
Haoyu Wang, Haiying Shen
University of Virginia

 hw8c, hs6ms@virginia.edu

Background and Motivation Design Details

Proactive Incast Congestion Control in A
Datacenter Serving Web Applications

Experimental Results

A data query for a web application always
needs to retrieve many data objects
concurrently from different cloud servers
which may cause incast congestion, a non-
ignorable reason of the delay in datacenter.

The root cause of the incast congestion
problem is the many-to-one concurrent
communications between the single front-
end server and multiple data servers.

In PICC, the front-end server gathers
popular data objects (i.e., frequently
requested data objects) into as few data
servers as possible. It also re-allocates the
data objects that are likely to be
concurrently or sequentially requested
(called correlated data objects) into the
same server.

Previous incast problem solutions usually
consider the data transmission between
the data servers and the front-end server
directly. They cannot proactively avoid the
situation that a large number of data
servers are concurrently connected to the
front-end server only a few data objects
from each data server. There are many
works focusing on the incast congestion
control problem, which can be classified
into three groups: link layer solutions,
transport layer solutions and application

layer solutions.

 Acknowledgments

Result: Best data locality performance.

U.S. NSF grants NSF-1404981, IIS-
1354123, CNS-1254006, IBM Faculty
Award 5501145 and Microsoft Research
Faculty Fellowship 8300751.

CSA novelly changes data-allocation-first
to job-scheduling-first. Job-scheduling-
first enables CSA to proactively
consolidates tasks with more common
requested data to the same server when
conducting deadline-aware scheduling,
and also consolidate the tasks to as few
servers as possible to maximize energy
savings.

Scheme 1: Popular Data Object
Gathering
• The popular data object gathering

method gathers popular data objects
into as few data servers as possible. As a
result, there is a higher probability that
only a limited number of data servers
respond to the front-end server, so that
the incast congestion has a lower
probability to occur.

Scheme 2: Correlated Data Object
Gathering
• We propose the correlated data object

gathering method to cluster the
concurrently or sequentially requested
data objects (i.e., correlated data
objects) into the same group and
allocate the group of correlated data
objects into the same gathering server.

Scheme 3: Queuing Delay Reduction
• The gathering Server above maintains a

sending queue of all requested data
objects and sends them out sequentially.
In order to minimize the average waiting
and transmission time per data object,
we can reduce the effect of head-of-line
blocking by setting different priorities
for the data objects based on their sizes
and waiting times.

References:

[1] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,

R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and

V. Venkataramani. Scaling Memcache at Facebook. In Proc. of NSDI,

2013.

PICC: Proactive Incast Congestion Control
System

In PICC, the front-end server gathers
popular data objects into as few data
servers as possible. It also re-allocates the
data objects that are likely to be
concurrently or sequentially requested
(called correlated data objects) into the
same server. As a result, PICC reduces the
number of data servers concurrently
connected to the front-end server, and the
number of establishments of the
connections between data servers and the
front-end server, which avoids the incast
congestion and reduces the network
latency.

Future Work

In the future, we will consider how to
reallocate data objects more efficiently and
how to integrate different application level
solutions in order to further reduce the
data query latency.

Result: Effectiveness of queuing delay
reduction method .

Current solutions

Our approach

Yuhua Lin
Clemson University

 yuhual@clemson.edu

Figure 1: Illustration of datacenter incast congestion.

Figure 3 Inter-rack data transmission.

Figure 2 CDF of query latency.

Result: Lowest query latency.

