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Abstract—The planning and operation problems of parking
lots of plug-in electric vehicles (PEVs) are studied in this paper.
Herein, each distribution company (DISCO) allocates the park-
ing lots to the electrical feeders to minimize the power loss and
expected energy not supplied of the system, and consequently
minimize the total cost of the planning problem over the given
time horizon. In addition, the generation company (GENCO)
manages the charging time of PEVs parked in the parking lots
to defer the more expensive and pollutant generation units, and as
a result maximize its daily profit. In both planning and operation
problems, the behavioral model of PEVs’ drivers are modeled
with respect to the value of incentive and their distance from
the parking lots. To achieve the realistic results in the plan-
ning problem of each DISCO, several economic and technical
factors including yearly inflation and interest rates, hourly and
daily variations of the load demand, yearly load growth of the
system, and yearly growth rate of PEVs’ application are consid-
ered. The optimization problems of each DISCO and GENCO are
solved applying quantum-inspired simulated annealing algorithm
and genetic algorithm, respectively. It is demonstrated that the
behavioral model of drivers, their driving patterns, and even the
type of PEVs can remarkably affect the outcomes of planning
and operation problems. It is shown that the optimal alloca-
tion of parking lots can minimize every DISCO’s planning cost
and optimal charging management of PEVs can increase the
GENCO’s daily profit.

Index Terms—Charging management, drivers’ behavioral
model, driving patterns, plug-in electric vehicle (PEV), traffic
and system-based parking lot allocation.

I. INTRODUCTION

NOWADAYS, the conventional power systems are being
restructured and changed into the smart grids to improve

the reliability and efficiency of the power systems that results
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in social, economic, and environmental benefits. In this regard,
energy scheduling, energy management, parking lot allocation,
and charging management of plug-in electric vehicles (PEVs)
are some of the important subjects considered in a smart grid
environment. A smart grid is an electricity network that uses
advanced technologies to monitor and manage the electricity
transmission from all generation sources to meet the varying
electricity demands of end users [1]. Smart grids coordinate
the needs and capabilities of all generators, grid operators, end
users and electricity market stakeholders to operate all parts
of the system as efficiently as possible, minimizing costs and
environmental impacts while maximizing system reliability,
resilience, and stability [1].

A recent study demonstrates that almost 27% of total energy
consumption and 33% of greenhouse gas emissions in the
world are related to the transportation sector [2]. Replacing
internal combustion-based vehicles with PEVs is a promis-
ing strategy to mitigate the energy security and environmental
issues, since PEVs can be charged by the electricity generated
by renewables as the free and clean resources of energy [3].
Based on the study presented in [4] and [5], PEVs utilization
is being increased rapidly in some developed countries because
of the advancement in the battery technology. In this regard,
fast charging is one of the most important characteristics of
EV in future smart grid and smart city [6], [7].

However, replacing conventional vehicles with PEVs might
create new issues for every power system such as causing
congestion in the feeders, resulting in overload in the power
distribution, transmission, and generation systems, and even
making spikes in electricity market price due to uncontrolled
charging of PEVs [8], [9]. Therefore, the above-mentioned
issues must be mitigated by proper coordination of PEVs
fleet. Moreover, optimal parking placement in the distribu-
tion network and optimal charging management of PEVs can
result in benefits for the distribution company (DISCO) and
generation company (GENCO).

In this paper, the problem of parking lot placement and
charging management of PEVs is investigated from the
DISCOs and a GENCO viewpoints in two different prob-
lems including planning and operation problems. Herein, the
DISCOs solve the planning problem and allocate the parking
lots in the optimal locations of every feeder of the electrical
distribution network to achieve the minimum overall cost over
the planning horizon (30 years). The cost terms of the objective
function of DISCO include the total investment for purchasing
and installing parking lots in the optimal locations, the present
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worth value of maintenance cost of the installed parking lots
over the operation period, the present worth value of incentive
(discount on charging fee) considered for the PEVs’ drivers
over the operation period, the present worth value of energy
loss cost over the operation period, and the present worth
value of expected energy not supplied (EENS) cost over the
operation period. In addition, to achieve the realistic results,
several economic and technical factors such as yearly inflation
and interest rates, yearly growth rate for application of PEVs,
yearly load growth rate, and daily and hourly variations of
the load demand are taken into consideration in the planning
problem. Moreover, the security constraints of the grid includ-
ing the loading limit of branches and the voltage magnitude
limits of the buses are considered over the operation period.

On the other hand, the GENCO manages the charging time
of PEVs parked in the parking lots (allocated by DISCO)
to maximize its daily profit by deferring the most expen-
sive and pollutant generation units while satisfying the same
daily charging demand of PEVs. In both problems (planning
problem solved by every DISCO and operation problem solved
by the GENCO), the driving patterns of the PEVs’ owners and
their reaction with respect to the value of incentive and their
average daily distance from the parking lots are modeled. The
value of incentive (the percentage of discount on charging fee
of the PEVs) is considered by a DISCO to motivate the drivers
to charge their vehicles through the parking lots. In addition,
the value of incentive (the extra credit, which is equal to the
percentage of charging fee) is considered by the GENCO to
encourage the drivers to let the GENCO decide on the charg-
ing time of their PEVs. Furthermore, genetic algorithm (GA)
and quantum-inspired simulated annealing (QSA) algorithm
are applied to solve the operation problem of GENCO and
planning problem of each DISCO, respectively.

II. LITERATURE REVIEW AND RELATED WORKS

The economic and technical features of PEVs have been dis-
cussed in [10] and [11]. Ferreira et al. [10] presented a mobile
information system to give relevant information to the PEV
drivers by allowing them to access the data sources. In [11],
the operation costs of PEVs in a future power system and the
benefits of smart charging and discharging of PEVs have been
estimated.

In [12]–[15], the parking lot allocation problem has been
studied on the real power systems. In [12], the charging
demand of PEVs in Beijing has been estimated and a model
for charging stations has been presented. This paper concludes
that the service radius of fast charging stations affects the
distribution pattern of charging stations and it has less distur-
bance on the power system. In [13], parking lot information
from 30 000 records of personal trips in the Puget Sound,
Seattle, Regional Council’s 2006 Household Activity Survey
has been used to determine the public parking locations and
durations. In this paper, the presented algorithm minimizes the
PEV drivers’ costs for station access while penalizing unmet
demand. In [14], a study on the location of PEVs charging sta-
tions for an area of Lisbon, has been conducted considering
the population and employment in the area. In [15], a dynamic
model of development of a charging station for PEVs in the

German metropolitan region of Stuttgart has been presented.
The presented model consists of simulating development of
PEVs ownership, determining the demand of charging stations,
calculating profitability of the infrastructure, and simulating
the mobility of PEVs throughout the region. However, in these
studies, the reaction of PEVs’ drivers with respect to the
value of incentive and distance from parking lots has not been
modeled. In addition, the parking lot placement problem for
minimizing power loss and EENS of system, as well as, charg-
ing management of PEVs for generation scheduling problem
of a GENCO has not been investigated.

In [16]–[20], parking lot allocation problem and PEVs
charging management problem have been investigated con-
sidering minimum energy and power losses of the system.
In [16], in addition to charging-recharging of PEVs, capacitor
is installed in the electrical distribution system to supply the
reactive power of distribution network. In [17], optimal charg-
ing stations of PEVs are determined based on the minimum
total cost associated with the charging stations considering the
environmental factors and service radius of charging stations.
In [18], PEVs are charged in a coordinated way to find its pos-
itive effects on the feeder losses, load factor, and load variance
of the system. In [19] and [20], charging stations, renewable
energy resources (solar power), and distributed generation have
been allocated simultaneously to minimize power loss of the
system. Nonetheless, in these studies, the behavior of PEVs’
drivers has not been modeled and the problem has not been
investigated from a GENCO’s point of view.

In [21]–[25], the PEVs charging management and parking
lot placement have been investigated for improving the system
reliability and performance. In [21], parking lot allocation
has been conducted to improve the reliability of distribution
system and to incorporate the PEVs fleet in the energy market
transactions. However, in this paper, the behavior of drivers
has been modeled just with respect to the value of incentive,
while the geography of area, the driving pattern, and the traf-
fic of PEVs have not been modeled. In [22], the effects of
large-scale application of PEVs on the power systems of five
Northern European countries (Denmark, Finland, Germany,
Norway, and Sweden) have been investigated. In [23], the
environmental and social criteria have been considered in the
life cycle of charging stations of PEVs to minimize the total
cost of the micro grid. In [24] and [25], the behavior of PEVs
for being in the parking lots and the available energy of PEVs
have been modeled based on the arrival time, departure time,
and state of charge (SOC) of batteries of the PEVs. However,
in [24] and [25], the reaction of PEVs’ drivers with respect
to the value of incentive has been neglected and the optimal
charging management of PEVs has not been considered. In
addition, in [21], [22], and [25], the PEVs charging manage-
ment problem has not been investigated from a GENCO’s
point of view.

In [26], to minimize the drivers’ trip duration, the charg-
ing location and charging time of PEVs are managed. In [27],
to find the optimal parking trajectory, a trajectory planning
method that links the actual parking trajectories and the steer-
ing actions has been presented. In [28], parking lot sizing and
placement problem has been studied considering the drivers’
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Fig. 1. Power system under study.

welfare. Also, a K-means clustering approach has been applied
to estimate the number of drivers approaching to a parking
lot. In the above-mentioned studies, the economic behavior of
drivers, the driving pattern of PEVs’ owners, and the traffic
and geography of the area have not been modeled.

Compared to the previous works, the presented study in this
paper is the first study that investigates the optimal parking
lot placement problem (from every DISCO’s view point) and
the problem of optimal charging management of PEVs (from
a GENCO’s point of view) considering the driving pattern of
PEVs and the behavior of drivers with respect to value of
introduced incentive and their daily average distance from the
suggested parking lots.

III. PROPOSED TECHNIQUE

A. Modeling Driving Patterns of the PEVs Fleet

Fig. 1 illustrates a power system that includes a GENCO,
some transmission feeders (TFs), DISCOs, and distribution
feeders (DFs). Herein, the GENCO includes ten generation
units, every TF supplies two DISCOs, and each DISCO has
two DFs. DF 1 has 28 distribution buses (substations) and each
of them has real latitude and longitude with real geographic
data of Washington, DC, USA.

To determine the daily driving pattern (i.e., route) of a PEV,
the hourly position data (latitude and longitude) of the PEV
can be specified using global positioning system. Herein, to
simulate the problem, the hourly position and speed of vehicles
are randomly generated by the computer considering the real
geographic borders of each DF (based on the real latitude
and longitude of points in Washington using Google Map)
and the minimum and maximum traffic velocity limits in the
residential area in Washington (32–80 km/h [29]). The defined
area for each DF covers a square zone based on the nearest
and farthest buses of the feeder.

Fig. 2 illustrates the hourly position of six PEVs (as the six
driving patterns) around the buses of DF 1, which is randomly
generated by the computer considering the geographic borders
of feeder and the minimum and maximum velocity limits of

Fig. 2. Hourly position data (longitude and latitude) of PEVs fleet
(patterns 1–6) around DF 1.

vehicles in the residential area in Washington. In this paper,
every PEV is considered as the representative of 100 PEVs.
In other words, 600 PEVs are moving around DF 1.

Fig. 3 shows the hourly space-time driving patterns of the
PEVs around DF 1 (patterns 1–6) in a day. As can be seen,
at some hours of the day (hours 1–7 and 23–24), the PEVs
do not move in the space as time goes on, since the PEVs
have been parked. Moreover, every driving pattern has dif-
ferent average daily distance from each bus of the electrical
distribution system. In other words, two PEVs with different
driving patterns will not have identical reaction to the value
of incentive due to their different average daily distances from
a candidate parking lot.

Using the above-mentioned approach for other feeders of
the power system, the total number of vehicles in the whole
territory of power system is calculated about 16 800, as can
be seen at the following equation:

100(Number of PEVs per driving pattern)

× 4(Number of DFs of a TF)× 6(Driving patterns)

× 7(Number of TFs in system) = 16800.

Now, by knowing the driving pattern of the eth PEV, the
amount of average daily distance of the PEV from the bth bus
of the feeder (βe,b) can be calculated using the hourly position
data of the PEV (xPEV

e,t , yPEV
e,t ) and the bus (xB

b , yB
b ), as can be
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Fig. 3. Hourly space-time driving patterns of the PEVs fleet around DF 1
(patterns 1–6).

Fig. 4. Percentage of drivers that charge their PEVs through the parking lot
as the mathematical functions of discount on charging fee (%) [21].

seen in (1). Herein, every bus of the feeder (∀b ∈ {1, . . . ,Nb})
is considered as a candidate for installing a parking lot. The
value of βe,b (along with the value of incentive) will be applied
for determining the percentage of drivers that charge their
PEVs through the parking lot (ξ ) installed in the bth bus of
the feeder

βe,b = 1

24
×

24∑

t=1

√(
xPEV

e,t − xB
b

)2 + (
yPEV

e,t − yB
b

)2 ∀e

∈ {
1, . . . ,NPEVs

Tot

} ∀b ∈ {1, . . . ,Nb}. (1)

Herein, NPEVs
Tot (600 PEVs) is the total number of PEVs exist

around the feeder and Nb is the total number of buses of the
feeder.

By knowing the driving pattern of the PEV, the SOC of the
PEV can be approximated, since the SOC of a PEV has a direct
relation with the amount of distance that it travels in a day.
The value of SOC of the PEV is used to determine the amount
of power and energy demands of the parking lot. The value of
SOC of a PEV at every hour of a day (t) can be determined
using (2). Herein, kWhkm is the amount of energy (kWh) that
the PEV needs to travel about 1 km and CPEV

e is the capacity

TABLE I
PERCENTAGE OF DRIVERS THAT CHARGE THEIR PEVS THROUGH THE

PARKING LOT AS THE MATHEMATICAL FUNCTIONS OF

DISCOUNT ON CHARGING FEE (%) [21]

of battery of the PEV

SOCPEV
e,t = 100 ×

(
1 − kWhkm

CPEV
e

×
t∑

t=1

√(
xPEV

e,t − xPEV
e,t−1

)2 +
(

yPEV
e,t − yPEV

e,t−1

)2
)

∀e ∈ {1, . . . ,NPEVs
Tot

}∀t ∈ {1, . . . , 24}. (2)

B. Modeling Behavior of Drivers As Function of Incentive
and Distance

The percentage of drivers that charge their PEVs through the
suggested parking lot as the function of discount on charging
fee (γ in percent) for power function with exponent 0.3 and 3,
logarithmic function, linear function, and exponential function
are presented in Table I and Fig. 4 [21]. As can be seen,
almost all the surface of figure is covered with the presented
functions. In other words, approximately all the possibilities
for the reaction of drivers with respect to the value of incentive
are considered. As can be seen, the drivers do not charge their
vehicles through the parking lot if there is no incentive, and
also considering 100% discount on the charging fee of PEVs
motivate all the drivers to charge their vehicles through the
parking lot.

In this paper, the behavior of PEVs’ drivers is modeled
based on two parameters (β,γ ). In fact, in addition to the value
of discount on charging fee (γ ), the average daily distance of
the PEVs from the location of parking lot (β) is considered.
Herein, a linear function is assumed between ξ (percentage of
drivers that charge their PEVs through the parking lot) and β,
as can be seen in Table II. The a1 and a2 are the constant val-
ues needed for modeling linear reaction of drivers with respect
to their average daily distance from the parking lot.

By considering both β and γ , the two-dimensional (2-D)
plots presented in Fig. 4 are changed into three-dimensional
spatial surfaces, as can be seen in Figs. 5 and 6 (for a1 =
−1/1200, a2 = 1). These figures illustrate the percentage of
drivers that charge their PEVs through the parking lot. In all of
these figures, the behavioral model of drivers has linear rela-
tion with the amount of average daily distance of the drivers
from the parking lot (meter), and power (with exponent 0.3),
logarithmic, linear, power (with exponent 3), and exponen-
tial relations with the value of discount on charging fee (%),
respectively.
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TABLE II
PERCENTAGE OF DRIVERS THAT CHARGE THEIR PEVS THROUGH THE

PARKING LOT AS THE MATHEMATICAL FUNCTIONS OF DISCOUNT ON

CHARGING FEE (%) AND DISTANCE FROM THE PARKING

LOT (METER)

Fig. 5. Percentage of drivers that charge their PEVs through the parking
lot as power function (exponent is 0.3) of discount on charging fee (%) and
linear function of average daily distance from the parking lot (meter).

The number of PEVs that charge their vehicles through the
parking lot (NPEVs

Model), as the size of the parking lot, is deter-
mined using (3) that depends on the value of incentive (γ ),
the average daily distance of PEVs from the location of park-
ing lot (β), and the total number of PEVs around the feeder
(NPEVs

Tot ). Moreover, the hourly demand of parking lot (DPL
t )

in MW is approximated applying the following equation:

NPEVs
Model = ξModel × NPEVs

Tot (3)

DPL
t =

NPEVs
Model∑

e=1

(
1 − SOCPEV

e,t

100

)
× CPEV

e

1000
. (4)

C. Optimization Technique

In this section, the optimization techniques for solving the
planning problem of a DISCO and the operation problem of
the GENCO are presented.

1) Optimization Technique for Solving the Planning
Problem of DISCO: In this paper, quantum computation con-
cept is applied in the simulated annealing (SA) to design
the QSA algorithm and solve the optimization problem [30],
which is a mixed-integer nonlinear programming problem.
Other optimization algorithms could be used for this problem;

however, quantum parallelism, as the superiority of the quan-
tum computation, which originates from the uncertainty of
quantum states, is the advantage compared to the other
algorithms [31].

A classical bit can be either 0 or 1, while in quantum com-
putation, a quantum bit (Q-bit) is a linear superposition of both
states (0 and 1), which simultaneously lies in both states [32],
as can be seen in (5). However, when a Q-bit is observed,
it collapses to one determined state (0 or 1) with a certain
probability. The superposition of the states is also presented

in other forms such as α

(
1
0

)
+ β

(
0
1

)
and α|↑〉 + β|↓〉

|ψ〉 = α|0〉 + β|1〉. (5)

Herein, |0〉 and |1〉 represent the state “0” and “1,”
respectively, and α and β are generally complex numbers
where |α|2 and |β|2 represent the probability amplitudes
(http://en.wikipedia.org/wiki/Probability_amplitude) that the
Q-bit will be observed in the 0 and 1 states, respectively, with
respect to (6). In this paper, applying 2-D quantum computa-
tion in the SA algorithm is enough, thus (6) can be simplified
as (α)2 + (β)2 = 1

|α|2 + |β|2 = 1. (6)

The Q-bit matrix of the problem variables (Q matrix)
includes the Q-bits related to the location of parking lots and
the value of incentive (discount on charging fee of the PEVs),
as can be seen in (7). Herein, the number of drivers that charge
their PEVs through the parking lot and the demand of park-
ing lot are determined based on the value of incentive and the
average daily distance of PEVs from the parking lot using (3)
and (4), respectively. As can be seen in (7), every bus of
the feeder (∀b ∈ {1, . . . ,Nb}) is considered as a candidate
to install a parking lot. In other words, every bus of the feeder
can have a parking lot. Therefore, the bth bus has a parking lot
with the probability amplitude about (βPL

b )2 or this bus does
not have a parking lot with the probability amplitude about
(αPL

b )2

Q =
[(

αPL
1

βPL
1

)
· · ·

(
αPL

b

βPL
b

)
· · ·

(
αPL

Nb

βPL
Nb

) ∣∣∣∣∣

(
αINC

1

βINC
1

)
· · ·

(
αINC

4

βINC
4

)]
.

(7)

In addition, the value of incentive is changed from
0% (or 0) to 100% (or 10) with the 10% (or 1) steps.
Thus, the minimum number of Q-bits needed to indi-
cate the value of incentive is 4, since 23<10<24. In
other words, for indicating the numbers 0, 1, . . . , and
10 (proportional to 0%, 10%, . . ., and 100%), at least
four binary variables are needed. It is noteworthy to men-
tion that (αINC

1 )2 and (βINC
1 )2 are the probability ampli-

tudes (http://en.wikipedia.org/wiki/Probability_amplitude) that
the binary variable is 0 and 1, respectively. Based on this,
0% discount and 100% discount can be indicated by the
states |0000〉 and |1010〉 that have probability amplitude about
(αINC

1 )2×(αINC
2 )2×(αINC

3 )2×(αINC
4 )2 and (βINC

1 )2×(αINC
2 )2×

(βINC
3 )2 × (αINC

4 )2, respectively.
Herein, the value of objective function of problem is defined

as the value of internal energy of the molten metal (ε) and then
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Algorithm 1 Pseudocode for Finding the Optimal Scheme of
Charging Management by a GENCO
1: Set γ = 0. // The value of credit which is equal to the percentage of
charging fee.
2: Solve the optimization problem to maximize the daily profit of GENCO.

Use GA to determine the status of generation units. //Presented in
Section III-C.2.

Use Lambda-Iteration method to determine generation level of units [33].
Calculate the daily profit of GENCO.

3: γ = γ + 10.
4: Determine the number of drivers that let the GENCO to decide about
the charging time of their PEVs (parked in the parking lots allocated by the
DISCOs) based on TABLE II and (3).
5: Go to Step 2, if γ ≤ 100.
6: Determine the optimal value of γ based on the maximum daily profit of
GENCO.

it is tried to minimize the amount of this energy. Based on the
concept of SA, in the cooling process of molten metal, the
temperature of molten metal is gradually decreased to mini-
mize the internal energy of molten metal [30]. The different
steps for applying QSA algorithm in a problem have been
presented and described in [25].

2) Optimization Technique for Solving the Operation
Problem of GENCO: Herein, GA is applied to solve the
optimization problem of GENCO. The value of objective func-
tion [the total profit of GENCO over the operation period
(one day)] is defined as the fitness of a chromosome, and
then the GA tries to maximize the fitness of chromosomes.
A chromosome (shown in Fig. 7) represents the status of all
the generation units at every hour of a day. This problem is
optimized for every possible value of incentive (credit which
is equal to the percentage of charging fee of PEVs) with
a 10% step increase, that is, 0%, 10%, . . . , 100%. Then, the
optimal value of incentive is determined based on the maxi-
mum value of GENCO’s profit over the operation period (one
day). Algorithm 1 presents the pseudocode for finding the
optimal scheme of charging management of PEVs (optimal
value of credit for drivers) parked in the parking lots in the
operation problem of GENCO.

In the following, the steps for applying the GA in the
optimization problem of GENCO are presented and described.

Step 1 Obtaining the Primary Data:
1) Parameters for Applying GA: These parameters include

the mutation probability of the genes (θMut) and the size
of population (nc) as the number of the chromosomes.

2) Parameters of the System Under Study: The values
of all the parameters of the system and problem are
obtained. Also, the value of incentive (γ as value of
credit which is equal to the percentage of charging fee) is
chosen.

3) Updating Participation Percentage of PEVs’ Drivers:
The participation percentage of drivers (and conse-
quently the number of drivers) that let the GENCO to
decide on the charging time of their PEVs are deter-
mined using Table II and (3). Then the revised demand
of the system is identified.

4) Initial Population: The chromosomes of population
(Fig. 7) are initialized with random binary values
(0 or 1).

Step 2 Updating the Population:
1) Applying Crossover Operator: The crossover operator

is applied on every two chromosomes to reproduce two
new chromosomes as the offspring.

2) Applying Mutation Operator: The mutation is applied
on every gene of every chromosome of the population
with the definite probability θMut.

Step 3 Selecting New Population:
1) Evaluating Fitness of Every Chromosome: For every

chromosome, the optimal generation scheduling problem
of GENCO is solved using the lambda-iteration eco-
nomic dispatch method [33] and if all the constraints
are satisfied, the fitness (fitc) of chromosome is
calculated.

2) Applying Selection Process: The new chromosomes
are selected using the probabilistic fitness-based selec-
tion (PFBS) technique, where the fitter chromosomes are
more likely to be chosen. Herein, rc is a random number
between [0, 100] generated for the chromosome (c)

ac =
{

1 θPFBS
c > rc

0 θPFBS
c < rc.

(8)

The value of selection probability of every chromosome
(θPFBS

c ) is determined using (9), which is proportional
to the fitness of the chromosome. Herein, nc is the
number of chromosomes in the population and ac is
the acceptance indicator of a chromosome for the new
population

θPFBS
c = fitc

Max{fit1, . . . ,fitnc} × 100. (9)

Step 4 (Checking Termination Criterion): In this step, the
convergence status of the optimization procedure is checked.
Based on this, the values of improvements in the fitness of
the chromosomes of the old and new populations are com-
puted and if there are no significant improvements in them,
the optimization process is finished, otherwise, the algorithm
is continued from step 2.

Step 5 (Introducing the Outcome): The consequences
include the maximum value of GENCO’s profit over the oper-
ation period (one day), the generation level of units, and the
revised demand of system.

IV. MATHEMATICAL FORMULATION

In this section, the mathematical formulations for the
planning problem of a DISCO (Section IV-A) and opera-
tion problem of a GENCO (Section IV-B) are presented,
respectively. The goal of a DISCO is minimizing total cost
of the planning problem over the planning time horizon
(30 years). Herein, the inputs of planning problem of a DISCO
include all the technical and economic parameters of the
problem and all the technical data of the electrical distri-
bution network. Also, the outputs of problem include the
optimal location of parking lots and the optimal value of
incentive.

The aim of the GENCO is maximizing its profit over the
operation period (one day). Herein, the inputs of problem
include the demand level of system and all the technical data of
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(a)

(b)

(c)

(d)

Fig. 6. Percentage of drivers that charge their PEVs through the parking lot
as (a) logarithmic, (b) linear, (c) power (with exponent 3), and (d) exponential
functions of discount on charging fee (%) and linear function of average daily
distance from the parking lot (meter).

generation units. Also, the outputs include the optimal status
and generation level of each generation unit and the optimal
value of incentive.

Fig. 7. Structure of a chromosome in the applied GA.

A. Formulating the Planning Problem of DISCO

1) Objective Function of DISCO: The objective function
of planning problem of each DISCO is minimizing total cost
of the problem over the planning period (Ny) by installing the
parking lots in the optimal locations of the feeders. Herein, the
driving patterns of PEVs’ drivers and their behavioral model
are considered in the planning problem. In addition, several
economic and technical factors including yearly inflation and
interest rates, hourly and daily variations of the load demand,
yearly load growth rate of the system, and yearly growth rate
of the PEVs’ application are taken into consideration. The cost
terms of objective function include total investment cost for
installing the parking lots in the optimal locations (CostINV),
present worth value of maintenance cost of the installed park-

ing lots over the operation period ( ˜CostMAINT
Ny ), present worth

value of cost of discount on charging fee of the PEVs over

the operation period (C̃ostINC
Ny ), present worth value of energy

loss cost of the feeder over the operation period (C̃ostEL
Ny ),

and present worth value of EENS cost of the feeder over the

operation period ( ˜CostEENS
Ny ), as can be seen in the following

equation:

OFDISCO
Ny = min

{
CostINV + ˜CostMAINT

Ny + C̃ostINC
Ny + C̃ostEL

Ny

+ ˜CostEENS
Ny

}
. (10)

2) Cost Terms of the Planning Problem:
a) Investment cost: The total investment cost for pur-

chasing and installing the equipment of parking lots (CostINV)
in the optimal locations of the feeder is presented in (11).
Herein, CINV is the amount of investment to equip the parking
lot for one PEV

CostINV = CINV × NPEVs
Model. (11)

b) Maintenance cost: The value of maintenance cost
of the installed parking lot in the yth year (CostMAINT

y )
and its present worth value for the whole operation period

( ˜CostMAINT
Ny ) are given in (12) and (13), respectively. Herein,

CMAINT is the amount of yearly maintenance cost of the park-
ing lot for one PEV and IFR and ITR are inflation and interest
rates, respectively. Also, Ny is the length of the planning period
in year (30 years)

CostMAINT
y = CMAINT × NPEVs

Model (12)

˜CostMAINT
Ny =

Ny∑

y=1

CostMAINT
y ×

(
1 + IFR

100

1 + ITR
100

)y

. (13)
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c) Incentive cost: The value of cost of discount on charg-
ing fee of the PEVs in the yth year (CostINC

y ) and its present

worth value for the whole operation period (C̃ostINC
Ny ) are

presented in (14) and (15), respectively. Herein, γ and πE

are the percentage of discount on charging fee and the price
of electricity in Cents per kWh, respectively. Also, the value
of DPL has been presented in (4). Herein, t, d, and πE are
index of time in hour, index of day, and the value of charging
price

CostINC
y =

365∑

d=1

24∑

t=1

DPL
t × γ

100
× πE × 10 (14)

C̃ostINC
Ny =

Ny∑

y=1

CostINC
y ×

(
1 + IFR

100

1 + ITR
100

)y

. (15)

d) Energy loss cost: The value of energy loss of
feeder over the planning horizon (ELNy) is presented in (16).
Moreover, the energy loss cost of the feeder in the yth year
(CostEL

y ) and its present worth value for the whole opera-

tion period (C̃ostEL
Ny ) are given in (17) and (18), respectively.

Herein, R is the value of resistance of the branch of feeder, |I|
is the magnitude of current flowing through the branch, and
MVABASE is the value of base power in per unit system (p.u.).
Also, Nbr is the total number of branches of feeder

ELNy =
Ny∑

y=1

365∑

d=1

24∑

t=1

Nbr∑

br=1

Rbr ×
∣∣∣Iy,d,t,br

∣∣∣
2 × MVABASE (16)

CostEL
y =

365∑

d=1

24∑

t=1

Nbr∑

br=1

Rbr ×
∣∣∣Iy,d,t,br

∣∣∣
2 × MVABASE

× πE × 10 (17)

C̃ostEL
Ny =

Ny∑

y=1

CostEL
y ×

(
1 + IFR

100

1 + ITR
100

)y

. (18)

e) Expected energy not supplied cost: The value of
EENS of the feeder over the operation period (EENSNy) is
determined using (19) [34]–[35]. As can be seen, this value,
as the reliability index or risk level of the system, depends
on the failure rate of the branches of the feeder (λ), failure
locating duration (τFL), and failure repairing duration (τFR).
Herein, LNSFL is the value of load not supplied during locat-
ing the fault and LNSFR is the value of load not supplied
during repairing the fault.

The EENS cost in the yth year (CostEENS
y ) and its present

worth value for the whole operation period ( ˜CostEENS
Ny ) are

presented in (20) and (21), respectively. Herein, πENS is the
value of cost of energy not supplied of the customers in Cents
per kWh. Also, b and Nb are the index of the bus and the total
number of buses of the feeder, respectively

EENSNy =
Ny∑

y=1

Nbr∑

br=1

λbr ×
(
τFL

Nb∑

b=1

LNSFL
y + τFR

Nb∑

b=1

LNSFR
y

)

(19)

CostEENS
y =

Nbr∑

br=1

λbr ×
(
τFL

Nb∑

b=1

LNSFL
y,b + τFR

Nb∑

b=1

LNSFR
y,b

)

× πENS × 10 (20)

˜CostEENS
Ny =

Ny∑

y=1

CostEENS
y ×

(
1 + IFR

1 + ITR

)y

. (21)

3) Security Constraints of the System in the Planning
Problem:

a) Loading limit of the branches: The loading constraint
of each branch, as its thermal limit, is presented in (22). As can
be seen, the magnitude of apparent power flowing through the
branch (|MVAbr|) must be less than the allowable magnitude
of the apparent power of the branch (|MVAbr|)

|MVAbr| ≤ ∣∣MVAbr
∣∣ ∀br ∈ {1, . . . ,Nbr}. (22)

b) Voltage magnitude limits of the buses: The magnitude
of voltage of each bus (|Vb|) must be within the allowable
minimum and maximum limits. Herein, σV is the value of
acceptable tolerance of voltage magnitude. Also, |V̄b| is the
magnitude of rated voltage of the bus
(
1 − σV/100

)× ∣∣V̄b
∣∣ ≤ |Vb| ≤ (

1 + σV/100
)× ∣∣V̄b

∣∣ ∀b

∈ {1, . . . ,Nb}. (23)

B. Formulating the Operation Problem of the GENCO

1) Objective Function of the GENCO: The objective func-
tion of the operation problem of GENCO over the operation
period (one day) is presented in (24). As can be seen, it
includes income term due to selling electricity to the end user
customers and PEVs’ drivers (IncomeSELL

t ), cost of discount
on charging fee of the PEVs (CostINC

t ), fuel cost of the gen-
eration units (CostFg,t), greenhouse gas emissions cost of the
generation units (CostEg,t), the start-up cost of de-committed
units (CostSTU

g,t ), and the shutdown cost of committed units
(CostSHD

g,t ). Herein, g and Ng are the index of generation unit
and total number of generation units, respectively

OFGENCO

= max
24∑

t=1

⎡

⎢⎣
IncomeSELL

t − CostINC
t

−
Ng∑

g=1

[
CostFg,t + CostEg,t + CostSTU

g,t + CostSHD
g,t

]

⎤

⎥⎦.

(24)

2) Income and Cost Terms of the Operation Problem:
In the following, the income and cost terms of the objective
function are described. As can be seen in (25), income term
of GENCO (IncomeSELL

t ) includes the value of earning from
electricity selling to the end user customers (DEU) and PEVs
(DPL). Herein, πE indicates the electricity price

IncomeSELL
t =

24∑

t=1

[
DEU

t + DPL
t

]× πE. (25)

a) Incentive cost: The incentive cost (CostINC) imposed
to the GENCO includes the value of credit (γ ) offered to PEVs
which is equal to the percentage of charging fee of the PEVs
in all the parking lots. Herein, PL and NPL are the indices of
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parking lot and total number of installed parking lots in the
whole power system

CostINC
t =

NPL∑

PL=1

DPL
t × γ

100
× πE × 10. (26)

b) Fuel cost of generation units: The fuel cost of every
generation unit (CostF) is a quadratic polynomial of power
(P) [33]. The αF

1 , αF
2 , and αF

3 are the fuel cost coefficients of
the generation unit and g is the index of a generation unit

CostFg,t = αF
1,g ×

(
Pg,t

)2 + αF
2,g ×

(
Pg,t

)
+ αF

3,g. (27)

c) Greenhouse gas emissions cost of generation units:
The greenhouse gas emissions cost of every generation unit is
a quadratic polynomial of power (P) [33]. The αE

1 , αE
2 , and

αE
3 are the emission coefficients of the generation unit and βE

is the emission cost factor

CostEg,t = βE ×
(
αE

1,g ×
(

Pg,t

)2 + αE
2,g ×

(
Pg,t

)
+ αE

3,g

)
.

(28)

d) Start-up cost and shut down cost of generation units:
The start-up cost of a de-committed unit (CostSTU) and shut-
down cost of a committed unit (CostSHD) at every hour of the
operation period are presented in (29) and (30), respectively.
Herein, xG indicates the status of generation unit, where 1 and
0 mean “on” and “off,” respectively

CostSTU
g,t = CSTU

g ×
(

1 − xG
g,t−1

)
× xG

g,t (29)

CostSHD
g,t = CSHD

g × xG
g,t−1 ×

(
1 − xG

g,t

)
. (30)

3) Constraints of the System in the Operation Problem:
a) System power balance constraint: The power-demand

balance constraint of the system that must be held in every
time step of the operation period is presented in (31). Herein,
DEU

t and DPL
t are the hourly demands of end users and PEVs

fleet, respectively

Ng∑

g=1

Pg,t × xG
g,t = DEU

t + DPL
t . (31)

b) System minimum generation constraint: The con-
straint of minimum power of the system generated by on units
for every hour of the operation period is presented in (32). In
other words, the units, which are on, must be able to supply
the minimum demand level of the system

Ng∑

g=1

Pmin
g × xG

g,t ≤ DEU
t + DPL

t . (32)

c) System maximum generation constraint considering
spinning reserve: The maximum generation of the power
system considering spinning reserve (SR) level provided by
the on units for every hour of the operation period is presented
in (33). In other words, the units, which are on, must be able to

TABLE III
TECHNICAL DATA OF DIFFERENT TYPES OF PEVS [36]

TABLE IV
VALUE OF PARAMETERS OF THE PLANNING PROBLEM

supply the maximum demand level of the system considering
the required SR of the system

Ng∑

g=1

Pmax
g × xG

g,t ≥ DEU
t + DPL

t + SRt. (33)

d) Generation units’ power constraint: The maximum
and minimum power constraints of every generation unit at
every hour of the operation period is presented in

Pmin
g ≤ Pg,t ≤ Pmax

g . (34)

e) Generation units’ ramp-up rate and ramp-down rate
constraints: The ramp-up rate (RUR) and ramp-down rate
(RDR) constraints of every generation unit at every hour of the
operation period are presented in (35) and (36), respectively

(
Pg,t+1 − Pg,t

) ≤ RURg (35)(
Pg,t − Pg,t+1

) ≤ RDRg. (36)

f) Generation units’ minimum “off time” and minimum
“on time” constraints: The minimum off time (MDT) and
minimum on time (MUT) constraints of every generation
unit at every hour of the operation period are presented
in (37) and (38), respectively

OFFTg,t ≥ MDTg (37)

ONTg,t ≥ MUTg. (38)

V. SIMULATION AND RESULTS

The simulations are done in MATLAB environment using
the Intel Xeon Sever with 64-GB RAM. The number of
chromosomes in the population (nc) and the value of muta-
tion probability of the genes (θMut) in the applied GA are
considered about 100% and 10%, respectively.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE V
VALUE OF TECHNICAL PARAMETERS OF DF 1. THE DEMAND LEVEL OF END USERS IS RELATED TO MARCH 1ST AT 5 P.M.

A. Simulating the Planning Problem of DISCO

1) Primary Data of the System and Problem: In this part,
the optimal parking allocation problem is investigated on DF 1
(the first feeder of DISCO 1 as shown in Fig. 1) that includes
28 buses. The total number of PEVs around DF 1 is 600.
The technical data of different types of PEVs including Nissan
Leaf BEV, Chevy Volt 2012 PHV, and Toyota Prius 2012 PHV
are presented in Table III [36]. In the simulation of planning
problem of a DISCO, the type of PEVs is considered to be
Nissan Leaf BEV. Table IV presents the value of parameters
of the planning problem. In addition, Figs. 8 and 9 illustrate
the hourly power demand of DF 1 throughout a day (p.u.)
and the daily power demand of DF 1 throughout a year (p.u.),
respectively.

Moreover, the value of parameters of DF 1 and demand of
DF 1 related to March 1st at 5 P.M. are given in Table V. The
position of each bus of DF 1 (latitude and longitude) can be
seen in Table V.

2) Results: Before allocating the parking lots to DF 1, the
value of energy loss and energy not supplied of DF 1 over the
planning period are about 2.9173 and 0.1349 million MWh,
respectively. Without installing parking lots, PEVs are charged
by their nearest buses between 10 A.M. and 11 P.M.

After solving the problem of traffic and grid-based park-
ing lot allocation, it is observed that just one parking lot is
allocated to DF 1 considering each of the PEVs behavioral
model (power, logarithmic, linear, and exponential models).
Table VI presents the detailed results of the planning problem
simulation. As can be seen, power model with exponent 0.3

Fig. 8. Hourly power demand of DF 1 (first feeder of DISCO 1) throughout
a day (p.u.).

and exponential model (and power model with exponent 3, as
well) are the most and the least desirable behavioral models of
the PEVs fleet, since the total profit (the difference between
the costs before and after the parking lot allocation) of the
DISCO 1 are the most and the least, respectively. Regarding
the Power model (with exponent 0.3), by installing a parking
lot with the size of 756 PEVs in bus 26 and considering 30%
discount on the charging fee of PEVs, the energy loss and
EENS of DF 1 are decreased about 142 800 and 700 MWh
over the operation period, respectively.

It should be noticed that although the exponential model
(and power model with exponent 3, as well) has the least value
of energy loss and EENS (and accordingly the least value of
cost of energy loss and cost of EENS), these models are not
the most favorable model because minimizing the total cost
of the local DISCO is the objective function of the planning
problem.
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Fig. 9. Daily power demand of DF 1 (first feeder of DISCO 1) throughout
a year (p.u.).

TABLE VI
DETAILED RESULTS OF OPTIMAL PARKING LOT ALLOCATION ON DF 1

(FIRST FEEDER OF DISCO 1) CONSIDERING DIFFERENT

BEHAVIORAL MODELS FOR THE PEVS’ DRIVERS

By investigating the results presented in Table VI, it is
observed that the optimal value of discount on charging fee,
the optimal location of parking lot, and the optimal size of
parking lot are not the same for every behavioral model of the
PEVs fleet. In other words, a predetermined value of incentive
and default size and location of the parking lot will not result
in minimum cost for the local DISCO.

B. Simulating the Operation Problem of GENCO

1) Characteristics of the Generation System: The techni-
cal characteristics of generation units including the fuel cost
coefficient of generation units, the emission coefficient of gen-
eration units, the power limits of the units, the minimum
up/down time of units, the RUR and RDR of units, the start-up
cost and shut down cost of units, and the initial status of units
are presented in Table VII. Positive and negative numbers for
the status of units mean the time interval in hour that the unit
is in on and off statuses, respectively.

The hourly demand pattern of the whole power system
(shown in Fig. 1) throughout a day (p.u.) and the daily demand
pattern of the power system throughout a year (p.u.) are the

TABLE VII
TECHNICAL CHARACTERISTICS OF GENERATION UNITS

same as presented in Figs. 8 and 9, respectively. Moreover,
the minimum value of SR at every hour of a day is assumed
to be about 10% of demand at the same hour. Furthermore,
the value of penalty for greenhouse gas emissions is assumed
about $10 per ton based on the California Air Resources
Board auction of greenhouse gas emissions [38]. Fig. 10 illus-
trates the hourly demand of end users, the hourly demand of
PEVs fleet, and the hourly demand of power system (shown in
Fig. 1). Total number of PEVs in the whole area (supplied by
the GENCO) is 16 800 PEVs. The driving patterns of PEVs
around every DF are the same as presented in Figs. 2 and 3.
Regarding the operation problem of GENCO, the type of PEVs
is considered Nissan Leaf BEV. Herein, the value of electric-
ity price for the end users’ consumption or charging the PEVs
is considered about $30.35/MWh, which is 10% more than
the marginal cost of the generation system ($27.59/MWh). In
other words, the GENCO profits about $2.76/MWh.

2) Results: The detailed simulation results of the GENCO’s
operation problem are presented in Table VIII that includes the
total daily profit of GENCO without charging management and
with optimal charging management of the PEVs fleet consider-
ing different behavioral model for the drivers. As can be seen,
the GENCO has $38,101/day profit without charging manage-
ment of the PEVs fleet. In addition, the charging management
of PEVs parked in the parking lots with any behavioral model
result in more profit for the GENCO, while the power model
with exponent 0.3 leads to the most benefit for it. The results
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TABLE VIII
DETAILED RESULTS OF OPTIMAL CHARGING OF PEVS FLEET CONSIDERING DIFFERENT BEHAVIORAL MODELS FOR THEM

Fig. 10. Hourly demand (MW) of end users, PEVs fleet, and system before
charging management.

Fig. 11. Hourly demand (MW) of the PEVs and system before and
after charging management considering optimal incentive (10% discount on
charging fee) and power model (exponent is 0.3) for the drivers’ behavior.

show the effectiveness of considering incentive (extra credit)
for the PEVs’ owners in the generation scheduling and unit
commitment (UC) problems. Although considering incentive
for the drivers imposes extra cost to the GENCO, its overall
profit increases because of optimal charging management of
PEVs due to deferring the most expensive generation units in
the generation scheduling and UC problems. Moreover, as can
be seen in Table VIII, the value of incentive is not the same for
every model. In other words, knowing the behavioral model
of drivers is an important factor.

Fig. 11 illustrates the hourly demand (MW) of PEVs and
system before and after charging management considering
optimal incentive (10% discount on charging fee) and power
model (exponent is 0.3) for the drivers’ behavior. As can be
seen, one part of PEVs’ demand is shifted from the peak period
to the valley period that affects the demand of system in the
similar pattern.

The hourly generation level of units after optimal charging
management of the PEVs (parked in parking lots) consid-
ering power model (with exponent of 0.3) are presented in

TABLE IX
POWER LEVEL OF GENERATION UNITS (MW) AFTER OPTIMAL

CHARGING MANAGEMENT OF PEVS FLEET WITH POWER

BEHAVIORAL MODEL (EXPONENT IS 0.3)

Table IX. As can be seen, due to optimal charging management
of the PEVs, some of the most expensive units (G7–G10) are
shut down, operation of one of them (G6) is decreased, and
operation of the less expensive generation units (G1–G5) are
increased in the valley period.

VI. CONCLUSION

In this paper, traffic and grid-based parking lot allocation
and charging management of PEVs fleet were investigated in
the planning problem of DISCOs and operation problem of
a GENCO, respectively. Herein, the driving pattern and behav-
ioral model of drivers were considered in both planning and
operation problems.

In the planning problem, each DISCO allocated parking lots
to the optimal location of the electrical feeders to minimize
the total cost of planning problem over the given planning
time horizon by minimizing the power loss and EENS of the
feeders. In addition, in the operation problem, the GENCO
optimally managed the charging time of PEVs parked in the
parking lots to maximize its daily profit by deferring the more
expensive and pollutant generation units.
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Among different behavioral models of the drivers, the power
model (with exponent 0.3) and exponential model, as the
interested and reluctant behavior model with respect to the
value of incentive, resulted in the most and the least favorable
outcomes for every DISCO and GENCO.

It was proven that the drivers’ behavioral model, their driv-
ing patterns, and even the type of PEVs can remarkably
affect the outcomes of both planning and operation prob-
lems. In other words, these factors affected the optimal sizes
and locations of the parking lots in the planning problem
of DISCO, optimal value of incentive in both planning and
operation problems of DISCO and GENCO, and minimum
cost of DISCO and maximum profit of GENCO. Therefore,
these factors must be modeled precisely in the traffic and
grid-based parking lot allocation and charging management
problems.

For the future studies, it is suggested to consider energy
management of the end users (along with charging manage-
ment of PEVs) in the operation problem of the GENCO and
load model of the end users (residential, commercial, and
industrial customers) in the planning problem of the DISCO.
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