
Guoxin Liu
Clemson University

 guoxinl@clemson.edu

Background and Motivation Design Details

Cooperative Job Scheduling and Data Allocation
in Busy Data-Intensive Parallel Computing

Clusters

Experimental Results

Data-intensive parallel computing clusters
have become more important than ever in
meeting the needs of big data processing.
Such a computing cluster is usually shared
by multiple users who submit data and
jobs to the cluster.

It is important to provide deadline-
guaranteed service to jobs while
minimizing the resource usage (e.g.,
network bandwidth and energy) in the
cluster in order to reduce the cluster
capital investment and operation cost [1].
To reduce network load, job schedulers
need to achieve data locality, in which a
task is assigned to the server closest to its
requested data. The schedulers also need
to reduce energy consumption by
minimizing the number of running servers.

A Locality-aware job scheduler improves
data locality in order to improve
throughput. A Deadline-aware job
scheduler focuses on meeting job deadline
requirements. A Data allocation focuses
on data availability to handle machine
failures in computing clusters.

 Acknowledgments

Result: Lowest deadline violation rate.

U.S. NSF grants NSF-1404981, IIS-
1354123, CNS-1254006, IBM Faculty
Award 5501145 and Microsoft Research
Faculty Fellowship 8300751.

CSA novelly changes data-allocation-first
to job-scheduling-first. Job-scheduling-
first enables CSA to proactively
consolidates tasks with more common
requested data to the same server when
conducting deadline-aware scheduling,
and also consolidate the tasks to as few
servers as possible to maximize energy
savings.

Scheme 1: Locality-aware job scheduler
• Common-data Requester Consolidation:

CSA proactively consolidates tasks with
more common requested data to the
same server.

• Deadline-aware FIFO Pre-scheduling:

CSA schedule the submitted jobs
according to their deadline urgency.

Scheme 2: Cooperative Data Allocation
• Giving a higher priority to a data block

with a larger utilization to be allocated
first to minimize its network load can
reduce the total network load more.

• In order to maintain the effectiveness of
energy savings achieved by the pre-
scheduling algorithm, CSA allocates the
data to active servers first.

• Allocate a data block into a server with
more tasks requesting it

Scheme 3: Recursive Refinement
• As shown in Figure 2, this recursive

refinement process includes a task
schedule refinement algorithm and the
cooperative data allocation algorithm
introduced above.

• Each iteration improves the data locality,
but increases the energy cost while
maintaining the same number of tasks
without deadline violations, which
terminates till no cost improvement
than its last iteration.

References:

[1] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. Omega:
Flexible, Scalable Schedulers for Large Compute Clusters. In Proc. of
EuroSys, 2013.

[2] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I.
Stoica. Delay Scheduling: A Simple Technique for Achieving Locality and
Fairness in Cluster Scheduling. In Proc. of EuroSys, 2010.

[3] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey:
Guaranteed Job Latency in Data Parallel Clusters. In Proc. of EuroSys’13.

CSA: Cooperative job Scheduling and data
Allocation method.

CSA proposes a requester-consolidation
deadline aware pre-scheduling to reduce
deadline violations. Further, based on the
determined task schedule, it proposes a
cooperative data allocation to allocate a
data block as close as possible to the server
that hosts most of this data’s requester
tasks in the system in order to maximally
achieve data locality. Finally a recursive
refinement recursively adjusts the task
schedule and the data allocation schedule
to achieve the tradeoff between data
locality and energy savings with specified
weights.

Future Work

In the future, we will extend the scheduling
algorithm for jobs without planned
submission.

times.

Result: Enable energy saving.

Current solutions

Our approach

Haiying Shen
University of Virginia
 shenh@virginia.edu

Our approach firstly uses job-scheduling-
first computing framework to enable job
scheduler and data allocation scheduler to
cooperatively achieve high data locality,
deadline guarantee and high energy
savings simultaneously.

Figure 1: Data-allocation-first vs. job-scheduling-first.

Figure 4 Deadline guarantee.

Requester-consolidation

deadline-aware

pre-scheduling

Cooperative data

allocation

Task schedule

refinement
Objective (8)

refined

Y

Recursive refinement

N

Figure 2 Data allocation recursive process.

Figure 5 Energy savings.

Figure 3 Network load.

Result: Highest data locality.

