8: while Sum < sb do
9: Sum← Sum + (P(ti)− b)

10: ti ← ti + 1
11: d← ti − t1
12: Update P ′(t)← b, for t1 ≤ t < t1 + d
13: return P ′(t)

Therefore, we can reduce the provisioned resource of a
pattern by reducing the amount of resource from cmax to b
in the beginning of provisions. A question is how to find the
time latency to change cmax in the original pattern to b (i.e.,
the postponing latency). We notice that the area size of t1t2BA
and the area size of t1t3CA are equal to each other:

∫ t2

t1

P(t)dt = b(t3 − t1) (3)

where P(t) is the pattern function, and t3 − t2 = s. Suppose
d = t3−t1 is the duration that we want to reduce the resource.
Considering

∫ t1+d−s

t1

P(t)dt = bd (4)

we have

d = P−1(b) + s− t1 (5)

As it is not easy to derive P−1(b) in the algorithm,
we develop a practical approach (as described below) in
Algorithm 3 to find d. Algorithm 3 shows this alternative way
to improve resource efficiency based on the above discussion.
The algorithm first finds the envelop of these series E(tj) (Line
3) and derives the resource demand pattern P(t) (Line 4) based
on Algorithm 1. Next, it calculates the pulse deviations of the
VMs between each other and then selects the maximum pulse
deviation (Line 6). After that, it determines d based on the
pulse deviation s (Lines 7-10). In the algorithm, we iteratively

increase the value of t2 from 0, and find t2 that makes the area
size of t1t2BA equal to the area size of t1t3CA. We cannot
easily get P−1(b), the current method in the algorithm to find
d is a practical way. Finally, the algorithm modifies P(t) by
reducing the provisioned resource amount between time t1 and
t1+d from cmax to b (Lines 11-12), and return the new pattern
P ′(t) (Line 13).

3) Varying Base Provision: We refine the original pattern
generated by Algorithm 1 by varying the base value b of
the original pattern until it achieves the highest efficiency.
Different sizes of time windows leads to different base values.
As shown in Figure 13(b), two tentative square curve fittings
with base resource b1 and b2, respectively, are both feasible
solutions for pattern detecting. Given a resource utilization
profile, the parameters that maximize the resource efficiency
can be found by searching through different values of b.

Algorithm 4 Improve Resource Efficiency by Varying the
Base Provision
1: Input: Di(t): Resource demands of a set of VMs
2: Output: P ′(t): Refined resource demand pattern
3: Find the maximum demand at each time E(tj)
4: Determine P(t) based on Algorithm 1
5: Find maximum demand cmax

6: Find minimum demand b
7: do
8: b← b+Δ
9: Find P ′

temp(t) based on b
10: Measure resource efficiency based on E(tj) and
P ′

temp(t)
11: if (efficiency > max)
12: max ← efficiency
13: P ′(t)← P ′

temp(t)
14: while (b < cmax)
15: return P ′(t)

Algorithm 4 shows the processes to improve the resource
efficiency by varying b of a derived pattern. Given a set of
VM resource demand time series Di(t) as input, the algo-
rithm first finds the envelop of these series E(tj) (Line 3)
and determines the original resource demand pattern P(t)
based on Algorithm 1 (Line 4). Then, it finds the maximum
demand (cmax) of the pattern (Line 5) and the minimum
base value (Line 6). The minimum base can be found by
scanning the pattern P(t) generated by Algorithm 1. The
algorithm calculates P ′

temp(t) based on varying b from the
minimum base value (Line 9). The rationale of varying b
from this value is that it is the minimum value that covers
all the base demands, as indicated by Algorithm 1. P ′

temp(t)
is the pattern after the base value is updated in P(t) and we
will explain how to calculate P ′

temp(t) later. For example,
in Figure 13(b), P(t) represented by the solid line is changed
to P ′

temp(t) represented by the dotted line after base value
is changed from b2 to b1. The algorithm then measures the
resulting efficiency (Line 10). Here, the resource efficiency
is calculated by

� E(tj)dt�P′
temp(t)dt . Because we do not know the

actual resource consumption, we use E(tj) as the consumed
resource to measure the resource efficiency for comparable
comparison to choose the pattern with the highest resource
efficiency. We vary b by increasing b from initial value
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to the maximum demand cmax. The algorithm repeats this
process with increasing b until b ≥ cmax, and finds the b
that leads to the maximum resource efficiency (Lines 8-14).
Finally, the pattern that leads to the maximum efficiency is
returned (Line 15).

We describe the process of finding P ′
temp(t) based on b

as follows. For every new value of b, we find out all the
time stamps t′js that have E(t′j) = b (e.g., points A′ and B′

in Figure 13(b)). From the original P(t), we have a series
of time stamps tjs indicating the rising and falling of the
resource provisioning (e.g., points A and B in Figure 13(b)).
The algorithm orders these time stamps with indices starting
from zero. As a result, a time stamp with an even index
indicates a rising, while a time stamp with an odd index
indicates falling. The new pattern P ′

temp(t) is generated by
changing the provision value from cmax to b in the pattern
P(t) for every time period from tj to t′j (or from t′j to tj for
odd indices). (i.e., from points A to A′, and from B′ to B
in Figure 13(b))

C. Pattern Refinement Extension

1) Pattern Refinement for Multi-Pulse Resource Demand
Patterns: Sometimes, a periodical resource demand pattern
consists of multiple pulses, as shown in Figure 15, rather than
a single pulse. We call such a resource demand pattern multi-
pulse resource demand pattern. For a multi-pulse resource
demand pattern, as there might be different pulse deviations
for different pulses, as shown in Figure 15, simply using one
single pulse deviation is insufficiently accurate to reflect the
misalignment for the entire pattern. The previously proposed
pattern refinement algorithms (i.e., lowering cap and reducing
pulse width) only consider the deviation of one pulse. Then,
if we apply the algorithms to multi-pulse resource demand pat-
terns, the patterns of different VMs of a job must be the same,
that is, the time lengths between the pulses in the patterns of
the VMs must be the same. However, as the figure shows,
it may not be true. Then, the performance of our proposed
pattern refinement algorithms may be degraded in improving
the resource efficiency. Therefore, in this section, we fur-
ther propose an extended algorithm for pattern refinement
to improve the resource efficiency of multi-pulse resource
demand patterns. Note that in this section, unless otherwise
indicated, when we mention the previously proposed pattern
refinement algorithms, we mean the algorithms for lowering
cap and reducing pulse width, because the situation of different
deviations does not affect the algorithm for varying base provi-
sion. For a multi-pulse resource demand pattern, the algorithm
for varying base provision will search the base value for the
multiple pulses that maximizes the resource efficiency for the
entire pattern.

In detail, we may see the cases of different misalignments
as shown in Figures 16. The figure shows a series of resource
demand patterns that contain two pulses. We can calculate
the pulse deviation for each pulse. We denote s1 as the pulse
deviation for the left pulse and s2 as the pulse deviation for
the right pulse. We assume s as the pulse deviation for the
entire resource demand pattern.

• In the pattern shown in Figure 16(a), we see that there
are misalignments for both pulses and |s1| > |s2|. When
we apply the pattern refinement algorithms in Section III-
B to the pattern, and use s = |s1| as the deviation for
the entire pattern, it will result in under-provisioning for

Fig. 15. An examples of multi-pulse resource demand patterns.

Fig. 16. Examples of multi-pulse resource demand patterns consisting of
two pulses in a pattern. (a) Example 1. (b) Example 2.(c) Example 3.

the right pulse, that is, the amount of actually provisioned
resource is lower than the amount of the resource demand.

• In the pattern shown in Figure 16(b), we see that only
the right pulse has misalignment, i.e., s1 = 0 and s2 = a.
In this scenario, since s = 0, we do not need to apply
the pattern refinement algorithms in Section III-B to the
pattern. It will result in the resource over-provisioning
during the right pulse time because there actually exists
deviation in the right pulse.

• Generally, as shown in Figure 16(c), for a pattern that
contains two pulses and the pulse deviations of the left
and the right pulses satisfy |s1| ≤ |s2|, when we apply
the pattern refinement algorithms in Section III-B to the
pattern and use s = |s1| as the deviation for the entire
pattern, it will lead to resource over-provisioning during
the right pulse time.

In summary, in Section III-B, our algorithms greatly
improve the resource efficiency of the resource demand pattern
that contains a single pulse, as a single pulse deviation for
these patterns correctly reflect the deviation of the entire
patterns. However, as the examples shown above, for multi-
pulse resource demand patterns, the entire pulse deviation
s may not accurately reveal the deviation of all the pulses.
Then, the effectiveness of our pattern refinement algorithms
is decreased if the patterns contain multiple pulses. Therefore,
we need an extended version for the pattern refinement algo-
rithms to deal with these multi-pulse cases. We present the
details of the algorithm extension as follows.

Considering that the performance degradation is caused by
the multiple pulses, we first need to detect the pulses that
exist in a resource demand pattern. After we detect the pulses,
we can divide the multi-pulse pattern into multiple single-
pulse patterns. Then, for each single-pulse pattern, we apply
our pattern refinement algorithm in Section III-B to improve
its resource efficiency. Here, the pattern refinement algorithms
include the algorithm for varying base provision. That is, this
algorithm finds the base value that maximizes the resource
efficiency for each pulse rather than for all pulses in the entire
pattern. Finally, we can attain the entire pattern refinement
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by combining all the pattern refinements for the single-pulse
patterns together. This algorithm extension is straightforward
– we just split the pattern into several small patterns, apply the
pattern refinement algorithm to each small pattern and finally
combine the results. However, the most difficult part in this
extension is to detect the pulses in the pattern. Next, we will
introduce a pulse detection algorithm.

2) Pulse Detection Algorithm: In this section, we propose
an algorithm to find out the pulses in a pattern. Basically,
a pulse represents a rapid change in the height from a base
value to a higher value, followed by a rapid return to the base
value. Hence, a pulse has two key characteristics: height and
width. Note that here the width represents the time and the
height represents the resource utilization.

For a resource demand pattern, we scan through the pattern
to find the pulse. We set W and H as the thresholds for
both width and height for a pulse. Further, as the pulse for
resource demand pattern is not a perfect square as shown
in Figure 1 because the resource demand is varying with
time, we also define δH as the threshold of height changes
in a pulse. In other words, if the height change of a point in
a pulse is smaller than δH , we still consider this point as in
the same pulse; otherwise, we consider it as the beginning of
another pulse.

Notice that we can tune the W and H thresholds. One may
ask that our method filters out small pulses that are smaller
than W and H in width and height. Actually even though we
apply the our pattern refinement algorithms in Section III-B
to such small patterns, it does not significantly improve the
resource efficiency performance. This is because (i) there are
not many pulses in a resource pattern lying in the small width
and height ranges, and (ii) applying our pattern refinement
algorithms to those small pulses does not provide signifi-
cant performance improvement on resource efficiency, as the
amounts of provisioned resource for these small pulse are very
low. Setting δH to a higher value can avoid detecting too many
pulses in a resource demand pattern.

Algorithm 5 shows the pseudocode for the pulse detection
algorithm, which returns a list of pulses in a resource
demand pattern. We first check whether the current
height (i.e., resource demand) of the pattern is smaller
than H or not. If height < H , then it is not a pulse in
current time (Lines 5-7). If height ≥ H , we further check
whether we are currently processing a pulse or not. If not,
then it means that a new pulse starts (Lines 9-11); otherwise,
we need to check whether the height change is greater than
δH (Lines 12-13). If the height change is smaller than the
threshold, it means that we are still processing the same
pulse (Line 14); otherwise, a new pulse starts (Lines 16-17).
Through this algorithm, we can detect and attain a list of the
pulses in the pattern along with the pulse widths.

D. Initial VM allocation Mechanism

This section presents a brief review of the initial VM allo-
cation policy in [9], which places all VMs in as few hosts as
possible, ensuring that the aggregated demand of VMs placed
in a host does not exceed its capacity across each resource
dimension. We consider the VM consolidation as a classical
d-dimensional vector bin-packing problem [22], where the
hosts are conceived as bins and the VMs as objects that need
to be packed into the bins. We adopt the dimension-aware
heuristic algorithm as mentioned in [9] to solve this problem,

Algorithm 5 Pseudocode of the Pulse Detection Algorithm
1: Input: the pattern from time 0 to t

W : threshold of the minimum width of a pulse
H : threshold of the minimum height of a pulse
δH : threshold of the maximum height change in a pulse

2: Output: A list of the pulses in the pattern
3: RecHeight = −1, δH = 0, width = 0
4: for i = 1 to t do
5: if height < H //not a pulse
6: width = 0
7: RecHeight = −1
8: else
9: if RecHeight == −1 //not in a pulse, then

start a new pulse
10: width = 0
11: RecHeight = height
12: else
13: if |height− RecHeight| ≤ δH //still in the

same pulse
14: width++
15: else //not in the same pulse, then start a new pulse
16: width = 0
17: RecHeight = height
18: end for

which takes advantage of cross dimensional complimentary
requirements for different resources.

Algorithm 6 shows the pseudocode for the initial VM allo-
cation policy of a VM. This policy refers to the resource
demand pattern Pi(t) that approximately predicts the resource
demands of VMs from the same tenant for the same job.
The pattern can be generated by the original pattern detection
algorithm (Algorithm 1) or the refinement algorithms (Algo-
rithm 2, Algorithm 3 or Algorithm 4). Based on Pi(t) and the
host j’s capacity vector Hj , we can derive predicted fractional
VM demand Fij(t). For each candidate host, we first check
whether it has enough resource for hosting the VM at each
time t = T0, . . . , T0 + T for each resource by comparing
Fij(t) and the normalized residual resource capacity of a
host Rj(t) (Line 5 and Lines 18-25) in order to ensure that
F k

ij(t) ≤ Rk
j (t) (i.e., the VM’s demand is no more than the

residual resource capacity of the host for each resource k)
during the VM lifetime or periodical interval [T0, T0+T ]. If the
host has sufficient residual resource capacity to host this VM,
then we calculate the resource efficiency (Lines 8-11) after
allocating this VM during time period [T0, T0 + T ]. Finally,
we choose the PM that leads to the minimum distance based
on resource efficiency (Lines 12-16). It means this VM can
make this PM most fully utilize its different resources among
the PM candidates.

IV. TRACE-DRIVEN SIMULATION

In this section, we conducted the simulation experiments to
evaluate the performance of our proposed pattern refinement
algorithms using the Google Cluster trace and PlanetLab
trace. We implemented the proposed refinement algorithms
in the initial VM allocation mechanism called CompVM [9],
denoted as VaryCap, Postpone and VaryBase (initial VM allo-
cation using Algorithm 2, Algorithm 3 and Algorithm 4,
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Algorithm 6 Pseudocode for Initial VM Allocation

1: Input: Pi(t): Predicted resource demands
Rj(t): Residual resource capacity of candidates

2: Output: Allocated host of the VM
3: M=Double.MAX_VALUE //initialize the distance
4: for j = 1 to m do
5: if CheckValid(P(t),Rj(t))==false then
6: continue
7: else
8: for k = 1 to d do
9: Ek

j = Ek
j + 1

T ·Hk
j

∫ T0+T

T0
P k(t)dt

10: Mj+ = {wk(1− Ek
j )}2

11: end for
12: if Mj<M then
13: M=Mj

14: AllocatedHost=host j
15: end for
16: return AllocatedHost
17:

18: function CheckValid(P(t),Rj(t)):
19: for k = 1 to d do
20: for t = T0 to T0 + T do
21: if F k

ij(t) > Rk
j (t)

22: return false
23: end for
24: end for
25: return true

Fig. 17. The number of PMs used from Google Cluster trace. (a) Varying
workload. (b) Varying number of VMs.

respectively). We denoted the algorithm without refinement
as Original.

We used workload records of three days from the trace
to generate VM resource request patterns and then executed
CompVM for the fourth day’s resource requests. The win-
dow size was set to 15 minutes in the pattern detection in
CompVM. We compared VaryCap, Postpone and VaryBase
with the original CompVM. All these methods conduct initial
VM allocation.

We use the CloudSim [14] simulator to conduct the simu-
lation. We configured the PMs in the system with capacities
of 1.5GHz CPU and 1536 MB memory, and configured VMs
with capacities of 0.5GHz CPU and 512 MB memory. With
our experiment settings, the bandwidth consumption did not
overload PMs due to their high network bandwidth capacities,
so we focus on CPU and memory utilization. Unless otherwise
specified, the number of VMs was set to 2000 and each
VM’s workload is twice of its original workload in the trace.

In the simulation, the pattern of each VM is predicted, and
the VMs are allocated to the PMs based on their patterns and
the allocation algorithm in [9].

• The number of PMs used. This metric measures the
resource efficiency of VM allocation mechanisms to host
all the VMs.

• Resource efficiency. This metric is the ratio between the
utilized and allocated amount of resource during the
provision time for each VM.

• The number of SLO violations. This metric is the number
of occurrences that a VM cannot receive the required
amount of resource from its host PM.

A. Performance With Varying Workload

We first study the performance of the three algorithms
under different VM workloads using the Google Clus-
ter trace. We varied the workload of the VMs through
increasing the original workload in the trace by 1.5,
2 and 2.5 times. Figure 17(a) shows the total number of
PMs used from the Google Cluster trace, which follows
VaryCap<Postpone≈VaryBase<Original. VaryBase, VaryCap
and Postpone reduce the number of PMs due to their refined
VM patterns, which require relatively less resource than Orig-
inal. VaryCap further reduces the number because it reduces
the cap value of the patterns. Postpone is larger than VaryCap
due to the reason that reducing the pulse length is not as
efficient as reducing the cap in providing resource for more
VMs, because most of the VM patterns are characterized by a
small cap with large width rather than a high cap with small
width. This figure also shows that as the workload increases,
the number of PMs used increases. This is because as the
actual workload increases, CompVM’s predicted resource
demands increase in initial VM placement. The result further
confirms that the refinement algorithms reduce the amount
of provisioned resource and needs much fewer PMs than the
original CompVM, hence achieves higher resource efficiency.
Figure 18(a) shows the total number of PMs used from the
PlanetLab trace. It shows similar results as in Figure 17(a),
which again confirms that the refinement algorithms reduce the
number of PMs needed. The numbers from PlanetLab trace are
higher than those from Google Cluster trace due to the reason
that the tasks in Google Cluster trace have higher correlation
coefficient, and hence the predicted patterns are more accurate.

B. Performance With Varying Number of VMs

We then study the performance of the refinement algo-
rithms when the number of VMs was varied from 1000 to
3000 using the Google Cluster trace and PlanetLab trace.
Figure 18(a) shows the total number of PMs used to
provide service for the corresponding number of VMs
from Google Cluster trace. We see the result follows
VaryCap<Postpone≈VaryBase<Original due to the same rea-
sons as in Figure 17(a). Also, as the number of VMs increases,
the number of PMs used increases in each method since
more PMs are needed to host more VMs. These experimental
results confirm the advantage of the refinement algorithms
in reducing the number of PMs used, thus achieving higher
resource efficiency. Figure 18(b) shows the total number of
PMs used from the PlanetLab trace. We see similar trend as
the results from the Google Cluster trace, which confirms that
the refinement algorithms are effective in reducing the number
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Fig. 18. The number of PMs used from PlanetLab trace. (a) Varying
workload. (b) Varying number of VMs.

Fig. 19. Resource efficiency.

Fig. 20. Ability to satisfy SLO.

of PMs used. Compared to the Google Cluster trace, the results
of PlanetLab trace have a higher number of PMs due to the
similar reason mentioned before.

C. Resource Efficiency

Figure 19 shows the median, the 10th and 90th percentiles
of resource efficiency of each VM when we applied the
algorithms to Google Cluster trace and PlanetLab trace,
respectively. The error bars in the figure indicate the 10th

and 90th percentiles. We see that the resource efficiency fol-
lows Original<VaryBase<VaryCap<Postpone in both traces.
VaryBase, VaryCap and Postpone outperform Original due
to VM pattern refinements. The refinement algorithms also
reduce the variations of the efficiency as indicated by the
error bars. VaryCap and Postpone outperform VaryBase as
they either bring down the cap to a lower level or reduce the
width of the cap. Postpone has a similar resource efficiency
as VaryCap because both of them reduce VM patterns based
on the trace deviation.

D. Performance with Enhanced Algorithms

In this section, we conduct experiments to study the per-
formance of the extended pattern refinement algorithms. We
implement the refinement algorithms with the pulse detection
algorithm in the initial VM allocation mechanism, denoted
as VaryCap+, Postpone+ and VaryBase+, respectively. We
compare the performance of these algorithms with the original
refinement algorithms without the pulse detection algorithm in

Fig. 21. Resource efficiency improvement.

Fig. 22. The number of PMs used from Google Cluster trace. (a) Varying
workload. (b) Varying number of VMs.

terms of resource efficiency improvement and the number of
PMs used for hosting a certain number of VMs.

Recall that resource efficiency is defined as the ratio
between the utilized and allocated amount of resource
during the provision time. Figure 21 shows the resource
efficiency improvement of the extended pattern refinement
algorithms (VaryCap+, Postpone+ and VaryBase+) over
the original refinement algorithms (VaryCap, Postpone and
VaryBase), using the Google Cluster trace and PlanetLab trace,
respectively. We see that overall the extended refinement algo-
rithms improve the resource efficiency of the original pattern
refinement algorithms. We also see that the resource efficiency
improvement follows VaryBase+<VaryCap+≈Postpone+ in
both traces. VaryBase+ has nearly zero improvement because
this algorithm only varies the base value regardless of the
misalignments between pulses to find the base value that
maximizes resource efficiency of each pulse while VaryBase
finds a common base value for all pulses that maximizes
resource efficiency of the entire pattern.

Similar to Figure 17 and Figure 18, we study the
performance of the three extended algorithms under
different VM workloads. Figure 22(a) shows the total
number of PMs used when the workload of the VMs
is varied for the Google Cluster trace. The result
follows VaryCap+<Postpone+<VaryBase+. VaryCap+ and
Postpone+ reduce the number of PMs due to their refined VM
patterns, which require relatively less resource. Compared
to Figure 17(a) VaryCap+ and Postpone+ further reduce
the number because they more accurately calculate the
deviation for each pulse in the trace, which avoids using the
insufficiently accurate deviation in refining the patterns, and
hence reducing the number of PMs used to host the same
number of VMs. Figure 22(b) shows the total number of PMs
used when the number of the VMs is varied for the Google
Cluster trace. It shows similar results as Figure 22(a) due to
the same reasons.

Figure 23(a) shows the total number of PMs used to
provide service for the corresponding number of VMs when
the workload of the VMs is varied for the PlanetLab trace.
We see the result follows VaryCap<Postpone<VaryBase due
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Fig. 23. The number of PMs used from PlanetLab trace. (a) Varying
workload. (b) Varying number of VMs.

to the same reasons explained before. Figure 23(b) shows
the total number of PMs used to provide service for the
corresponding number of VMs when the number of the VMs
is varied for the PlanetLab trace. We see similar trend as the
results from the Google Cluster trace, which again confirms
the effectiveness of the extended refinement algorithms in
reducing the number of PMs used to host the same number
of VMs. The numbers of PMs used from the PlanetLab
trace are higher than those from the Google Cluster trace
due to the same reason mentioned in Figure 17. The exper-
imental results confirm the effectiveness of our extended
pattern refinement algorithms in further improving resource
efficiency.

E. Performance in SLO Conformance
Note that VaryCap and Postpone improve resource effi-

ciency by scarifying the strict resource requirement that the
demands are satisfied immediately. In order to evaluate the
performance of these two algorithms, in this experiment,
we define SLO violation as the failure of satisfying the
resource demand within a time deadline. The time deadline
was set to the same value as the maximum completion time
among the similar VMs. This definition of SLO violation
is reasonable since it still guarantees that the job in the
VM finishes no later than the VM that finishes this job most
slowly. We kept track of the amount of demands that are
higher than the provisioned resource, which is determined
by the patterns. If the amount of demand is smaller than
the provisioned amount, the SLO is guaranteed, otherwise,
the SLO is violated.

We tested 640 VMs and found that VaryCap and Postpone
have 122 SLO violations and 54 SLO violations, respectively.
Among the SLO violation results, we calculated the amount
of resource that is needed in order to satisfy the SLO, called
amount of unsatisfied resource. Figure 20 shows the CDF
of the percentage of VMs with the amount of unsatisfied
resource. For VaryCap, 99% of the VMs satisfy the SLO,
and the cumulated amount of unsatisfied resources is less than
800%. For Postpone, 99% of the VMs satisfy the demands,
and the cumulated amount of unsatisfied resources is less than
100%. The results show that VaryCap and Postpone are able to
satisfy resource demands in most of the time, although they
reduce the provisioned resource to achieve higher resource
efficiency. Postpone performs better than VaryCap because
VaryCap cannot guarantee that the pulse demand of a VM can
still receive all of its requested resource in the provision time.

V. REAL-WORLD TESTBED EXPERIMENTS

A. Effect of Reduced Resource Provisioning

Recall that in Section III-A, we explained the feature of
resource provisioning for time-sharing resources, which lays

Fig. 24. CPU utilization before and after reducing resource provisioning.
(a) CPU utilizations without resource limitation. (b) CPU utilizations with
resource limitation.

the foundation for our proposed pattern refinement algorithms.
In this experiment, we controlled the amount of resource
that is provisioned to a VM and then measured the resource
utilization of this VM in order to confirm the elastic nature
of resource provisioning. In order to create workload to reach
high CPU utilization (e.g., 100%) and low CPU utilization to
prove the elastic nature, we created a synthetic workload that
generates a list of prime numbers from 0 to 99999999 in its
first phase and then generates a list of prime numbers from
0 to 49999999 in its second phase. We executed this syn-
thetic workload in a desktop machine with 2.00GHz Intel(R)
Core(TM) 2 CPU and 2GB memory. We used the cpulimit
tool [23] to curb the CPU usage of the VM by pausing the
process at different intervals to keep it under the defined
ceiling. We first used the batch mode of Linux top command to
keep track of the CPU utilization at every 0.1 second, and then
presented the result of the CPU utilization of every second by
averaging every 10 records from the original record.

Figure 24(a) shows the CPU resource utilization of the
synthetic workload with full resource provisioning without
limitation. We see that the VM consumes near 100% of the
CPU resource during the first half of execution (e.g., 0 second
to 20 seconds), and consumes around 60% during the second
half (e.g., 25 second to 40 seconds). Finally, the VM finishes
the job at time 40 seconds.

Recall that our algorithm lowers the provisioned CPU
resource amount while still keeping the original VM task
completion time. We then used cpulimit to limit the CPU
usage of this VM to 80%. Figure 24(b) shows the resulted
CPU resource utilization. We see that the VM consumes near
80% of the CPU resource during the first half. As a result,
the duration of the first phase execution is elongated (from
20 seconds to 25 seconds). Since the first phase execution
finishes at 25 seconds, it does not affect the consequent second
phase execution. Since the second phase requires 60% of CPU
resource while it is provisioned with 80%, which is sufficient
for its execution, the CPU utilization of the second phase is
not affected by the resource limitation. That is, it has similar
utilization as in Figure 24(a). Finally, the VM finishes the job
at time 40 seconds. The CPU utilization results before and
after resource limitation shown in Figure 24 confirm that the
limitation of the resource provisioning leads to an elongation
of the execution time (as shown in the first phase), and will
not affect the completion time of the VM as long as the total
amount of CPU resource allocated to the VM is sufficient for
its execution.

B. Performance of Pattern Refinement
In this experiment, we used workloads from the NAS

Parallel Benchmark (NPB) suite [24] to run in the VMs.
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Fig. 25. The number of PMs used.

Fig. 26. Total execution time of the VMs.

The NPB suite is a small set of programs designed to help
evaluate the performance of parallel supercomputers. We used
the programs to emulate jobs running in the VMs. We first
conducted a profiling run to collect the CPU utilization trace
of each NPB programs. In the profiling run, we executed the
programs on our HPC cluster and recorded the CPU utilization
every 0.01 seconds for every program in every machine.
In this case, the programs are provisioned with sufficient CPU
resource, and the collected traces are regarded as original
trace. We then used the measured utilization profiles in the
consequent VM placement experiments. In the VM placement
experiment, we generated the resource utilization patterns of
the programs according to the pattern refinement algorithms,
and used them as the resource utilization patterns of the
VMs as each VM hosts one program. Based on the gen-
erated patterns for the VMs, the VM placement algorithm
is executed to determine the VM to PM mappings. Finally,
we deployed the VMs in the HPC clusters and evaluated the
performance.

Figure 25 shows the total number of PMs required to
host the VMs. We see that the number of PMs used follows
VaryCap<Postpone<VaryBase<Original. VaryBase, VaryCap
and Postpone reduce the PMs due to their refined VM patterns,
which require relative less resource than Original.
VaryCap further reduces the number because it reduces the cap
value of the patterns. The results are consistent with the simu-
lation results in Figure 17. Figure 26 shows the total execution
time of all the VMs. We see that all the algorithms perform
similar with a total time around 18700 seconds. These results
confirms that the pattern refinement algorithms is efficient in
saving resource and hence reducing the number of the PMs
while do not significantly degrade the VM performance in
terms of job completion time.

VI. RELATED WORK

Recently, many VM allocation strategies have been pro-
posed [25]. Some of them [26]–[30] allocate physical
resources to VMs only once based on static VM resource
demands. For example, Srikantaiah et al. [30] proposed to
use Euclidean distance between VM resource demands and
residual capacity as a metric for consolidation. However, static

provisioning cannot fully utilize resources because of time-
varying resource demands of VMs. To fully utilize cloud
resources, others [31]–[36] first consolidate VMs using a
simple bin-packing heuristic and manage the resource through
live VM migrations, which might result in migration overhead.
For example, Sandpiper [31] uses the product of CPU, network
and memory load to represent the load of a VM and a PM,
and migrates the most loaded VM from an overloaded PM to
the least loaded PM.

Some VM placement or VM migration methods predict
VM workload to ensure that PMs will not be overloaded.
Gmach et al. [37] used historical information to periodically
and proactively reassign VMs to PMs for high performance.
Verma et al. [38] presented a dynamic resource demand
prediction and allocation framework in multi-tenant service
clouds. In order to consider both the current and future state of
resource demand and available capacity in a time period, Chen
and Shen [9] proposed an initial VM allocation mechanism
that consolidates complementary VMs with spatial/temporal
awareness based on the predicted lifetime resource utilization
patterns of VMs. However, the pattern prediction algorithm
proposed in this paper generates the pattern for one VM from
historical utilizations of multiple similar VMs, but neglects
the fact that these utilizations have pulse deviations. In other
words, the generated pattern tends to have low resource
efficiency when it is used to guide resource provisioning for a
VM. As a result, consolidating VMs based on these patterns
will result in a waste of resource.

Xu et al. [39] presented an overview of the previous
research on managing the performance overhead of VMs under
different scenarios of the IaaS cloud. To reduce the network
cost in the cloud, Li et al. [40] proposed effective VM place-
ment methods. Xu et al. [39], [41] proposed VM provision-
ing or migration methods that consider VM performance.
Lim et al. [42] modelled a migration process of a VM instance
and proposed a method to analyze the migration time and
the performance impact on multi-resource shared systems for
completing given VM assignment plan. CACEV [43] is a
VM placement method for reducing cost and carbon emission.
The work in [44] aims to not only satisfy the needs of
current VMs but also ensure that the needs of future VMs
can be satisfied. The work in [45] proposes a VM placement
method that considers the peak workload characteristics of
VMs. Mann [46] not only considered the VM placement
in PMs, but also consider the allocation of tasks to VMs
for high performance. Nejad et al. [47] proposed truthful
greedy and optimal mechanisms so that the users do not
have incentives to manipulate the system by lying about their
requested bundles of VM instances and their valuations. The
work in [48] proposes a performance-to-power ratio aware
VM allocation in order to reduce energy consumption in
clouds. The work in [49] aims to achieve better resource
utilization and thermal distribution by appropriately allocating
VMs. Zheng et al. [50] proposed a method that provides
strategy-proof double auctions for multi-cloud, multi-tenant
bandwidth reservation. Zhang et al. [51] proposed a burstiness-
aware resource reservation method for server consolidation
in computing clouds for high performance. Lu et al. [52]
proposed a clique VM migration method that conducts affin-
ity grouping of VMs for inter-cloud live migration. Unlike
these works that focus on VM migration, RPRP focuses on
VM resource demand prediction and misprediction correction.
These VM migration methods can use the demand prediction
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from RPRP in migration scheduling to improve performance.
Our experimental results show the advantage of RPRP in
VM migration.

Recently, some works focus on allocating network band-
width resources to tenant VMs [8], [28], [29], [53].
Oktopus [28] provides static bandwidth reservations through-
out the network. Shen and Li [53] proposed a new bandwidth
sharing model to achieve minimum guarantee and propor-
tionality in clouds, while preventing tenants from earning
unfair bandwidth. Popa et al. [29] proposed a set of prop-
erties to navigate the tradeoff space of requirements-payment
proportionality and minimum guarantees when sharing cloud
network bandwidth. PROTEUS et al. [8] provide bandwidth
provisioning using predicted bandwidth utilization profile.
Different from these works, we focus on consolidating VMs
that have demands on multi-resources rather than a single
resource. Some others focus on managing resource in data-
centers [54]–[58]. Zhang et al. [54] proposed CPI2 that uses
cycles-per-instruction (CPI) data obtained by hardware perfor-
mance counters to identify problems, select the likely perpe-
trators, and then optionally throttle them so that the victims
can return to their expected behavior. It automatically learns
normal and anomalous behaviors by aggregating data from
multiple tasks in the same job. Schwarzkopf et al. [55] pro-
posed a cluster scheduling architecture that uses parallelism,
shared state, and optimistic concurrency control. Leverich and
Kozyrakis [56] analyzed the challenges of maintaining high
QoS for low-latency workloads when sharing servers with
other workloads. Ghodsi et al. [57] proposed Constrained
Max-Min Fairness (CMMF), an extension to max-min fairness
that supports placement constraints, and show that it is the only
policy satisfying an important property that incentivizes users
to pool resources. Verma et al. [58] proposed a cluster manager
that runs hundreds of thousands of jobs across a number of
clusters. It achieves high utilization by combining admission
control, efficient task-packing, over-commitment, and machine
sharing with process-level performance isolation.

VII. CONCLUSIONS

In this paper, we studied the VM resource utilization from
public datacenter traces and Hadoop benchmark jobs and
found that different VMs running the same job exhibit similar
periodical resource utilization patterns, but their resource uti-
lization curves exhibit misalignments in time. Then, generating
resource utilization pattern based on the traces of different
VMs to guide resource provisioning to each VM will lead to
resource over-provisioning and hence low resource efficiency.
In order to improve resource efficiency, we proposed three
VM resource utilization pattern refinement algorithms that
leverage the elastic resource provisioning feature to improve
the resource efficiency of the original generated pattern.
Specifically, given a originally generated resource utilization
pattern, the VaryCap algorithm and the Postpone algorithm
refine the pattern by either lowering the cap of the pat-
tern or reducing the width of the provisioning pulse; and
the VaryBase algorithm refines the pattern by varying the
base value until it achieves the highest efficiency. We further
entend these refinement algorithms to enhance the resource
efficiency by considering multi-pulse resource demand pat-
terns. We then adopted these refinement algorithms in an initial
VM allocation mechanism that consolidates VMs for cloud
datacenters. As a result, the mechanism helps fully utilize the
cloud resources, and reduce the number of PMs needed to

satisfy tenant requests without compromising the SLO con-
formance performance. These advantages have been verified
by our extensive trace-driven simulation experiments and real-
world testbed experiments. The experimental results also show
the effectiveness of our extended refinement algorithms in
improving resource efficiency. In our future work, we will
explore how to enhance the heuristic VM allocation mech-
anism by a dynamic programming algorithm that optimize the
consolidation of VMs for high resource efficiency.
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