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I. INTRODUCTION

The future generation transportation system will be featured
by electrified public transportation. To fulfill metropolitan
transit demands, electric vehicles (EVs) must be continu-
ously operable without recharging downtime. Wireless Power
Transfer (WPT) techniques for in-motion EV charging is a
solution [1], [2]. It however brings up a challenge: how to
deploy charging lanes in a metropolitan road network to
minimize the deployment cost while enabling EVs’ continuous
operability.

In this paper, we propose CatCharge, which is the first work
that handles this challenge. From a metropolitan-scale dataset
collected from multiple sources of vehicles, we observe the
diversity of vehicle passing speed and daily visit frequency
(called traffic attributes) at intersections (i.e., landmarks),
which are important factors for charging lane deployment. To
select landmarks for deployment, we first group landmarks
with similar traffic attribute values using the entropy minimiza-
tion clustering method, and choose better candidate landmarks
from each group suitable for deployment. To determine the
deployment locations from the candidate landmarks, we infer
the expected vehicle residual energy at each landmark using
a Kernel Density Estimator fed by the vehicles’ mobility,
and formulate and solve an optimization problem to minimize
the total deployment cost while ensuring a certain level of
expected residual energy of EVs at each landmark. Our trace-
driven experiments demonstrate the superior performance of
CatCharge over other methods.

II. METROPOLITAN-SCALE DATASET MEASUREMENT
A. Dataset Description

Our datasets for Shenzhen city record the status (e.g., times-
tamp, GPS position, speed, occupancy) of vehicles for one
month (July 1 — July 31, 2015) and the recording time period
is less than 30 seconds. We introduce the datasets below.

(1) Taxicab Dataset. It is collected by the Shenzhen Trans-
port Committee, which records the status (e.g., times-
tamp, GPS position, speed, occupancy) of 15,610 taxi-
cabs. The daily size of the uploaded data is around 2GB.

(2) Bus Dataset. It is also collected by the Shenzhen Trans-
port Committee, which records the status of 14,262 buses
(e.g., timestamp, GPS position).

(3) Dada bus Dataset. It is provided by the Dada Bus corpo-
ration (a customized transit service similar to UberPool),
which records the status (e.g., timestamp, GPS position,
speed) of 12,386 reserved service buses.
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Fig. 1: Distribution of potential positions for placing charging lanes.

(4) Road Map. The road map of Shenzhen is obtained
from OpenStreetMap [3]. According to the municipal
information of Shenzhen [4], we use a bounding box
with coordinate (lat = 22.4450,lon = 113.7130) as the
south-west corner, and coordinate (lat = 22.8844, lon =
114.5270) as the north-east corner, which covers an area
of around 2,926km?, to crop the road map data. The
retrieved data contains all roads in Shenzhen.

B. Important Issues

There are two main issues that need to be addressed in
handling the charging lane deployment challenge:

(1) Reducing charging lane length. The charging lanes need
to be as short as possible in order to reduce the deploy-
ment cost, while still enabling EVs to be fully charged
when they pass a lane. To select locations for charging
lane deployment to achieve this objective is non-trivial.

(2) Reducing the number of deployed charging lanes.
The problem of determining the locations of the charging
lanes on a metropolitan road network to maintain the con-
tinuous operability of the EVs on roads, while minimizing
the number of deployed charging lanes, is non-trivial.

C. Dataset Analysis

Figure 1 shows the distribution of landmarks (black dots)
whose vehicle visit frequency is higher than 10*/day, and
vehicle passing speed is lower than 60km /h. The territory of
Shenzhen consists of 7 functional regions (e.g., commercial,
residential). We can see that each region has several candidate
landmarks with both high vehicle visit frequency and slow
passing speed.

In Figure 2, we can see the landmarks with both low vehicle
passing speed (60km/h) and high vehicle visit frequency
(10*/day) take up a small portion within the square circle. The
above observations motivate us to find an innovative method to
properly extract candidate charging lane placement positions
considering the diversity in vehicle passing speed and visit
frequency, and their distribution in different regions.



0.2

E150 1 [lOriginal
H > —KDE fitting
3 0.8 ‘5 0.15

ko) C

©100 2

2 0.6 2

» = 0.1

> =

£ 04 8

» 50| o

o ©0.05

P 0.2 o

e o

e

S % % 2 4 6 8

1
Vehicle visit frequency, 14 Length of trajectory (x10*m)

Fig. 2: Density scatter of vehicle pass- Fig. 3: Distribution of trajectory
ing speed w.r.t. vehicle visit frequency. lengths & estimation of KDE.

Considering that the vehicles’ trajectories reflect their traffic
between different locations [5], [6], and the length of a
trajectory determines the energy consumption, we calculated
the length of the trajectories of each vehicle in one month.
The distribution of the collected trajectory lengths is shown
in Figure 3. We can see that most of the trajectories are less
than 10,000 meters. However, the distribution of the trajectory
lengths cannot be simply modeled using a parametric distri-
bution. Since KDE is a non-parametric method to estimate
the probability density function of a random variable, we feed
the lengths of the trajectories to the KDE model to infer the
vehicles” probability of reaching each landmark in the road
network. The curve in Figure 3 represents the distribution
fitting result from the KDE.

III. SYSTEM DESIGN OF CATCHARGE

As shown in Figure 4, the CatCharge consists of following
three stages (highlighted as three dashed boxes):
1. Vehicle mobility normalization First, we need to apply
the Data Cleaning on the vehicle datasets. Then, based on
OpenStreetMap, we extract all intersections (landmarks) and
generate the Roadmap with Intersections. Finally, by mapping
each position record to respective nearest intersection (in
Euclidean distance), we represent a vehicle’s mobility by a
Trajectory in Intersections.
2. Charging lane location candidate extraction With the
data from the first stage, we apply the Vehicle Visit Frequency
Quantization and the Vehicle Passing Speed Quantization
to generate the traffic attribute values for each intersection.
Then, we apply the Clustering & Sorting of the Intersections’
Attribute Values to extract the intersections with both high
vehicle visit frequency and short required charging lane length.
3. Charging lane location determination We first use the
lengths of the trajectories to build the Kernel Density Estimator
(KDE), which is used to estimate the vehicles’ traffic at dif-
ferent landmarks. Then we formulate an optimization problem
to solve the wireless charging lane deployment problem, and
its solution outputs the locations and lane lengths for Optimal
Deployment of Charging Lanes.

IV. PERFORMANCE EVALUATION

We used our Shenzhen datasets to drive our experiments.
We built a trace-driven simulator with Apache Spark 1.5.2 [7].
Since there are no previous methods that handle the wireless
charging lane deployment in a road network, we created
two methods to compare with CatCharge: random placement
(denoted by Random), and a method that maximally covers
traffic flows (denoted by MaxFlow) [8]. In simulation, the
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battery capacities of the EVs follow a uniform distribution
ranging from 5kWh to 10kWh. We suppose every vehicle starts
driving with full energy in battery at the beginning of a day.
The energy supply rate of a charging lane is 150kW [1]. The
unit price of a charging lane is $100/m [1]. Since Random
and MaxFlow do not have methods to determine the charging
lane length, we suppose they deploy a Skm-long charging lane
(maximum length in CatCharge) at each charging landmark,
which can fully charge the EVs with the battery capacity
smaller than 10kWh and the passing speed slower than
65km/h. For fair comparison, the deployment cost in Random
and MaxFlow is the same as CatCharge. In Random, the
locations for placing charging lanes are chosen randomly from
the collection of landmarks. MaxFlow is for charging station
deployment and we use it for charging lane deployment. We
choose the landmark that covers the most traffic sequentially
until the deployment cost is reached. MaxFlow is a traffic
flow based method. Since traffic flow based methods can more
accurately estimate the charging demands than the charging
demand based methods [9], we do not include a charging
demand based method for comparison.
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Fig. 4: Framework of CatCharge.
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