
1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

1

Scheduling Inter-Datacenter Video Flows for Cost Efficiency

Haiying Shen*, Senior Member, IEEE , Chenxi Qiu

F

Abstract—As video streaming applications are deployed on the cloud,
cloud providers are charged by ISPs for inter-datacenter transfers under
the dominant percentile-based charging models. In order to minimize
the payment costs, existing works aim to keep the traffic on each link
under the charging volume. However, these methods cannot fully utilize
each link’s available bandwidth capacity. As a solution, we propose an
economical and deadline-driven video flow scheduling system, called
EcoFlow. Considering that different video flows have different transmis-
sion deadlines, EcoFlow transmits videos in the order of their deadline
tightness and postpones the deliveries of later-deadline videos to later
time slots. The flows that are expected to miss their deadlines are
divided into subflows to be rerouted to other under-utilized links. We
also propose setting each link’s initial charging volume to reduce the
scheduling latency at the beginning of the charging period and discuss
how to deal with issues such as the prediction errors of link available
bandwidth and the lack of charging volume’s prior knowledge. Further-
more, we designed implementation strategies for using EcoFlow in both
centralized and distributed situations. Experimental results demonstrate
that EcoFlow achieves lower bandwidth costs and higher video flow
transmission rates when compared to existing methods.

Index Terms—Video streaming; Bandwidth cost; Inter-datacenter traf-
fic; Percentile-based charging models

1 INTRODUCTION

Cloud providers (e.g., Amazon) offer various pay-as-you-
use cloud based services (e.g., Amazon Web Services) to
cloud customers (e.g., Netflix) [1], [2]. The Cloud has proved
to be an effective infrastructure to host video streaming
services with many benefits [3]–[5]: First, cloud based in-
frastructures provide easy to use scalablity for hosting ad-
ditional users and content by allowing cloud customers
to buy additional resources from the cloud provider [6].
Second, distribution is similarly scalable and in this con-
text is provided by a large number of globally distributed
servers and streaming service providers (VSSPs) that allow
for services to be provided in a vast array of different areas
[7]. Lastly, cloud based infrastructures provide data-center
management for their cloud customers, and as such are low-
cost way for VSSPs to deliver their streaming services [8]–
[10]. As a result, a progressively higher number of VSSPs,
such as Netflix, are deploying theri web applications on the
cloud.

In order to enhance service availability and scalability,
cloud providers generally deploy a number of datacenters
across different geographical regions, which are inter-
connected by high-capacity links leased from internet
service providers (ISPs). Newly published videos and their
replicas are allocated to these distributed datacenters to

• * Corresponding Author. Email: hs6ms@virginia.edu; Phone: (434) 924-
8271; Fax: (434) 982-2214.

• Haiying Shen is with the Department of Computer Science, University of
Virginia, Charlottesville, VA, 22904. E-mail: hs6ms@virginia.edu. Chenxi
Qiu is with the College of Information Science and Technology, Pennsyl-
vania State University, State College, PA, 16801. E-mail: czq3@psu.edu.

serve users from different regions. Specifically, when a
new video is uploaded to a datacenter, the datacenter
disseminates it to other datacenters to serve users. When
the number of video replicas is insufficient to allow
for a streaming service that is scalable, accessible, and
widely available, more video replications occur between
datacenters. Video dissemination and video replication
leads to a substantial amount of inter-datacenter traffic [11].
It is important to note, however, that this traffic does not
include datacenter-to-customer video traffic.

ISPs charge cloud providers for transit bandwidth using
a wide array of pricing schemes. The most common of these,
and the model adopted by most ISPs, is the 95th percentile
charging model [12]. In this model the bandwidth cost is
charged based on the 95th percentile value in all traffic vol-
umes (data sizes) recorded in 5-minute intervals generated
within a charging period (e.g., 1 month [12]). In the 95th
percentile charging model, “Charging Volume” is defined
as the volume of traffic from the beginning of the charging
period up to the current time. Numerous previous studies
focused on controlling new traffic volumes to ensure that
they stayed below the charging volume [11]–[17] in order
to minimize bandwidth payment costs on inter-datacenter
video traffic to ISPs. These previous studies can primarily
be classified into to groups: store-and-forward and optimal
routing path.

The store-and-forward methods [13]–[15] take advantage
of unique spatial and temporal attributes of inter-datacenter
video traffic. Spatial attributes refer to datacenters in differ-
ent geographic areas and their traffic loads and available
bandwidth capacities, which are highly dependent upon
the user demands within those different areas. Temporal
attributes relate to the loads placed on a datacenter during
a given time period, and more specifically regard the strong
diurnal patterns that correlate with a given local time [18].
Store-and-forward methods predefine peak and off-peak
hours for each datacenter based primarily on these two
aspects - local time and geographic area - and subsequently
utilize leftover traffic volume (charging volume minus actu-
al traffic volume) during off-peak hours to transfer delay-
tolerant data flows. A hypothetical datacenter, i, on the
East Coast of the United States (EST/GMT-5), along with
datacenters j, in Chile (EST+1/GMT-4), and k, in Belgium
(EST+6/GMT+1), each with peak hours of 9-12pm local
time and off-peak hours of 3-6am local time, will serve as
an example. Suppose that a number of delay-tolerant data
flows need to be sent from datacenter i to datacenter j,
however, it happens to be 9pm EST meaning that both i
and j are in peak hours. It can subsequently be inferred
that no overlap exists between their respective peak and
off-peak hours. That is, the peak hours of i do not align
with the off-peak hours of j and that the reverse is also

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

true. The delay-tolerant data flows will then need to be
sent to an intermediate datacenter, in this case datacenter
k, which does have off-peak hours that overlap with the
peak hours of datacenter i. These data flows will then be
temporarily stored in datacenter k which will forward them
to datacenter j when both k and j are in off-peak hours.

The optimal routing path methods [11], [12], [16], [17]
optimize the routing paths for video flows to minimize the
charging volume on each link. The bandwidth costs of trans-
mitting the same amount of videos vary across different
inter-datacenter links. Accordingly, if the transmission of a
video is expected to exceed the charging volume on a link,
the video can be transferred to an alternative path to max-
imize the utilization of other links without increasing their
charging volumes. However, these methods transmit each
video immediately when the video transmission request
arrives at the source datacenter regardless of its deadline.
As a result, these methods can easily reach the charging
volume of a current link and create a large number of
reroute requests when a large number of video transfer
requests arrive simultaneously. This may also increase the
charging volumes of some links. An additional consequence
of using optimal routing path methods concerns the diffi-
culty in fully utilizing a link’s available bandwidth capacity.
That is, a links available bandwidth capacity is not fully
utilized when the cumulative transmission rate of all the
currently transmitted videos is less than the link’s available
bandwidth capacity.

We propose EcoFlow, an economical and deadline-drive
video flow scheduling system, to address the problems of
previous scheduling methods. It is based on the fact that
different video flows have different deadlines. Different
applications from cloud customers have different service-
level agreements (SLAs) that specify data Get/Put bounded
latency [19] or a service probability [20] by ensuring a
certain number of replicas in different locations [21]. Thus,
cloud providers would like to assign shorter transmission
deadlines (deadline) to videos in applications with more
stringent SLAs in order to minimize the SLA violation
penalty to maximize their profits [11], [22]. Different videos
in one application also have different deadlines. For ex-
ample, the flows for new video dissemination to a data-
center to serve user requests should have more stringent
deadlines than the flows for video replication backups to
boost availability. Based on the different deadlines of video
flows, the key idea of EcoFlow is to postpone the transfers
of some delay-tolerant videos while still ensuring their
transmissions within deadlines if the transmission of these
videos will increase the current charging volume. This is the
novelty of EcoFlow – to significantly reduce the payment
cost of the previous flow scheduling methods. The EcoFlow
system includes three key steps.
Step 1: Available Bandwidth Capacity Estimation. We
estimate the available bandwidth capacity on each link by
comparing the charging volume and the expected traffic vol-
ume. This provides the maximum transmission rate that a
link can provide in the next time interval without increasing
the current bandwidth cost.
Step 2: Deadline-Driven Flow Scheduling. We sort the
flows on each link based on their deadline tightness. In the
sorted flow queue, we generally give videos with .earlier
deadlines higher priority in finishing transmission, and
postpone the transfers of some delay-tolerant videos while
still ensuring their transmissions occur within deadlines if
the transmission of these videos will increase the current

charging volume. Flows that are expected to miss their
deadlines are split into subflows, which will be rerouted to
other underutilized links in order to meet their deadlines.
Step 3: Alternating Routing Path Identification. In order
to deliver these subflows by their deadlines, we rely on
Dijkstra’s algorithm [23] to find the shortest path between
the source and the destination datacenters in the inter-
datacenter network that guarantees the successful transmis-
sion by flow deadlines.

In summary, existing flow scheduling methods fail to
fully utilize each link’s available bandwidth capacity, and
may increase the charging volumes, and thus cannot reduce
bandwidth costs maximally for cloud providers.

Compared to existing methods, the advantage of E-
coFlow lies in 1) the reduction in overall bandwidth cost as
much as possible, and 2) video flows can finish transmission
before their deadlines through fine-grained (i.e., hourly)
estimation of the traffic load on each link and taking ad-
vantage of various flow deadlines in flow scheduling. Note
that EcoFlow is a heuristic rather than an optimal solution
and it outperforms existing methods.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview on related work. Section 3 provides
an overview of the EcoFlow design. Section 4 introduces the
detailed design of EcoFlow. The performance evaluation on
both PlanetLab and EC2 is presented in Section 5. Section 6
concludes the paper with remarks on our future work.

2 RELATED WORK
Many methods have been proposed to schedule the inter-
datacenter traffic in order to minimize the ISP bandwidth
costs of cloud providers, which can be classified in two
groups: store-and-forward and optimal routing path.
Store-and-forward. The methods in this group postpone
the transmissions of the delay-tolerant data flow from
peak hours to off-peak hours, so as to utilize the leftover
traffic during off-peak hours. Laoutaris et al. [13], [14]
proposed to employ a number of storage servers to collect
delay-tolerant traffics and perform data transmission only
when the destination datacenter is in predefined off-peak
hours, so that the charging volume will not increase during
peak hours. NetSticher [15] performs transmissions of
delay-tolerant data between two datacenters only when
both datacenters are in off-peak hours. If there are no
common off-peak hours between both datacenters, it uses
an intermediate datacenter that has an overlap in off-peak
hours with the destination datacenter as a relay datacenter
to store the delay-tolerant data temporarily.

Such store-and-forward transfer systems predefine off-
peak hours of each datacenter. Delaying the transmission of
delay-tolerant videos from peak hours to off-peak hours is a
coarse-grained scheduling strategy. It does not fully utilize
the link’s available bandwidth capacity when actual traffic
load is light during peak hours. Additionally, the transmis-
sion of a large number of non-delay-tolerant videos during
the peak hours will increase the link’s charging volume. In-
stead, EcoFlow is a fine-grained video flow scheduler which
estimates the available bandwidth capacity on each link
during a short time interval (i.e., 1 hour), and schedules the
pending flows using a link’s available bandwidth capacity
in an earliest-deadline-first manner. The flows expected to
miss their deadlines are rerouted to other under-utilized
links to avoid increases in the current charging volume.
Optimal routing path. The optimal routing path methods
identify routing paths for video flows with the objective

2

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

of minimizing the bandwidth payment costs. Multihoming
is a scenario in which a user is connected to the internet
through multiple links operated by different ISPs, and the
links have different bandwidth capacities, availabilities and
prices. In order to optimize the user’s bandwidth costs and
network performance in multihoming, Goldenberg et al. [12]
used liner programming techniques to dynamically assign
traffic among different links. Entact [16] applies a route-
injection mechanism to estimate the bandwidth costs of
alternating paths that are not being currently used. Based
on information of payment costs, traffic, and link capacity,
it jointly computes the optimal routing path for online
service providers. In order to reduce users’ bandwidth costs
in multihoming, Wang et al. [17] applied both a dynamic
programming algorithm and a greedy algorithm to select
links operated by different ISPs to transfer the user data. D-
hamdhere et al. [24] considered monetary cost and network
availability in multihoming, and used the first fit decreasing
algorithm to select an optimal set of ISPs. Jetway [11] aims
to control the transmissions of video flows under the link’s
charging volume. When a video flow is expected to increase
a link’s current charging volume, the video will be split
into subflows, and the subflows are transmitted on a multi-
hop path to utilize the available bandwidth capacity of
each link. These methods do not take advantage of the fact
that some delay-tolerant videos are elastic to delay when
scheduling the traffics. The charging volume of all option
links will be increased when a large amount of videos need
to be sent concurrently. Instead, EcoFlow takes advantage of
different deadlines of flows and postpones the delivery of
delay-tolerant videos to utilize a link’s available bandwidth
capacity when the current traffic load is high, so that the
charging traffic volume will not further increase.

EcoFlow adopts some existing techniques such as sub-
flow (e.g., MPTCP [25]) and rerouting (e.g., Hedera [26],
DevFlow [27]). It also adopts the earliest-deadline-first flow
scheduling strategy [28], [29]. While these techniques have
previously been applied with goals such as minimizing
mean flow completion time or meeting flow deadlines,
they do not inherently consider the payment costs for flow
transfers between datacenters. In this regard, one of the
contributions of the work on EcoFlow is the adoption of
these techniques in conjunction with developing an integral
video flow scheduling system that aims to minimize the
payment costs of inter-datacenter video transfers..

3 OVERVIEW OF ECOFLOW
3.1 Problem Statement
In order to examine the need for EcoFlow consider a cloud
with multiple geographically distributed datacenters, oper-
ated by a single cloud provider, where ever datacenter in
the cloud is connected to every other datacenter. Important
notations used in this paper are listed in Table 1, however,
a few critically important notations to begin this discus-
sion include using a complete direct graph G = (V,E)
to represent the inter-datacenter network, where V is the
set of datacenters and E denotes the set of direct links
connecting datacenters. We use ej,k ∈ E to denote a link
from datacenter j to datacenter k. For each link ej,k, we use
a positive value a to denote the cost per traffic unit, a non-
negative value c to denote the maximum link capacity (the
maximum available transmission rate), and v̂ to denote the
charging volume.

We use Tr to denote the time window to record traffic
volume (i.e., 5-minute interval) for calculating the charging

TABLE 1: Table of important notations.
e a direct link connecting datacenter i and j
fk video flow k

fIk an indirect video flow
fDk a direct video flow
F (t) a set of video flow at time t
F I(t) a set of indirect video flow at time t
FD(t) a set of direct video flow at time t
Tp time window for traffic volume prediction
Tr time window to record actual traffic volume
[ti, ti+Tp/Tr

) time interval for traffic volume prediction
[ti, ti+1) time interval to record traffic volume, ti+1-ti=Tr
a bandwidth cost per unit traffic on e
v(ti, tj) traffic volume on link e at time interval [ti, tj)
v̂(ti) charging volume on link e at time ti
P c(ti) bandwidth cost on link e at time ti
ṽ(ti, tj) estimated traffic volume on link e at [ti, tj)
c maximum bandwidth capacity on link e
∆c(ti, tj) available bandwidth capacity on link e at [ti, tj)
tstartk starting time for video flow fk
tend
k completion time for video flow fk
P reroute path for an indirect video flow
sk flow size of video flow fk
dk transmission deadline of video flow fk
v̂(t0) initial charging volume on each link e
¯̄V (tend) average charging volume at time tend of all links

volume, and use P cj,k(ti) to denote the bandwidth cost on
link ej,k at time ti. We let v̂(ti) represent the charging
volume on link e at time ti and let v(ti−1, ti) present the
total actual traffic during time interval [ti−1, ti). Assuming
the charging period begins at time t0, the bandwidth cost on
link e at time ti can be calculated by:

P c
j,k(ti) =

{
a

v̂(ti−1)

Tr
(ti − ti−1) If v(ti−1, ti) < v̂(ti−1)

a v̂(ti)
Tr

(ti − ti−1) otherwise
(1)

As shown in Equation (1), when the actual traffic volume
during [ti−1, ti) is smaller than the charging volume at time
ti−1, the bandwidth cost at time ti is calculated by applying
the cost function to the charging volume at time ti−1;
otherwise, the new bandwidth cost at time ti is calculated
by applying the cost function to the new charging volume
at time ti.

Suppose that there are M video flows f1, ..., fm, ..., fM
to be scheduled, where the starting time and the completion
time of each fm are represented by tstartm and tendm , respec-
tively. We use usrcm and udstm to denote the source and the
destination of fm, and use sm to denote the size of fm. Each
flow is allowed to be partitioned into several subflows and
to be delivered via multiple paths. We use xj,km,i to represent
the size of fm’s subflow that is allocated to link ej,k at time
[ti−1, ti). Then, the following conditions must be satisfied:
For each flow fm,
C1: The total data flowing out of the source usrcm after tstartm

equals to sm:
∑
i≥tstart

m

∑
j∈V \usrc

m
x
usrc
m ,j
m,i = sm.

C2: The total data flowing into the destination udstm by time

tendm equals to sm:
∑
i≤tend

m

∑
j∈V \udst

m
x
j,udst

m
m,i = sm.

For each flow fm and each datacenter j that is neither
source nor destination of fm,
C3: The total data in fm flowing into j equals to the data
flowing out of j for the whole time span:

∑
i

∑
l∈V \j x

l,j
m,i =∑

i

∑
k∈V \j x

j,k
m,i

C4: At each time tτ , the total data in fm flowing into
j should be no smaller than the data flowing out of j:∑
i≤τ

∑
l∈V \j x

l,j
m,i ≥

∑
i≤τ

∑
k∈V \j x

j,k
m,i.

C5: The total size of all subflows on each link ej,k can not

3

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

1 2

x
un

Time
interval

Traffic
volume

…

95th percentile
until interval t-1 Charging

volume

Increased
traffic volume

Wasted
traffic

Time
interval

Transmission
rate

Fig. 1: Example: inter-datacenter video traffic bandwidth cost.

exceed the bandwidth capacity c at each time ti:
∑
m x

l,j
m,i ≤

c.
Additionally, the total actual traffic on the link between

data centers j and k during the time interval [ti−1, ti) can
be obtained using the following formula:

v(ti−1, ti) =

M∑
m=1

(
xj,km,i + xk,jm,i

)
. (2)

The equation can then be rewritten:

P c
j,k(ti) = max

l≤i

∑
m

(
xj,km,l + xk,jm,l

)
(3)

The objective of EcoFlow is to design a video flow schedul-
ing strategy to specify each decision variable xj,km,i to mini-
mize the overall bandwidth cost:

min
∑
i

∑
ek,j∈E

max
l≤i

∑
m

(
xj,km,l + xk,jm,l

)
(4)

s.t. Constraints C1-C5 are satisfied. (5)

The bandwidth cost optimization problem above is a con-
vex optimization problem that is similar to the typical
minimum-cost multi-flow problem [30] and can be solved
in polynomial time. We cannot, however, directly apply
existing solutions to solve this problem as doing so requires
having complete information on every traffic flow (starting
time, deadline, flow size) for the entire time span, which
is difficult to predict, particularly at the outset. According-
ly, in the following sections, we introduce a time-efficient
heuristic video flow scheduling solution designed to reduce
the inter-datacenter bandwidth costs. We will demonstrate
the effectiveness of our proposed method by comparing it
with some existing methods through extensive experiments
in Section 5. For simplicity, we omit subscripts j and k in all
notations related to link ej,k throughout the paper.

3.2 Overview of EcoFlow
Constrain charging volume. Many recent methods try to
constrain the charging volume on each link to reduce the
bandwidth costs. We first present an example to explain the
basic idea of these methods. Figure 1 shows an example
of an inter-datacenter link’s bandwidth cost under the 95th
percentile charging model. The traffic volume in time inter-
val [t1, t2) is the 95th percentile value until time tn, and is
marked as the charging volume that needs to be paid by the
cloud provider at tn. When a larger traffic volume v comes
up in time interval [tn, tn+1), it becomes the new charging
volume at time tn+1. Then, from time t0 to tn+1, the unused
bandwidth below the traffic volume v is wasted, that is, the
cloud provider does not fully utilized the charging volume.
Given this observation, a feasible way to reduce bandwidth
cost is to maximize the utilization of the charging volume
at different time intervals. For this purpose, when the
bandwidth needed is greater than current charging volume,
EcoFlow postpones the delivery of later-deadline videos to
the time when the traffic load is light. For example, the
increased traffic volume in time interval [tn, tn+1) can be

postponed to time interval [tn+1, tn+2). In this way, when
a fixed amount of video flow is transmitted between two
datacenters over a given period, the 95th percentile of video
volumes over all time intervals is minimized. If multiple
video flows have the same deadline, we can randomly order
these video flows. Note that here we only consider the dead-
line to order the video flows, but we can jointly consider
other factors such as the importance of the video flow.
Three steps of EcoFlow. Specifically, EcoFlow schedules the
video flow transfers on a link to different time slots or to
other links in order to fully utilize the charging volume
while guaranteeing the successful flow transfer within dead-
lines. The EcoFlow scheduling mechanism can be divided
into three steps as explain in Section 1. We first briefly
introduce the three steps using an example in Figure 2,
which demonstrate the flow scheduling on two links.

Step 1: Available Bandwidth Capacity Estimation. We
use Tp to denote the time window used to estimate the avail-
able bandwidth capacity on each link, and use Tr (Tr<Tp) to
denote the time window to record traffic volume in current
charging model. Based on historical data, we estimate the
total volume of video traffic needed to be transmitted on
each link during time interval [t0, tn), tn− t0 = Tp, denoted
by ṽ(t0, tn). Assume link e1’s charging volume at time t0 is
v̂1(t0), it then can transfer a volume of v̂1(t0)×Tp/Tr video
during time interval [t0, tn). We define a link’s available
bandwidth capacity as the maximum transmission rate that
can be used to transfer videos without increasing the current
charging volume during a certain time interval. We then
calculate the available bandwidth capacity ∆c1(t0, tn) on
link e1 during time interval [t0, tn):

∆c1(t0, tn) = v̂1(t0)/Tr − ṽ1(t0, tn)/Tp. (6)

Step 2: Deadline-Driven Flow Scheduling. On each
link, the pending video flows are scheduled on an earliest-
deadline-first base. When the traffic capacity is fully occu-
pied at the current interval, we postpone the transfer of
flows with later deadlines to later time interval but still
guarantee their deliveries by deadlines. In Figure 2, on link
e2, the transmission of flow f21 fully utilizes the available
bandwidth capacity on link e2 in time interval [t0, t1), so f22
with a later deadline than f21 will be sent after f21 finishes
transmission. However, when f24 is scheduled after f23, its
expected transmission time is at t5, which is later than its
deadline. We divide f24 into two subflows: fD24 and f I24. On
link e1, all pending videos are scheduled to finish transmis-
sion before t3, its available capacity during [t3, tn) is not
utilized (highlighted in dashed fill). We call the available
bandwidth capacity that are not utilized during [t3, tn) ex-
tra bandwidth capacity (δc1(t3, tn)), δc1(t3, tn)=∆c1(t0, tn).
We define the links with extra bandwidth capacity during a
time interval as the under-utilized links. The extra band-
width capacity on link e1 can be utilized to reroute subflow
f I24 from e2 by its deadline.

Step 3: Routing Path Identification. For the video
rerouting, we aim to identify an alternating path that has
extra bandwidth capacity to transmit the video by its dead-
line. To this end, we apply the Dijkstra’s algorithm [23] to
identify the alternating routing path.
Advantages of EcoFlow. We then use an example to show
the advantage of EcoFlow compared to existing methods.
In Figure 3, the time interval in X axis is one second,
that is, t1-t0=1s. Y axis denotes the available bandwidth
capacity on a link. Four videos of 1GB in size need to be
transferred on a link, and the link’s available bandwidth

4

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

Bandwidth capacity that can be used
to reroute videos from other links

Timeline

Available
bandwidth capacity

Link

Transmission
rate

…

Deadline of

Link

Miss deadline

Reroute to link

…

	 		

Fig. 2: An overview of EcoFlow.
4Gb/s

4Gb/s

Wasted
bandwidth

Wasted
bandwidth

JetWay

EcoFlow

Available bandwidth
capacity

4Gb/s

Wasted
bandwidth

Store-and-forward
bulk transfer

Time (s)

Time (s)

Fig. 3: A comparison of bandwidth utilization between
different methods.

capacity is 4Gb/s. We assume that time interval [t0, t3)
is the link’s peak hours, while [t3, t8) is in the link’s off-
peak hours defined in the store-and-forward methods [13]–
[15]. The transmission requests of video flows f1, f2, f3
and f4 arrive at the source datacenter at time t0, t1, t2
and t3. All four videos are delay-tolerant with transmission
deadlines at time t6, t7, t8, and t9, respectively. In the store-
and-forward method, the delay-tolerant videos temporarily
wait during peak hours during time interval [t0, t3). As no
video transmission is performed during peak hours, the
link’s bandwidth capacity is wasted. The videos are sent out
during off-peak hours in [t3, t8). However, as a total amount
of 2.5 GB data can be transmitted using the link’s available
bandwidth capacity during the off-peak time, thus only 2.5
videos can finish transmission.

We take Jetway [11] as a representative method of the
routing path optimization methods. In JetWay, all videos
are sent out when their transmission requests arrive at
the source datacenter. The transmission rate of each video
flow is calculated by dividing the size of video by the time
span between the transmission request arrival time and the
video’s deadline. Thus, each video is transmitted at the rate
of 1GB/6s=1.33Gb/s. f1, f2 and f3 will be transmitted at
the rate of 1.33Gb/s at time t0, t1 and t2, respectively. When
f4 arrives at time t3, the link’s bandwidth capacity is fully
occupied by other videos, and then f4 has to be rerouted
to other links. In this example, the bandwidth capacity
marked in blue is wasted.

In EcoFlow, for contrast, all videos are transmitted using
the available bandwidth capacity, and the transmission of
later-deadline videos will be postponed to future time slots
if current traffic increases the charging volume. In this
example, f2 will be postponed until f1 finishes its trans-
mission, and f3 and f4 are then transferred one by one. All
four videos can be transmitted before their deadlines and
the link’s bandwidth capacity is fully utilized. Therefore,
EcoFlow can fully utilize the link bandwidth capacity to
reduce the bandwidth payment cost of existing methods.

4 SYSTEM DESIGN

4.1 Available Bandwidth Capacity Estimation
When the total traffic volume at current time interval
[ti, ti+1) (ti+1 − ti = Tr) exceeds the current charging vol-
ume, EcoFlow postpones the transmission of later-deadline

videos to utilize the link’s available bandwidth capacity in
future time intervals. In order to predict whether a link
has enough bandwidth capacity to transmit these videos,
EcoFlow estimates each link’s available bandwidth capac-
ity during Tp with two steps: 1) traffic volume prediction
during Tp, and 2) available bandwidth capacity estimation,
which is the maximum volume of traffic a link can transfer
without further increasing the current bandwidth cost.
Traffic volume prediction. Note that the traffic transmitted
on link e includes traffic transmitted from datacenter i to j
and from datacenter j to i. Exponentially weighted moving
average (EWMA) [31] is widely used for prediction for a
given series of data points. We use EWMA to estimate the
traffic volume during [ti, ti + Tp] on link e (denoted by
ṽ(ti, ti + Tp)) based on the actual historical traffic volume
(denoted by v(·)):
ṽ(ti, ti + Tp) = β × v(ti − Tp, ti) + (1− β)× ṽ(ti − Tp, ti). (7)
ṽ(ti − Tp, ti) is the estimated traffic volume in time interval
[ti − Tp, ti), and β (0 < β < 1) is a constant used to control
the degree of weighting decrease.
Available bandwidth capacity estimation. From historical
flow records, we calculate the charging volume on link e
at time ti, v̂(ti). Thus, during time interval [ti, ti + Tp), a
total volume of v̂(ti) × Tp/Tr video traffic can be trans-
ferred under the current bandwidth cost. Given estimated
traffic volume ṽ(ti, ti + Tp), we can calculate the available
bandwidth capacity in time interval [ti, ti + Tp):

∆c(ti, ti + Tp) = min{c, v̂(ti)/Tr − ṽ(ti, ti + Tp)/Tp}. (8)

When ∆c(ti, ti + Tp) > 0, the current charging volume
on link e is larger than the expected traffic volume, and
the available bandwidth capacity can be used to reroute
video flows from other links. The accuracy of EWMA in
prediction was studied in previous works such as in [32]. Its
true positive rate achieves over 90% while its false positive
rate is under 5%.

4.2 Deadline-driven Flow Scheduling
Like existing works [11], [33] that assume the existence of
a centralized server (which connects to all the datacenters)
as a scheduler to globally schedule the video flows across
different datacenters, we first introduce EcoFlow in a cen-
tralized manner. We will further introduce a distributed way
to implement EcoFlow in Section 4.8.

In order to maximize the number of videos that can be
transmitted by their deadlines, we use the earliest-deadline-
first strategy, that is, the video with the earliest deadline will
be put at the front of the sending queue. The network sched-
uler maintains a sending queue Q(ti)=(< f1, d1, s1 >,<
f2, d2, s2 >,... < fm, dm, sm >) to store all pending flows
on each link e at time ti, which are ordered based on their
deadlines. Note that flows on link e include all flows that are
transmitted bidirectionally between datacenter i to j (i.e.,
from i to j or from j to i). Each triple < fk, dk, sk > in Q(ti)
contains the flow information of fk, where dk and sk are the
deadline and size of fk, respectively.

All pending videos in Q(ti) are sent out sequentially,
that is, fk will be sent only when all videos f1, f2, ..., fk−1
have finished transmission. As we see from Figure 3, when
a number of videos are transmitted on a link simultaneously
and their cumulated transmission rate is less than the link’s
available bandwidth capacity, the bandwidth resource of
this link is wasted as the extra bandwidth capacity is not
utilized. Thus, EcoFlow aims to maximize the bandwidth
utilization by sending video at a rate that fully utilizes the

5

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

available bandwidth capacity. The estimated flow transmis-
sion time for flow fk can be computed as:

Tk = A/∆c(ti, ti + Tp). (9)

A =
∑
fp∈F<k

sp, where F<k is a subset of flows in Q(ti)
that have earlier deadlines than flow fk (including fk), and
∆c(ti, ti+Tp) is the estimated available bandwidth capacity
on link e in time interval [ti, ti + Tp). As the flows in Q(ti)
are sent sequentially, the flow completion time for fk is tendk :

tend
k =

{
ti + Tk if k = 1
tend
k−1 + Tk otherwise (10)

The flow start time for f1 is ti. For flow fk (k > 1), the
flow start time is the completion time of the previous
flow, that is, tstartk = tendk−1. dk is the deadline of video fk.
When tendk ≤ dk, flow fk is expected to finish transmission
before its deadline, and we call it a Direct Flow (DF).
When tendk > dk, flow fk is likely to miss the transmission
deadline under the expected bandwidth capacity. Then, fk
can be split to two subflows: fDk and f Ik . fDk is the volume
with size sDk that can be transmitted directly on link e before
its deadline; while f Ik is the residual volume with size sIk
(sIk=sk − sDk), which should be rerouted in an alternating
path before its deadline. We call f Ik an Indirect Flow (IF).

sDk = max(0, dk ×∆c(ti, ti + Tp)−A). (11)
Using the alternating routing path identification method in
Section 4.4, we identify alternating paths for each indirect
flow f Ik which can transmit f Ik before its deadline.

Algorithm 1 Pseudocode for identifying alternating path for flow fIk .

1: Input: G = (V,E); sk , δc(ti, ti + Tp), ∀e ∈ E;
2: Output: alternating path P from source i to destination j
3: for each vertex u in V
4: rate[u] := 0 //The maximum transmission rate on each path
5: pre[u] := null //Record last hop on the path
6: tend

k [u] := ti //Transmission completion time
7: Q+ = j //Q is a temporal set
8: end for
9: rate[i] := infinity

10: while Q is not empty do
11: u := vertex in Q with max rate[u]
12: remove u from Q
13: for each neighbor v of u with δcuv(ti, ti + Tp) > 0 do
14: tend

k [v]:=sIk/min{rate[u], δcuv(ti, ti + Tp)}+ ti
15: alt :=max{rate[v], δcuv(ti, ti + tend

k [v])}
16: if alt ≥ rate[v]: // A path with higher transmission rate
17: rate[v] := alt
18: pre[v] := u
19: end if
20: P := empty sequence
21: while pre[j] is defined do //Construct the alternating path
22: insert j at the beginning of P
23: δcj,pre[j](ti, ti + tend

k [j]) := 0
24: j := pre[j] // Traverse from destination to source
25: if tend[v]<dk Return P
26: if tend[v]>dk //P cannot transmit fIk before its deadline
27: split fIk into fk1, fk2
28: Return P , fk1, fk2
29: end if

After all IFs find alternative paths, the scheduler creates
a schedule table for all pending flows, in which each item
is expressed in a quadruple S(ti) =< fk, S,D, t

start
k >,

which denotes the flow ID, source datacenter, destination
datacenter and flow start time. This table is used to guide
the transfers of flows initiated from all datacenters.

4.3 Alternating Routing Path Identification
F I(ti) denotes the set of all IFs in the network at time
ti, which are sorted by their deadlines in ascending order.

Assume f Ik is an IF from datacenter i to datacenter j, in
this section, we describe how the scheduler identifies an
alternating routing path P for f Ik, P = (v1, v2, . . . , vp). The
centralized scheduler identifies an alternating path for each
IF in an earliest-deadline-first manner.

The selected alternating path P uses extra bandwidth
capacities of its constituent links to transmit f Ik, with the
requirement of finishing the transmission before its dead-
line. The path that can transmit f Ik with the minimum
transmission time among all possible alternating paths is
the best path to satisfy this requirement. Thus, we first
identify the alternating path P that leads to the minimum
transmission time. If the identified path can transmit f Ik
before its deadline, we reroute f Ik to this alternating path;
otherwise we split f Ik into two parts: fk1 and fk2, where fk1
is the part of f Ik that is expected to finish transmission on
P . We reroute fk1 along P , and identify another alternating
path for fk2 by using the same process. If the new identified
alternating path cannot transmit fk2 before its deadline, fk2
is further split into two parts: f1k2 and f2k2. f1k2 is transmitted
on the new alternating path and f2k2 is transmitted on e by
increasing the charging volume on e.

When f Ik is transmitted on path P , its transmission rate
is the minimum extra bandwidth capacity on all P ’s con-
stituent edges [34], that is min∀i∈(1,p−1){δci,i+1(ti, ti+Tp)}.
f Ik ’s transmission completion time tendk is calculated by:

tend
k = sIk/min∀i∈(1,p−1){δci,i+1(ti, ti + Tp)}+ ti, (12)

where sIk denotes the flow size of f Ik and δci,i+1(ti, ti + Tp)
denotes the extra bandwidth capacity on link ei,i+1. We then
express the requirement that the transmission of flow f Ik on
path P would be finished before its deadline by: tendk ≤ dk.
Therefore, transmitting subflows along the alternating
path will not interfere with the other video flows being
transmitted in the constituent edges of the path or violate
the deadline requirement of the flow for the subflows. The
path that can transfer f Ik with the minimum transmission
time is the best path to satisfy this requirement, which is
shown in Equation (13):

min∀P {tendk (P)} (13)

The Dijkstra’s algorithm can be used to find the path
that can transmit f Ik with the minimum transmission time.
Then, we use a modified Dijkstra’s algorithm to identify an
alternating routing path for f Ik but we modify this algorithm
to meet our need, i.e., meeting the deadline, as shown in
Algorithm 1. In this algorithm, we input the flow infor-
mation including its size, deadline, source datacenter and
destination datacenter, together with network information
including all link’s extra bandwidth capacity. Algorithm 1
will return an alternating path P for f Ik , and splits f Ik into
two parts if P cannot finish transmission before its deadline.
In Algorithm 1, we modify the original Dijkstra’s algorithm
to check whether the identified alternating path P meets
the deadline requirement through the addition of Lines 25-
29. If the identified path can transmit f Ik before its deadline,
alternating path P is returned (Line 25); otherwise f Ik is
split into fk1 and fk2 (Line 26-29). The simplest implemen-
tation of the Dijkstra’s algorithm requires a running time of
O(|E|+ |V |2) = O(|V |2).

If P cannot finish f Ik ’s transmission before its deadline
and f Ik is split into fk1 and fk2, we will use Algorithm 1
to identify an alternating path for fk2. If the new identified
alternating path cannot transmit fk2 before its deadline, fk2
is further split into two parts: f1k2 and f2k2. f1k2 is transmitted

6

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

on the new alternating path and f2k2 is transmitted on e
by increasing the charging volume on e. The new charging
volume v̂(ti) at time ti is calculated by:

v̂(ti) = (A− sk + s(f2
k2)× Tr/(dk − ti). (14)

Where s(f2k2) is the size of f2k2. The flow start time and
completion time of all flows on link e will then be updated
based on Equation (9), and the schedule table S(ti) =<
fk, S,D, t

start
k > will also be updated.

4.4 Forwarding Subflows with Rate Limiters
When sending video flows in the inter-datacenter network,
we need to control the transmission rate so that the flows are
sent out by using the links’ available bandwidth capacities.
Each datacenter i deploys a scheduler Ci to organize the
sending queue of video flows, which attaches labels to
all packets of each flow that record their corresponding
transmission paths. For each video flow, the datacenter
also uses a rate limiter [35], [36] to control its sending rate
within the available bandwidth capacity, so that the links’
current charging volume on the flow’s transmission path
will not increase.

If flow fk is a DF sending from datacenter i to datacenter
j, all packets of fk are transmitted using available band-
width capacity on link e (i.e., ∆c(ti, ti + Tp)). The number
of packets transmitted per second rk is calculated by:

rk = ∆c(ti, ti + Tp)/µ, (15)

where µ is the size of a packet. The cloud provide specifies
the value of µ, typically, µ is set to 1KB [37], [38].

If flow fk is split into multiple subflows, (e.g., fk is split
into fDk and f Ik , and f Ik is further split into fk1 and fk2), the
rate limiter needs to split the packets proportionally accord-
ing to each link’s available bandwidth capacity. Assume fk
is split into (fk1, fk2,...,fkm), which are transmitted using
links (ei1, ei2,...,eim). The total number of packets sent per
second for fk is:

rk =
∑m

j=1
∆c(ti, ti + Tp)/µ. (16)

In this way, the fk’s packets are proportionally distributed
across all paths.

4.5 Setting Initial Charging Volume
According to the 95th percentile charging model, the charg-
ing volume at the beginning of the charging period is 0
and it increases gradually as the bandwidth usage goes up.
Figure 4 shows an example where a link’s charging volume
increases over time. In this example, the charging volume
rises drastically in early time intervals and remains rela-
tively stable after a given time interval. This property leads
to a problem in our design. During early time intervals,
as available bandwidth capacity of a direct link is 0 and
cannot transmit a video flow fk on this path, fk needs to
look for an alternating path. fk cannot find any alternating
path because the available bandwidth capacities of all links
are 0. Finally, the direct link needs to increase its charging
volume in order to transmit fk. This process leads to extra
scheduling latency due to insufficient available bandwidth
capacities in all links.

To reduce the scheduling latency and make the schedule
process simple during early time intervals of a charging
period, we set an initial charging volume on each link,
as shown in the dash line in Figure 4. Assume each
charging period is divided into a number of time points
< t0, t1, ...tend >, i.e., it starts from time t0 and ends at time
tend. The initial charging volume on each link e at time t0
is denoted by v̂(t0). v̂(t0) should be set properly. If v̂(t0) is

…

Charging volume
gets relatively stable

Charging
volume

Increased

Time
interval

Initial
charging
volume

Fig. 4: An example of setting an initial charging volume at the
beginning of a charging period.

too small, the scheduling latency cannot be reduced since
a direct link does not have enough available bandwidth
capacity to transmit flow fk, and also we can hardly find
an alternating path because other links’ initial charging
volumes are small. On the other hand, if v̂(t0) is too large,
the initial charging volume is not fully utilized throughout
the charging period, and the proposed scheduling scheme
will not be effective in reducing each link’s bandwidth cost.
In this section, we introduce how to set the initial charging
volume on each link based on the historical data, i.e., actual
charging volume at the end of the last charging period
(denoted by tend), since it can be an indicator of how much
traffic volume will be transmitted during current charging
period.

We consider two factors in setting v̂(t0), which are the
actual charging volume at time tend on link e (v̂(tend))
and the average actual charging volume at time tend on all
links in the inter-datacenter network (denoted by V̄ (tend)).
V̄ (tend) is calculated as:

V̄ (tend) =
∑

e∈E
v̂(tend)/2|E|. (17)

v̂(tend) plays a major role in determining the initial charging
volume on e, because EcoFlow encourages sending video
flows using direct link e to reduce transmission time. As
introduced in Section 4.1, v̂(tend) can be calculated based on
the actual historical traffic volume during previous charging
period. We consider V̄ (tend) because EcoFlow aims to trans-
mit video flows using the available bandwidth capacities
of all links in the inter-datacenter network so as to control
the charging volume on a specific link and offload partial
traffic to alternating paths. Combining these two factors, we
calculate v̂(t0) by:

v̂(t0) = φv̂(tend) + ϕV̄ (tend). (18)
φ ∈ (0, 1) is a weight placed on v̂(tend); ϕ ∈ (0, 1) is a
weight placed on V̄ (tend). At the beginning of each charging
period, the charging volume on link e is set to v̂(t0). In
Section 5.4, we evaluate the performance of this strategy
by setting different values of φ and ϕ.

4.6 Deal with Prediction Errors and Lack of Prior
Knowledge
Our design is based on prediction. That is, we estimate the
available bandwidth capacity on each link and utilize it to
reroute videos. Prediction errors, (e.g., there are more video
flows waiting to be transmitted on a link than the estimated
value due to overestimating the available bandwidth capac-
ity), can lead to an excessive backlog of videos left waiting
in the sending queue. To handle the prediction errors, our
design can adapt by revising the transmission schedule.
When an excessive number of pending videos appear in the
sending queue and EcoFlow cannot find alternating paths
for these videos, it then uses Equation (14) to calculate a
new charging volume on this link.

When we lack prior knowledge of the charging volume
that existed during previous charing periods, as describe
in Section 4.5, the cloud service provider will set each link’s

7

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

initial charging volume based on how much bandwidth cost
it is willing to pay, or it can set the initial charging volume to
0 and let the charging volume increases gradually as more
videos are transmitted.

4.7 Centralized Implementation of EcoFlow
In this section, we pull together the various constituent parts
of EcoFlow and describe how it operates in situations of cen-
tralized implementation. As mentioned in Section 4.2, each
scheduler maintains a sending queue Q(ti)=(<f1, d1, s1>,
<f2, d2, s2>,...,<fm, dm, sm>) to store all pending video
flows on each link e at time ti, and the flows are sorted
in ascending order based on their deadlines. The goal of
EcoFlow is to calculate a schedule table S(ti). That is, it
decides a transmission path for each flow, and splits a flow
into subflows and identifies alternating paths for them if
a flow is estimated to miss its transmission deadline. We
describe the process of scheduling video flows on link e in
Algorithm 2. If ti is the beginning of a charging period, the
scheduler first sets an initial charging volume on e (Line 3-
5). It then calculates e’s available bandwidth capacity (Line
6). For each fk in the sending queue, EcoFlow calculates
expected transmission time tendk . If tendk is earlier than fk’s
transmission deadline, fk will be transmitted on link e
(Line 9-10). Otherwise, EcoFlow splits fk into fDk and f Ik
and identifies an alternating path for f Ik (Lines 12-13). If
an alternating path P is found to transmit f Ik , we update
the available bandwidth capacity on each edge of P (Line
14). If no alternating path can be found to transmit the
whole volume of f Ik , we increase charging volume on e at
time ti according to Equation (14) (Lines 15-17). Finally, the
scheduling table S(ti) is updated based on the scheduling
results (Line 20).

4.8 Distributed Implementation of EcoFlow
In the centralized implementation of EcoFlow, when the
centralized scheduler fails, the scheduling function comes to
a halt. In order to prevent the single point of failure problem,
we propose a distributed implementation of EcoFlow. Thus,
when one scheduler fails, the scheduling system can still
function by utilizing other normal schedulers. As mentioned
before, each datacenter i has a scheduler Ci. For flow
scheduling on link e, we select a scheduler on datacenter
i or j as a master scheduler, denoted by scheduler C,
and the other schedule then becomes the slave scheduler.
Scheduler C is responsible for scheduling transmission of
flows on e, calculating the available bandwidth capacity
(∆c) on link e using the same technique as in Section 4.1, and
broadcasts this information to all schedulers in the network
for alternating path identification.

At each time interval Tr , scheduler Ci and scheduler Cj
report information of their pending flows on link e (includ-
ing flow ID, size and deadline) to scheduler C. Scheduler C
then orders the flows by their deadlines in ascending order,
and calculates start time and completion time for each flow
using the same technique in Section 4.8. All flows on link
e are divided into DFs (FD(ti)) and IFs (F I(ti)). Scheduler
C builds a schedule table S(ti) =< fk, S,D, t

start
k > for

flows in FD(ti) and forwards it to both scheduler Ci and
scheduler Cj . As DFs can be transmitted directly through
e, scheduler Ci and scheduler Cj transfer flows in DFs
according to the schedule table. Scheduler C also needs to
find the alternating paths for F I(ti) and notifies scheduler
Ci and scheduler Cj the alternating paths.

Assume f Ik is an IF flow from datacenter i to datacenter
j, we need to identify an alternating path that can transfer

f Ik before its deadline. Due to the lack of a centralized sched-
uler, the challenge of the distributed identification method
lies in finding an alternating path through the cooperation of
multiple schedulers. Under this scenario, identifying a path
with the minimum transmission time f Ik is complicated,
so we aim to find a path that can transfer f Ik before its
deadline. As each datacenter has direct links connected to
all other datacenters, a sufficient number of datacenters
can be chosen as relay datacenters in the alternating paths.
With a high probability, we can find a relay datacenter and
build a 2-hop alternating path that can transfer f Ik before its
deadline. While identifying a multi-hop (more than 2-hop)
alternating path requires cooperation of multiple schedulers
and is not efficient in time complexity, we aim to simplify
the implementation, and achieve algorithm time efficiency,
we identify a 2-hop alternating path P = (i, h, j) for
f Ik in our proposed method, that is, find an intermediate
datacenter h and transfer f Ik on path P = (i, h, j). Multiple
candidate datacenters might be able to relay and transfer
f Ik before its deadline, we then contact each datacenter’s
scheduler and randomly choose a datacenter h who are
able to relay f Ik as the intermediate datacenter. Note that
this routing path identification method can be extended to
identify alternating paths with more than two hops.

Algorithm 2 Pseudocode for scheduling video flows on link e.

1: Input: G = (V,E); Q(ti);
2: Output: schedule table S(ti) for all flows in Q(ti)
3: if ti is the beginning of a charging period
4: set initial charging volume v̂(t0)
5: end if
6: calculate available bandwidth capacity ṽ(ti, ti + Tp)
7: for each fk ∈ Q(ti)
8: calculate expected transmission time tend

k
9: if tend

k is smaller than deadline dk
10: fk is transmitted directly on link e
11: else
12: split fk into subflows: fDk and fIk
13: find alternating path P for fIk using Algorithm 1
14: update available bandwidth capacity on each link of P
15: if P cannot transmit whole volume of fIk
16: increase v̂(ti) on e according to Equation (14)
17: end if
18: end if
19: end for
20: update scheduling table S(ti) for fk and subflows

Algorithm 3 Pseudocode of finding intermediate datacenter h.

1: Input: δc(ti, ti + Tp), ∀ij ∈ E;
2: Output: intermediate datacenter h between source i and dest. j
3: for each vertex q in V \j:
4: tend

k :=sk/min{∆ciq ,∆cqj}+ ti //Calculate completion time
5: if tend

k < dk : //Guarantee the transmission deadline
6: scheduler Ci contacts scheduler Cq

7: if δciq(ti, ti + tend
k) > 0 and δcqj(ti, ti + tend

k) > 0:
8: h := q
9: end if

10: end if
11: end for

The information of available bandwidth capacity
on each link at each time interval is shared among all
schedulers by broadcasting. The intermediate datacenter
h is selected according to Algorithm 3. In this algorithm,
we try each datacenters in V \j to build a candidate path
(Line 3). For each candidate path, we then calculate f Ik ’s
transmission time on this path (Line 4). If path P can
transfer f Ik before its deadline, we further check if the
links on P have extra bandwidth capacities (Line 5-10).
When intermediate datacenter h is found, scheduler Ci

8

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

then forwards f Ik to datacenter h, and scheduler Ch further
forwards it to its destination j. If scheduler Ci cannot find
a transit datacenter h, scheduler Ci increases the charging
volume on e according to Equation (14).

5 PERFORMANCE EVALUATION
We conducted experiments on the PlanetLab [39] real-world
testbed and Amazon EC2 platform [40] to evaluate the
performance of EcoFlow in comparison with other systems.
For EcoFlow, We tested EcoFlow as both a centralized sched-
uler (denoted as EcoFlow-C) and as a distributed scheduler
(denoted as EcoFlow-D). We compare the performance of
EcoFlow with three datacenter traffic scheduling strategies:
1) Direct transfer (denoted as Direct): This transfer type
directly transfers video flows to the destination whenever
the video transfer requests are initated by the cloud provider
without considering each link’s charging volume. We use it
to represent optimal routing path methods to be compared
wtih EcoFlow in our evaluation.
2) JetWay [11]: Jetway transfers video flows whenever the
video transfer requests are initiated by the cloud provider,
at a rate calculated by its size divided by its corresponding
maximum tolerable transfer time. When a video flow is ex-
pected to increase a link’s current charging volume, it splits
the video flow into two sub-flows, and the subflows are
transmitted along alternating paths to utilize the available
bandwidth capacity of each link.
3) NetSticher [15]: NetSticher is a store-and-forward
method that transfers delay-tolerant data between two dat-
acenters only when both datacenters are in off-peak hours.
When there are no common off-peak hours between both
datacenters, an intermediate datacenter is used to store the
data temporarily and then forward it to the destination
datacenter.

In both PlanetLab and EC2 experiments, we defined two
types of videos: Standard Definition (SD) videos with sizes
randomly selected in [500, 800] MB, and High Definition
(HD) videos with sizes randomly selected in [2, 4] GB
[11]. We assumed that the traffic load for each datacenter
displays a periodic diurnal pattern [15]. For simplicity, we
further assumed that 10-12am and 6pm-12am of a node’s
local time are peak hours. A datacenter transfers x and y
videos per hour (including both SD and HD videos) to all
other datacenters during its peak hours and off-peak hours,
respectively, where x and y were randomly selected from [2,
5] and [0, 1], respectively. The transfer request of each video
is initiated at a random time during the selected hours,
and its deadline is chosen in [30, 120] minutes after the
transfer request’s initiated time. We assumed a video with
maximum tolerable transfer time longer than 60 minutes
to be a delay-tolerant. We set Tp = 1 hour and Tr = 5
minutes. We simulated an inter-datacenter network running
for 48 hours for all methods. We set this 48 hour period as an
independent charging period and calculated the bandwidth
cost on each link at the end of the experiment. In EcoFlow-C
and EcoFlow-D, we had a 48 hour warmup period and used
the traffic records in this period to predict the traffic volume
on each link during the charging period. We also set the ini-
tial charging volume based on the charging volume in this
warmup period according to Section 4.5. We calculated the
bandwidth costs under the 95th percentile charging model.
5.1 Experimental Results for Overall Performance
We first present the overall performance of EcoFlow in terms
of bandwidth cost, percentage of flows transmitted within
the charging volume and percentage of transferred flows

within deadlines. In order to compare EcoFlow with other
scheduling methods, we set the initial charging volume to 0
in these experiments.
Settings on PlanetLab. We used 15 distributed nodes world-
wide to simulate 15 datacenters, including 7 nodes in North
America, 5 nodes in East Asia and 3 nodes in Europe. On
each link between two datacenters, the bandwidth capacity
is randomly selected in [10, 600] MB, and the bandwidth
cost per unit (MB) is randomly selected in [50, 400] [11].
Each node’s time zone is determined based on its location.
In the experiment, we used the TCP protocol to transfer data
between different nodes.
Settings on EC2. We have conducted our experiments in
the Amazon EC2 platform, which is one of the dominant
Infrastructure as a Service (IaaS) cloud providers. There are
a total of 7 datacenters on EC2, the capacity and cost per
traffic unit of each link is set according to the studies in
[11]. We assigned the diurnal load described above to each
datacenter based on the time zone it resides in.

We first defined a metric of total bandwidth cost as the
sum of bandwidth payment cost on all links in the network.
Figure 5(a) and Figure 5(b) show the total bandwidth cost
at each time interval in PlanetLab and EC2, respectively.
We see that as time evolves, bandwidth payment cost for
each method is increasing due to the reason that bandwidth
payment cost is a function of how long the link’s band-
width is used according to Equation (1). The result also fol-
lows: EcoFlow-C<EcoFlow-D<JetWay<NetSticher<Direct.
Direct results in the highest bandwidth cost. When a video
transfer request arrives at the source datacenter, it imme-
diately transfers the video by using only the direct link
between two datacenters without considering the current
charging volume on the link. NetSticher postpones the
transmission of delay-tolerant videos until both source data-
center and destination datacenter are during off-peak hours,
so that the traffic load during peak hours is alleviated
and it generates less average bandwidth cost than Direct.
However, as the available bandwidth capacity is not fully
utilized during peak hours, there is still room for NetSticher
to further reduce the bandwidth cost. JetWay is able to
incur less bandwidth cost than NetSticher by controlling the
transmissions of current videos within the charging volume.
Also, when a video is expected to increase a link’s charg-
ing volume, it splits the video into subflows and reroutes
the subflows to links that are under-utilized. However, as
videos are transmitted immediately when the video transfer
requests are initiated by the cloud provider, the bandwidth
cost will increase when a large number of video transfer
requests arrive simultaneously. EcoFlow generates the least
bandwidth cost among all comparison methods. Figure 5(a)
shows that EcoFlow-C generates around an $800 reduction
in total bandwidth cost when compared to Jetway for the
48 hour charging period in PlanetLab, while Figure 5(b)
shows that EcoFlow-C generates about a $300 reduction
in total bandwidth cost when compared to Jetway for the
48 hour charging period in EC2. This is due to the fact
that EcoFlow schedules the flows on each link based on
their deadline tightness, and postpones the transmission of
video flows to make the current traffic within the charging
volume. Flows that are expected to miss their deadlines are
split into subflows, which will be rerouted to alternate paths
that are constructed by under-utilized links. Also, EcoFlow
transmits each video with the link’s available bandwidth
capacity, so that the charging volume is fully utilized. Note
that EcoFlow-C performs better than EcoFlow-D as it gains

9

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C
EcoFlow-D
Direct
Jetway
NetSticher

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(a) Results on PlanetLab.

0

500

1000

1500

2000

2500

3000

3500

0 4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C
EcoFlow-D
Direct
Jetway
NetSticher

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(b) Results on EC2.

Fig. 5: Total bandwidth cost at different time intervals.

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 4 6 8 10

Flow rate

EcoFlow-C
EcoFlow-D
Direct
Jetway
NetSticher

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(a) Results on PlanetLab.

1800

2800

3800

4800

5800

6800

7800

8800

9800

2 4 6 8 10

Flow rate

EcoFlow-C
EcoFlow-D
Direct
Jetway
NetSticher

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(b) Results on EC2.

Fig. 6: Total bandwidth cost at different flow rates.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Un
it b

an
dw

idt
h c

os
t (
$)

(a) Results on PlanetLab.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Un
it b

an
dw

idt
h c

os
t (
$)

(b) Results on EC2.

Fig. 7: Average unit bandwidth cost at different time intervals.

0

0.005

0.01

0.015

0.02

2 4 6 8 10

Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Un
it b

an
dw

idt
h c

os
t (
$)

(a) Results on PlanetLab.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

2 4 6 8 10

Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Un
it b

an
dw

idt
h c

os
t (
$)

(b) Results on EC2.

Fig. 8: Average unit bandwidth cost at different flow rates.

0

20

40

60

80

100

120

0 4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C
EcoFlow-D
Direct
Jetway
NetSticher

Pe
rce

nt
ag
e o

f fl
ow

s
wi
th
in
ch
arg

ing
 vo

lum
e

(a) Results on PlanetLab.

0

20

40

60

80

100

120

0 4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C
EcoFlow-D
Direct
Jetway
NetSticher

Pe
rce

nt
ag
e o

f fl
ow

s
wi
th
in
ch
arg

ing
 vo

lum
e

(b) Results on EC2.

Fig. 9: Average percentage of flows transmitted within the
charging volume at different time intervals.

50

55

60

65

70

75

80

85

90

95

100

2 4 6 8 10

Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticherPe

rce
nt
ag
e o

f fl
ow

s
wi
th
in
ch
arg

ing
 vo

lum
e

(a) Results on PlanetLab.

55

60

65

70

75

80

85

90

95

100

2 4 6 8 10

Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticherPe

rce
nt
ag
e o

f fl
ow

s
wi
th
in
ch
arg

ing
 vo

lum
e

(b) Results on EC2.

Fig. 10: Average percentage of flows transmitted within the
charging volume at different flow rates.

full knowledge of all under-utilized links in the network,
and thus has higher probability to identify a reroute path
for IFs using under-utilized links.

Next, in order to test the performance of each method
in the presence of different traffic loads, we changed the
flow arrival rates during a link’s peak hours from 2 to 10
flows per hour on each link. Figure 6(a) and Figure 6(b)
show the total bandwidth cost at the end of the 48-hour
charging period at different flow rates in PlanetLab and EC2,
respectively. We see that as more flow transmission requests
are initiated hourly, the total cost tends to increase. This is
due to the additional bandwidth that is generally required
on each link to transmit every video when a larger number
of videos need to be transferred between datacenters during
the charging period, thus increasing the charging volume
on each link. The relative performance of different methods
in Figure 6(a) and Figure 6(b) concurs with that in Figure
5(a) and Figure 5(b). Figure 6(a) shows that EcoFlow-C
generates about $9000 reduction in total bandwidth cost
for the 48 hour charging period than Jetway in PlanetLab
when the flow rate is 10 flows per hour. Figure 6(b) shows
that EcoFlow-C generates about $1000 reduction in total
bandwidth cost for the 48 hour charging period than Jetway
in EC2 when the flow rate is 10 flows per hour. These
observations are due to the same reason in Figure 5(a) and
Figure 5(b).

We then present a performance metric of average unit
bandwidth cost, which is defined as the sum of bandwidth
payment cost on all links divided by the total volume of
video flows (MB) transmitted in the network. An effective
scheduling system should be able to reduce the average unit
bandwidth cost, i.e., use the same bandwidth cost to trans-
mit a larger size of videos. Figure 7(a) and Figure 7(b) plot
average unit bandwidth cost at each time interval in Plan-
etLab and EC2, respectively. We see that as time evolves,
the average unit bandwidth cost for all methods generally
increases because bandwidth payment cost is increased
as explained in Figure 5(a) and Figure 5(b). The relative

performance between different methods follows: EcoFlow-
C<EcoFlow-D<JetWay<NetSticher<Direct. EcoFlow gen-
erates the unit bandwidth cost among all methods as it
postpones the transmission of video flows to make the
current traffic within the charging volume, and it splits the
flows that are expected to miss their deadlines into subflows
and utilizes other links’ available bandwidth capacities to
reroute these subflows. Thus, EcoFlow can efficiently reduce
the average unit bandwidth cost.

As shown in Figure 6(a) and Figure 6(b), we changed
the flow arrival rates during a link’s peak hours from 2 to
10 flows per hour and tested EcoFlow’s performance with
respect to average unit bandwidth cost. Figure 8(a) and Fig-
ure 8(b) plot the average unit bandwidth cost at the end of
the 48-hour charging period at different flow rates in Plan-
etLab and EC2, respectively. We see that the average unit
bandwidth cost generally drops when the flow arrival rate
increases from 2 to 8 flows per hour, and it then keeps stable
when the flow arrival rate increases from 8 to 10 flows per
hour. This is due to the reason that when a larger number
of videos are transmitted between datacenters during the
charging period, the links connected to the datacenters have
higher utilization and more videos are sent by using current
charging volume, which reduces the bandwidth payment
cost per video unit. However, when the flow arrival rate
reaches a specific point (8 flows per hour in this case), the
links’ available bandwidth capacities are overutilized and
they need to increase the charging volumes in order to trans-
mit higher rates of video flows. Thus, the average unit band-
width cost remains stable. The relative performance of dif-
ferent methods in Figure 8(a) and Figure 8(b) concurs with
that in Figure 6(a) and Figure 6(b) due to the same reason.

Figure 9(a) and Figure 9(b) show the average percentage
of flows transmitted within the current charging volume at
different time intervals in PlanetLab and EC2, respectively.
If a large portion of the flows are transmitted by utilizing the
current charging volume, a link’s charging volume will not
further increase. An effective flow scheduler should provide

10

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

75

80

85

90

95

100

4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Pe
rce

nt
ag
e o

f t
ran

sfe
rre

d
flo

ws
 w
ith

in
de

ad
lin
es

(a) Results on PlanetLab.

75

80

85

90

95

100

4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Pe
rce

nt
ag
e o

f t
ran

sfe
rre

d
flo

ws
 w
ith

in
de

ad
lin
es

(b) Results on EC2.

Fig. 12: Percentage of transferred flows within deadlines at
different time intervals.

65

70

75

80

85

90

95

100

2 4 6 8 10

Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Pe
rce

nt
ag
e o

f t
ran

sfe
rre

d
flo

ws
 w
ith

in
de

ad
lin
es

(a) Results on PlanetLab.

65

70

75

80

85

90

95

100

2 4 6 8 10

Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Pe
rce

nta
ge
 of

 tr
an
sfe

rre
d

flo
ws

 w
ith

in
de

ad
lin
es

(b) Results on EC2.

Fig. 13: Percentage of transferred flows within deadlines at
different flow rates.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C

Optimal

To
ta

l b
an

dw
id

th
 c

os
t (

$)

(a) Different time intervals.

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 4 6 8 10

Flow rate

EcoFlow-C

Optimal

To
ta

l b
an

dw
id

th
 co

st
 ($

)

(b) Different flow rates.

Fig. 11: Comparison of the total bandwidth cost between
EcoFlow-D and the optimal solution.

a large percentage of flows transmitted within the current
charging volume, so that the bandwidth cost during current
time interval will not further increase. We see that perfor-
mance of different methods with respect to average percent-
age of flows transmitted within the charging volume fol-
lows: EcoFlow-C>EcoFlow-D>JetWay>NetSticher>Direct.
In JetWay and Direct, if a large number of video transfer
requests arrive at a specific time interval, the videos will
be transmitted immediately. And these videos are likely to
result in high bandwidth usage at the time interval and
increase the charging volume. NetSticher performs trans-
missions of delay-tolerant videos only during off-peak time,
and the charging volume is likely to increase when a large
number of non-delay-tolerant videos are transmitted during
the peak hours. EcoFlow-C and EcoFlow-D aim to transfer
flows within the charging volume by postponing the trans-
mission of flows with late deadlines, thus yield the highest
percentage of flows transmitted within the charging volume.

Figure 10(a) and Figure 10(b) show the average percent-
age of flows transmitted within the charging volume at
different flow rates in PlanetLab and EC2, respectively. We
see that as more videos need to transfer between datacenters
hourly, smaller percentage of flows can be transmitted with-
in the charging volume, i.e., the charging volumes on all
links need to increase in order to accommodate higher flow
rates. This is due to the reason that increased bandwidth
is needed to transfer a large number of videos during
each time interval and thus likely to increase the charging
volume. As a result, a larger percentage of flows is likely to
be transmitted by increased charging volume on the links.
The relative performance of different methods mirrors that
in Figure 9(a) and Figure 9(b) due to the same reason.

It is also interesting to check how close EcoFlow-C can
achieve to the optimal. As we mentioned in Section 4.1,
EcoFlow’s bandwidth cost optimization problem is a convex
problem, which can be solved optimally if we have the glob-
al information of all traffic flows (including their starting
times, deadlines, and flow sizes) in the whole time span.
However, the global traffic information is hard to predict
at the beginning in reality. Hence, we conduct a simulation
based on offline data, where we assume the global traffic
information is known by the optimal approach. We create
a larger network with 30 data centers, run the simulation
for 20 times with Matlab [41], and take the average value
of the total bandwidth cost of both EcoFlow-C and optimal

solution. Figure 11(a) and Figure 11(b) compare the total
bandwidth cost of EcoFlow-C and the optimal solution at
different time slots and with different flow arrival rates,
respectively. The results depicted in both figures show that
the total bandwidth cost of EcoFlow-C is lightly higher than
the optimal solution, which is not surprising as EcoFlow-
C has to seek the local optimal in each period, and hence
generates slightly lower performance than the optimal.

Figure 12(a) and Figure 12(b) show the percentage of
video flows that are transferred within their deadlines
across different time intervals in PlanetLab and EC2, respec-
tively. Figure 13(a) and Figure 13(b) show the percentage
of video flows that are transferred within their deadlines at
different flow rates in PlanetLab and EC2, respectively. We
see that the result follows: JetWay>EcoFlow-C>EcoFlow-
D>Direct >NetSticher. NetSticher provides the least
percentage of transferred videos within the deadlines
due to the reason that it postpones the transmission of
delay-tolerant videos from peak hours to off-peak hours,
and if a link’s available bandwidth capacity during the
off-peak hours is not enough to transfer all waiting videos
postponed from peak hours, a number of videos are likely
to miss their transmission deadlines. Direct produces
a higher percentage of transferred videos within the
deadlines than NetSticher, due to the reason that a video
begins transmission whenever the transfer request arrives
at the source datacenter. EcoFlow and JetWay generate a
comparably high percentage of transferred videos within
the deadlines, as they both consider a video’s transmission
deadline when scheduling the video’s transmission and
aim to use the available bandwidth capacities from all links
to finish the video’s transmission before its deadline.

The average percentage of transferred flows within
deadlines in EcoFlow-C is only 0.67% lower than that in
Jetway; while the average percentage of transferred flows
within deadlines in EcoFlow-D is only 0.87% lower than
that in Jetway. This is due to link traffic volume prediction
being potentially less accurate in EcoFlow. If the predic-
tion is accurate, then EcoFlow will have the same results
on meeting deadlines as JetWay. JetWay sends out videos
immediately when the transmission requests arrive at the
source datacenter and it transmits videos using sufficient
bandwidth to guarantee that the videos are transmitted
before their deadlines. On the other hand, EcoFlow may
delay the transmission videos with late deadlines to avoid
increasing the links’ charging volumes. Because the link traf-
fic volume prediction may not be accurate, when the actual
traffic volume on a link is higher than the predicted traffic
volume, the bandwidth capacity is insufficient to transmit
all delayed videos and newly incoming videos, so some
videos cannot be sent within their deadlines. Thus, EcoFlow
generates a slightly higher percentage of transferred videos
within the deadlines than JetWay.

We also tested the scheduling latency of different meth-
ods. Figure 14(a) and Figure 14(b) show the scheduling

11

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 8 12 16

Time (hr.)

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Sc
he

du
lin
g l
ate

nc
y (
s)

(a) Results on PlanetLab.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 12 16

Time (hr.)

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Sc
he

du
lin
g l
ate

nc
y (
s)

(b) Results on EC2.

Fig. 14: Avg. scheduling latency at different time intervals.

0

0.5

1

1.5

2

2 4 6 8 10
Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Sc
he

du
lin
g l
ate

nc
y (
s)

(a) Results on PlanetLab.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 6 8 10
Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Sc
he

du
lin
g l
ate

nc
y (
s)

(b) Results on EC2.

Fig. 15: Average scheduling latency at different flow rates.

5200

5300

5400

5500

5600

5700

5800

5900

6000

6100

1 2 3 4 5 15

of schedulers

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(a) Results on PlanetLab.

1980

2000

2020

2040

2060

2080

2100

2120

2140

1 2 3 7

of schedulers

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(b) Results on EC2.

Fig. 16: Total bandwidth cost with different # of schedulers.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 15

of schedulers

Sc
he

du
lin
g l
ate

nc
y (
s)

(a) Results on PlanetLab.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 7

of schedulers

Sc
he

du
lin
g l
ate

nc
y (
s)

(b) Results on EC2.

Fig. 17: Avg. scheduling latency with different # of schedulers.

latency from the 0th to 16th hour of the charging period
in PlanetLab and EC2, respectively. Figure 15(a) and Figure
15(b) show the scheduling latency at the end of the 48 hour
charging period at different flow rates in PlanetLab and EC2,
respectively. We see that the scheduling latency is generally
shorter on EC2 than on PlanetLab. It is because there are
more datacenters on PlanetLab, so we need longer latency
to calculate the available bandwidth capacities of all links
and search alternating paths for indirect video flows when
scheduling video flows. As Direct transfers video without
scheduling, its scheduling latency is 0. We see that when
time evolves or when the flow rate increases, the scheduling
latency generally increases because the system needs to
schedule a larger number of video flows. We also see that
EcoFlow-D generates the highest scheduling latency (i.e.,
about 1.4 second latency). This is because each datacenter
has its own scheduler, and schedulers need to communicate
with each other in order to search alternating paths for
indirect flows. EcoFlow-C reduces the scheduling latency
of EcoFlow-D due to the reason that EcoFlow-D uses a
centralized scheduler to avoid the communication overhead
between different schedulers. JetWay generates a slightly
shorter scheduling latency than EcoFlow-C because it does
not delay the transmission of videos. NetSticher schedules
the videos by postponing the delay-tolerant videos to off-
peak hours, so its computation complexity is low and it gen-
erates shorter scheduling latency than JetWay. From these
figures, we see that the scheduling latency of EcoFlow-C and
EcoFlow-D is relatively short compared to the transmission
time of videos.

5.2 Evaluations of Using Different Num of Schedulers
In this experiment, we used different numbers of schedulers
to schedule video flows. Suppose there are y datacenters in
the system and we used x schedulers, then each scheduler is
responsible for scheduling video flows of by/xc or by/xc+1
data centers. Schedulers communicate with each other to
finish the scheduling operation using EcoFlow-D. When
there is only one scheduler in the system (i.e., centralized
scheduler), the scheduling system is an implementation of
EcoFlow-C; when the number of schedulers equals the num-
ber of datacenters, the scheduling system is an implementa-
tion of EcoFlow-D. Figure 16(a) and Figure 16(b) show the
total bandwidth cost with different number of schedulers in
PlanetLab and EC2, respectively. We see that as the number
of schedulers increases, the total bandwidth cost increases
gradually. This is due to the reason that the schedulers need

to communicate with each other to identify a reroute path
for IFs. When each scheduler is responsible for a smaller
number of datacenters, it is more difficult to gain a full
knowledge of all under-utilized links and less likely to find
an optimal alternative path for routing indirect flows.

Figure 17(a) and Figure 17(b) show the average schedul-
ing latency with different number of schedulers in Planet-
Lab and EC2, respectively. We see that the scheduling laten-
cy increases gradually as the number of schedulers increases
due to the higher communication overhead between the
schedulers that is required in order to find alternative paths
for indirect flows.

5.3 Performance with Scheduler Failures and Rate Lim-
iter Failures

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 1 2 3

PlanetLab
EC2

of failed schedulers/rate limiters

To
ta
l b
an
dw

id
th
 co

st
 ($

)

Fig. 18: Total bandwidth cost
with different numbers of
failed schedulers/rate limiters.

In EcoFlow-D, we propose
a distributed implementa-
tion of EcoFlow to deal
with the single point of
failure problem. When a
scheduler or the rate lim-
iter of a datacenter fails,
the video flows sent from
this datacenter are direct-
ly sent to their destination
datacenters without apply-
ing the scheduling algorith-
m. In this experiment, we
assume different numbers of schedulers or rate limiters fail
and plot the total bandwidth cost in Figure 18. We see
that when the number of failed schedulers or failed rate
limiters increases from 0 to 3, the total bandwidth cost
increases gradually. This is due to the reason that when a
larger number of video flows are sent without applying the
scheduling algorithm, they are likely to increase the links’
charging volumes. As a large number of correlated failures
are rare in datacenters and 95% of failures can be resolved
in 10 min [42], scheduler failures or rate limiter failures will
not significantly degrade the performance of our proposed
EcoFlow system.

5.4 Effectiveness of Setting Initial Charging Volume
In this section, we tested the performance of both EcoFlow-
C and EcoFlow-D when we set an initial charging volume
at the beginning of the charging period according to Section
4.5. We set ϕ in Equation (18) to a fixed value of 0.2, and
varied the value of φ from 0.2 to 0.8.

12

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 4 8 12 16
Time (hr.)

ϕ=0.2 φ=0.2
ϕ=0.4 φ=0.2
ϕ=0.6 φ=0.2
ϕ=0.8 φ=0.2 Sc

he
du

lin
g l
ate

nc
y (
s)

(a) Results on PlanetLab.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 4 8 12 16
Time (hr.)

ϕ=0.2 φ=0.2
ϕ=0.4 φ=0.2
ϕ=0.6 φ=0.2
ϕ=0.8 φ=0.2 Sc

he
du

lin
g l
ate

nc
y (
s)

(b) Results on EC2.

Fig. 19: Average scheduling latency in EcoFlow-C.

5400

5450

5500

5550

5600

5650

5700

5750

5800

ϕ=0.2
φ=0.2

ϕ=0.4
φ=0.2

ϕ=0.6
φ=0.2

ϕ=0.8
φ=0.2

Different settings

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(a) Results on PlanetLab.

2000

2050

2100

2150

2200

2250

ϕ=0.2
φ=0.2

ϕ=0.4
φ=0.2

ϕ=0.6
φ=0.2

ϕ=0.8
φ=0.2

Different settings

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(b) Results on EC2.

Fig. 20: Total bandwidth cost in EcoFlow-C.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 4 8 12 16
Time (hr.)

ϕ=0.2 φ=0.2
ϕ=0.4 φ=0.2
ϕ=0.6 φ=0.2
ϕ=0.8 φ=0.2 Sc

he
du

lin
g l
ate

nc
y (
s)

(a) Results on PlanetLab.

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16
Time (hr.)

ϕ=0.2 φ=0.2
ϕ=0.4 φ=0.2
ϕ=0.6 φ=0.2
ϕ=0.8 φ=0.2 Sc

he
du

lin
g l
ate

nc
y (
s)

(b) Results on EC2.

Fig. 21: Average scheduling latency in EcoFlow-D.

5750

5800

5850

5900

5950

6000

6050

6100

6150

6200

ϕ=0.2
φ=0.2

ϕ=0.4
φ=0.2

ϕ=0.6
φ=0.2

ϕ=0.8
φ=0.2

Different settings

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(a) Results on PlanetLab.

2100

2120

2140

2160

2180

2200

2220

2240

2260

2280

ϕ=0.2
φ=0.2

ϕ=0.4
φ=0.2

ϕ=0.6
φ=0.2

ϕ=0.8
φ=0.2

Different settings

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(b) Results on EC2.

Fig. 22: Total bandwidth cost in EcoFlow-D

Since the purpose of setting an initial charging volume
is to reduce the scheduling latency during early time in-
tervals of a charging period, we first present the average
scheduling latency on all links. It is the time span from when
a scheduler receives a sending queue of videos on a link
until the time when the scheduler finished the scheduling
of these video and updating the schedule table. Figure 19(a)
and Figure 19(b) show the average scheduling latency of
EcoFlow-C from the 0th to the 16th hour of the charging
period in PlanetLab and EC2, respectively. We observe that
the scheduling latency is generally shorter on EC2 than on
PlanetLab because there are more datacenters on PlanetLab,
so EcoFlow-C needs longer latency to calculate the available
bandwidth capacities of all links and search alternating
paths for indirect video flows when scheduling video flows.
We also see that the scheduling latency gradually increases
with time. This is because when few videos are pending at
early time intervals, a large portion of videos can be trans-
mitted directly by using available capacities of direct links,
so the scheduling latency is short since the scheduler does
not need to search alternating paths for these videos. As
more video flows are transmitted in the network, available
bandwidth capacities of some links are used up and videos
on these links need to be split and rerouted to other links, so
the scheduler needs longer latency to update the scheduling
table. We also see that larger value of φ leads to shorter
scheduling latency. According to Equation (18), large value
of φ leads to large initial charging volume and high available
bandwidth capacities on the links. The scheduling latency
is short because most videos can be transmitted through
direct links. On the other hand, small value of φ leads to
longer scheduling latency as the scheduler needs to search
alternating paths for some videos that are not able to be
transmitted on direct links.

The negative effect of large value of φ is that it may lead
to underutilization of the initial charging volume, and the
bandwidth cost is not minimized at the end of the charging
period. To further evaluate the effect of initial charging
volume in bandwidth cost reduction, we then plot total
bandwidth cost at the end of the 48 hour charging period
in Figure 20(a) and Figure 20(b). We see that higher value
of φ generally leads to higher bandwidth cost due to the
reason that smaller charging volume may be adequate in
transmitting all video flows. Therefore, it is important to
determine an appropriate initial charging volume to reduce
scheduling latency while constraining bandwidth cost.

We then evaluate the effectiveness of setting initial charg-
ing volume in EcoFlow-D. Figure 21(a) and Figure 21(b)
show the average scheduling latency of EcoFlow-D from
the 0th to 16th hour of the charging period in PlanetLab
and EC2, respectively. Compared to Figure 19(a) and Figure
19(b), we observe that EcoFlow-D generates higher schedul-
ing latency due to the reason that in EcoFlow-D. Figure 22(a)
and Figure 22(b) show total bandwidth cost for EcoFlow-
D at the end of the 48 hour charging period in PlanetLab
and EC2, respectively. We see that the experimental results
concur with that in Figure 20(a) and Figure 20(b) due to the
same reason.

6 CONCLUSIONS
To provide video streaming services to users across different
regions, cloud providers need to transfer video contents be-
tween different datacenters. These inter-datacenter transfers
are charged by ISPs under percentile-based charging model-
s. We take advantage of this particular characteristic of these
models and propose EcoFlow to minimize cloud providers’
payment costs on inter-datacenter traffics. EcoFlow is an
economical and deadline-driven video transfer strategy. It
first estimates the total volume of video traffic needed
to be transmitted between any two datacenters within a
time period, compares it with the charging volume and
calculates the under-utilized traffic volume on each link.
EcoFlow then schedules video flows with the objective that
these flows do not incur additional charges on the link,
guaranteeing that each video flow meets its transmission
deadline. Finally, the under-utilized links with low traffic
burden are used to build alternating paths for video flows
that are estimated to miss their deadlines. To enhance E-
coFlow, we also propose setting each link’s initial charging
volume to reduce the scheduling latency at the beginning
of the charging period. We further discuss how to deal
with link available bandwidth prediction errors and lack
of prior knowledge of the charging volume. Moreover, we
design the implementation of EcoFlow in both centralized
and distributed manner. Experimental results on PlanetLab
and EC2 show the effectiveness of EcoFlow in reducing
bandwidth costs while guaranteeing that each video flow
meets its transmission deadline for inter-datacenter video
transfers. We will study a more tractable formulation of
this bandwidth cost optimization problem in the future. In
addition, considering the uncertainty of video flows over
time, we will apply more sophisticated approaches like

13

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

stochastic optimization, Lyapunov, or online algorithms to
further improve the performance of our design. Also, we
will study how to automatically generate the deadline that
satisfies users when it is not indicated.

ACKNOWLEDGEMENTS
This research was supported in part by U.S. NSF grants
OAC-1724845, ACI-1719397 and CNS-1733596, and Mi-
crosoft Research Faculty Fellowship 8300751. An early ver-
sion of this work was presented in the Proceedings of ACM
Multimedia 2015 [43]. We thank Dr. Yuhua Lin and Dr.
Liuhua Chen for their valuable work on this paper.

REFERENCES

[1] A. Khanafer, M. Kodialam, and K. Puttaswamy. To rent or to
buy in the presence of statistical information: The constrained ski-
rental problem. TON, 23(4):1067–1077, 2014.

[2] S. Rajani and T. Rajender. Literature review: Cloud computing-
security issues, solution and technologie. International Journal of
Engineering Research, 3(4):221–225, 2014.

[3] V. Adhikari, Y. Guo, F. Hao, V. Hilt, Z. Zhang, M. Varvello, and
M. Steiner. Measurement study of netflix, hulu, and a tale of three
cdns. TON, 1(99):1–10, 2014.

[4] X. Liao, L. Lin, G. Tan, H. Jin, X. Yang, W. Zhang, and B. Li. Liv-
erender: A cloud gaming system based on compressed graphics
streaming. TON, 1(99):1–10, 2015.

[5] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner,
and Z. Zhang. Unreeling netflix: Understanding and improving
multi-cdn movie delivery. In Proc. of INFOCOM, 2012.

[6] Auto scaling in the amazon cloud,
http://techblog.netflix.com/2012/01/auto-scaling-in-amazon-
cloud.html, [accessed in sep. 2015].

[7] Q. Zhu and G. Agrawal. Resource provisioning with budget
constraints for adaptive applications in cloud environments. In
Proc. of HPDC, 2010.

[8] F. Wang, J. Liu, M. Chen, and H. Wang. Migration towards cloud-
assisted live media streaming. TON, 1(99):1–10, 2014.

[9] Y. Wu, C. Wu, B. Li, and L. Zhang. Scaling social media applica-
tions into geo-distributed clouds. TON, 23(3):689–702, 2015.

[10] H. Xu and B. Li. Joint request mapping and response routing for
geo-distributed cloud services. In Proc. of INFOCOM, 2013.

[11] Y. Feng, B. Li, and B. Li. Jetway: Minimizing costs on inter-
datacenter video traffic. In Proc. of Multimedia, 2012.

[12] D. Goldenberg, L. Qiu, H. Xie, Y. Yang, and Y. Zhang. Optimizing
cost and performance for multihoming. In Proc. of SIGCOMM,
2004.

[13] N. Laoutaris and P. Rodriguez. Good things come to those who
(can) wait or how to handle delay tolerant traffic and make peace
on the internet. In Proc. of HotNets-VII, 2008.

[14] N. Laoutaris, G. Smaragdakis, P. Rodriguez, and R. Sundaram.
Delay tolerant bulk data transfers on the internet. In Proc. of
SIGMETRICS, 2009.

[15] L. Nikolaos, S. Michael, X. Yang, and R. Pablo. Inter-datacenter
bulk transfers with netstitcher. In Proc. of SIGCOMM, 2011.

[16] Z. Zhang, M. Zhang, A. Greenberg, Y. Hu, R. Mahajan, and
B. Christian. Optimizing cost and performance in online service
provider networks. In Proc. of NSDI, 2010.

[17] H. Wang, H. Xie, L. Qiu, A. Silberschatz, and Y. Yang. Optimal
isp subscription for internet multihoming: algorithm design and
implication analysis. In Proc. of INFOCOM, 2005.

[18] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel. The Cost of a
Cloud: Research Problems in Data Center Networks. SIGCOMM
Comput. Commun. Rev., 39(1):68–73, 2009.

[19] A. Hussam, P. Lonnie, and W. Hakim. Racs: A case for cloud
storage diversity. In Proc. of SoCC, 2010.

[20] Service Level Agreements. http://azure.microsoft.com/en-
us/support/legal/sla/, [Accessed in Sep. 2015].

[21] Amazon S3. http://aws.amazon.com/s3/, [Accessed in Sep.
2015].

[22] A. Ashraf, F. Jokhio, T. Deneke, S. Lafond, I. Porres, and J. Lil-
ius. Stream-based admission control and scheduling for video
transcoding in cloud computing. In Proc. of CCGrid, 2013.

[23] E. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[24] A. Dhamdhere and C. Dovrolis. Isp and egress path selection for
multihomed networks. In Proc. of INFOCOM, 2006.

[25] R. Van Der, S. Boele, F. Dijkstra, A. Barczyk, G. van Malenstein,
H. Chen, and J. Mambretti. Multipathing with mptcp and open-
flow. In Proc. of SCC, 2012.

[26] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In Proc. of NSDI, 2010.

[27] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee. Devoflow: scaling flow management for high-
performance networks. ACM SIGCOMM Computer Communication
Review, 41(4):254–265, 2011.

[28] C. Hong, M. Caesar, and P. Godfrey. Finishing flows quickly with
preemptive scheduling. ACM SIGCOMM Computer Communication
Review, 42(4):127–138, 2012.

[29] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prab-
hakar, and S. Shenker. pfabric: Minimal near-optimal datacenter
transport. In ACM SIGCOMM Computer Communication Review,
volume 43, pages 435–446, 2013.

[30] J. Tomlin. Minimum-cost multicommodity network flows. Opera-
tions Research, 14(1):45–51, 1966.

[31] J. Lucas and M. Saccucci. Exponentially weighted moving average
control schemes: Properties and enhancements. Technometrics,
32(1):1–29, 1990.

[32] Q. Xu, D. Cheng, and Y. Fu. Traffic feature distribution analysis
based on exponentially weighted moving average. In Prof. of the
IEEE International Conference on Computer Science and Automation
Engineering (CSAE), 2012.

[33] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. Mad-
hyastha. Spanstore: cost-effective geo-replicated storage spanning
multiple cloud services. In Proc. of SOSP, 2013.

[34] J. Douceur, J. Mickens, T. Moscibroda, and D. Panigrahi. Collabo-
rative measurements of upload speeds in p2p systems. In Proc. of
INFOCOM, 2010.

[35] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing
the data center network. In Proc. of NSDI, 2011.

[36] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda. Less is more: trading a little bandwidth for ultra-low
latency in the data center. In Proc. of NSDI, 2012.

[37] K. Xu, M. Zhang, J. Liu, Z. Qin, and M. Ye. Proxy caching for
peer-to-peer live streaming. Computer Networks, 2010.

[38] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang. Challenges,
design and analysis of a large-scale p2p-vod system. In Proc. of
SIGCOMM, 2008.

[39] PlanetLab. http://www.planet-lab.org/, [Accessed in Sep. 2015].
[40] Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2/, [Accessed in Sep. 2015].
[41] Matlab. https://www.mathworks.com/products/optimization.html,

[Accessed in Feb. 2018].
[42] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible
data center network. In ACM SIGCOMM computer communication
review, volume 39, pages 51–62, 2009.

[43] H. Shen Y. Lin and L. Chen. Ecoflow: An economical and deadline-
driven inter-datacenter video flow scheduling system, short paper.
In Proc. of ACM Multimedia, 2015.

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen received her BS degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China in 2000, and MS and Ph.D. de-
grees in Computer Engineering from Wayne S-
tate University in 2004 and 2006, respectively.
She is currently an Associate Professor in the
CS Department at the University of Virginia. Her
research interests include distributed computer
systems and computer networks, cloud comput-
ing and cyber-physical systems. She is a Mi-
crosoft Faculty Fellow of 2010, a senior member

of the IEEE and a member of the ACM.

Chenxi Qiu received his BS degree in Telecom-
munication Engineering from Xidian University,
China, in 2009 and Ph.D. degree in Electrical
and Computer Engineering in Clemson Univer-
sity in 2015. He currently is a Postdoc scholar in
the College of Information and Science at Penn-
sylvania State University, PA, United States. His
research interests include cyber security, cyber
physical systems, and cloud computing.

14

