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Abstract—In this paper, we focus on the multi-copy routing in Vehicle Delay Tolerant Networks (VDTNSs) consisted of taxis. Multi-copy
routing can balance the network congestion caused by broadcasting and the efficiency limitation in single-copy routing. However,
current multi-copy routing algorithms often let different copies of each packet search the destination node independently, which leads to
a low utilization of copies. To solve this problem, we propose a fractal Social community based efficient multi-coPy routing algorithm in
VDTNs, namely SPread, by taking advantage of social network features (i.e., weak ties and fractal community structure) measured in
two large taxi-based Vehicle NETwork (VNET) traces. SPread carefully scatters different copies of each packet to different communities
towards the destination community. This ensures that different copies search the destination community through different weak ties. For
the routing of each copy, current routing algorithms either fail to exploit nodes’ reachability information to others (e.g., centrality based
methods) or only use single-hop reachability information (e.g., community based methods). In order to overcome such drawbacks,
inspired by the personalized PageRank algorithm, we design new algorithms for calculating vehicles’ multi-hop reachability to different

communities/vehicles dynamically. Therefore, the routing efficiency of each copy can be enhanced. Furthermore, we propose an
Advanced SPread (denoted by ASPread) by exploiting the spatio-contact correlation of the community and the different sizes of
communities. ASPread also sends a larger number of copies of a packet to a community with a larger number of vehicles and vice
versa. Finally, extensive trace-driven simulation demonstrates the high efficiency of SPread in comparison with state-of-the-art routing
algorithms in DTNs, as well as the enhancement brought by ASPread.

Index Terms—Vehicle Delay Tolerant Networks, Network measurement, Multi-copy routing algorithm, PageRank, Community

clustering, Weak ties, Fractal structure

1 INTRODUCTION

Vehicle Delay Tolerant Networks (VDTNSs) is one kind
of Delay Tolerant Networks (DTNs) in which vehicles
equipped with short-range transmission capabilities are in-
terconnected to form a Vehicle NETwork (VNET). Recently,
some novel applications and services built on the top of
VDTNs have attracted much attention, especially those that
can provide information about weather conditions, road
safety, traffic jams, and speed limit without the need of
infrastructures. In this paper, we are particularly interested
in VDTNSs consisted of taxis due to its ubiquitous existence
and similarities across the world, which makes the outcome
of this paper be easily deployed broadly.

However, current VDTN routing fails to present satis-
factory performance due to challenges rooted at the char-
acteristics of VDTNs such as high vehicle mobility, dy-
namic topology change, sparsity of vehicles, and short,
disruptive, and intermittent connectivity. Thus, multi-copy
routing, which replicates a limited number of copies for
each packet to the network, appears to be more favorable
in VDTNs. By controlling the number copies, it is able to
balance the network congestion caused by broadcasting and
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the efficiency limitation of single-copy routing. Therefore,
this paper focuses on multi-copy routing.

The infrequent contacts among vehicles in VDTNs are
called weak ties according to the weak tie theory [1]. Weak
ties connect different communities (i.e., densely connected
subgraphs in the whole contact graph [2-5]). Previous study
shows that weak ties play an important role in the informa-
tion spreading [1]. In other words, whether weak ties are
efficiently utilized affects the routing efficiency in VDTNS.
However, in current multi-copy routing algorithms [6-15],
the forwarding of different copies of a packet is independent
from each other. Thus, different copies of the same packet
may be allocated nearby and search through the same set
of weak ties. Such low utilization of weak ties decreases the
efficiency of these multi-copy routing algorithms.

The forwarding of each copy in the multi-copy routing
algorithms can be considered as the problem of single-copy
routing. Such a forwarding process (in both multi-copy and
single-copy routing algorithms) can be divided into three
categories: probabilistic routing [12, 13, 16, 17], centrality
based routing [18, 19] and community based routing [20, 21].
They all have certain drawbacks as follows. The probabilis-
tic routing forwards packets gradually towards their desti-
nations through intermediate nodes with a higher probabil-
ity to reach the destination node. However, a VDTN usually
contains thousands of sparsely distributed vehicles (nodes).
This leads to a low chance for a packet to encounter a suit-
able relay vehicle. The community based routing considers
nodes’ one-hop reachability to reach different communities
(such as encounter frequency). Thus, each packet owns a
great change to encounter a suitable relay vehicle. Here, the
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reachability of node 7 to a target j (a community or a vehicle)
means the possibility that a packet can reach j through
i. However, community based routing algorithms lack the
ability to count multi-hop reachability. Centrality based
routing exploits different centrality metrics, e.g., degree and
betweenness, to improve the routing efficiency in which the
multi-hop information can be considered. However, these
centrality metrics only measure the importance of nodes
in forwarding packets globally and cannot reflect a node’s
reachability to different nodes.

Furthermore, many routing algorithms more or less take
advantage of the social network features of human mobil-
ity, such as community structure [18, 19] and important
nodes [20, 21]. However, for VNETS, it is unclear whether
the mobility of vehicles, especially the taxis, have such
features since taxi movement highly depends on the des-
tinations from random customers.

To deal with the above problems, we first transfer VNETs
to contact graphs based on the contact durations among ve-
hicles. Then, we analyze and verify social network features
of VNETs (which is used to support the system design). In
the analysis, we find three useful observations as follows: (i)
There are a few very important vehicles which are defined
as vehicles with high degrees (i.e., numbers of edges in the
contact graphs) and PageRank values. PageRank is the most
popular criterion for ranking the importance of pages in
World Wide Web. It is calculated by counting the number
and quality of edges to pages. Forwarding packets to such
important vehicles can enhance the routing efficiency. (ii)
VNETs consist of communities which are connected by weak
ties. (iii) These communities present fractal structure, i.e.,
the pattern that many small, highly connected communities
can merge in a hierarchical manner into larger, less cohesive
communities recursively in networks [22].

Then, in order to improve the efficiency of multi-copy
routing in VDTNs, we design a weak tie based multi-
copy routing algorithm by exploiting the fractal structure of
the community. In this algorithm, different copies of each
packet are scattered to different communities which are
connected with the destination community through weak
ties. Then, different copies of each packet can search the
destination community through different weak ties. This im-
proves the routing efficiency since there is a high probability
that at least one connected
weak tie (i.e., one path)
to the destination commu-
nity can be found dur-
ing the routing. For ex-
ample, as shown in Fig-
ure 1, in current multi-
copy routing algorithms,
different copies of a packet
are all allocated to com-
munity 1 and need to
reach the destination com-
munity through weak tie A. However, weak tie A maybe
disconnected to the destination community at the routing
time (which is quite normal in VDTNSs). In our weak tie
based multi-copy routing algorithm, we scatter different
copies of a packet to different communities through weak
ties (ie., E, F, G, H). Different copies can search the
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Fig. 1: Comparison between
SPread and other multi-copy
routing algorithms.
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destination community through different weak ties (i.e., 4,
B, C, D) simultaneously and finally encounter a connected
weak tie D to the destination community, which enhances
the routing efficiency.

For the routing of each packet copy, in order to en-
hance the routing efficiency and overcome the drawbacks
in state-of-art forwarding algorithms, we design person-
alized CommunityRank and VehicleRank algorithms for
calculating multi-hop reachability of vehicles to differ-
ent communities and vehicles, which are inspired by the
personalized PageRank algorithm [23]. By taking advan-
tage of important nodes and the community structure
in VNETs, we divide the routing into two phases: inter-
community and intra-community. In the inter-community
phase, a packet is forwarded towards the destination com-
munity by selecting relay vehicles based on the multi-
hop reachability to communities. In the intra-community
phase, a packet is forwarded to its destination vehi-
cle based on encountered vehicles’” multi-hop reachabil-
ity to vehicles in the same community. The consideration
of multi-hop reachability
enhances the single-copy
routing efficiency. For ex-
ample, as shown in Fig-
ure 2, vehicle ¢ has a high
reachability to community
A, while vehicle j has a
high reachability to com-
munities B and C. In cen-
trality based routing algo-
rithms, all the packets will
choose vehicle j as the
next hop relay vehicle. But in our algorithms, packets with
a destination vehicle in community A will choose vehicle 4
instead of j as their relay vehicles.

We further propose an Advanced SPread (denoted by
ASPread) on the basis of SPread. It incorporates a solution
that can improve the selection of relay vehicles by exploiting
the spatio-contact correlation of a community, which means
that vehicles in the same community tend to meet each
other in a certain small geographical area. It also determines
the number of copies of a packet for different communities
based on their sizes. That is, it sends more copies of a packet
to a community with a larger number of vehicles. Both
methods improve the routing performance of SPread.

The main contributions of this paper are as follows:

Community D

Community A
\.I
i Community C

Community B

Fig. 2: An example of rout-
ing by personalized important
nodes.

We measure the important nodes, communities, and
fractal structure of communities in real VNET traces
recording the mobility of taxis.

We design a weak tie based multi-copy routing algo-
rithm to improve the routing efficiency by exploiting
the fracture structure of communities in VNETs.

We design personalized CommunityRank and Vehi-
cleRank algorithms to calculate a vehicle’s multi-hop
reachability to different communities and vehicles.
The new algorithms can enhance the efficiency of the
forwarding of each packet copy.

We propose an advanced SPread (ASPread) that fur-
ther improves the performance of the basic SPread
routing algorithm.
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The rest of this paper is organized as follows. Section 2
presents the related work. Section 3 measures two real
VNET traces. Section 4 introduces the detailed design of
SPread. Section 5 presents the detailed design of ASPread. In
Section 6, the performance of SPread and ASPread is evalu-
ated by trace-driven experiments. Section 7 summarizes the
paper with remarks on our future work.

2 RELATED WORK

There are a couple of ways to categorize routing algorithms
in the context of delay tolerant networks [24]. We used the
number of copies for each packet in this paper.

Multi-copy routing algorithms: Spyropoulos et al. [6]
introduced a new family of routing schemes that “spray” a
few copies into the network and forward each copy inde-
pendently toward the destination node. SARP [8] predicts
the destination nodes’ future locations and selects relay
nodes which have high probability to reach the locations.
Bian ef al. [7] provided a scheme for controlling the number
of copies per packet by adding an encounter counter for
each node. If the counter reaches the threshold, then the
packet will be discarded. Uddin et al. [9] considered the
energy efficiency in designing multi-copy routing algorithm.
Both PROPHET [12] and MaxProp [13] use encounter his-
tory to evaluate nodes’ future encounter probabilities to
meet other nodes. Such probability information is used
to decide the priority (i.e., order) of copy messages to
encountered nodes. The work in RAPID [14] and Max-
Contribution [15] further comprehensively model the dis-
semination of packets (and copies) as a resource allocation
problem (i.e., forwarding opportunities and storage) for
optimized performance. However, in previous multi-copy
routing algorithms, different copies of each packet may be
forwarded through few the same weak ties, which decreases
the multi-copy routing efficiency. In our weak tie based
multi-copy routing algorithm, we carefully scatter different
copies of each packet to different communities. Thus, differ-
ent copies are forwarded through different weak ties, which
enhances the multi-copy routing efficiency.

Single-copy routing algorithms: For probabilistic rout-
ing algorithms, MV [16] evaluates a bundle’s delivery prob-
ability by learning the meetings between nodes and fre-
quently visited locations of nodes. The work in [17] designs
a comprehensive probabilistic routing metric that considers
inter-meeting time among nodes and the remaining hop-
count and lifetime of packets. The idea of probabilistic rout-
ing as also been used in forwarding each copy of packets
in several multi-copy routing algorithms [12, 13]. However,
in many scenarios, a relay node in probabilistic routing
algorithms may not be able to encounter a node that has
a higher “probability” to deliver packets.

Community based routing algorithms exploit the com-
munity structure in DTNs to assist the packet routing.
MOPS [25] groups frequently encountered nodes into a
cluster and selects nodes having frequent contacts with
foreign communities as ambassadors for efficient publish-
subscribe in DTNs. Bubble [19] exploits the social commu-
nity structure in human mobility based DTNs. It designs
a global ranking to forward a packet to the destination
community and a local ranking to help find the destination
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within the destination community. However, community
based algorithms lack the capability to count the multi-hop
reachability to different communities.

Different centrality criteria have been applied in central-
ity based routing algorithms [18, 20, 21]. SimBet [18] adopts
similarity and centrality to forward packets. The similarity
of two nodes is calculated by the frequently encountered
neighbors of two nodes. It assumes that nodes with a
high similarity tend to meet frequently. PeopleRank [20] is
derived by the PageRank algorithm. It calculates the rank
of nodes and forwards packets to the nodes with higher
ranks. Hossmann et al. [21] improved the routing efficiency
by considering the betweennesses of nodes. However, cen-
trality based algorithms lack the capability to exploit the
reachability of nodes to different nodes.

The most similar algorithm with our personalized
CommunityRank and VehicleRank algorithms is PeopleR-
ank [20]. However, PeopleRank counts the importance of
nodes only, while our personalized algorithms exploit multi-
hop reachability of vehicles to different communities and
vehicles. Therefore, our algorithms can further improve the
routing efficiency of each copy.

3 MEASUREMENT OF SoclAL NETWORK FEA-
TURES IN VNETS

The social network features in human mobility networks
have been widely applied in DTN routing [18-21]. However,
it is not clear whether VNETs have these social network
features since vehicles, especially taxis, may follow random
customers’ demands to move. Therefore, we analyze two
real world VNET traces gathered by taxi GPS in different
cities, referred to as Roma [26] and SanF [27]. The Roma trace
contains mobility trajectories of 320 taxis in the center of
Roma from Feb. 1 to Mar. 2, 2014. The SanF trace contains
mobility trajectories of approximately 500 taxis collected
over 30 days in San Francisco Bay Area.

We first transfer the traces to contact graphs based on the
contact durations. The nodes of the graphs are the taxis in
the traces, and the edges are the contacts between taxis pairs.
We naturally think that if two vehicles encounter each other
often, they are in a close relationship. Thus, only contacts
with the accumulative durations longer than a threshold
are considered as edges. We define the threshold as 3000s
in Roma and 5000s in SanF. In this way, we transform
the mobility traces into complex networks and study the
following social network features:

(1) Important nodes: In a complex network, a few nodes
play an important role in guaranteeing the connectivity of
the network and in spreading information [28]. Forwarding
packets to such important nodes can enhance the routing
efficiency. In this paper, we use degree and PageRank to
measure the importance and define important vehicles as
vehicles with high degrees and PageRank values. The de-
gree of a vehicle is calculated by counting the number of the
edges the vehicle has in the contact graph. The PageRank
value of a vehicle is calculated by counting the number and
quality of edges to the vehicle.

(2) Community structure: A network is said to have the
community structure if nodes can be easily grouped into
communities which are densely connected internally [29].
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Fig. 3: The degree distribution of vehicles in Roma and SanF
vehicle networks.
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Fig. 4: The PageRank value distribution of vehicles in Roma
and SanF vehicle networks.

In this section, we use modularity [30] to measure the
community structure. Modularity is the degree to which the
network can be clustered as communities.

(3) Fractal structure feature of the community: The frac-
tal structure feature of the community is the pattern that
many small, highly connected communities can merge into
larger, less cohesive communities recursively in a hierarchi-
cal manner [22]. Previous study [31] indicates that a power
law clustering coefficient distribution is the necessary and
sufficient condition of the fractal structure feature of the
community [32]. Therefore, we measure the clustering coef-
ficient distribution of the two traces for verifying the fractal
structure feature of the community in VNETs. Clustering
coefficient of a vehicle is calculated by quantifying how
close its neighbors are to be a clique (complete graph).

3.1 Important Nodes

Figure 3 shows the degree distribution of the two traces. We
find that the degree distribution approximately follows the
power law for both traces. Figure 4 shows the PageRank
value distribution of the two traces. We find that the distri-
bution also approximately follows the power law, which is
consistent with degree distributions. Figure 3 and Figure 4
indicate that there are a few very important vehicles with
high degrees and PageRank values. Therefore, we conclude
our first observation (O1) as follows:

O1: There are several very important vehicles with high
degrees and PageRank values, which have a high probability to
encounter various and a large number of other vehicles.

3.2 Community Structure in VNETs

Then, we measure the mod-

T Modularit
ularity [30] of each trace by RraCe 001,1721‘1 y
Graphi [33] (A complex network oma :
b SanF 0.78

analysis software). The results are
shown in Figure 5. The modular-
ity values of the two traces are
0.74 and 0.78, respectively. Real world social networks with

Fig. 5: Modularity
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Fig. 6: The topology of the largest connected subgraph in
Roma and SanF vehicle networks.
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Fig. 7: The clustering coefficient distribution of Roma and
SanF vehicle networks.

the community structure usually have a modularity value
between 0.4 and 0.7 [30]. Therefore, such results indicate the
community structure in both traces.

In order to show the community structures clearly, we
draw the topology of the maximal connected component
of the two traces in Figure 6. We find that there are dense
components which are corresponding to different commu-
nities in VNETs. We can also observe the weak ties, which
connect different dense components. Therefore, we conclude
our second observation (02) as the following;:

02: The VNETs have obvious community structures con-
nected by weak ties.

3.3 Fractal Structure Feature of the Community in
VNETs

Figure 7 shows the clustering coefficient distributions of
the two traces. The power law clustering coefficient dis-
tributions shown in Figure 7 indicate that communities in
both traces own the fractal structure feature. Therefore, we
conclude our third observation (O3) as follows:

O3: The communities in VNET5 present fractal structure
feature.

The above three observations show that there are clear
social network features even for the taxi VNETs in which
the mobility is determined by random customers’ demands,
as in human mobility networks [18, 19].

4 SYSTEM DESIGN

Before introducing the detailed design of SPread, we give an
overview of the routing process for a packet as follows:

(1) First, we scatter different copies of a packet to communi-
ties which are close to the destination community through
weak ties (as mentioned in Figure 1 in Section 1), which
improves the multi-copy routing efficiency. Then the routing
of each copy is divided into two phases: inter-community
and intra-community.
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(2) In the inter-community routing, each copy is gradually
forwarded through vehicles with a higher multi-hop reach-
ability to reach the destination community (as shown in
Figure 8).
(3) In the intra-community routing, each copy is gradually
forwarded through vehicles with a higher multi-hop reach-
ability to the destination vehicle (also shown in Figure 8).
In the following, we
first provide the method to

Other communities
identify the fractal struc- .——-.\o
ture feature of the commu- e .
nity in VNETs and build e 0 / o ° pestination
Fractal Community struc- o/ o O -°
ture Tree (FCT) by static ./' Destination community
Source

GPS history data. FCT is
used for scattering copies
of each packet to dif-
ferent communities. Then,
we describe the process of constructing IntEr-community
personalized Rank Table (IERT) and IntrA-community per-
sonalized Rank Table (IART) for each vehicle dynamically.
They are used for the routing in the inter-community and
intra-community phase, respectively. IERT and IART both
consider the multi-hop reachability of vehicles to different
communities and vehicles. Next, we explain the details of
our weak tie based multi-copy routing algorithm. Finally,
the pseudocode and routing process descriptions of SPread
from the micro-scope are given as a summary.

Fig. 8: An example of the rout-
ing process of SPread.

4.1

In order to scatter copies of each packet to communi-
ties which are close to the destination community, we
first try to understand the structure of VNETs. There-
fore, we build Fractal Community structure Tree (FCT)
by the static GPS history data. FCT saves the frac-
tal structure feature of the community in a tree struc-
ture. Figure 9 shows an FCT for example. In the FCT,
communities a, b, ¢ and d
at the lowest level present

Building Fractal Community Structure Tree (FCT)

5 Q0 mwvell

fractal structure feature, L B
ie, can combine them- L

. . ‘/—2‘?0 Level 2
selves into higher level bo \>

P . id ~—i
communities recursively. —
For the routing part, we Q@ —CLag e

. . io ©

only need the information <

of the communities in the
lowest level. For example,
as shown in Figure 9, we
only need the information of communities a, b, ¢ and d
in level 3 for the inter-community and intra-community
routing. However, for calculating the distances among com-
munities and weak tie based multi-copy routing algorithm,
we need to consider the tree information, which will be
further explained in subsection 4.3.

Fig. 9: An example of fractal
community structure tree.

4.1.1 Stability

VNETs usually are sparsely distributed, and building FCT
is more complicated than identifying communities only.
Therefore, it is preferable to build FCT by static GPS history
data which can be easily obtained. However, the FCT is

5

mainly determined by encounter frequencies among vehi-
cles. Whether the encounter frequencies stay stable from
time to time significantly influences the accuracy of FCT
built by static GPS history data. Therefore, we first analyze
the stability of vehicle encounter frequencies. We divide
each of the two traces into 6 time intervals with equal
length and count the top 5 frequently encountered vehi-
cles of all the vehicles at the end of each time interval.
Then we calculate the percentage of changes from one
time interval to the next time interval and draw Figure 10.
The Ti-j on the x axis

in Figure 10 refers to the 1

~6-Roma
percentage of change from 08 °
. . . S . S06 -8-SanF
time interval ¢ to time in- g
. . . c04
terval j. As shown in Fig- G
a 02

ure 10, the encounter fre- 0 : S R W
quencies among vehicles T2 123 T34 T45 T56
tend to be stable, which Time interval
means that we can ap-
ply the recent GPS history
data to construct the FCT
for future system design.

Fig. 10: The stability of en-
counter frequencies of Roma
and SanF vehicle networks.

4.1.2 BGLL algorithm

BGLL algorithm is a widely adopted algorithm for fast
discovery of fractal communities [34]. There are various
community detecting algorithms. However, we need to not
only detect communities but also find the fractal structure
feature easily and precisely. Therefore, BGLL algorithm is
the most suitable algorithm. However, BGLL algorithm does
not save the FCT by itself. We thus introduce an improved
BGLL algorithm for building the FCT as follows.

(1) First, we consider each vehicle as a community and cal-
culate the increased modularity AQ for adding any vehicle
1 to its neighbor j’s community by

) 2

Din thiin <Ztot +ki
)]

AQ = 2m 2m
Ztot )2 _ (

_[&_(m

2m

where ). is the sum of the weights (contact durations)
of the edges inside the community that j belongs to. >, ,
is the sum of the weights of the edges incident to nodes
in the community that j belongs to, k; is the sum of the
weights of the edges incident to node i, k; ;y, is the sum of
the weights of the edges from i to nodes in C and m is the
sum of the weights of all the edges in the network. If all
the AQ are negative, vehicle 4 stays in its initial community.
This process is applied repeatedly for all nodes until the
modularity cannot be further increased.

(2) Then, we consider each community as a new node. The
weight of the edge connecting two new nodes is the sum of
all edge weights connecting them previously. If the number
of nodes is more than 1, we go to step 1.

e We construct the final FCT by traversing the community
level by level until the community sizes reach a suitable size
and record the lowest level community set as S.

k;
2m
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4.2 Building IntEr-community Personalized Rank Table
(IERT)

In the inter-community routing phase, in order to forward
each copy to vehicles which are close to the destination
community, we need to define a criterion for selecting
relay vehicles. Probability, community and centrality based
utilities all have their own drawbacks as mentioned in
Section 1. Therefore, inspired by the personalized PageRank
algorithm, we design the personalized CommunityRank
algorithm and build IntEr-community personalized Rank
Table (IERT) for each vehicle dynamically. IERT records the
multi-hop reachability of a vehicle to different communi-
ties (called CommunityRank), which enhances the inter-
community routing efficiency.

4.2.1 Calculating one hop encounter frequencies to differ-
ent communities

Building IERT needs the information of encounter fre-

quencies of vehicles with different communities. There-

fore, each vehicle is responsible for maintaining the en-

counter frequencies with different communities in the IEter-
community Frequency Table (IEFT) by Formula (1):
FCiy = feia

{ FC!, = ozFCfa_l + (1 —a)fcl,

where F'C!, denote the encounter frequencies between vehi-
cle i and community a at time ¢. fc!, denotes the encounter
frequencies during the interval [t—1, t) (the number of times
that vehicle 7 encounters the vehicles in community a). « is
a damping factor where the higher value of « is, the more
FC!, count the recent encounters.

= 0’
else

)

4.2.2 CommunityRank algorithm

The personalized CommunityRank value is given by For-
mula (2):

CRf* = FC"v5 t=0,
CR,=(1-8)+8 F;’“chf"“ else (2)
keE! eC

where C'R}; denotes the CommunityRank from vehicle 7 to
vehicle j at time ¢; E! denotes the vehicle set that vehicle i
encountered during time interval [t — 1, ¢) which belong to
the same community with vehicle 4; C' denotes the commu-
nity which vehicle ¢ belongs to and §3 is the damping factor.
Whenever two vehicles encounter each other, they exchange
their current IERT and IEFT tables. Then, the two vehicles
update their CommunityRank values using Formula (2).
This indicates that CommunityRank algorithm exploits the
mobility and contact behavior of vehicles.

4.3 Building IntrA-community Personalized Rank Table
(IART)

In the intra-community routing phase, in order to forward
each copy to the vehicles which are close to the destination
vehicles, we need to define another criterion for selecting
relay vehicles. Similar as the personalized CommunityRank
algorithm, we design the personalized VehicleRank algo-
rithm and build IntrA-community personalized Rank Table
(IART) for each vehicle dynamically. IART records the reach-
ability of a vehicle to different vehicles (called VehicleRank)

6

in the same community. The VehicleRank can count the
multi-hop reachability to different vehicles, which enhances
the intra-community routing efficiency.

4.3.1 Calculating one hop encounter frequencies to vehi-
cles in the same community

Building IART needs the information of encounter frequen-
cies of vehicles with other vehicles in the same community.
Therefore, each vehicle is also responsible for maintaining
the encounter frequencies with other vehicles in the same
community in the IntrA-community Frequency Table (IAFT)
by Formula (3):

{ v) fol;

where FV}; denotes the encounter frequencies between
vehicle ¢ and Jj at time t; fo!. denotes the encounter fre-
quencies during time interval [Tt —1,t) (the number of times
that vehicle ¢ encounters vehicle j). v is a damping factor
where the higher value 7 is, the more F'V}; counts the recent
encounters. The IAFT table will be applied for the Vehi-
cleRank algorithm later. Since the communities are divided
based on the encounter frequencies, vehicles in different
communities usually have very low encounter frequencies
with each other. Therefore, we just discard the encounter
frequencies among vehicles in different communities for
saving memory.

A B
FV=~FV; +(1-

t=0,
else

®)

4.3.2 VehicleRank algorithm

As mentioned in Figure 3, Figure 4 and Figure 6 in Section 3,
VNETs are dominated by some important vehicles which
can guarantee the connectivity of the network. Therefore,
we hope the relay vehicles have not only high probability
to reach destination vehicles, but also high probability to
reach the other important vehicles which can reach destina-
tion vehicles with high probability. Centrality based routing
algorithms [20, 21] lack the capability to measure the vehicle
reachability to different vehicles. Therefore, we design a
personalized VehicleRank algorithm which is inspired by
the personalized PageRank algorithm [23] to calculate the
multi-hop reachability of vehicles to different vehicles in the
same community dynamically. Consequently, the personal-
ized VehicleRank value is given by Formula (4):

VR!, = FV}, t=0,
FV},VRL
VR, =(1-d)+ dkét ’“vaf else *)
IEC

where VRfj denotes the VehicleRank from vehicle 7 to ve-
hicle j at time ¢ and d is the damping factor. Whenever two
vehicles encounter each other, first they check whether they
belong to the same community. If they belong to the same
community, they exchange their current IART and IAFT
tables. Then, the two vehicles update their VehicleRank
values using Formula (4). Implicitly, VehicleRank algorithm
also exploits the mobility and contact behavior of vehicles
since the VehicleRank values are updated every time that
vehicles encounter each other.

4.4 Weak Tie based Multi-copy Routing Algorithm

In Section 1, we have introduced the concept of weak ties
and its important role in information spreading. Recall that
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we define the infrequent contacts in VDTNs as weak ties.
To be more specific, we define the contact between vehicles
from two different communities as a weak tie (which usually
has a low encounter frequency) and design our weak tie
based multi-copy routing algorithm. In the weak tie based
multi-copy routing algorithm, the different copies of each
packet are first scattered to different communities in a VNET
through weak ties. Then different copies can search the
destination vehicle through different weak ties. Therefore,
we can improve the multi-copy routing efficiency since there
is a high probability that at least one weak tie is connected
during the routing time.

Moreover, multi-copy routing algorithms that rely on
source nodes for replicating depend highly on the capability
of source nodes. Note that the capabilities of source nodes
vary as mentioned in Figure 3 in Section 3. The source node
may barely encounter any suitable nodes for replicating.
Therefore, besides the basic weak tie multi-copy routing
idea mentioned above, we hope to improve the efficiency of
scattering copies by replicating copies from different relay
vehicles simultaneously. However, there are challenges to
control the number of copies per packet, since the frequent
communications among vehicles are too expensive. How
can we control the number of copies? How can we properly
replicate copies of each packet to different communities? In
order to handle the challenges, we use the FCT and develop
the following detailed algorithm.

4.4.1 Basic concepts

Before we describe the detailed multi-copy routing algo-
rithm, we first introduce three concepts: multi-copy commu-
nity scope, multi-copy capability and multi-copy commu-
nity scope splitting. Multi-copy community scope is used to
identify the communities where different relay vehicles can
scatter copies. Multi-copy capability is used as a criterion
for selecting vehicles with stronger capability for scatter-
ing copies in the same community. Multi-copy community
scope splitting is used to separate and distribute the multi-
copy community scope to vehicles in different communities.
The details are as follows.

Multi-copy community scope identifies the communities
that a vehicle can replicate copies to, which is stored in the
FCT. As mentioned in Figure 9 in Section 4.1 for example,
the tree like FCT saves the communities the vehicle ¢ can
replicate copies to in gray hierarchically. The striped com-
munity presents the community that i belongs to.

Multi-copy capability presents the capability of a vehicle
to replicate copies to a specific multi-copy community scope,
which is calculated by Formula (5):

MCC(i,S) => CRi,

acsS

©)

where MCC(i,S) is the multi-copy capability of vehicle 4
to multi-copy community scope S.

Multi-copy community scope splitting is that given a
multi-copy community scope S and two vehicles i and j,
we split the multi-copy community scope according to the
distances of each community in the multi-copy community
scope and the communities vehicle ¢ and j belong to by

7

Formula (6):

{

where S; is the split multi-copy community scope for vehi-
cle i; level(i, a) are the levels of the lowest level community
which contains the community a and the community that
vehicle i belongs to. For example, as mentioned in Figure 5
in Section 3, level(a,b) = 2 and level(a,c) = 1.

Si = {Va € Sllevel(i,a) > level(j,a)}

S,_S\S, ©)

4.4.2 Detailed multi-copy routing process

Based on these concepts, we introduce our weak tie based
multi-copy routing algorithm. Initially, when the packet is
produced by source vehicle s, s is authorized with the multi-
copy community scope of all the communities. Then the
weak tie multi-copy routing algorithm works as follows:

(1) Once a relay vehicle i encounters another vehicle
j that own at least one different packet, we check
whether vehicle ¢ and j belong to the same commu-
nity. If yes, go to step 2). Otherwise, go to step 3);
we calculate the multi-copy capabilities of 7 and j to
the multi-copy community scope S stored in vehicle ¢
by Formula (5). If MCC(35,5) > MCC(i,S), vehicle
i forwards its packet with its multi-copy community
scope to j, i.e., forward to the vehicle with a higher
multi-hop reachability to the corresponding multi-
copy community scope;

vehicle 7 checks whether vehicle j’s community be-
longs to vehicle i’s multi-copy community scope. If
yes, vehicle ¢ splits the multi-copy community scope
by Formula (6), replicates a copy with multi-copy
community scope .S; to vehicle j and updates its own
multi-copy community scope by S;. Therefore, the
multi-copy community scope is carefully split and
allocated to the communities which are closer to the
multi-copy community scope.

A simple example of multi-copy community scope split-
ting process is shown in Figure 11. When the relay vehicle
1 encounters another vehicle j, the multi-copy community
scope is split according to the distances between communi-
ties that < and j belong to and the multi-copy community
scope. In Figure 11, the black nodes present the multi-copy
community scope and the striped nodes present communi-
ties that ¢ and j belong to.

4.4.3 Manage the number of copies

A large number of copies
may lead to a congestion
in the network and mean-
while, the copies located
in the communities which
are far from the destina- /o
tion community have little J.\:: k-
chance to reach the desti- Before
nation community. There-

fore, instead of initializing

the multi-copy community
scope to all the communities, we only initialize the multi-
copy community scope to the communities which are close

AR

Before

PN

After

d Cij\:\@

After

Fig. 11: SPread multi-copy
process.
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to the destination community. Specifically, we define the
initial multi-copy community scope S;,:; by Formula (7):

Sinit = {Va € Sllevel(t,a) > r} (7)

where S is the set of the communities at the lowest level and
7 is a threshold affecting the number of copies of a packet.

4.5 Detailed Process of SPread

Based on the above descriptions, the detailed process of
SPread is shown in Algorithm 1, where packet(k) is the
kth packet in vehicle i, c(packet(k)) is the destination
community of packet(k), c(i) is the community that vehicle
i belongs to, MCC(3i,S;) is the multi-copy capability of
i on multi-copy community scope S;, t(packet(k)) is the
destination vehicle of packet(k) and V R(j, t(packet(k))) is
the VehicleRank of j to t(packet(k)). At the beginning of the
routing, packet (k) is produced by the source vehicle and the
multi-copy community scope is calculated by a threshold r
for controlling the number of copies. Suppose a relay vehicle
i of packet(k) encounters another vehicle j, then we have:

(1) If c(j) # c(packet(k)) and c(j) € S;, packet(k) is
replicated from i to j and the multi-copy community
scope for 4 is split and distributed to j by Formula (6);

(2 If c(j) # c(packet(k)), c(i) = «¢(j) and
MCC(3,S;) > MCC(3,S;), packet(k) is forwarded
to j with its multi-copy community scope S;;

(3) If ¢(j) = c(packet(k)), c(i) # c(j) and S; = 0,
packet(k) is forwarded to j with its multi-copy com-
munity scope S;;

(4) If c(j) = c(packet(k)), c(i) # c(j) and S; # 0,
packet(k) is replicated from i to j and the multi-copy
community scope for ¢ is split and distributed to j by
Formula (6);

G) ¥ i) = ¢j) = c(packet(k)) and
V R(j, t(packet(k))) is larger than
V R(i,t(packet(k))), packet(k) is forwarded to
J with its multi-copy community scope S;.

5 ADVANCED SPREAD

In SPread, we translate the vehicles to a contact graph by
their contact information and classify the contact graph to
hierarchical communities by a general community identi-
fication algorithm. However, such a strategy may cause
some problems. First, as in previous contact based routing
algorithms, the packet delivery in SPread is still based on
passively waiting of the next suitable relay vehicle, which
limits the performance since vehicle trajectories are not
predictable. Second, the general community identification
algorithm fails to consider some useful information (e.g., the
relationship between contact locations and contact frequen-
cies) that can help enhance the routing performance. Finally,
SPread evenly distributes copies to communities. This may
lead to an imbalanced utilization of copies since commu-
nities discovered by the general community identification
algorithms have different sizes.

Therefore, in this section, we further exploit the spatio-
contact correlation of the community to improve the ef-
ficiency of the basic SPread and propose an Advanced
SPread (ASPread). The spatio-contact correlation means that

Algorithm 1: Detailed Process of SPread

1. Yk, VRing « FVirg;
2: while i is in contact with j do
foreach packet(k) in i do
if ¢(j) # c(packet(k)) && c(j) € S; then
(8i,55) = split(Si);
copy packet(k) and S; to j;
end
if c(j) # c(packet(k)) && c(i) = c(j) then
if MCC(j,S;) > MCC(i, S;) then
| forward packet(k) and S; to j;
end
end
if c(j) = c(packet(k)) && c(i) # c(j) then
if S; = 0 then
| forward packet(k) and S; to j
end
if S; # () then
(S5, S5) = split(S:);
copy packet(k) and S; to j;
end
end
if ¢(i) = ¢(j) = c(packet(k)) then
if VR(j, t(packet(k))) > V R(i, t(packet(k)))

then
| forward packet(k) and S; to j;
end
end
end
end

vehicles in the same community tend to meet each other in
a certain small area comparing to the whole VNET map.

The general community discovery method classifies each
vehicle to a community. However, in reality, not all vehicles
are very closely connected
even though they are in
the same community. For
example as shown in Fig-
ure 12, vehicle ¢ belongs
to the community a only
because vehicle 4 is a little
more close to community
a than all the other com-
munities. But in fact, if ve-
hicle 7 is selected as a re-
lay vehicle for community
a, the routing performance
will be limited since there is only one link from vehicle ¢
to the rest vehicles in community a. Therefore, if a vehicle
that is not very related to its own community is selected,
the routing performance may be adversely influenced. We
define core vehicles as the vehicles that frequently visit the
locations that the majority of the vehicles in a community
visit frequently, such as the black nodes in Figure 12. We
thus try to improve the routing performance by identifying
the core vehicles in the communities and delivering packets
to the core vehicles in the communities.

Fig. 12: An example of the
community identified by a
general community discovery
method.

5.1 Measuring Spatio-contact Correlation of the Com-
munity

In order to verify the spatio-community correlation of vehi-
cles, firstly, we define the concepts of road section and active
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Fig. 13: The vehicle pair distance distribution in Roma and
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road section. A road section is the road part that does not
contain any intersections and it is denoted by the IDs of
the intersections on its two ends. Then, we define the active
road sections of vehicle v as road sections where vehicle v
visits frequently. To be more specific, we define the set of
active road sections of vehicle j (denoted by S;) by:

S; = {¥s € 5|f(s,4) > rv} ®)

where S, is the set of active road sections of vehicle j, f(s, )
is the frequency that vehicle j visits road section s; and rv
is a visit frequency threshold. A smaller threshold 7v leads
to more road sections in \S; and vice versa.

We set r to 4 and find the active road sections of each
vehicle in the Roma and SanF traces. Figure 13 shows the dis-
tribution of the average distance of the active road sections
between vehicles in the same community in the Roma and
SanF traces. It shows that the active road sections of most
vehicles in the same community have an average distance
less than 2km. Comparing to the diameter of the whole map
which is approximately 100km, 2km is a very small distance
and hence, we can restrain the searching of copies of packets
to a small geographic area. Therefore, this phenomenon ver-
ifies that most vehicles in the same community tend to have
close active road sections, and there is a high correlation
between the location and the community. While at the same
time, as shown in the red circles, there exist some vehicles
whose active road sections are far away from most vehicles
in the same community. Therefore, we conclude our third
observation (03) and fourth observation (O4) as follows:

O3: Most vehicles in the same community tend to be active in
the same location.

O4: There exist some vehicles whose active road sections are
far away from most vehicles in the same community.

Based on this observation, we further enhance the rout-
ing efficiency of SPread. We present the enhanced routing
algorithm in the following.

5.2 Mapping Communities to Geographic Locations

Based on O3 (i.e., vehicles in the same community tend to
be active in the same location), we try to map different
communities to different geographic locations so that it
becomes easier to find the target vehicle’s community.

Based on the definition of active road sections of vehi-
cles, we define the set of active road sections of community
a (denoted by S,) by:

Sa={Vs €8> f(s,i) >rc}

eV

©)

9

where S, is the set of active road sections of community
a, V is the set of vehicles in community a and rc is a visit
frequency threshold for communities. A smaller threshold
rc leads to more road sections in S, and vice versa.

However, it is not possible to calculate S, in a distributed
manner since it is unlike for a vehicle to collect f(s,%) for
each i € V. Therefore, we let each vehicle ¢ calculate the
set of active road sections of community a (denoted by
S,,;) distributively. We use f(s, S,,) to denote the visiting
frequency on road section s in S, at current time collected
by vehicle 7. It is calculated by:

0
max(f(s, Saqv) + f(&j), f(37 Saj))

if initialize

USE { if meet j

(10)
When vehicle ¢ meets vehicle 7 which belongs to community
a, vehicle i updates f(s,S,,). Besides, f(s,Sq;) + f(s,7)
means that the visiting frequency of road section s in S, is
incremented by the visiting frequency of vehicle j on road
section s. Vehicle j also maintains f(s, S,;). Then, vehicle i
chooses the higher visiting frequency value as its updated
f(s,Sq,). Vehicle i determines the active road sections of
community a by:

Su, = {Vs € S|f (5, 54,) > rc} a1

Based on Formula (11), each vehicle ¢ distributively
calculates the set of active road sections of each community.
When vehicle i meets vehicle j, if vehicle j belongs to the
community of the destination (say community a) and its
active road sections, S; (calculated by Formula (8)), belongs
to S,,, then vehicle j is a core vehicle of community a. In
this case, vehicle i forwards its packet to vehicle j, which
has a high probability of meeting the target vehicle.

5.3 Adaptive Determination of the Number of Copies
based on Community Size

Previous studies [29] show that the community size fol-
lows a power law distribution. However, in SPread, we
equally distribute copies of a packet to each community.
This strategy can lead to an imbalance in utilizing all copies,
which means that some of the copies are responsible for
searching among many vehicles, while some other copies
are responsible for searching among only a few vehicles.
Therefore, in this section, we calculate the number of copies
of community a by:

N - ‘Va|
N,=—-4
Vi

where N, is the number of copies which can be sent to
community a, N is the total number of copies of a packet
that can be sent, Vj, is the set of vehicles in community a
and V is the set of all the vehicles in the entire network.

In this way, we can make sure that the communities with
a larger size are allocated with more copies, and the com-
munities with a smaller size are allocated with fewer copies.
Therefore, we can avoid the situation in which some copies
search among too many vehicles, while some other copies
search among only a few vehicles. As a result, the tradeoff
between the routing overhead and routing efficiency can be
better achieved.

(12)
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5.4 Routing Algorithm of Advanced SPread
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Fig. 14: An example of the Fig. 15: An example of
active road section table. the community-location map-
ping table.

In ASPread, a packet copy arrives at an active sub-
area of the target vehicle by the same method used in
SPread. Then, ASPread forwards the packet copy to the
core vehicles in the community that are more likely to
meet the destination node. For this purpose, each node
additionally maintains two tables: active road section table
and community-location mapping table. A vehicle’s active
road section table records its visiting frequencies on its
active road sections as shown in Figure 14, where 1, 2, 3,...
denote road IDs. The active road section table is updated by
recording the vehicle’s visited road sections and its visiting
frequency (i.e., the number of visits in a certain time period
T). Then, based on Formula (8), each vehicle determines its
active road sections and updates its active road section table
periodically. To be more specific, for a vehicle i, it updates
its active road section table as follows:

(1) Vehicle 7 initializes all the road sections with fre-
quency 0;

(2) Once vehicle ¢ reaches a road section, it increases the
visiting frequency of the road section by 1;

(3) If the frequency of the road section is larger than
the frequency threshold rv, add the road section to
vehicle i’s active road section table (Formula (8)).

Each vehicle also stores a community-location mapping
table as shown in Figure 15. In the table, a, b and ¢ denote
community IDs, and S,,, Sy, and S;, denote the set of active
road sections of community a, b and c¢, respectively, which
are calculated by Formula (11). The arrow means that S,
includes active road sections 4, 5 and 6 and their visiting
frequencies. These frequencies are used to find the active
road sections of a community based on Formula (11).

For vehicle 4, it updates its community-location mapping
table as the following:

(1) Vehicle 7 initializes its own community-location map-
ping table by setting the active road section sets of all
communities to empty sets;

(2) Once vehicle 7 meets another vehicle j, vehicle ¢ gets
the active road section table of vehicle j and the
community-location mapping table of vehicle j;

(3) Based on the active road section table of vehicle j,
vehicle ¢ recalculates the visiting frequency of road
section s in community ¢(j) (denoted by f(s, S¢(;),))
by Formula (10);

(4) If the frequency of a road section is larger than the
frequency threshold rc, vehicle i adds the road sec-
tion to community ¢(j)’s active road section set in the
community-location mapping table by Formula (11).

Algorithm 2: Detailed Process of ASPread

1. VE,V Ry« FVirg;
2: if vehicle i meets vehicle j then
if j € Sc(j)i then
| Call Algorithm 1;
end
if vehicle i is the first relay vehicle in c(i) then
while CopyNum(i) > 0 and c(i) == c(j) do
copy packet(k) to j;
CopyNum(i) — —;
end
end
end

When a relay vehicle ¢ meets another vehicle, say vehicle
Jj, if the destination community is in vehicle j’s multi-copy
community scope, vehicle i further checks if vehicle j is
a core vehicle in the destination community. To do this,
vehicle 7 refers to its own community-location mapping
table, S,,, and vehicle j’s active road section table S;. If
S; € S, vehicle j is a core vehicle in the destination
community and vehicle i forwards the packet to vehicle j.

Based on the above description, the detailed process
of ASPread is shown in Algorithm 2. In the algorithm
pseudocode, packet (k) is the kth packet in vehicle 4, ¢(i) is
the community that vehicle i belongs to and CopyNum/(i) is
the number of copies vehicle ¢ can create in community (7).
At the beginning of the routing, packet(k) is produced by
the source vehicle and the multi-copy community scope is
calculated by a threshold r and the number of copies of each
community is calculated by Formula (12). Different from
SPread, ASPread distributes multiple copies to a community
and the number of copies is determined by the community
size. Also, we only select core vehicles in the destination
communities as relay vehicles in ASPread instead of any
vehicles in the destination communities. Suppose a relay
vehicle i of packet(k) encounters another vehicle j, then the
following steps are executed in the routing algorithm based
on SPread:

o If vehicle j belongs to the destination community of
packet(k), go to Step 2);

o Vehicle i checks whether vehicle j is the core of its
own community. If yes, vehicle ¢ follows the same
steps of SPread; otherwise, vehicle ¢ ignores vehicle
j directly without taking any action;

e Inorder to allocate different numbers of copies based
on different sizes of communities as we mentioned
above, if relay vehicle ¢ is the first relay vehicle
in its own community, vehicle 7 is responsible for
distributing the specified number of copies in its own
community calculated by Formula (12) and go to
Step 4);

o Every time when the relay vehicle i meets another
core vehicle in its community, it replicates a copy
to the vehicle and decreases the remaining number
of copies by 1 until the remaining number of copies
equals to 0.

Based on this process, the packet can be efficiently re-
layed by considering not only the contact distances between
different communities but also the geographic distances
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between the relay vehicles and target communities. Further,
the community with a larger size is allocated with more
copies to make sure that the target vehicle can be more
efficiently searched.

6 PERFORMANCE EVALUATION
6.1 Trace-driven Experiment Setup

In order to evaluate the performance of SPread, we con-
ducted trace-driven experiments with both the Roma and
SanF traces. We adopted an event-driven simulator that
is developed by us with C++. The simulator reads the
encountering of vehicles (i.e., when they are within a cer-
tain distance in the trace) and conducts packet forwarding
between them. We let each vehicle generate 20 packets with
randomly selected destination vehicles each day. We varied
the number of copies allowed for each packet and the mem-
ory size (i.e.,, maximal number of packets that a node can
store) in the experiments. We compared our algorithm with
SimBet, PeopleRank [20] and PROPHET [12] algorithms.
The details of the algorithms are introduced in Section 2.
We measured the following metrics:

(1) Success rate: The percentage of packets that successfully
arrive at their destination vehicles.

(2) Average delay: The average time per packet for success-
fully delivered packets to reach their destination vehicles.
(8) Average cost: The average number of hops per packet for
successfully delivered packets to reach their destination ve-
hicles. The more hops per packet are needed for successfully
delivered packets, the more energy will be cost.

6.2 Performance with Different Number of Copies
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Fig. 16: Evaluating the success rate of SPread under different
number of copies.

Since our algorithm is designed for multi-copy routing,
we adopted other three algorithms to disseminate multiple
copies of each packet for fair comparisons. These algo-
rithms follow the method in the spray and wait multi-
copy routing algorithm [6] to create copies, i.e., the source
sprays a number of copies to encountered nodes. In or-
der to compare the performance of ASPread with SPread,
firstly, we set the multi-copy scope and total number
of copies as the same as SPread. Then, we reallocate
the number of copies to the communities in the multi-
copy community scope based on Formula (12). Figure 16
show the success rates with different numbers of copies
per packet, respectively. Generally, the performances fol-
low SPread>SimBet>PeopleRank>PROPHET. The perfor-
mance of SimBet is a litter better than PeopleRank, since
SimBet considers not only the centrality of vehicles, but also

11

the one-hop reachability of vehicles to different communi-
ties. SPread performs better than SimBet since it carefully
allocates the copies and consider the multi-hop reachabil-
ity of vehicles to different communities at the same time.
PROPHET performs the worst, since it is difficult to en-
counter a vehicle that has a high probability to encounter
the destination vehicles in the VDTNSs.
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Fig. 17: Evaluating the average delay of SPread under dif-
ferent number of copies.

Figure 17 show the average delays with different num-
bers of copies per packet. Generally, the average delays
follow PROPHET >PeopleRank>SimBet>SPread. The delay
of PROPHET is the largest, since the relay vehicles need
to wait a long time to encounter a vehicle that has a high
probability to encounter the destination vehicles in the
VDTNSs. The delay of SPread is the smallest, since we limit
the searching scope of each copy to its own community and
search through different weak ties simultaneously.
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Fig. 18: Evaluating the cost of SPread under different num-
ber of copies.

Figure 18 show the average costs with different numbers
of copies per packet. Generally, the average costs follow
PeopleRank>SimBet>SPread >PROPHET. The cost of Peo-
pleRank is the largest, since the packets are forwarded
only by the PeopleRank value without any reachability
information to different vehicles. The cost of PROPHET is
the smallest, since the packets are directly forwarded to the
vehicles with high probability to encounter the destination
vehicles. However, PROPHET has very low success rate due
to the same reason. SPread performs better than SimBet and
PeopleRank.

Then, we analyze the influence of the number of copies
per packet to different algorithms. As shown in Figure 16,
Figure 17 and Figure 18 when there is only 1 copy, the
performance (include success rate, average delay and av-
erage cost) of SPread is a little worse than PeopleRank
and SimBet, since SPread is designed for multi-copy only
and each copy can search in its community only before it
encounters the destination community. However, when the
number of copies is slightly increased, the performance of
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SPread is improved significantly and exceeds the other three
algorithms. This is because our weak tie multi-copy based
routing algorithm carefully allocates the different copies and
fully utilizes each of the copies.

6.3 Performance with Different Memory Sizes

Besides the number of copies per packet, the memory size
of each vehicle also influences the performance. There-
fore, we analyze the influence of memory size to differ-
ent algorithms. Figure 19, Figure 20 and Figure 21 shows
the success rates, average delays, and average costs with
different memory sizes, where we suppose that 1 unit
memory (horizontal axis) can save 1 packet. Generally, the
sensitivities of different algorithms to the memory sizes
follow PeopleRank>SimBet>SPread >PROPHET. The per-
formance of PeopleRank is very sensitive to the memory
size, since all the packets tend to be forwarded to few
vehicles with very high PeopleRank values and the limited
memory size can significantly influence the routing process
negatively. PROPHET is insensitive to the memory size,
since the packets only tend to find those specific vehicles
with high probability to encounter the destination vehicles,
which guarantees load balance. However, PROPHET gener-
ates low success rate due to the same reason. Also, as shown
in Figure 17 and Figure 20, the average delay of PROPHET is
not stable, since the success rate is very low and the average
delay is randomly influenced by very few success routings.
The sensitivities of SPread and SimBet are similar which are
between PeopleRank and PROPHET.
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Fig. 19: Evaluating the success rate of SPread under different
memory sizes.

x10° x 10°
-0- SPread -O- PeopleRank| 8.5
105p | TERG TEEERERANG B o
> -%- SimBet - PROPHET > T <& S
S 1 R S— Foperer o 8 el Trspread | ¢
% 9.5k .-~ % o) -%- SimBet
© '8‘_ ————— o 7 ey -O- PeopleRank
o o O 2 N < [-0- PROPHET
g o0 B gl ke QT
O 85k g -0, "Q::: e
<C . ¥ Hemenn *- < 6.5 R = S "é‘
ef """ SO----e- = T O... - *
e e o 6
20 20 60 . 80 100 10 20 30 40 50
Memory size Memory size
(@) Roma (b) SanF

Fig. 20: Evaluating the average delay of SPread under dif-
ferent memory sizes.

To sum up, SPread has the highest success rate, lowest
average delay and medium average cost. Also, SPread is
sensitive to the number of copies per packet when the
number of copies is very small, and insensitive to the
memory size. SimBet and PeopleRank have the medium
success rate, average delay and average cost. PeopleRank
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Fig. 21: Evaluating the cost of SPread under different mem-
ory sizes.

is very sensitive to the memory size. PROPHET has the
lowest average cost due to its very specific requirement
for forwarding packets. However, PROPHET has very low
success rate and high average delay.

6.4 Comparing the Performance of ASPread and
SPread

In this section, we compare SPread, ASPread without the
method of adaptive determination of the number of copies
based on community size (denoted by ASPread*) and AS-
Pread with different number of copies per packet and
different memory sizes of each vehicle. We measure the
performance of ASPread* in order to show the individual
effectiveness of the method of adaptive determination of the
number of copies based on community size and the method
of forwarding to core vehicles in ASPread. [h!]
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Fig. 22: Evaluating the success rate of ASPread under differ-
ent number of copies.

Figure 22, Figure 23 and Figure 24 show the success
rates, average delays and costs with different number of
copies per packet. Figure 25, Figure 26 and Figure 27 show
the success rates, average delays and costs with differ-
ent memory sizes of each vehicle. Generally, the success
rate follows ASPread~ASPread*>SPread, the average delay
follows ASPread<ASPread*<SPread and the cost follows
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Fig. 23: Evaluating the average delay of ASPread under
different number of copies.
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0.95 1
--------------- oS
o oo & < 0.05 smnntrie @@
= 0. . .
g DB 8 o
2 o 2 8
8 0.85 o’ -O-SPread 8 0. P =
-O- ASPread* o
S S - -0- SPread
=] -%- ASPread >
0.8 0.85 - -O- ASPread*
@ o ",D’ -%- ASPread
.7 8-
0.75 2 3 4 5 0 1 2 . 5
Memory size Memory size
(a) Roma (b) SanF

Fig. 25: Evaluating the success rate of ASPread under differ-
ent memory sizes.
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Fig. 26: Evaluating the average delay of ASPread under
different memory sizes.
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Fig. 27: Evaluating the cost
memory sizes.

ASPread <ASPread*<SPread. The improvement of success
rate of ASPread and ASPread* over SPread is significant
at the beginning when the number of copies is limited
since ASPread and ASPread* can more precisely deliver
the copies to the core vehicles which are not only in the
target vehicle’ community but also are more likely to meet
the target vehicle, especially when the number of copies is
limited. SPread only delivers the copies to the relay vehicles
in the target vehicle’s community, which may not be likely
to meet the target vehicle. When the number of copies is
sufficient, the improvement becomes less significant since
the chance to deliver to the core vehicles in the communities
in SPread is increased as the number of copies is increased.
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Because of the same reasons, SPread generates relatively
high average delay and much higher cost due to the possi-
bility of selecting relay vehicles which are far away from
other vehicles in the same communities. Furthermore, it
may take a copy a longer time to find the target vehicle
if the community size is larger. In ASPread and ASPread®,
since the packet is directly forwarded to the core vehicles in
communities which are more likely to meet other vehicles
in the same communities, the number of relays is reduced
and hence the performance on average delay and cost is
significantly improved. Comparing ASPread and ASPread*,
we see that they have similar success rates since both of
them select core vehicles in the communities. However, AS-
Pread has lower average delay and cost than ASPread* since
ASPread sends more copies to communities with larger sizes
and therefore it can find the target vehicles more quickly.

We also see that the average delay and average cost
of ASPread are lower than ASPread*. Since ASPread dis-
tributes different number of copies to different communities
based on the community size, it takes approximately same
time for each copy to find the target vehicle. As a result, the
average delay and average cost of ASPread are lower than
ASPread* since ASPread balances the number of vehicles
each copy needs to search and therefore avoids the situation
that some copies search in communities with too many
vehicles, which may cause delay and high cost.

To sum up, ASPread has a higher success rate and a
lower average delay and cost compared with SPread since
it considers the spatio-contact correlation of the community
and distributes different number of copies to different com-
munities based on the community size.

7 CONCLUSION

In this paper, we first measured the social network features
of VDTN consisted of taxis through two real traces. Based
on the findings on important nodes, communities, and frac-
ture structure of communities, we proposed SPread, an ef-
ficient multi-copy routing algorithm for taxi-based VDTNSs.
SPread carefully assigns different copies of each packet to
different communities which are close to the destination
community. Then, each copy can search the destination
community through different weak ties, which can enhance
the efficiency of current multi-copy routing algorithms. For
the routing of each copy, inspired by personalized PageR-
ank algorithm, we designed new algorithms for calculating
multi-hop reachability of vehicles to different communities
and vehicles dynamically. Therefore, the routing efficiency
of each copy can also be enhanced. Furthermore, we pro-
posed an Advanced SPread by exploiting the spatio-contact
correlation of the community and considering the differ-
ent community sizes. Trace-driven simulation demonstrates
that SPread can significantly improve the multi-copy rout-
ing efficiency and has the highest success rate and lowest
average delay in comparison with other algorithms. Also,
ASPread has a better performance than SPread. In the future
work, we will combine our contact based SPread with
location based methods (in which the locality information
of vehicles is considered) to further improve the routing
efficiency in VDTNE.
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