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For electric taxicabs, the idle time spent on cruising for passengers, seeking chargers, and charging is wasteful.
Previous works can only save cruising time through better routing, or charger seeking and charging time through
proper charger deployment, but not for both. With the advancement of wireless charging techniques, efficient
opportunistic charging of electric vehicles at their parked positions becomes possible. This enables a taxicab to
get charged while waiting for the next passenger. In this paper, we present an opportunistic wireless charger
deployment scheme in a city, which both maximizes the taxicabs’ opportunity of picking up passengers at the
chargers and supports the taxicabs’ continuous operability on roads, while minimizing the total deployment cost.
We studied a metropolitan-scale taxicab dataset on several factors important for deploying wireless chargers
and determining the numbers of the chargers in the regions: the number of passengers, the functionalities of
buildings, and the frequency of passenger appearance in a region, and taxicab traffic flows in a city. Then, we
formulate a multi-objective optimization problem and find the solution. Our trace-driven experiments demonstrate
the superior performance of our scheme over other representative methods in terms of reducing idle time and
supporting the operability of the taxicabs.
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1 INTRODUCTION

Taxicabs are a pivotal component in a modern public transportation system. Their profit is highly reliant
on efficient discovery of passengers [28]. Also, due to the foreseen depletion of fossil fuels, gasoline-based
taxicabs are being actively replaced by electric vehicles (EVs) [17]. To maximize the profit of electric
taxicabs, their idle time (i.e., cruising time for passengers, seeking time for chargers and charging time)
must be reduced as much as possible [11, 31].
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Fig. 1. General operation of a taxicab.
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Fig. 2. Expected operation of a taxicab.
In recent years, thanks to the ubiquitous mobile sensing data harvested from GPS-equipped taxicabs

in metropolitan cities, many taxicab dispatching methods have been proposed to guide taxicabs to
efficiently pick up passengers with reduced cruising miles [28, 29, 31, 33]. Generally, these methods focus
on extracting the expected appearance locations of passengers from historical passenger pick-up records
or information provided by nearby taxicabs at the current time, and use statistical methods to guide
taxicabs to the places with the maximum likelihood of picking up passengers within a certain distance
through the shortest routes. However, the taxicabs still have to spend much time driving before picking
up the passengers. Moreover, none of the previous taxicab dispatching works considers the time wasted
on seeking chargers and charging. It has been reported that the daily average time wasted on seeking the
nearest charging station can be almost 1 hour, and the time for charging an EV can be as long as 150
minutes [17]. Such a long idle time greatly degrades the profiting efficiency of the electric taxicabs [4].
Also, since a taxicab cannot be in service all the time due to charger seeking and charging, a metropolitan
city needs to put more taxicabs on roads to satisfy taxicab demands, which increases investment cost and
traffic congestion on roads.

Meanwhile, driven by the traffic flow and city-wide travel patterns of people reflected in the ubiquitous
taxicab movement data, several recent works studied the problem of minimizing average seeking time for
the nearest charging station of EVs from the perspective of urban facility planning [17, 21, 26, 32]. These
works generally adapt the deployment of charging stations to cover the EV traffic flows so that EVs
anywhere can reach the nearest charging stations with the minimal seeking time. However, no matter
how well these methods place the charging stations, upon the exhaustion of a battery, the taxicabs must
spend extra idle time on seeking a charger and waiting to be charged.

As shown in Figure 1, the traditional operation of a taxicab generally consists of four phases, namely
cruising for passengers, traveling with the passengers, seeking a charger, and charging [29]. We see that
only traveling contributes to service and making a profit. Reducing the time in other phases helps increase
the profit of taxicabs, and reduces taxicab investment and traffic congestion with direct societal and
economic impacts.

Battery

Receiver 

Coil

Transmitter Coil

Fig. 3. Stationary wireless
charger for EVs.

Experienced taxicab drivers usually prefer to wait at certain places in order
to pick up the next passenger with reduced idle cruising miles [28, 31]. Then,
if the taxicabs can be offered sufficient opportunity of charging during waiting,
as shown in Figure 2, it can enable charging and waiting for passengers to
occur simultaneously before picking up the next passenger. Recently, the
world has seen a surge in stationary wireless opportunistic charger (Figure 3).
Opportunistic charging means that an EV can be charged whenever it is
parked over a place with a charger [37]. Since electric energy is transferred
from the Transmitter Coil to the Receiver Coil via electromagnetic field, such a charger allows EVs to get
charged when they temporarily park somewhere (e.g., at traffic lights, roadside parking lots) without
plugging in a cable [10, 12, 22]. The wireless chargers are deployed one time and not portable, and one
charger can only serve one EV at a time. The State of Charge (SoC) (i.e., the ratio between the amount
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of charged energy and the battery capacity) of an EV’s battery must be maintained above a threshold 𝜂
(e.g., 20%) for the EV to drive. Different from other public vehicles (e.g., buses or subways), which follow
fixed routes every day, the movement of taxicabs is driven by the discovery of passengers. To maximize
the service performance of the taxicabs, we must maximally reduce the duration of their idle phases
(i.e., cruising for passengers, seeking a charger, and charging). This requires us to design a mechanism
that provides opportunities of picking up passengers for the taxicabs, and meanwhile keeps the SoC of
taxicabs above a threshold on the road. Motivated by this expectation, we attempt to answer a question
in this paper: how to deploy stationary wireless chargers in a city with the minimum cost (i.e., fewest
chargers) to maintain the SoC of taxicabs above a threshold (i.e., can always drive) in the city, and also
offer them enough opportunity for picking up passengers while they park for recharging?

Fig. 4. Stationary wireless
chargers around a mall.

Accordingly, we propose PickaChu, a stationary wireless charger deploy-
ment scheme that enables the taxicabs to Pick up a passenger with reduced
idle time and supports the taxicabs’ continuous operability (i.e., always
having enough energy to drive) via opportunistic Charging in an urban road
network. First, we analyzed a metropolitan-scale taxicab mobility dataset
that records the trajectories and passenger pick-up and drop-off activities of
15,610 taxicabs in the year of 2015. There have been previous works proposed
for extracting different human mobility patterns (e.g., life patterns, work
patterns and commute patterns) for different regions in a city [8]. Its approaches can be used in our
work to measure the appearance of passengers. We observed that the building density and building
functionalities (or classes) (e.g., professional, residential, commercial buildings) in a city region affect the
number of passenger requests. Also, we found that the frequency of the appearance of passenger(s) at one
time and the number of pick-ups per unit time vary between different regions. Finally, we analyzed the
distribution of the trajectory lengths of the taxicabs to model the traffic in the city.
The observations serve as the foundation for the design of PickaChu. As shown in Figure 41, it

determines the regions in a city to deploy wireless chargers and the number of the chargers in each region
that offer taxicabs high opportunity of discovering passengers when they are being charged, and help
them always maintain a certain level of SoC for continuous operability. As long as a taxicab’s SoC is
above threshold 𝜂, it will pick up nearby passengers during charging. Specifically, we use the average
number of passengers around a class of building to determine the weight of this building class, and design
a weighted sum of building functionalities as a factor to infer the likelihood of passenger appearance in
each region. Moreover, since it is quicker to pick up passengers at the places where passengers appear more
frequently, we use the Discrete Fourier Transform (DFT) [23] and AutoCorrelation Function (ACF) [23] to
more accurately measure each region’s frequency of passenger appearance. Then, to determine a region’s
priority of being deployed with a charger, we define a scoring mechanism, which jointly considers the
average number of passengers that appeared per unit time, the weighted sum of building functionalities,
and the frequency of passenger appearance of a region. We use the Kernel Density Estimator (KDE) [27]
to model the taxicabs’ traffic, and use it to estimate the expected SoC of vehicles in each region. Finally,
we formulate a multi-objective optimization problem to minimize the total deployment cost (i.e., the
excavation at the charging position, the installation of the charger body, and the wiring to the chargers)
of the chargers, maximize the opportunity of picking up passengers at the chargers, and meanwhile ensure
a certain level of SoC for the taxicabs in each region.
In summary, our contributions include:

1https://www.chargepoint.com/
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(1) We comprehensively study a metropolitan-scale, long-term taxicab dataset for analyzing the passenger
appearance statistics and taxicab traffic, which serve as the foundation for the design of PickaChu.

(2) We propose PickaChu that determines the regions for charger deployment and the number of chargers
in each region. It minimizes the total deployment cost, maximizes the taxicabs’ opportunity of picking
up passengers at the chargers, and meanwhile ensures the taxicabs’ continuous operability.

(3) We have conducted extensive trace-driven experiments on the SUMO urban mobility simulator to
show the effectiveness of PickaChu in reducing idle time and supporting operability of the taxicabs
compared with a method focusing on minimizing the taxicabs’ cruising time for passengers [29] and
a method focusing on minimizing the taxicabs’ seeking time for chargers [17]. Compared with the
previous methods, PickaChu reduces the taxicabs’ daily average idle time by 81% under the same
charger deployment cost. When minimizing the charger deployment cost, PickaChu reduces the
number of chargers by 27%, but still reduces the taxicabs’ daily average idle time by 61%.

In our knowledge, PickaChu is the first work for both reducing the idle time and maintaining the SoC
of the taxicabs through proper deployment of opportunistic wireless chargers. The remainder of the paper
is organized as follows. Section 2 presents literature review. Section 3 presents our metropolitan dataset
measurement results. Section 4 presents the detailed design of PickaChu. Section 5 presents performance
evaluation results. Section 6 concludes the paper with remarks on our future work.

2 RELATED WORK

Taxicab dispatching. Yuan et al. [28] introduced a method that schedules the pick-up locations with
the shortest routes for taxi drivers and the waiting locations for passengers to reduce the cruising time.
Zheng et al. [33] modeled the behavior of vacant taxicabs with a non-homogeneous Poisson process to
find the optimal waiting positions for passengers. Zhang et al. [31] proposed a method to estimate the
revenue of each route, and guide the taxicab to the route with the maximum estimated revenue. Zhang et
al. [29] proposed pCruise, in which each taxicab collects the passenger requests from nearby taxicabs and
accordingly cruises on the routes with the maximum probability of finding a passenger. Although these
works aim to guide taxicabs to pick up the expected passengers with the shortest route, the taxicabs still
need to spend much time on driving to the suggested locations without passengers on board. Moreover,
the time wasted on seeking chargers and charging is not considered in these works.
Charger deployment. Qin et al. [21] scheduled the plug-in charging stations to minimize the time on

seeking and waiting in charging stations based on the estimated time and location that each EV needs to
be charged. Zhang et al. [32] further considered the uncertainty of the EVs’ arrival times at the charging
stations to shorten the time on seeking chargers and charging. Li et al. [17] determined the locations for
deploying plug-in charging stations that minimize the time on seeking chargers. Yan et al. [26] proposed
a method on deploying dynamic wireless chargers based on the features of the positions (i.e., vehicle
passing speed, vehicle visiting frequency). Although these works can support the continuous operability
of the taxicabs by adapting the deployment of chargers to cover the actual traffic, the taxicabs still have
to spend extra idle time on seeking chargers and charging upon the exhaustion of the battery.
Novelty of PickaChu. Compared with the above methods, PickaChu is novel in two aspects. First,

it considers the likelihood of passenger appearance in the regions in deploying the chargers to enable
taxicabs to have high likelihood of picking up passengers while being parked for opportunistic charging,
which saves the time wasted on cruising, seeking chargers and charging. Second, it supports the taxicabs’
SoC by considering their traffic flows, which further reduces the time of seeking chargers and charging.
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3 METROPOLITAN-SCALE DATASET MEASUREMENT

3.1 Dataset Description

In this section, we analyze large datasets that record the status of taxicabs in Shenzhen city of China for
12 months (Jan 1 – Dec 31, 2015), with a recording time period of 30 seconds. The datasets include:
(1)Taxicab data. It is collected by the Shenzhen Transport Committee, which records the status (e.g.,
timestamp, GPS position, speed, occupancy) of 15,610 taxicabs. For the occupancy status, 0 means
“non-occupied”, and 1 means “occupied”. The daily size of the uploaded data is around 2 GB.
(2)Road map data. The road map of Shenzhen is obtained from OpenStreetMap [5]. According to the
municipal information of Shenzhen [17], we used a bounding box with coordinate (𝑙𝑎𝑡 = 22.4450, 𝑙𝑜𝑛 =
113.7130) as the south-west corner, and coordinate (𝑙𝑎𝑡 = 22.8844, 𝑙𝑜𝑛 = 114.5270) as the north-east
corner, which covers an area of around 2,926 km2, to crop the road map.
For data management, we utilized a 34 TB Hadoop Distributed File System (HDFS) [1] on a cluster

consisting of 10 nodes, each of which is equipped with 16 cores and 64 GB RAM. For data processing, we
used Apache Spark [2], which is a fast in-memory cluster computing system running on Hadoop [1].

3.2 Definitions

Fig. 5. Gridded road map.

We first build a road network, in which vertices represent land-
marks (i.e., intersections or turning points), and edges represent
road segments [30, 34]. The movement record of a taxicab is con-
tinuous, namely a sequence of GPS positions with corresponding
timestamps. We presume that a taxicab has finished its previous
trajectory if it stops at a location for more than 10 minutes or
its occupancy status changes. Thus, such stopping locations cut
the movement record of a taxicab into multiple trajectories. The
original GPS positions are scattered around the road segment.
If we apply the optimization on all the GPS positions, we will need to ensure that the taxicabs’ SoC
on each position is above the threshold. This will be too complex to obtain an optimal solution for
the optimization problem. To map them to a uniform road network for the reduction of optimization
complexity, we normalize the original GPS positions to their respective nearest landmarks (in Euclidean
distance) as in previous methods [25, 28, 29, 36]. Note we only use landmarks in the traffic estimation
and optimization of the chargers. For the extraction and analysis of passenger appearance, we still rely
on the original GPS positions. We introduce two definitions below.

Definition 3.1. Vehicle Trajectory. A vehicle 𝑣𝑖’s trajectory is a sequence of time-ordered landmarks,
𝑇𝑟𝑖 : {(𝑝0, 𝑡0), (𝑝1, 𝑡1), . . . , (𝑝𝑟, 𝑡𝑟)}, where each landmark is represented by a latitude and a longitude
𝑝𝑗 = (𝑙𝑎𝑡𝑗 , 𝑙𝑜𝑛𝑗).

Definition 3.2. Region. The road map is partitioned into a set of 557 regions 𝐺 = {𝑔0, 𝑔1, . . . , 𝑔𝑀−1}
with a size of 2,000 m × 2,000 m (Figure 5). Each region is represented by 𝑔𝑖 = {(𝑙𝑎𝑡0𝑖 , 𝑙𝑜𝑛0

𝑖 ), (𝑙𝑎𝑡
1
𝑖 , 𝑙𝑜𝑛

1
𝑖 )}.

For the ease of analysis, we use a static region size to partition the road map. Some recent works have
proved that partitioning the road map with dynamic region sizes can better adapt to the geographical
distribution of the passenger appearance [20, 35]. We will use dynamic region size in our future work, but
the region size determination does not change the fundamental methods proposed in this paper. The
reason we choose 2,000 m × 2,000 m as the region size is to ensure that for the taxicabs within a region,
they can reach any position of the region within roughly 6 minutes, which is an acceptable waiting time
length for most passengers [28], at the driving speed of 40 km/h (i.e., the approximate average speed
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limit of Shenzhen [30]). Combining the taxicabs’ trajectories with the changes of their occupancy status,
we extracted the pick-up and drop-off locations of the passengers. We calculated the number of passenger
pick-ups in each region per unit time (e.g., 30 minutes).

3.3 Motivation

Different from other public vehicles (e.g., buses or subways), which follow fixed routes every day, the
movement of taxicabs is driven by the discovery of passengers. To maximize the service performance of
the taxicabs, we must maximally reduce the duration of their idle phases (i.e., cruising for passengers,
seeking a charger, and charging). This requires us to design a mechanism that provides opportunity
of picking up passengers for the taxicabs, and meanwhile keeps the SoC of taxicabs above a threshold.
However, the designing of such a mechanism is nontrivial because we need to address two main issues:
(1)Measuring likelihood of passenger appearance. The historical average number of passengers
that appeared during a unit time (e.g., per hour, per day) can be an indicator of the passenger appearance
likelihood. However, using this metric alone for the likelihood measurement may not be accurate for
guiding taxicab pick-ups in terms of waiting time. We hope that when a taxicab arrives at a charger and
gets charged at a random time, it does not have to wait long before discovering a passenger. For example,
in an area mostly consisting of residential buildings, many passengers may appear during rush hours (e.g.,
08:00-09:00), resulting in a relatively high hourly average number of appeared passengers. However, this
high value does not mean that passengers frequently appear at other times. Thus, we need a new metric
that can more accurately reflect the passenger appearance likelihood to guide taxicab pick-ups.
(2) Supporting taxicabs’ continuous operability. Regions with higher passenger appearance likeli-
hood should have a higher priority to be deployed with a charger in order to offer sufficient passenger
pick-up opportunity at the chargers. In addition, we aim to minimize the number of chargers (i.e.,
deployment cost) while maintaining the taxicabs’ continuous operability.

We then analyze the Shenzhen taxicab dataset. For the first issue, we measure the building functionali-
ties and their respective contribution to passenger appearance, and the frequency of passenger appearance
in the regions. For the second issue, we measure the distribution of the trajectory lengths of all the
taxicabs to model their traffic, which will be used to estimate the expected SoC of taxicabs in each region.

3.4 Dataset Analysis Results

3.4.1 Building Functionality and Passenger Appearance. It was indicated that the passenger appearance
in a region is closely related to its composition of buildings, and the likelihood of passenger appearance
varies for different classes (i.e., functionalities) of buildings [7, 31, 36]. In this analysis, we attempt to
verify if the density and functionalities of buildings (e.g., Residential, Commercial buildings) in a city
region influence the number of taxicab passengers in the region.

To study the relation between buildings and the appearance of passengers, we derived the distribution
of passenger pick-up events in a part of the road map. As shown in Figure 6, we plot each passenger
pick-up event happened in 2015 with a point and drew the heat map. The warmer color a region has,
the more concentrated in a short time duration the passenger pick-up events occur. Based on [9, 27]
and OpenStreetMap [5], we obtained the class and position of each building in Shenzhen. The building
classes include Residential, Commercial, Civic, Basics, Professional and Tourism, as shown in Figure 7.
The Residential class consists of buildings primarily for residential purposes (e.g., apartments). The
Commercial class consists of buildings for commercial activities (e.g., supermarkets). The Civic class
consists of buildings for municipal purposes (e.g., library). The Basics class consists of buildings for public
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Fig. 6. Heat map of passenger pick-ups. Fig. 7. Distribution of buildings.
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service (e.g., garage). The Professional class consists of buildings for specific usage (e.g. train/subway
stations, airports). The Tourism class consists of buildings for recreation (e.g., garden).
By comparing the two figures, we can see that the occurrence of passenger pick-up events generally

concentrates at the regions with abundant buildings (e.g., the two regions on the bottom marked with
solid circles). In the region on the top marked by red dashed circles, there are much fewer pick-up events
though it has many buildings. This is because the majority are residential and civic buildings, where
people often have planned travel schedules using private vehicles or public transportation. This result
implies that building functionality also influences passenger appearance.
Next, we study the correlation between the building functionalities and the number of passengers.

We measured the average number of passengers that appeared within 100 meters around each building
in a building class during each hour of a day throughout the 365 days, as illustrated in Figure 8.
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Fig. 9. Average number of passengers
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Though we have already considered the number of passengers that
appeared around each building in the measurement, additionally con-
sidering building size may further increase the precision of the mea-
surement, which is left as our future work. We further calculated the
average, 5th and 95th percentiles of the hourly number of passengers
that appeared nearby for each building class, which are illustrated in
Figure 9. We see that significantly more passengers appeared nearby
the Professional buildings than the other building classes during all
times. This is because the Professional class mostly consists of offices
and business buildings that are frequently visited by many people. The
Civic class has the second most passengers because it mostly consists
of libraries and community centers with many public activities. The
Commercial and Residential classes have much fewer passengers than
the former two classes because these buildings are not continuously visited by people during a day. The
Basics and Tourism classes have the fewest passengers because there are fewer such buildings. Therefore,
the building functionality can be used as a factor to infer the likelihood of passenger appearance in the
regions. As the number of pick-ups does not necessarily equal to the number of passenger requests, we
need to use other additional factors to more accurately estimate the likelihood of passenger appearance.

3.4.2 Frequency of Passenger Appearance. We hope that when a taxicab arrives at a region deployed
with a wireless charger, it does not need to wait long before it discovers a passenger. This means that
the frequency of passenger appearance in the region must be high, namely the time interval between
two consecutive passenger appearances must be short. Note that one passenger appearance means the
appearance of passenger(s) at one time. In Figure 10, in Region1, three passengers appearing at one time
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is considered as one passenger appearance, and in Region2, one passenger appearing at one time is also
considered as one passenger appearance. Then, the frequency of passenger appearance for Region1 is 1/8,
and that for Region2 is 1/2. However, the average number of passengers per unit time (i.e., a day) cannot
reflect this frequency. For example, Region1 has 3 passengers in every 8 time units, while Region2 has 1
passenger in every 2 time units. Though both regions have 6 passengers in every 12 time units, Region2
has a higher passenger appearance frequency (1/2) compared with Region1 (1/8), which makes a taxicab
wait for a shorter time before it discovers a passenger. As a result, we need to develop a new method to
determine the frequency of passenger appearance in a region.
To find the frequency, we draw passenger appearance time series. For each region, we calculated the

number of passengers that appeared in every 30 minutes (i.e., a sample) in each day for the 365 days in
the dataset. Among the regions mostly consisting of (i.e., more than 50%) Residential, Professional and
Tourism buildings, we randomly chose one region respectively, and denote them as Region1:Residential,
Region2:Professional and Region3:Tourism. Figure 11 shows the number of passengers that appeared
per unit time (i.e., 30 minutes) in the first day of the three regions, respectively. We define a pattern as
the periodic occurrence of a certain number of passengers in a certain time period, and its frequency as
the number of such occurrences per unit time. If the time series of every region has only one pattern,
identifying its frequency is easy. However, the time series may have multiple patterns, which makes it
hard to measure the passenger appearance frequency in the region. In the signal processing field, the
time series curve in Figure 11 can be considered as a composition of multiple patterns with different
frequencies. To find out the frequencies of the patterns, we can decompose the time series to a group
of time series with different frequencies using a signal processing technique. Specifically, we applied the
Discrete Fourier Transform (DFT) on the passenger time series and got their periodogram [23], as shown
in Figure 12. In the figure, the X-axis is the possible frequencies of the patterns in the time series, and
the Y-axis reflects the number of passengers in a pattern with a frequency (e.g., 3 and 1 in the above
example). We notice that the periodogram of Region2 has relatively more patterns with high frequencies
than Region1 and Region3, although the numbers of passengers in the high-frequency patterns are much
smaller than that of the low-frequency patterns. This is because the Professional buildings are frequently
visited by many people, which results in more frequent passenger appearances than the Residential and
Tourism buildings. Compared with Region3, Region1 has more patterns with higher frequencies. This is
because people’s visiting patterns at the Tourism buildings is more likely to follow certain routine (e.g.,
open and close times) than the Residential buildings, which is more randomly visited by people.

Thus far, we have verified that the time series of the passenger appearance of a region can be decomposed
to a group of time series with different frequencies. Then, we design a method to combine these frequencies
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to measure how frequently passengers appear in a region, which will be introduced in Section 4.2.2. As a
result, the region with a higher final frequency metric should have a higher priority to deploy chargers.
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Fig. 13. Distribution of duration of
idle trips.

3.4.3 Idle Trip Time & Taxicab Traffic. As discussed before, taxicabs
may waste much time on cruising for passengers, seeking chargers and
getting charged. We then analyzed the Shenzhen dataset to see how
much time is spent on these idle operations. We first introduce the
definitions for the operations of the taxicabs. We define the cruising
time as the time interval between the taxicab dropping off a passenger
and picking up the next passenger. From the Shenzhen Transport
Committee, we obtained the locations of all the existing plug-in charg-
ing stations in Shenzhen. If a taxicab’s movement record shows that it
has stayed at a charging station for more than 5 minutes, we consider
that it was being charged at the station at that time. Therefore, we
define the time for seeking a charger as the time interval between the
taxicab dropping off its last passenger and entering a charging station to charge. We define the charging
time of a taxicab at a charging station as the time duration that the taxicab stayed at the charging
station. For each vehicle, we calculated the duration of each idle operation in each day throughout the 365
days, and then calculated the average duration per day. We show the Cumulative Distribution Function
(CDF) of the taxicabs in terms of the daily average duration of each operation in Figure 13. We can see
that about 50% of the taxicabs spent more than 4.17 hours on cruising per day in average, about 50%
of the taxicabs spent more than 2.78 hours on seeking chargers per day in average, and about 50% of
the taxicabs spent more than 0.83 hours on charging per day in average. The analytical results indicate
that we should try to avoid or reduce the time duration in these idle operation phases when determining
the locations to deploy chargers. We can choose the locations where many passengers appear with high
frequency, so that when a taxicab is being charged, it has a high probability to quickly pick up a passenger.
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Fig. 14. Traveling trip lengths & KDE
estimation.

We should also make sure that the deployed chargers can support
the continuous operability of the taxicabs considering the taxicabs’
traffic flows in the city. Because the taxicabs’ trajectories reflect their
traffic flows between different locations [27], and the trajectory length
generally determines energy consumption of a taxicab, we calculated
the lengths of the taxicabs’ trajectories to determine the taxicab
traffic that the deployed chargers need to support. Figure 14 shows
the Probability Density Function (PDF) of the trajectory lengths.
If we can describe the taxicabs’ trajectory lengths with a certain
distribution, we can further determine the deployment of chargers to
support these trajectory trips so that the expected SoC of a taxicab
at a landmark is always above a certain threshold that allows it to
reach its nearest charger. Obviously, the distribution of the trajectory lengths cannot be modeled using a
parametric distribution (e.g., Gaussian). Since KDE is a non-parametric method to estimate the PDF of
a random variable, we input the trajectory lengths to the KDE model to output a taxicab’s probability
of reaching each landmark in the road network. The red curve in Figure 14 represents the fitting result
from the KDE. We will present more details of this model in Section 4.3.

3.4.4 Summary. Based on the above observations, to deploy the chargers that maximally reduce the
idle time of taxicabs, we need to i) consider the density and functionality of buildings and their respective
influence weights on the appearance of passengers, ii) measure the passenger frequency in a region from
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the region’s passenger appearance time series, and iii) estimate the taxicabs’ SoC based on the taxicabs’
traffic flows. Considering these factors, we will find a solution in Section 4 for the following problem.
Problem: Given a road network comprised of a set of regions 𝐺, and taxicabs’ trajectory datasets

{𝑇𝑟}, how to select regions to deploy chargers with the minimum cost so that the expected SoC of
the taxicabs at each landmark is no less than a threshold, and the taxicabs have high probability of
discovering passengers while being charged?

4 SYSTEM DESIGN OF PICKACHU

4.1 Framework of PickaChu

PickaChu consists of the following three stages as shown in the three dashed boxes in Figure 15.
1.Map gridding & information derivation. First, the entire city area is partitioned into a Gridded
Roadmap consisting of several equal-sized regions. Also, the taxicab dataset is cleaned up (e.g., filtering
out positions out of the actual range of Shenzhen, redundant positions). Then, based on the cleaned data,
we derive the Taxicab Trajectories, which will be used for extracting passenger requests and building
traffic models. From the taxicabs’ change of occupancy status from 0 to 1, we extract the Passenger
Appearance Records (i.e., location and time). Finally, based on the Gridded Roadmap and the Passenger
Appearance Records, we calculate the Passenger Appearance Time Series for each region.
2.Measuring likelihood of passenger appearance (Section 4.2). Based on the output from the
first stage, we consider the Number of Passengers Per Unit Time, the Building Functionality, and the
Passenger Appearance Frequency for each region to assign Region Scores to regions to measure their
likelihood of passenger appearance.
3. Charging position determination (Section 4.3 and Section 4.4) We first use the lengths of the
trajectories to model the Continuous Operability Support using KDE, which is used to estimate the
taxicabs’ expected SoC at different regions. Then, we formulate a multi-objective optimization problem
to solve the wireless charger deployment problem, and its solution is the Charger Position Determination
(i.e., where and how many wireless opportunistic chargers we should deploy).

4.2 Measuring Passenger Appearance
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Fig. 15. Framework of PickaChu.

In the following, we firstly introduce how PickaChu
estimates the likelihood of passenger appearance via a
weighted sum of building functionalities. Then, we elabo-
rate how PickaChu measures the frequency of passenger
appearance in a region. Finally, we design a scoring
mechanism for measuring each region’s likelihood of
passenger appearance.

4.2.1 Building Functionality. Different regions have
different densities of buildings with different functionali-
ties (e.g., Residential buildings, Commercial buildings).
For example, the region in a central business district is
likely to be filled with office buildings and shopping centers where passengers frequently appear, while
the region in a residential area is likely to be filled with dwellings where a large number of passengers
only appear during specific hours. Correspondingly, we use a weighted sum of building functionalities
within a region to measure the buildings’ potential contribution to passenger appearance.

We set the weight of a building class as the hourly average number of passengers that appeared nearby
(e.g., within 100 meters) each building in the class throughout the dataset. For example, according to
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Figure 9 of our trace analysis, the weights of the building classes are: Residential=0.9, Commercial=0.7,
Civic=2.0, Basics=0.2, Professional =4.4, and Tourism=0.2.

Suppose 𝐶 is the set of the building classes in a region 𝑔𝑖, and P𝑖(𝑐) is the probability function
of building class 𝑐, i.e., the percentage of buildings with building class 𝑐 in 𝑔𝑖. w(𝑐) is the passenger
appearance weight of building class 𝑐. We define the weighted sum of the building functionalities in 𝑔𝑖 as:

�̄�𝑖 =
𝐵𝑖

𝐵𝑚𝑎𝑥

∑︁
𝑐∈𝐶

w(𝑐)P𝑖(𝑐) (1)

where 𝐵𝑖 is the total number of buildings in 𝑔𝑖, and 𝐵𝑚𝑎𝑥 is the maximum number of buildings in a
region among all the regions, i.e., 𝐵𝑚𝑎𝑥 = max𝑔𝑖∈𝐺 𝐵𝑖. Suppose a region has the following composition:
{Residential (20%), Commercial (5%), Civic (20%), Basics (5%), Professional (10%), Tourism (40%)},
and 𝐵𝑖 = 100, 𝐵𝑚𝑎𝑥 = 500. Its weighted sum of the building functionalities is 100

500 × (0.9× 0.2 + 0.7×
0.05 + 2.0× 0.2 + 0.2× 0.05 + 4.4× 0.1 + 0.2× 0.4) = 0.23. From Section 3.4.1, we know if a region has
more heavy-weighted buildings, it has a larger 𝐻𝑖, meaning it tends to have more passengers.

4.2.2 Frequency of Passenger Appearance. When deploying chargers, we hope that when a taxicab
arrives at a charger at a random time, it has a high probability of discovering a passenger nearby. It
means that the region has a high frequency of passenger appearance and the number of passengers should
be high at a time. As shown in Section 3.4.2, a passenger appearance time series can be considered as
being composed by a group of patterned time series with different frequencies. We call the area size (i.e.,
the number of passengers) of a pattern (i.e., Y value in Figure 12) the magnitude of the pattern. Thus,
we need to i) derive passenger appearance frequency, ii) derive the patterns with a high magnitude, and
iii) find a way to measure the global frequency given multiple patterns. For tasks i) and ii), we use the
approach introduced in [23]. For task iii), we design a metric. The details are introduced below.

In Section 3.4.2, we show that we can detect the potential patterns and their frequencies of a region’s
passenger appearance time series through DFT. However, DFT may generate false frequencies in the
periodogram [18]. AutoCorrelation Function (ACF), another method for detecting repeated patterns, can
avoid false detection of frequencies of a time series [23], but may result in the detection of integer times
of true periods (i.e., reciprocal of the frequencies) [18]. For example, in addition to the true frequency
of a pattern, say 1/30, the frequencies, which are integer multiples of 1/30 (i.e., {1/60, 1/90, . . .}), are
also falsely considered as the frequencies of this pattern. Therefore, solely using DFT or ACF cannot
accurately determine the true frequencies in a time series. To more accurately find the patterns, we adopt
the approach in [23] that combines the results from DFT and ACF to identify frequencies.
Below, we first present how to derive patterns with significant magnitude [23] from the periodogram

generated by DFT. We then present how to get the intersection of the two groups of frequencies from
DFT and ACF as the final detected frequencies. Finally, we propose a method that combines all the
frequencies to get a global metric to evaluate the frequency of passenger appearance in a region.
(1)Deriving patterns with significant magnitude. As shown in Figure 12, some patterns have an extremely
low magnitude. Therefore, we first determine the base magnitude and then derive the patterns with
magnitude larger than the base magnitude [23]. Considering that any random time series has patterns
with certain magnitudes [23], we use its maximum magnitude (denoted by 𝑝𝑚𝑎𝑥

𝑖 ) as the base magnitude.
In a region 𝑔𝑖, the passenger appearance time series is defined as: 𝑥𝑖(𝑛), 𝑛 = 0, . . . , 𝑁 − 1, where 𝑁 is
the total number of samples and 𝑥𝑖(𝑛) is the value of the 𝑛𝑡ℎ sample. To create random time series, we
randomly shuffle the original 𝑥𝑖(𝑛) into a new sequence �̃�𝑖(𝑛). To ensure 99% confidence level on the
selection of the base magnitude, we repeat the shuffling for 100 times and record the maximum magnitude
each time. Finally, we choose the 99𝑡ℎ value as the base magnitude.
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(2)Determining global frequency. In step (1), for 𝑔𝑖, we select potential significant patterns with frequencies

denoted by 𝐹𝐷𝐹𝑇
𝑖 = {𝑓1

𝑖 , 𝑓
2
𝑖 , . . . , 𝑓

𝑚′

𝑖 }. Then we use ACF to identify the patterns with frequencies denoted

by 𝐹𝐴𝐶𝐹
𝑖 = {𝑓1

𝑖 , 𝑓
2
𝑖 , . . . , 𝑓

𝑚′′

𝑖 }. The final frequency set is calculated by: 𝐹𝑖 = 𝐹𝐷𝐹𝑇
𝑖 ∩ 𝐹𝐴𝐶𝐹

𝑖 .
(3)Measuring passenger request frequency in a region. Suppose the magnitudes of the significant patterns
with frequencies 𝐹𝑖 = {𝑓1

𝑖 , 𝑓
2
𝑖 , . . . , 𝑓

𝑚
𝑖 } in the time series are 𝑃𝑖 = {𝑝1𝑖 , 𝑝2𝑖 , . . . , 𝑝𝑚𝑖 }. Since the magnitude

of a pattern reflects how significant this pattern is to the entire time series, we use the weighted sum of
the frequencies of the significant patterns to describe passenger appearance frequency in each region. We
call it region 𝑔𝑖’s weighted frequency of passenger appearance and denote it by 𝐹𝑖.

𝐹𝑖 =

𝑚∑︁
𝑘=1

𝑝𝑘𝑖∑︀𝑚
𝑗=1 𝑝

𝑗
𝑖

· 𝑓𝑘
𝑖 . (2)

For example, consider a time series which has two significant patterns with magnitudes of 2 and 3,
and frequencies of 1/10 and 1/20, respectively. The weighted frequency of this region is calculated as
2
5 × 1

10 + 3
5 × 1

20 = 7
100 .

4.2.3 Likelihood of Passenger Appearance. PickaChu assigns scores to the regions to show their likelihood
of passenger appearance considering the above metrics. We favor the regions with more passengers, and
higher frequency of passenger appearance. Therefore, we define the score of a region, say 𝑔𝑖, as:

𝜌(𝑔𝑖) = (
�̄�𝑖

�̄�𝑚𝑖𝑛
)𝛼 · 𝐹 𝛽

𝑖 · �̄�𝛾
𝑖 (3)

where �̄�𝑖 =
∑︀𝑁−1

𝑛=0 𝑥𝑖(𝑛)
𝑁 is the average number of passengers over all the 𝑁 samples of 𝑔𝑖, �̄�𝑚𝑖𝑛 is the

minimum average number of passengers in a region among the regions, 𝐹𝑖 is 𝑔𝑖’s weighted frequency
of passenger appearance, �̄�𝑖 is the weighted sum of building functionalities in 𝑔𝑖, and 𝛼, 𝛽, and 𝛾 are
constants that control the respective influence of the three metrics. We scale �̄�𝑖 by �̄�𝑚𝑖𝑛 to constrain the
scores of the regions that have few passengers, which have almost no contribution on increasing the score.
To find the best values for 𝛼, 𝛽, and 𝛾, we vary each variable within a certain range (e.g., [1, 5]) and test
different combinations of the values. Specifically, we use each combination to determine the deployment
of the chargers and run our experiment for 1 hour randomly chosen among the 24 hours of a day. Then,
we choose the combination of the values that results in the minimum time duration of the idle phases on
the vehicles (i.e., cruising, seeking for chargers and charging) as the final setting. We find 𝛼 = 1.2, 𝛽 = 2
and 𝛾 = 1 is the best combination for the case of Shenzhen.

Table 1. Comparison between two regions.
𝑔1 𝑔2

�̄�𝑖 110 22
𝐹𝑖 1/10 1/2

Composition
1 airport

2 houses
1 barn

Building wgt
Professional=4.4

Residential=0.9
Basics=0.2

W/o building 11 11
W/ building 25.3 9.9

Note that the region scores calculated by Equation
(3) is not the optimal way to reflect the likelihood
of passenger appearance, and it is only a heuristic
approach. It is difficult to find the optimal way to
describe the distribution of the likelihood of passenger
appearance in different regions. In order to make the
scores more accurately reflect the likelihood of passen-
ger appearance, in addition to using parameters �̄�𝑖 and
𝐹𝑖, we further consider the weighted sum of the building functionality (�̄�𝑖) that also reflects the number
of passengers in a region. In other words, parameter �̄�𝑖 enlarges the difference between the regions with
higher likelihood of passenger appearance and the regions with low likelihood of passenger appearance.
That is, the distribution of region scores calculated by Equation (3) is closer to the actual distribution of
the likelihood of passenger appearance in different regions. In spite of the simplicity of this approach, it is
helpful for differentiating the likelihood of passenger appearance in the regions. We use a simple example
to show the effectiveness of additionally considering parameter �̄�𝑖. Suppose we have two regions, say 𝑔1
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and 𝑔2, with different compositions of buildings, of which details are summarized in Table 1. We can see
that in 𝑔1, there is an airport (50% of the buildings, classified as Professional), and a barn (the other 50%
of the buildings, classified as Basics); while in 𝑔2, there are 2 houses (100% of the buildings, classified
as Residential). Suppose the weights of the building classes are: Professional=4.4, Basics=0.2, and
Residential=0.9. For simplicity for this example, we set 𝛼 = 𝛽 = 𝛾 = 1. Without considering buildings,
the region scores are 𝜌(𝑔1) = 110 × 1

10 = 𝜌(𝑔2) = 22 × 1
2 = 11, which means we cannot differentiate

which region is better for picking up passengers. The reason that 𝑔1 has the same region score as 𝑔2
even though 𝑔1 has an airport (i.e., Professional building class), which has a high frequency of passenger
appearance, is because the low frequency of passenger appearance of the barn makes the frequency
of passenger appearance of region 𝑔1 low. The region scores calculated with considering buildings are
𝜌(𝑔1) = 110× 1

10 × ( 12 × 4.4+ 1
2 × 0.2) = 25.3, and 𝜌(𝑔2) = 22× 1

2 × 0.9 = 9.9. The result shows that 𝑔1 is
better than 𝑔2 for picking up passengers, which is consistent with our intuition that regions with airports
are more likely to have high and constant flows of passenger appearances. This example shows that the
additional consideration of buildings in Equation (3) can help more accurately reflect the likelihood of
passenger appearance.

4.3 Supporting Continuous Operability

One of our objectives in the charger deployment is to ensure that the taxicabs can reach a nearby charger
when their SoC is about to be exhausted (e.g., below 20%). To this end, we need to infer the taxicabs’
expected SoC at each region given certain regions are installed with wireless chargers. KDE can be used
to describe the taxicabs’ probability of reaching a region from another region based on their distance
in the road network. Also, the SoC of a taxicab is a function of the distance from the taxicab’s source
landmark to the destination landmark. Then, the expected SoC of a taxicab at a landmark in the road
network can be calculated. We present the details below.

Since taxicabs’ mobility patterns imply their traffic flows between certain locations [27], we feed their
trajectories into a KDE model to infer the Probability Density Function (PDF) of the distribution of the
trajectory lengths as in Equation (4). Given a trajectory length 𝑑, the KDE model outputs the probability
that a taxicab takes a trajectory with length 𝑑.

𝑓(𝑑) =
1

𝑅 · ℎ

𝑅−1∑︁
𝑡=0

𝐾(
𝑑− 𝑑𝑡

ℎ
); −∞ < 𝑑 < ∞, (4)

where 𝑅 is the total number of the taxicab trajectories, 𝑑𝑡 is the length of the 𝑡𝑡ℎ trajectory, ℎ is the
smoothing parameter influencing the estimation accuracy of the KDE and is determined according to the
MISE criterion [24], 𝐾(·) is the kernel function whose value decays with the increasing of 𝑑, which is set
to the Gaussian function based on [15, 16].
According to the state-of-the-art EV energy consumption model [14], the energy consumption of a

taxicab (𝐸𝑐) is primarily determined by air drag (𝐸𝑎𝑖𝑟) and rolling resistance (𝐸𝑟𝑜𝑙𝑙):

∆𝐸𝑐 = ∆𝐸𝑎𝑖𝑟 +∆𝐸𝑟𝑜𝑙𝑙

= 𝑐𝑤𝑣
2∆𝑙 + 𝑐𝑒𝜅𝑔∆𝑙

(5)

where 𝑐𝑤 is the air drag coefficient determined by vehicle front surface area; 𝑣 is the driving speed; ∆𝑙 is
the distance that the taxicab has moved; 𝑐𝑒 is the rolling resistance coefficient; 𝜅 is the taxicab’s mass;
and 𝑔 is the gravity acceleration.
Suppose the taxicabs have the same battery capacity, 𝐸0, and each taxicab gets fully charged before

leaving a charger. We define the shortest distance between two regions as the distance of the shortest
route between their respective central landmarks, which are the landmarks located the nearest to the
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middle of the two regions, respectively. Given a taxicab starting from a charger, based on Equation (5),
its residual energy at a location, which is 𝑑 distance away from the charger through the shortest route,

can be estimated as 𝐸𝑑
𝑟 = 𝐸0 −

∑︀𝑅′−1
𝑡=0 (𝑐𝑤𝑣

2
𝑡 + 𝑐𝑒𝜅𝑔)𝑙𝑡 [14], where 𝑅′ is the number of road segments of

the shortest route, and 𝑣𝑡 and 𝑙𝑡 are the speed limit and length of the 𝑡𝑡ℎ road segment, respectively. The
taxicab’s SoC at the location can be represented as:

𝑆𝑜𝐶(𝑑) =

{︃
𝐸𝑑

𝑟 /𝐸0, if 𝐸𝑑
𝑟 > 0

0, otherwise.
(6)

We use a natural number 𝜇𝑖 to denote the number of chargers deployed in region 𝑔𝑖. We set 𝑏𝑖 = 0, if
𝜇𝑖 = 0; 𝑏𝑖 = 1, if 𝜇𝑖 > 1. Then, the expected SoC of the taxicabs at a region 𝑔𝑗 ∈ 𝐺 is:

𝑆𝑜𝐶(𝑔𝑗) =

𝑀−1∑︁
𝑖=0

𝑓(𝑑𝑖,𝑗)𝑆𝑜𝐶(𝑑𝑖,𝑗)𝑏𝑖, (7)

where 𝑀 is the total number of regions, and 𝑑𝑖,𝑗 is the distance of the shortest route from 𝑔𝑖 to 𝑔𝑗 .

4.4 Optimization Problem

Our objective is to minimize the total deployment cost of the chargers, maximize the opportunity of
picking up passengers at the charger positions, and meanwhile ensure that at each region, the expected
SoC of a taxicab is higher than a threshold 𝜂 (e.g., 20%). 𝜂 is determined so that a taxicab can reach
the nearest charger with 𝜂 SoC left. We can set 𝜂 to be a relatively high value, so that the taxicabs are
always operable with high confidence. Meanwhile, the charging rate of the deployed chargers must be
able to support the power demands from all the taxicabs. According to Equation (5), we can derive the
battery consumption rate for each taxicab as 𝜑 = Δ𝐸𝑐

Δ𝑡 = 𝑐𝑤𝑣
3 + 𝑐𝑒𝜅𝑔𝑣. Hence, the battery consumption

rate depends on the speed limit of every road segment. That is, as the speed limit 𝑣 increases, the
battery consumption rate increases. To derive the maximum battery consumption rate 𝜑𝑚𝑎𝑥, we use the
maximum speed limit 𝑣𝑚𝑎𝑥 of the entire road map. Finally, the optimization problem is formulated as:

minimize
∑︁
𝑔𝑖∈𝐺

𝜔0𝜇𝑖

maximize
∑︁
𝑔𝑖∈𝐺

𝜌(𝑔𝑖)𝜇𝑖

subject to 𝑆𝑜𝐶(𝑔𝑖) > 𝜂,∀ 𝑔𝑖 ∈ 𝐺

𝒞
∑︁
𝑔𝑖∈𝐺

𝜇𝑖 > 𝜑𝑚𝑎𝑥𝑉

𝜇𝑖 ∈ N,∀ 𝑔𝑖 ∈ 𝐺,

(8)

where 𝜔0 is a constant representing the unit cost of deploying a charger, 𝒞 is the charging rate of one
charger, and 𝑉 is the total number of taxicabs driving in the road map. This problem tries to minimize
the total deployment cost of the chargers and maximize the total region scores covered by the chargers
with two constraints: i) the expected SoC at any region is no less than threshold 𝜂, and ii) the total
charging rate of the deployed chargers is not less than the total battery consumption rate of the electric

taxicabs. Given source location 𝑔𝑖 and destination location 𝑔𝑗 , the coefficient 𝑓(𝑑𝑖,𝑗)𝑆𝑜𝐶(𝑑𝑖,𝑗) in Equation

(7) is determined. Therefore, we can use a constant 𝜆𝑖𝑗 to represent 𝑓(𝑑𝑖,𝑗)𝑆𝑜𝐶(𝑑𝑖,𝑗). As a result, the
optimization problem (8) is actually a classic Multi-objective Integer Programming (MIP) problem, and
its optimal solutions can be found through a branch-and-bound search [6]. We can use an existing solver
(i.e. JuMP [19], MultiJuMP [3]) to obtain its integer-feasible solution. After solving the optimization
problem, we obtain the number of chargers (𝜇𝑖) in each selected region for charger deployment. For each
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selected region, we rank the landmarks within the region by their daily average number of passenger
requests in descending order, and assign the 𝜇𝑖 chargers to the top ranked 𝜇𝑖 landmarks accordingly.

Note that the more passengers appear in a region (i.e., larger 𝜌(𝑔𝑖)), the more opportunity the taxicabs
will have in picking up the passengers in the region [33]. Meanwhile, the chargers will attract vacant
taxicabs to wait in the region, namely create the opportunity of picking up passengers for the taxicabs.
Therefore, our optimization problem has considered maximizing the opportunity of picking up passengers
for the regions. In our future work, we will explore the accurate relationship between the likelihood of
passenger appearance and the distribution of vacant taxicabs to better describe the opportunity of picking
up passengers in the regions.

4.5 Taxicab Dispatching

During the driving process, the taxicabs follow the rules below in order to quickly discover passengers.
1. If a vacant taxicab finds that its SoC is below certain level 𝜃 (e.g., 80%), it moves to the nearest

charger and randomly selects a period of waiting time (e.g., 5 to 30 minutes), which is the usual
waiting time of taxicab drivers [33].

2. When a taxicab’s SoC is below 𝜂 (e.g., 20%), it seeks the nearest charger to get a full recharge. Note
the charging rate of the state-of-the-art vehicular wireless charging system, say 𝒞, is 150 kW [10].
This means for a taxicab with a battery capacity of 75 kWh, it can be charged with 20% of SoC
within around 7 minutes, which is consistent with the length of time that the taxicabs usually spend
on waiting for passengers [31]. In this case, the time required for fully recharging a taxicab is around
30 minutes. Note a full charge can only support a taxicab to drive for around 300 km. However, a
taxicab in a metropolitan road network usually needs to drive 800 km in one day [31]. This means
that a taxicab needs to charge around 3 times (i.e., roughly 2 hours) to support its daily operation,
during which it cannot serve any passenger. Therefore, instead of letting a taxicab be idle for such a
long time, we let it charge opportunistically while waiting for passengers.

3. When a vacant taxicab’s SoC is above 𝜃, it cruises between chargers to seek passengers.
4. When a taxicab receives a passenger request before or during charging, if its SoC is above 𝜂 and is

sufficient for the travel and subsequent charging, it will stop charging and pick up the passenger;
otherwise, it declines the request since maintaining operability has the highest priority. Note that once
the taxicab starts to serve a passenger request, it won’t stop to charge again until it completes the
current request. For the detailed scheduling of the taxicabs, we refer to existing taxicab dispatching
methods [28, 29, 33].

5. Our charger deployment ensures that there are chargers in less popular regions because the deployed
chargers need to maintain the taxicabs’ SoC to be above the threshold. However, the taxicabs may
not want to serve in less popular regions. To motivate the taxicabs to stay in less popular regions
more often, we specify the unit charging price in less popular regions to be lower (e.g., $0.11 per
kWh), and the unit charging price in popular regions to be higher (e.g., $0.22 per kWh). We leave
the exploration of the optimized pricing strategy for balancing the taxicabs to our future work.

Since a taxicab only waits for 5 to 30 minutes at a charger, cruises between chargers to seek passengers,
and meanwhile our charger deployment makes it very likely for a taxicab to pick up a passenger while
waiting, the taxicabs are moving around and able to serve the passengers widely distributed in the city.
Note the above parameters can be adjusted according to different service requirements. PickaChu can
easily adopt the taxicab dispatching strategies in previous works [28, 29, 33], which is not our focus in
this paper. In a centralized dispatching system, when the system receives a passenger’s request, it will
find the nearest vacant taxicab and notify it of the pick-up location [33]. In a distributed dispatching
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system [28, 29], a taxicab receives passenger request from nearby taxicabs through vehicle-to-vehicle
communication, and decides the route to the location.
Though we allocate different numbers of chargers to different regions, it is still possible that when a

taxicab arrives at a charger, it must wait in a waiting queue. Currently, the number of chargers in each
region is determined based on the likelihood of passenger appearance. Therefore, each taxicab can quickly
pick up a passenger and leave the charger. Namely the case of a taxicab waiting for an available charger
should be rare. Moreover, we let each taxicab start looking for an available charger as long as its SoC is
below 80%, and it will keep moving between the chargers until it finds an available charger. Thus, the
taxicab will not just wait at a charger position for its turn of charging. Therefore, the possible waiting
time caused by an unavailable charger is included in the seeking time for charger. We will further study
how to optimize the number of chargers at a charging position so that the taxicabs’ seeking time caused
by looking for an available charger can be minimized.

In the current design of PickaChu, we mainly focus on regular passenger appearance with stable periods
(e.g., airport passenger flows, daily rush hours). For disruptions or unplanned events, we rely on existing
taxicab dispatching methods [28, 29, 33] to guide the taxicabs to adapt to the variation of passenger
appearance frequency. We leave the comprehensive solution of this problem as our future work. The
chargers are deployed one time. When the long-term traffic flows in the city change significantly, the
wireless chargers need to be re-deployed.

5 PERFORMANCE EVALUATION

5.1 Comparison Methods

To evaluate PickaChu’s performance in reducing the idle time and supporting the continuous operability
of electric taxicabs in a city, we compare it with a representative charging station deployment algorithm:
Optimal Charging Station Deployment [17] (OCSD in short), and a representative taxicab guiding system:
cruising on purpose (pCruise in short) [29]. We also evaluate the performance of existing deployment of
plug-in charging stations in Shenzhen (Baseline in short) as the baseline.
To make the methods comparable, we assume that they all use the same wireless chargers. In OCSD,

based on the analysis of taxicab mobility, the chargers are deployed to minimize the taxicabs’ average
seeking time for the nearest charger. To make methods comparable, in PickaChu, the deployment of
chargers is determined by our optimization solution with the same cost as in OCSD. To demonstrate
that PickaChu can further reduce the deployment cost, we also evaluated PickaChu with its optimization
problem solution that minimizes deployment cost (denoted by OptPickaChu). We let OCSD, PickaChu,
OptPickaChu, and Baseline all use the centralized taxicab dispatching system explained in Section 4.5.
As OCSD and Baseline do not have a strategy to guide pick-ups, the taxicabs wander around in the road
network to discover passengers before receiving notifications. In pCruise, the taxicabs share passenger
information and cruise on the route with the most passenger requests. By communicating with its nearby
taxicabs, each taxicab creates a cruising graph, which is the taxicab’s nearby road network with vertices
representing intersections, and edges weighted by the probability of finding a potential passenger. The
probability is calculated as the number of unserved passenger requests over the total number of passenger
requests found on the route. Then it uses the cruising graph to select the route that has the maximum
probability of finding a passenger. In pCruise, we use the same charger deployment as that in OCSD. In
all the methods, when a taxicab’s SoC is below 20%, it drives to the nearest charger to get a full recharge,
during which they won’t serve passengers.
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Parameters Setting
Charging rate 𝒞 150 kW
Charger unit price 𝜔0 $2,000
Air drag coefficient 𝑐𝑤 0.3
Rolling resistance coefficient 𝑐𝑒 0.01
Mass of a taxicab 𝜅 2,020 kg

Gravity acceleration 𝑔 9.8 m/s2

Battery capacity of a taxicab 𝐸0 75 kWh
SoC threshold 𝜂 20%
Vacant SoC threshold 𝜃 80%
Maximum speed limit 𝑣𝑚𝑎𝑥 60 mph

Table 2. Table of parameters.

Fig. 16. Comparison of deployed chargers.

5.2 Experiment Settings

Parameter Settings: The parameters related to chargers, vehicles, and batteries are listed in Table 2.
As BYD e6 is a widely used vehicle model among the taxicabs in Shenzhen [17], we use it to determine
the parameters for taxicabs. After solving the optimization problem, OptPickaChu selects 93 regions
out of 557 regions to deploy 350 wireless opportunistic chargers. PickaChu selects 125 regions to deploy
480 chargers, as shown in Figure 16. We observe that OptPickaChu results in fewer chargers than
PickaChu since OptPickaChu additionally aims to minimize deployment cost. We can see that PickaChu’s
deployment is generally consistent with the distribution of the existing 81 charging stations, which means
it is extensible from the current charger deployment scheme. As for the calculation of revenue and cost,
the unit electricity cost of driving was set to $0.5/mile, the unit service loss cost of charging (which is the
possible loss of revenue earning opportunity) was set to $0.1/hour, and the unit revenue of traveling with
passengers was set to $1.5/mile.
Simulation Settings: With the deployment schedule, we use SUMO [13] to simulate the operation of

1,000 taxicabs on Shenzhen’s road network for 24 hours. In SUMO, taxicabs drive by following the traffic
model we built in Section 4.3. The location and time of passenger requests follow the actual passengers’
requests happened on July 15, 2015. We converted OpenStreetMap road network of Shenzhen to a SUMO
road network file. We assume that each taxicab can only serve one passenger in a travel [29].
The metrics we measured are:

∙Ratio of an operation phase: the average hourly ratio of the time duration of respective operation phase
(i.e., cruising, travel, seeking chargers, charging) of all the taxicabs. For an operation phase, we first record
the average hourly ratio of each taxicab during the day. Then, we calculate the average of the ratios of all
the taxicabs. We also show the CDF of vehicles in terms of the time duration for each operation phase.
∙Revenue: the daily average revenue earned by all the taxicabs through traveling with the passengers. It
is calculated by multiplying all the taxicabs’ daily traveling distance with the unit revenue of traveling
with passengers. We also show the CDF of vehicles in terms of the daily revenue for traveling phase.
∙Cost : the sum of the daily average cost of the electricity consumed by all the taxicabs through driving
(i.e., cruising, seeking chargers, and traveling) and the daily average service loss cost caused by charging.
The cost of cruising, seeking chargers and traveling is calculated by multiplying the driving distance of
respective phase with the unit electricity cost of driving. The cost of charging is calculated by multiplying
the charging time with the unit service loss cost. We also show the CDF of vehicles in terms of the daily
cost for each idle operation phase.
∙Vehicle SoC : we measure the SoC of each taxicab at each hour during a day, and calculate the median,
5𝑡ℎ percentile and 95𝑡ℎ percentile values to compare the performance of the methods in supporting the
continuous operability of taxicabs.
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Fig. 19. CDF on the durations of different operation phases.

∙Overall energy supply overhead : the energy supply overhead on all chargers in kWh. We measure it
under different hours during a day to observe different methods’ charging pressure on the power grid.
∙The number of served passengers : the number of passengers served by the taxicabs. We measure it under
different hours during a day to compare the performance of the methods in serving passengers.

5.3 Experimental Results

5.3.1 Ratio of Each Operation Phase. Figure 17 shows the average hourly ratio of each operation phase
of all the taxicabs throughout a day. We see that for all the idle operation phases (i.e., cruising, seeking
and charging), PickaChu has the lowest ratio. We also see that compared with pCruise, OCSD and
Baseline, the cruising time in PickaChu is greatly reduced. Correspondingly, the time that PickaChu’s
taxicabs spend on traveling with passengers on board (92%) is about 15% higher than that of pCruise
(77%), 35% higher than that of OCSD (57%), and 33% higher than that of Baseline (59%). In OCSD,
to discover passengers, the taxicabs must wander around in the road network, which increases cruising
time. What’s worse, with more time spent on cruising, the taxicabs have to charge more frequently to
remain operable, which leads to higher ratios of seeking phase and charging phase than the other methods.
As for pCruise, the taxicabs are always guided to the route with the highest probability of discovering
passengers, which greatly reduces cruising time. However, the effective discovery of passengers still causes
the taxicabs to waste much time on approaching the potential passengers. Compared with Baseline, only
OCSD spends more time on cruising, which is caused by its inefficient discovery of passengers. But we
also notice that Baseline’s time of seeking chargers ranks the highest, which means Shenzhen’s current
deployment of charging stations needs improvement in accessibility. In PickaChu, since the taxicabs
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Fig. 22. CDF on the cost/revenue of different operation phases.

are allowed to stay at an opportunistic charger for some time, and the regions with chargers have high
likelihood of passenger appearance, many taxicabs find passengers during their stay. Compared to pCruise,
this strategy further reduces the time wasted on cruising for passengers and saves energy for the taxicabs.
We notice that compared with other methods, PickaChu also reduces the charger seeking time. This is
because that taxicabs cruise between chargers, and are less likely to exhaust their power.
Figure 18 shows the variation of the ratios of the idle phases by hour throughout a day. We can see

that in pCruise and OCSD, the taxicabs have to spend a large portion of time on cruising during each
hour. Also note that there are small bumps on the cruising time curves in pCruise and OCSD. This
is because there are not enough passenger pick-up requests appearing between 05:00 and 07:00, so the
ratios of cruising phase in pCruise and OCSD are increased during these hours. In contrast, in PickaChu,
except for the first few hours, during which most of the taxicabs do not need to get charged, and keep
cruising between the regions with opportunistic chargers, the time on cruising is largely replaced with the
time of seeking chargers and charging in the following hours.

Figure 19 demonstrates the CDF of the taxicabs on the time durations of different phases. Figure 19 (a)
shows that the taxicabs’ cruising phase durations in PickaChu (< 1 hour) are much shorter than those of
the other methods. Figure 19 (b) shows that the taxicabs’ traveling phase durations in PickaChu and
OptPickaChu (> 20 hours) are significantly longer than those of the other methods. This is caused by
their difference in operation strategies. Figure 19 (c) shows that due to the same deployment of chargers
in pCruise and OCSD, they have similar distributions of seeking phase durations (1 hour ∼ 2.5 hours).
Baseline has much longer seeking phase durations (1 hour ∼ 6.5 hours), which means that the current
charger deployment needs improvement. In Figure 19 (d), all the taxicabs in PickaChu have much shorter
charging phase durations (< 0.8 hours) than the others, which means it also reduces the need for recharge.
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Except for the seeking phase, the distribution of other operation phase durations in PickaChu is much
more concentrated than the others, which further proves the consistency of PickaChu’s effectiveness
on all the taxicabs. We also see that OptPickaChu is slightly worse than PickaChu in reducing idle
operation time, though it still outperforms other methods. This shows that PickaChu can achieve better
performance on operation efficiency even with relatively lower deployment cost than the others.

In addition, we also measured the average revenue resulted from the traveling phase, and the average
cost resulted from the other idle phases during the day, which are shown in Figure 20. We can see that
compared with pCruise, OCSD and Baseline, OptPickaChu and PickaChu can increase the average
revenue of all the taxicabs’ by approximately more than $250, $500 and $600 per day, respectively, with
almost the same average cost. We also measured the changes of the costs of different methods under
various hours, which are shown in Figure 21. The reason is the same as that of Figure 18. We also
measured the distribution of the revenues, and the distribution of the costs of the taxicabs, which are
shown in Figure 22. We can see that most of the taxicabs in PickaChu and OptPickaChu spend less than
$50 on cruising and less than $300 on seeking chargers, which are less than those of the other methods.
The taxicabs’ costs spent on seeking chargers in PickaChu and OptPickaChu are comparable to those of
the other methods. However, the revenues of the taxicabs in PickaChu and OptPickaChu (> $1,400) are
conspicuously higher than those of the other methods.
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Fig. 23. Vehicle SoC.

5.3.2 SoC Maintenance of Taxicabs. We measured the SoCs of all
the taxicabs at each hour throughout a day. As we cannot show all
the SoCs in a figure, we plot the median, 5𝑡ℎ and 95𝑡ℎ percentiles
of SoCs of all the taxicabs at a few time points in Figure 23. We see
that OptPickaChu and PickaChu maintain almost the same SoC
levels as the other methods. However, as observed in Section 5.3.1,
the taxicabs in the other methods spend more time on idle phases,
which results in a lower energy efficiency and lower profits. Note
that OptPickaChu provides a comparable SoC as the other methods
during most of the time, although it has fewer deployed chargers.
This demonstrates its effectiveness on minimizing the deployment
cost while still guaranteeing the SoC of taxicabs.

5.3.3 Overall Energy Supply Overhead. Figure 24 shows the overall energy supply overhead of different
methods under different hours throughout a day. The results follow: OCSD>Baseline>pCruise>PickaChu
≈OptPickaChu. We can see that PickaChu and OptPickaChu result in the least pressure on the power
grid given the same number of taxicabs. Rather than cruising for passengers as pCruise, Baseline and
OCSD, the taxicabs in PickaChu and OptPickaChu can wait at the chargers for their next passengers.
Moreover, since the taxicabs in OCSD and Baseline cannot effectively harvest passengers from chargers,
they drive more idle trips and require more charging.
It is worth mentioning that in the first few hours, the energy supply overhead increases significantly.

For pCruise, Baseline and OCSD, the peak that appears between 05:00 and 07:00 is caused by the lack of
passengers. Taxicabs start with 100% SoC. Since there are few passengers during 00:00-07:00, the taxicabs
in pCruise, Baseline and OCSD keep cruising for passengers and their SoC keeps decreasing. Finally, all
taxicabs exhaust their SoC and recharge at about the same time, resulting in a peak in charging overhead.
After then, their SoC exhausts at different times caused by different passengers. Therefore, they charge at
different times, resulting in no peaks in charging overhead. The energy supply overhead in PickaChu and
OptPickaChu stabilize more quickly, which reflects their resilience against the variation of passengers.
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5.3.4 Service Performance. Figure 25 shows the numbers of served passengers of different methods
during different hours throughout a day. We see that during the hours with relatively fewer requests
(01:00-08:00), the results follow: PickaChu>OptPickaChu>pCruise>OCSD≈Baseline. After then, pCruise
can serve slightly more passengers (< 1,000) than PickaChu, OCSD and Baseline. Figure 26 shows the
distribution of the waiting time of the passengers (upper part), and the average, 5𝑡ℎ and 95𝑡ℎ percentiles
of the waiting time of the passengers (lower part) in different methods. We can see that the passengers’
average waiting time in OptPickaChu (8 minutes) is longer than the other methods. Since there are
fewer chargers in OptPickaChu, so the chargers are more sparsely distributed in the road network.
Since the vacant taxicabs cruise between the chargers, the waiting time of the passengers in the regions
without chargers is usually very long, which results in the longer average waiting time of passengers in
OptPickaChu. We also find that the results of PickaChu (5 minutes), OCSD (5 minutes), and Baseline (6
minutes) are comparable to each other, and the result of pCruise is the shortest (2 minutes). In PickaChu,
most of the passengers are picked up in the regions with chargers. Since the distance from the taxicabs to
the passengers is bound by the region size (i.e., 2,000 meters), the passengers’ waiting time is not very
long. In OCSD and Baseline, the taxicabs randomly cruise in the road network, which means most of
the passengers are picked up during the cruising of the taxicabs. Thus, the passengers’ waiting time is
comparable to that of PickaChu. In pCruise, the taxicabs are always cruising on the routes with the
maximum probability of finding a passenger, so the passengers have the shortest waiting time.

When there are few pick-up requests, PickaChu serves more passengers than pCruise. This is because
in pCruise, through vehicle-to-vehicle communication, a taxicab may not discover sufficient passengers
to generate an effective cruising graph for guidance. On the contrary, the taxicabs in PickaChu wait at
the regions with high likelihood of passenger appearance, which helps the taxicabs efficiently discover
passengers. When there are many pick-up requests, the taxicabs in pCruise can easily discover requests.
Hence, pCruise can serve more passengers than PickaChu during this time, but at the cost of more
energy consumption, as mentioned in Section 5.3.3. We see that PickaChu always outperforms OCSD and
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Baseline, which spend more time on cruising, seeking and charging. In addition, OptPickaChu provides
service performance comparable to PickaChu, although PickaChu deploys more chargers. This is because
the redundant chargers do not significantly benefit the discovery of passenger requests. This shows the
effectiveness of OptPickaChu on minimizing the deployment cost while achieving our objectives.
Figure 27 shows the service rate (i.e., ratio between the number of served passengers and the total

number of passenger requests) of each region. Figure 28 shows the distribution of daily average passenger
requests in the regions. We can see that even for the distant regions with rare appearance of passengers
(e.g., northwestern regions), the service rates were kept at high levels. Namely, the distribution of service
rates is balanced among the regions. Note the service rates in the southern regions are relatively low.
This is because in the simulation, the 1,000 taxicabs, which is limited by the simulator, cannot serve all
the passenger requests.

5.3.5 Effectiveness of Components. As discussed in Section 4.2.3, the additional consideration of
building functionalities (�̄�𝑖) in calculating the region scores in Equation (3) can help more accurately
reflect the likelihood of passenger appearance in different regions, and then better guide the deployment
of wireless chargers. Additionally considering the frequency of passenger appearance in Equation (3)
serves the same purpose. To demonstrate the effectiveness of these two components, we recalculated the
score of each region (𝜌(𝑔𝑖)) without multiplying the weighted sum of the building functionalities (denoted
as NoBuilding), and without multiplying the weighted sum of the passenger appearance frequencies
(denoted as NoFrequency). Based on the new region scores, we redetermined the deployment of chargers,
and measured the average costs and revenues of the taxicabs during the day as shown in Figure 29. In
addition, we also measured the number of passengers served by the taxicabs in different methods under
different hours as shown in Figure 30, and the distribution of the travel phase durations of the taxicabs
as shown in Figure 31 and the distribution of the revenues of the taxicabs as shown in Figure 32.

We can see that compared with NoBuilding and NoFrequency, PickaChu increases the average revenue
by $150 and $75 per taxicab, respectively, while the costs are almost equal. Also, PickaChu can serve
at most 1,000 more passengers than NoFrequency, and at most 2,500 more passengers than NoBuilding.
This is because with considering these two components, the region scores can more accurately reflect the
likelihood of passenger appearance and the resultant charger deployment in PickaChu can provide higher
opportunity of picking up passengers for the taxicabs.

5.3.6 Impact of the Number of Chargers. Our optimization problem outputs the selected regions for
deploying chargers, and the number of chargers at each selected region. To illustrate the impact of the
total number of chargers on the taxicabs’ operation efficiency, from the optimally selected regions, we
randomly picked 10 to 90 regions to deploy the chargers, while the number of chargers per region remains
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the same as that in the optimization output. We then measured the average, 5𝑡ℎ and 95𝑡ℎ percentiles of
the revenues and the costs of the taxicabs under various total numbers of chargers, which is shown in
Figure 33. We can see that along with the increasing of the total number of chargers, the average revenue
of the taxicabs keeps increasing, and the average cost of the taxicabs keeps reducing. This is because
the more chargers deployed, the less idle miles the taxicabs need to drive in seeking the chargers, which
reduces the taxicabs’ cost. Meanwhile, the taxicabs’ opportunity of picking up passengers also increases
with the increased number of chargers, which increases the taxicabs’ revenue.

We also measured the distribution of the numbers of the chargers in the regions, which is shown in
Figure 34. We can see that there are fewer regions deployed in OptPickaChu than in PickaChu (93 vs.
125), and the majority of the regions in OptPickaChu have 3 chargers, and the majority of the regions
in PickaChu have 4 chargers. This is because OptPickaChu has smaller total deployment cost, it must
deploy fewer chargers per region so that the chargers can be deployed to a sufficient number of regions to
support the SoC of the taxicabs. While PickaChu has a higher budget, so it can select more regions to
deploy wireless chargers and deploy more chargers per region.

6 CONCLUSION

The idle time of electric taxicabs is wasteful against making profits and energy consumption. Wireless
charging techniques enable EVs to be charged at their parked positions. Our proposed PickaChu is the
first work that aims at both maximally reducing the taxicabs’ idle time and supporting the continuous
operability of the taxicabs through proper deployment of wireless opportunistic chargers. Our analytical
results on a metropolitan-scale taxicab dataset lay the foundation of the design of PickaChu. We assign
scores to regions to represent the likelihood of passenger appearance in the regions, and model taxicab
mobility to calculate the expected SoC of the taxicabs in each region. We design a multi-objective
optimization problem to minimize the total deployment cost of chargers, maximize the passenger pick-
up opportunity at the chargers, and ensure the continuous operability of the taxicabs. We conducted
trace-driven experiments on SUMO to verify the performance of PickaChu. Compared with the previous
methods, PickaChu reduces the taxicabs’ daily average idle time by 81% and increases the taxicabs’
daily revenue by more than 50% under the same charger deployment cost. When minimizing the charger
deployment cost, PickaChu reduces the number of chargers by 27%, but still reduces the taxicabs’ daily
average idle time by 61% and increases the taxicabs’ daily revenue by more than 40%.
The components of PickaChu can also be used for the planning of many existing charging facilities,

such as fast charging stations, and battery swapping stations. In future work, we will explore some other
region partitioning methods to improve the charger deployment (e.g., considering building size, city layout
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plan, and possible waiting queue length). We will also consider the pattern of passenger appearance to
guide the taxicab pick-ups proactively before receiving passenger requests.
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