
Harnessing the Power of Multiple Cloud Service Providers: An Economical and
SLA-Guaranteed Cloud Storage Service

Guoxin Liu and Haiying Shen
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631, USA
{guoxinl, shenh}@clemson.edu

Abstract—It is critical for a cloud service broker to minimize
its payment cost to cloud service providers for serving the
broker’s customers while providing SLA-guaranteed services.
In this paper, we propose an Economical and SLA-guaranteed
cloud Storage Service (ES3), which finds a data allocation
and resource reservation schedule with cost minimization. ES3

incorporates (1) a data allocation and reservation algorithm,
which allocates each data item to a datacenter and determines
the reservation amount on datacenters by leveraging all the
pricing policies; (2) a genetic algorithm based data allocation
adjustment approach, which makes data Get/Put rates stable in
each datacenter to maximize the reservation benefit. Our trace-
driven experiments show the superior performance of ES3.

I. INTRODUCTION

Cloud storage (e.g., Amazon S3, Microsoft Azure and
Google Cloud Storage), as an emerging commercial service,
is becoming increasingly popular. For a cloud customer’s
application, the data access latency is negatively proportional
to the customer’s income. In order to maximize profits,
cloud customers must provide low data Get/Put latency
and high availability to their clients while minimizing the
total payment cost to the Cloud Service Providers (CSPs).
Since different CSPs provide different storage service prices,
customers tend to use services from different CSPs instead
of a single CSP to minimize their payment cost (cost in
short). However, the technical complexity of this task makes
it non-trivial to customers, which calls for the assistance
from a third-party organization. Under this circumstance,
cloud service brokers [1] have emerged. A broker collects
resource usage requirements from many customers, makes
resource requests to multiple clouds, pays the CSPs for the
actually consumed resources as a customer, and charges its
customers as a CSP. It is critical for a broker to minimize its
payment cost to the CSPs for serving the broker’s customers
while providing Service Level Agreement (SLA) guaranteed
services. This enables the broker to make its prices lower
than CSPs’ prices, which reduces its customers’ payment
cost and hence attracts more businesses from the customers.

Datacenters in different areas of a CSP and datacenters
of different CSPs in the same area offer different prices
for resource usages including data Get/Put, Storage and
Transfer. In addition, the Storage/Transfer pricing follows
a tiered model, which supplies a cheaper unit price for

storing/transferring a larger size of data. Further, the data
transfer prices vary widely depending on whether the des-
tination datacenter belongs to the same CSP or the same
location of the source datacenter. Besides the pay-as-you-
go pricing model, in which the consumer pays the CSPs
based on resources actually used, CSPs also offer reservation
pricing model [2], in which a consumer reserves its resource
usage for a certain time in advance with much lower price.
Thus, to minimize its payment, a broker must fully leverage
these pricing policies. Specifically, given the data items
and their requests from its customers, the broker needs
to make a data allocation (including data storage and Get
request allocation) and resource reservation schedule, which
minimizes its payment cost to CSPs and provides SLA
guarantee. This problem however is NP-hard [3].

To handle this problem, in this paper, we propose an
Economical and SLA-guaranteed cloud Storage Service
(ES3) for brokers. As far as we known, this is the first
work to find a geo-distributed data allocation schedule over
multiple CSPs with cost minimization by fully leveraging
all aforementioned pricing policies and SLA guarantee.

II. SYSTEM DESIGN OF ES3

A. Data Allocation and Resource Reservation

For each customer of ES3, its data is constituted of many
data items. A data item dl’s payment cost consists of Get,
Put, Transfer and Storage cost denoted by Cdls , Cdlg , Cdlt
and Cdlp . To identify the datacenter to store a given data
item, the allocated datacenters should have enough Get/Put
capacity and satisfy Get/Put SLA requirements. Among
these qualified datacenters, we need to choose β datacenters
that can reduce the cost as much as possible. For this
purpose, we consider different pricing policies. First, storing
the data in the datacenter that has the cheapest unit price for
its dominant cost (e.g., Get, Put or Storage) can reduce the
cost greatly. We consider data item dl as Storage-intensive
if Cdls dominates the total cost (e.g, Cdls � Cdlg +Cdlp ),
and the Get/Put-intensive data items are defined similarly.
Second, if the data is Storage-intensive, based on the tiered
pricing policy, storing the data in the datacenter that results
in the largest aggregate storage size Sdpj can reduce the
cost greatly. Third, if the data is Get/Put-intensive, in order



to minimize the reservation cost, the data should be stored
in the datacenter with the lowest unit reservation price, and
in order to maximize the reservation benefit, the data should
be stored in the datacenter that has the maximum reservation
benefit increment after allocation. Based on these three
considerations, the datacenter candidates to store the data are
further selected. After the data allocation, the reservation of
Gets/Puts in each datacenter is determined according to [3].
B. GA-based Data Allocation Adjustment

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}> 

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}> 

Global optimal 

Storage optimal 

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}> Get optimal 

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}> Put optimal 

<d1,{dp1’,…,dpβ’}> 

Crossover Crossover Crossover 

Mutation 

Figure 1: GA-based data allocation enhancement.

In the GA-based data allocation adjustment approach, as
shown in Figure 1, a data allocation schedule is formed
by <dl, {dp1, ..., dpβ}> of each data item requested by
a customer datacenter, where {dp1, ..., dpβ} is the set of
datacenters that store dl. This algorithm regards each data
allocation schedule as a genome string. Using the algorithm
in Section II-A, it generates data allocation schedules with
the lowest total cost (named as global optimal schedule),
and with the lowest Storage cost, lowest Get cost and lowest
Put cost (named as partial optimal schedules) by assuming
all data items as Storage-, Get- and Put-intensive data,
respectively. To generate the children of the next generation,
the global optimal schedule sequentially conducts crossover
with each partial optimal schedule with crossover probability
(Figure 1). In order not to be trapped into a sub-optimal
result, the genome mutation occurs after the crossover.

III. PRELIMINARY RESULTS
We conducted trace-driven experiments on Clemson Uni-

versity’s Palmetto Cluster [4]. We simulated 50 geographi-
cally distributed datacenters in 25 cloud storage regions. The
distribution of the inter-datacenter Get/Put latency between
any pair of cloud storage datacenters follows the real latency
distribution as in [5]. The unit prices and reservation price
for Storage, Get, Put and Transfer in each region follow
the real prices of commercial clouds. We simulated ten
times of the number of all customers listed in the major
three commercial clouds. The Get deadline is 100ms [5],
the percentage of latency guaranteed Gets is 90%. Also, the
aggregate data size of a customer was randomly chosen from
[0.1TB, 1TB, 10TB].

Comparison methods. We compared ES3 with the fol-
lowing systems. i) COPS [6]. It allocates requested data into
a datacenter with the shortest latency. ii) Cheapest. It selects
the datacenters with the cheapest cost in the pay-as-you-
go manner. iii) Random. It randomly selects datacenters. iv)
SPANStore [5]. It is a storage system over multiple CSPs’

0%

20%

40%

60%

80%

100%

50 60 70 80 90 100

L
o

w
e

st
 G

e
t 

S
L
A

 
sa

ti
sf

a
c
ti

o
n

 l
e

v
e

l 

Request ratio (%) 

ES3 SPANStore COPS

Cheapest Random

(a) Get SLA guarantee

16

32

64

128

50 60 70 80 90 100C
o

st
 r

a
ti

o
 t

o
 R

a
n

d
o

m
 (%

)
 

Request ratio (%) 

ES3 ES3-IND SPANStore

COPS Cheapest Random

(b) Cost minimization
Figure 2: Performance of ES3.

datacenters to minimize cost in the pay-as-you-go manner
and support SLAs without considering capacities.

In this section, we varied each data item’s Get rate from
50% to 100% (named as request ratio) of its actual Get rate
in the trace. In order to evaluate the SLA guaranteed per-
formance, we measured the lowest SLA satisfaction level of
a customer among all customers. The Get SLA satisfaction
level of a customer is calculated by the ratio between actual
percentage of Gets satisfying the deadline requirement and
the desired percentage. Figure 2(a) shows the lowest Get
SLA satisfaction level of each system. From the figure, we
can see that ES3 can supply a Get SLA guaranteed service,
since it considers both the Get SLA and capacity constraints
while data allocation. Figure 2(b) shows the ratio of each
system’s cost to Random’s cost. We also tested a variant of
ES3, denoted by ES3-IND, in which each customer indi-
vidually uses ES3 to allocate its data without aggregating
their workload together. ES3-IND generates a smaller cost
than comparison methods, because it chooses the datacen-
ter under SLA constraints that minimizes each customer’s
cost by considering all pricing policies. ES3 generates the
smallest cost, because it further aggregates workloads from
all customers to get a cheaper Storage and Transfer unit
price based on the tiered pricing model. The figures confirm
that ES3 generates the smallest payment cost in all systems
and the effectiveness of considering tiered pricing model.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, CNS-1249603,
and Microsoft Research Faculty Fellowship 8300751.

REFERENCES

[1] D. Niu, C. Feng, and B. Li. A Theory of Cloud Bandwidth
Pricing for Video-on-Demand Providers. In Proc. of INFO-
COM, 2012.

[2] Amazon DynamoDB. http://aws.amazon.com/dynamodb/, [Ac-
cessed in Apr. 2015].

[3] G. Liu and H. Shen. Geographical Cloud Storage Service
with SLA Guarantee over Multiple Cloud Providers. Technical
report, Clemson University, 2014.

[4] Palmetto Cluster. http://citi.clemson.edu/palmetto/, [Accessed
in Apr. 2015].

[5] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and
H. V. Madhyastha. SPANStore: Cost-Effective Geo-Replicated
Storage Spanning Multiple Cloud Services. In SOSP, 2013.

[6] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Dont Settle for Eventual: Scalable Causal Consistency for
Wide-Area Storage with COPS. In Proc. of SOSP, 2011.

2


