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Abstract—Recently, emerging research efforts have been focused on question and answer (Q&A) systems based on social networks.
The social-based Q&A systems can answer non-factual questions, which cannot be easily resolved by web search engines. These
systems either rely on a centralized server for identifying friends based on social information or broadcast a user’s questions to all of its
friends. Mobile Q&A systems, where mobile nodes access the Q&A systems through Internet, are very promising considering a rapid
increase of mobile users and the convenience of practical use. However, such systems cannot directly use the previous centralized
methods or broadcasting methods, which generate high cost of mobile Internet access, node overload, and high server bandwidth cost
with the tremendous number of mobile users. We propose a distributed Social-based mObile Q&A System (SOS) with low overhead
and system cost as well as quick response to question askers. SOS enables mobile users to forward questions to potential answerers
in their friend lists in a decentralized manner for a number of hops and then resort to the server. It leverages lightweight knowledge
engineering techniques to accurately identify friends who are able to and willing to answer questions, thus reducing the search and
computation costs of mobile nodes. The trace-driven simulation results show that SOS can achieve a high query precision and recall
rate, a short response latency and low overhead. We have also deployed a pilot version of SOS for use in a small group in Clemson
University. The feedback from the users shows that SOS can provide high-quality answers.

Index Terms—Question and answer systems; Online social networks; Peer to peer networks
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1 INTRODUCTION

Traditional search engines such as Google [1] and
Bing [2] have been significantly impacting our everyday
lives in information retrieval. To improve the perfor-
mance of search engines, social search engines [3–10]
have been proposed to determine the results searched
by keywords that are more relevant to the searchers.
These social search engines group people with similar
interests and refer to the historical selected results of a
person’s group members to decide the relevant results
for the person.

Although the search engines perform well in answer-
ing factual queries for information already in a database,
they are not suitable for non-factual queries that are
more subjective, relative and multi-dimensional (e.g., can
anyone recommend a professor in advising research on
social-based question and answer systems?), especially
when the information is not in the database (e.g., sugges-
tions, recommendations, advices). One method to solve
this problem is to forward the non-factual queries to
humans, which are the most “intelligent machines” that
are capable of parsing, interpreting and answering the
queries, provided they are familiar with the queries.
Accordingly, a number of expertise location systems [11–
14] have been proposed to search experts in social net-
works or Internet aided by a centralized search engine.
Also, web question and answer (Q&A) sites such as
Yahoo!Answers [15] and Ask.com [16] provide high-
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quality answers [17] and have been increasingly popular.
To enhance the asker satisfaction on the Q&A sites,

recently, emerging research efforts have been focused on
social network based Q&A systems [17–22], in which
users post and answer questions through social network
maintained in a centralized server. As the answerers in
the social network know the backgrounds and preference
of the askers, they are willing and able to provide
more tailored and personalized answers to the askers.
The social-based Q&A systems can be classified into
two categories: broadcasting-based [17–19] and central-
ized [20–22]. The broadcasting-based systems broadcast
the questions of a user to all of the user’s friends. In the
centralized systems [20–22], since the centralized server
constructs and maintains the social network of each user,
it searches the potential answerers for a given question
from the asker’s friends, friends of friends and so on.

In respect to the client side, the rapid prevalence of
smartphones has boosted mobile Internet access, which
makes the mobile Q&A system as a very promising
application. The number of mobile users who access
Twitter [23] increased 182% from 14.28 million in Jan
2010 to 26 million in Jan 2011. It was estimated that In-
ternet browser-equipped phones will surpass 1.82 billion
units by 2013, eclipsing the total of 1.78 billion PCs by
then [24]. The mobile Q&A systems enable users to ask
and answer questions anytime and anywhere at their fin-
gertips. However, the previous broadcasting and central-
ized methods are not suitable to the mobile environment,
where each mobile node has limited resources. Broad-
casting questions to all friends of a user generates a high
computing overhead to the friends. Also, it results in
many costly interruptions to users by sending questions
that they cannot answer and increase their workload of
looking for questions that they can answer through a
pool of received questions. Further, broadcasting to a
large number of friends cannot guarantee the quality
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of the answers. The centralized methods, by serving
a social network consisting of hundreds of millions of
mobile users (which are also rapidly increasing), suffer
from high cost of mobile Internet access, high query
congestion, and high server bandwidth and maintenance
costs. It was reported that Facebook, spent more than 15
million per year for server bandwidth costs and data
center rent in addition to 100 million for purchasing
50,000 servers to release the high burden of traffic [25].

To tackle the problems in the previous social-based
Q&A systems and realize a mobile Q&A system, a key
hurdle to overcome is: How can a node identify friends
most likely to answer questions in a distributed fashion?
To solve this problem, in this paper, we propose a
distributed Social-based mObile Q&A System (SOS) with
low node overhead and system cost as well as quick
response to question askers. SOS is novel in that it
achieves lightweight distributed answerer search, while
still enabling a node to accurately identify its friends
that can answer a question. We have also deployed a
pilot version of SOS for use in a small group in Clemson
University1. The analytical results of the data from the
real application show the highly satisfying Q&A service
and high performance of SOS.

SOS leverages the lightweight knowledge engineering
techniques to transform users’ social information and
closeness, as well as questions to IDs, respectively, so
that a node can locally and accurately identify its friends
capable of answering a given question by mapping
the question’s ID with the social IDs. The node then
forwards the question to the identified friends in a
decentralized manner. After receiving a question, the
users answer the questions if they can or forward the
question to their friends. The question is forwarded
along friend social links for a number of hops, and then
resorts to the server. The cornerstone of SOS is that a
person usually issues a question that is closely related
to his/her social life. As people sharing similar interests
are likely to be clustered in the social network [26], the
social network can be regarded as social interest clusters
intersecting with each other. By locally choosing the most
potential answerers in a node’s friend list, the queries
can be finally forwarded to the social clusters that have
answers for the question. As the answerers are socially
close to the askers, they are more willing to answer the
questions compared to strangers in the Q&A websites. In
addition, their answers are also more personalized and
trustable [27].

In a nutshell, SOS is featured by three advantages:
(1) Decentralized. Rather than relying on a centralized

server, each node identifies the potential answerers from
its friends, thus avoiding the query congestion and high
server bandwidth and maintenance cost problem.

(2) Low cost. Rather than broadcasting a question to all
of its friends, an asker identifies the potential answerers
who are very likely to answer this question, thus reduc-
ing the node overhead, traffic and mobile Internet access.

(3) Quick response. Due to the close social relationship
between the question receivers and an asker, the ques-
tion receivers are likely to be willing to provide answers

1. The demo of the application and call for participation can be found
from http://people.clemson.edu/∼shenh/.

quickly.
The contributions of this work are summarized as

follows:
(1) As far as we know, it is the first work to design

a distributed Q&A mobile system based on social
networks, which can be extended to low-end mo-
bile devices. The system can tackle the formidable
challenge facing distributed systems: precise answerer
identification.

(2) We propose a method that leverages lightweight
knowledge engineering techniques for accurate an-
swerer identification.

(3) We use answer quality to represent both the willingness
of a node to answer another node’s questions and
the quality of its answers. We propose a method that
considers both interest similarity and answer quality
based on past experience in question forwarder selec-
tion in order to increase the likelihood of the receiver
to answer/forward the question.

(4) We have studied our crawled data from Ya-
hoo!Answer and Twitter with regards to node in-
teractions in online Q&A systems and online social
networks. We then have conducted extensive trace-
driven simulations based on the crawled data. Exper-
imental results show the high answerer identification
accuracy, low cost and short response delay of SOS.

(5) We have deployed a pilot version of SOS for use in
a small group in Clemson University and revealed
interesting findings in the mobile social-based Q&A
system. Though Google earns a little higher user
satisfaction degree than SOS on factual questions, SOS
gains much higher satisfaction degree for non-factual
questions than Google. Also, socially close users tend
to respond questions quickly.
Note that SOS still has a centralized server to support

Q&A activities for questions that are difficult to find
answerers in the user social network. SOS also can collect
previous questions and answers in the centralized server
to improve the Q&A system performance. We do not
endorse a complete removal of the centralized server
from the system as it still plays an important role in the
system. The rest of the paper is organized as follows.
Section 2 presents related work. Section 3 and Section 4
present the trace data and the design of SOS. Section 5
and Section 6 show the trace-driven simulation results
and real testbed results. We conclude this paper with
remarks on future work in Section 7.

2 RELATED WORK
While there has been relatively little research on dis-
tributed Q&A systems based on social networks, we take
a slightly larger view of the problem space and compare
SOS with social search, expertise location, online Q&A
systems and peer-to-peer data search.
Social search: In order to improve the user experience
in a web search engine [1, 2], a number of works have
been proposed to enable users to find resources by
using social annotations or bookmarks. Evan et al. [3]
pointed out that social interactions play an important
role throughout the search process, and suggested that
sharing search information among people may be valu-
able to individual searchers. The Phoaks [4], Answer
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Garden [5] and Designer Assistant [6] social search
systems attempted to enable social interactions when
existing information spaces are inadequate in providing
experts’ contact information. Amitay et al. [7] assumed
that the interests of a searcher’s friends provide a good
prediction for the searcher’s preferences. David et al. [8]
proposed to re-rank the searched results by considering
the strength of the relationship between the results and
the searchers. Kolay et al. [9] studied how social book-
marked URLs lead to new or high-quality content on the
Web. Bao et al. [10] proposed a SocialSimRank algorithm
to calculate the similarity between social annotations and
web pages and a SocialPageRank algorithm to capture
the popularity of web pages. However, the social search
aims to improve the web search engine, which performs
poorly in non-factual questions [18]. Chakrabarti [28]
presents HubRank, which computes and indexes certain
random walk fingerprints for a small fraction of nodes
in the web page graph and adaptively loads these active
nodes in order to further reduce the computation cost of
PageRank-like algorithm.
Expertise location: Chen et al. [11] proposed an open
system to recommend potential research collaborators
for scholars and scientists based on the structure of the
coauthor network and a user’s research interests. Lin et
al. [12] introduced SmallBlue, which is a social network
search engine used to help IBM employees find and
access expertise and information through their own so-
cial networks. ReferralWeb [13] mined public Web docu-
ments for the knowledge about potential experts through
webpage content analysis. Expertise Recommender [14]
studied software source control systems and technical
support databases in order to find experts. However,
these systems only try to identify experts, but do not
have mechanisms to ensure that the identified experts
are willing to help.
Online Q&A systems: Many online Q&A systems exist
in the Internet [15, 16], in which anonymous users
can post questions and respond to others’ questions.
However, the systems cannot guarantee quick response
of posted questions. Bulut et al. [29] studied the ef-
fectiveness of employing location-based services (e.g.
Foursquare) for finding appropriate people to answer
a given location-based query. Evans et al. [30] identi-
fied three social tactics for information gathering (i.e.,
directed asking, public asking, and searching) and found
that using these tactics in combination may lead to a
more productive social search. Brent et al. [31] built a
prototype to be embedded in a user’s Facebook network
that provides algorithmic answers to questions posed
via Facebook status messages. Morris [27] explored the
pros and cons of using a social network tool to fill
an information need compared with a search engine.
They found that asking from friends provides several
benefits, including the delivery of personalized answers
and increased confidence in the validity of the search
results. Lampe, Morris and Teevan [18, 19, 32] studied
how people use status messages in a social network to
ask questions. By posting questions on his/her status
wall, a user can broadcast the questions to all of his/her
friends. Hsieh et al. [17] proposed a market-based Q&A
service called MiMir, in which all questions are broad-
casted to all users in the system. However, broadcasting

a user’s question to all of his/her friends only enables
direct friends to see the question, generates high cost and
produces interruptions to friends who are unable to an-
swer the question. White and Richardson [20, 21] devel-
oped a synchronous Q&A system called IM-an-Expert,
which automatically identifies experts via information
retrieval techniques and facilitates real-time dialog via
instant messaging without broadcasting. However, it
also focuses on the direct friends of a user, and the
synchronous communication faces challenges such as
interruption costs and the availability of friends during
the questioning time. Aardvark [22] is a centralized Q&A
system, in which the centralized server receives a user’s
question, identifies and forwards the question to the
most appropriate person in the Aardvark community.
However, the centralized system structure may suffer
from high query congestion, high server bandwidth and
maintenance costs.

SOS is different from Aardvark in the following as-
pects: first, Aardvark is still based on a centralized server
for the social network information analysis and answerer
identification, which may lead to high query congestion,
high server bandwidth and maintenance costs. SOS is
a fully distributed system in which nodes find poten-
tial answerers in a distributed manner. Second, SOS is
designed for mobile devices. Therefore, considering the
limited capability of mobile devices, SOS uses light-
weight knowledge engineering techniques, which has
much less resource requirement compared to the ma-
chine learning techniques used in Aardvark.
Peer-to-peer data search: Data search has been exten-
sively studied in peer-to-peer networks. To improve
data search efficiency, some works use a supernode
structure [33–43] in which nodes send their queries
to supdernodes that conduct data search for the data
requesters. Some works cluster nodes based on node
interests or file semantics [44–57] so that nodes can
find data from their common-interest peers. Some works
consider proximity [40–42, 58–69] in data search so that
nodes can fetch data from their physically-close peers.
The distributed search design in SOS is based on the
peer-to-peer distributed data search method that is well-
known by its high scalability.

3 DATA STUDY FOR POTENTIAL ADVANTAGES
OF SOCIAL-BASED Q&A
In order to study the features of people interactions in
online Q&A sites and social networks, we crawled about
9419 questions posted in the “Entertainment & Music–
Movies” section in Yahoo!Answer and 7559 tweets from
Twitter. Since Twitter is not designed to ask ques-
tions, we chose user ReadWriteWeb [70] that has a
large number of followers in order to find more tweets
and user tweeting/reply interactions. Specifically, we
crawled 2559 tweets posted by user ReadWriteWeb and
all his/her followers and followers’ followers that do not
have @username and 5000 tweets that have @username
between Oct. 5, 2010 and Oct. 26, 2010. In Twitter, a user
A can specifically notify another user B about a tweet
by adding B’s @username in the tweet. User B will then
receive a notification message from the system about the
tweet. In the figures below, we use Twitter-AT to denote
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the tweets with @username and use Twitter to denote
tweets without @username.

First, we analyze the satisfaction of Yahoo!Answers
users based on their feedbacks. In Yahoo!Answers, an
asker is allowed to rate an answer with rating stars
1-5. Figure 1 shows the histogram of all the askers’
satisfaction with all answers in the data set. We can see
that 32% of the answerers receive 5 stars and 8% of the
answerers receive 4 stars. These answers take up 80%
of the answers that receive ratings. The result conforms
to the observations in the previous research [17] that the
answers provided in Yahoo!Answers are quite satisfying.
However, nearly 50% of answers did not receive ratings.
We suspect that one reason is because the users in
Yahoo!Answers are not closely tied, and they may visit
Yahoo!Answers only when they need to ask questions.
Also, users may not take the questions or answers very
seriously. Some askers may even forget to check the
answers. If a question is not answered when it is in the
first few pages, it may never be answered later.

Figure 2 further shows the Cumulative distribution
function (CDF) of the number of replies for the replied
questions in Yahoo!Answers and all crawled tweets in
Twitter. In Yahoo!Answers, nearly 73% of all the ques-
tions receive more than one response, in contrast to
Twitter, where more than 95% tweets receive more than
one response. Also, less than 20% of all the questions
receive more than 5 answers in Yahoo!Answers, in con-
trast to Twitter, where more than 80% of the tweets
receive more than 5 responses. This is because the users
in Yahoo!Answer do not have social relationship, thus
they may not take others’ questions as seriously as in
social networks. Also, too many questions are posted on
the forum every day, so it is not easy for a person who
may be able to answer the question to find the questions
in the first place. In Twitter, the tweets of users are
only pushed to their friends that are connected by their
interests and social relationships. Therefore, it is more
likely for them to interact with each other. Common
interest, close social relationship and frequent contact
motivate a user’s friends to answer his/her questions.
We can also see from the figure that about 30% of the
tweets with @ receive responses less than 5, while 20%
of the tweets without @ receive responses less than 5.
This is because the tweets that target to a specific user
will not attract discussions from other users, leading
to a decreased number of responses. However, as the
figure shows the users with @ in Twitter are more likely
to respond to each other than the Yahoo!Answer. In
Yahoo!Answer, nearly 73% of all the questions receive
more than one response while in Twitter with @, more
than 90% of the users receive more than one response.
This is because if a node A sends a tweet specifically to

another node B, node B is very likely to reply the tweet
to node A. In Yahoo!Answer, users do not know each
other and may not have the same incentives to reply
questions as in Twitter.

Figure 3 shows the CDF of the average response time
for the questions that are rated in Yahoo!Answers and
tweets in Twitter. We can see that less than 30% of
the questions rated in Yahoo!Answers receive answers
in less than 15 minutes. In contrast, in Twitter, more
than 50% of the questions can be responded within 15
minutes. This result shows the advantages of shorter
response time in social-based Q&A compared to Ya-
hoo!Answers. In social networks, as users are connected
by their interests and social relationships, they are more
willing to interact with each other, resulting in a low
response delay. We can also see from the figure that
in Twitter-AT, more than 60% of the questions can be
responded within 15 minutes, the percentage of which
is higher than tweets without @. This is because when
a user is mentioned in a tweet, s(he) is more likely to
respond as s(he) knows that the sender is expecting the
reply from him/her. Considering the social tie between
them, the receiver is very likely to respond the tweet in
a short time.

Summary: The figures show that questions posted in
online Q&A sites are likely to receive few responses
with long delay, though they are a good channel to
inquire information. Similar result is also found in [17],
which shows that the latency for receiving a satisfying
answer in an online Q&A site is high with the average
equals 2:52:30 (hh:mm:ss) even when the number of the
registered users is very large (290,000). This is because
anonymous users in a Q&A site do not have social
relationship between each other, so they may not have
incentives to answer others’ questions. By leveraging the
close social relationship and interest similarity properties
among friends in social networks, social-based Q&A
systems can help to overcome the inherent problems
in online Q&A sites with high response rate and low
response delay, since people with similar interests or
close social relationship are likely to interact with each
other, especially when a user specifically sends a tweet
to another user.

4 SYSTEM DESIGN
4.1 Question Routing
SOS incorporates an online social network, where nodes
connect each other by their social links. As shown in
Figure 4, a registration server is responsible for node
registration. Each user has an interest ID, which rep-
resents his/her interest. Users sharing more common
interests with an asker’s question are more likely to
be able to answer the question. Also, users who have
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Fig. 4: Querying process in SOS.

been willing to answer questions and provided high-
quality answers (measured by answer quality) to node
i’s questions previously are more likely to be willing
to answer node i’s questions and provide high-quality
answers. Thus, SOS has a metric best answerer (BA(qi,j))
that measures the likelihood of node j to be able and
willing to answer node i’s question qi with a high-quality
answer. It is determined by the interest similarity (S(qi,j))
between the question qi’s interest and node j’s interest
as well as the answer quality (Q(i,j)) of node j to node i’s
previous questions.

SOS defines a constant K, which is the largest number
of friends that a node can send/forward a question
to its friend list. SOS allows each node to define TTL,
which is the maximal number of hops that a question
can be forwarded. A node determines TTL depending
on how urgent the question is. Figure 4 shows the
question routing process in SOS. In the figure, each user
is associated with an interest ID. After asker A initiates
a question, it forwards the question to the top K friends
(nodes B and C) who have the highest best answerer ba
values in its friend list with the question. A question
receiver replies to A if it has an answer for the question.
Otherwise, it forwards the question to its top K friends
in its own friend list in the same manner (B to D) and
reduces TTL by 1. The question is forwarded along node
social links until TTL=0. If the question initiator has not
received an answer after delay corresponding to TTL
(e.g., 1 hour), it sends the question to the server that
holds a discussion board, which can be accessed by all
users in the system. The discussion board serves as a
store for unsolved questions in the distributed system.
Then, the questions in the discussion board are handled
as in online Q&A systems. From this process, we can see
that three problems need to be resolved.
•How to derive the interests of a question or a user

(Section 4.2)?
•How to infer the interests from a question and a

user for more accurate answerer identification (Sec-
tion 4.3)? For example, from “Tom is a male CS stu-
dent who likes reading book,” we can infer “Tom likes
fiction” so that he can be identified as the answerer for
the question “who is the author of star war?” Without
inference, Tom may not be identified as an answerer
for the question.
•How to locate K friends in the friend list by con-

sidering both interest similarity and answer quality
(Section 4.4)?

Below, we introduce the solutions for these three prob-
lems.
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4.2 Question/User Interest Representation
When a user first uses the SOS system, s(he) is required
to complete his/her social profile such as interests, pro-
fessional background and so on. Based on the social
information, the registration server recommends friends
to the user, and the user then adds friends into his/her
friend list. Figure 5 shows a simple example of social
network, where users A, B and C are connected with
each other by their social relationships. Each user lo-
cally stores her/his own profile and interest ID, and
her/his friend list and their interest IDs and answer
quality values. Each user calculates his/her own interest
ID based on his/her social information and sends it
to his/her friends. To calculate interest ID, as shown
on the right part of Figure 6, a node first derives the
first-order logic representation (FOL) [71] from its social
information, then conducts first-order logic inference to
infer its interests, from which it decides interest ID.

The left part of Figure 6 shows the local answerer
selection process for forwarding a question in one mobile
node in the SOS system. To parse a question, the node
first processes the question in the nature language, and
then represents the question in the FOL format and
uses the FOL inference to infer the question’s interests.
Finally, it transforms the question to a question ID in
the form of a numerical string. After node i parses its
initiated question qi to a question ID, it calculates interest
similarity sim(qi, j) for each of its friends j ∈ Fi, where
Fi denotes the set of node i’s friends. It then calculates
the best answerer value (ba(qi, j)) for each friend j by
combining sim(qi, j) and answer quality from friend j
(qua(i, j)). We will explain the details of calculation in
Section 4.4. Finally, node i chooses top K friends that
have the highest ba(qi, j) values to send the question.
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For instance, an asker may ask a question “Where is
the best place to watch the movie Avatar in Clemson?”.
The corresponding keyword list of this question is
resolved to the FOL format [where, place, movie, Avatar,
Clemson] after natural language processing. After the
FOL inference, the FOL format is changed to [movie(sci-
fi), director (James Cameron), place(Clemson)], which
is subsequently encoded as a numerical string such as
3200001000. Similarly, a student in Clemson University
who likes to watch sci-fi movie is represented as
[movie(sci-fi), career(student), place(clemson)] after the
FOL inference and be further encoded as interest ID
3202001001. By comparing the similarity between a
question’s ID and its friend’s interest ID, a node can
identify its friends that are able to answer questions.
More details of the parsing process for a question or for
a user is demonstrated in Figure 7 and Figure 8, respec-
tively. The figures list the three steps in the process: FOL
representation, FOL inference, and ID transformation.
Below, we introduce the details of the three steps.
4.2.1 Preliminary of the first-order logic (FOL)
FOL is a powerful tool to describe objects and their
relationships in real life. In FOL, the users need to define
basic rules or axioms, which serve as the base of the
inference. For example, the FOL for an axiom in nature
language “All computer science (CS) male students who
like reading like sci-fi movies” is

(∀x, y)(CS(x) ∧male(x) ∧Activity(Reading)⇒ like(y)),

where “CS(x)”, “male(x)”, “Activity(Reading)”, and
“like(Sci-Fi)” are predicate symbols, and ∧ is connectives
symbol. In a FOL representation, connectives symbols
(e.g., ∼, ∧) and quantifiers (Universal(8) and Existential
(9)) logically connect constant symbols, predicate symbols
which map from individuals to truth values (e.g., green
(Grass)) and function symbols which map individuals to
individuals (e.g., father-of(Mary)=John). These symbols
represent objects (e.g., people, houses, numbers), relations
(e.g, red, is inside) and functions (e.g., father of, best
friend), respectively.
4.2.2 First-order logic representation
A question or user profile information is always ex-
pressed in the natural language. To convert a question
or profile information into a format that a computer can
understand, we can use part-of-speech tagging [72] or
modern natural language processing (NLP) techniques
[73] to divide the question into a group of related
words expressed by words, 2-word phrases, the wh-type
(e.g., “what”, “where” or “when”). Then we transform
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Fig. 8: An example of FOL inference for a user’s social information.

questions into the FOL representation. First, we parse
the natural language into token keywords. These token
keywords are the constant symbols in the FOL repre-
sentations. The step 1 in Figure 7 shows an example of
FOL representation of the query. The keywords of the
question “Where is the best cinema in location A?” are
“cinema” and “location A”.

Each node also transforms its social information into
the FOL representation. Specifically, a node first rep-
resents its profile in the form of name:value pairs such
as “movies: Avatar, The Social Network”, “music: Hey,
Jude”. That is, each interest is indexed by a unique name
(e.g., movie, music) and can have several values. The
syntax name:value is then transformed to the FOL rep-
resentation expressed by predicate symbols name(value).
For example, the FOL representation of the previous ex-
ample is “movie(Avatar)”,“movie(The Social Network)”,
“music(Hey, Jude)”. The first step in Figure 8 shows
an example of FOL representation of a node’s profile.
Tom has several profile information in the name:value pair
format. He has favorite book A1, A2, A3. This informa-
tion is transformed into FOL representation Fa bk(A1),
Fa bk(A2) and Fa bk(A3).

4.3 First-order Logic Inference
As shown in the step 2 in Figure 7 and Figure 8,

the FOL inference component consists of three parts:
(1) fuzzy database, (2) rules and axioms, (3) inference
engine. The goal of the inference is to identify node
interests represented by a numerical string that can
accurately represent the capability of a node to answer
questions. The fuzzy database is used to store words
that have relationships, including subset, alias(x), re-
lated, with the information in profiles. For example,
Related(cinema)=movie, Subset(computer science, algo-
rithm), Alias(USA)=US.

The rule and axioms provide basic formulas
for the inference. For example, given a rule
“Major(x)∧Subset(x)=y⇒expert(y)”, if Major(x1) exists
in a user’s FOL inference and Subset(x1)=y1 exists in
the fuzzy database, then we can infer that the user is
an expert of y1. If Tom majors in computer science, and
Algorithm is a subset of computer science, then Tom
should be good at answering questions on Algorithm.

Inference engine checks the rules and finds related
but not obvious information. The inference engine sets
each interest as an inference goal and builds lattice
inference structure, as shown in Figure 9, to connect
all the FOL symbols with the goals. Each node in the
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Activity 
(reading) Subgoal 2 Subgoal 3 Subgoal 4 Subgoal 5
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Fig. 9: Lattice in an inference engine.

lattice is a FOL syntax symbol and the arrows represent
the connective symbols that connect the symbols. By
mapping the syntax symbols shown in the question (or
social information) and fuzzy database, we can trace up
from the basic elements to the final goal. For example,
as shown by the gray box in Figure 9, syntax symbols
CS(Tom), Male(Tom) and Activity(Reading) all point to
the goal Sci-Fi using an arrow. That is, if these three
syntax symbols are all satisfied, we can infer that the
goal Sci-Fi is satisfied for Tom, i.e., Tom can answer the
question about Sci-Fi. We can see from Figure 7 and
Figure 8 that after the elements pass the inference engine,
the previous FOL representation is transformed into the
interest table listing the interests of the question (or user).
As shown in the step 3 of Figure 7 and Figure 8, the
interests of a question (or user) are transformed to a
numerical string to represent the knowledge field of a
question (or a user).

1.
2.
3. …… … … … …

… … … …
…
…

…
…

…
…

…
…

… … … …Interest table
Expert (Sci‐fi)
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Comedy
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Telecom.
Math
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Lady Gaga
Eminem

Tom Cruise

Movie Music Career Actor/
SingerMajor Director Food Residential

region 
Places
visited

3 2 2 0 1

n

Fig. 10: An example of interest arrays.

Next, we introduce how to generate question ID and
interest ID in the form of a numerical string. Figure 10
shows an example of interest arrays. The top line lists all
interest categories in the system. The different interests
in a category are alphabetically sorted in the category’s
column. Each interest in a category is represented by
its entry index. For example, “Comedy” is represented
by 2. Each numerical string for a question (or user)
has a series of digits (e.g., 322023150). The position of
each digit corresponds to each category and the value
of the digit represents an interest in the category. For
example, string 322023150 denotes “Sci-Fi, Pop, Math,
Lady Gaga...” When generating the numerical string,
each category in the table is checked. For each category,
if a user/question has an interest in the category, the
entry index of the interest is the digit in the corre-
sponding position in the numeric string. Otherwise, the
category’s position in numeric string is set to 0. If the
user/question’s interest can match any specific interest
in a category, the corresponding digit is set to ∞. If
the user/question has several interests in a category,
we use “|” to concatenate the indices of the interests in
the category. For example, string 1|2|322023150 denotes
“Action|Comedy|Sci-Fi, Pop, Math, Lady Gaga...” based
on Figure 10. From this design, we can see that if two
sets of inferred interests (from questions or users) are
similar to each other, they will have similar (question or

interest) IDs.
The users periodically update metadata containing

their questions and answering statistics to the regis-
tration server. Based on these metadata, the rules and
axioms can be added and updated to reflect the most
current behaviors of the users in the system. These
updated rules and axioms are then remotely configured
into the mobile phones of the users.

4.4 Similarity Value Calculation
After users’ social information and questions are trans-
formed into numerical strings, the similarity between
a user and a question can be calculated based on two
parts: interest similarity between the user and question,
and answer quality between the question sender and
receiver.

4.4.1 Interest Similarity Calculation
To evaluate the interest similarity of a question of user i

(qi) and a user j, we use a method proposed in [74]. We
use IDqi and IDj to denote the interest strings of ques-
tion qi and user j, respectively. We use n(qi,j) to denote
the number of interests owned by IDqi but not by IDj ;
use l(qi,j) to denote the number of categories of interest
elements owned both by IDqi and IDj , and m(qi,j) the
number of categories of interest elements owned by IDj

but not by IDqi . Then the interest similarity of question
qi and user j is defined as:

S(qi,j) =
l(qi,j) + 1

2
(

1

l(qi,j) + n(qi,j) + 2
+

1

l(qi,j) +m(qi,j) + 2
)

(1)
The value of S(qi,j) ranges in the classical spectrum

[0, 1], and it represents the level of likelihood that two
strings under comparison are actually similar. The com-
plete overlapping of the two string (n = m = 0) tends to
the limit of 1 as long as the number of common features
grows. The underlying idea of Equation (1) is that two
strings with longer complete overlapping should have
higher similarity than the two strings with less complete
overlapping. In the case of no overlapping (l = 0), the
function approaches to 0 as long as the number of non-
shared entries grow. It indicates that for two strings with
a larger number of entries, if they share no common
entries, it is more likely that they have smaller similarity
than the string with a smaller number of entries and
share no common entries.

4.4.2 Answer Quality Calculation
The social closeness directly affects the willingness of
people to answer or forward questions. Several recent
works have studied how to effectively calculate the so-
cial closeness between two users [75, 76]. However, these
social closeness value calculation mechanisms are based
on the whole social network topology, which are energy
consuming. It is even worse when the social network
dynamically changes. Therefore, the topology based so-
cial closeness calculation methods are not suitable for
energy-stringent mobile devices in SOS. To reduce the
load on the mobile devices, each user in SOS locally
manages its first hand information on the answer quality
of each of his/her friends. As the performance of the SOS
largely depends on the activeness and the knowledge
base of the users, user i considers the number of received
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answers from user j and their associated quality ratings
when calculating the answer quality of user j. We call it
as the feedback mechanism. Specifically, SOS initially lets
users indicate the answer quality value of a newly added
friend. For each received answer, an asker can rate the
quality of the answer within rating scale R=[1, 5]. The
answer quality value is periodically updated based on
the number of answers received from friend j during
each period T and the associated quality rating (r ∈
[1, 5]). For the kth question sent from node i to node j, if
node i receives an answer from node j during T , xk = 1;
otherwise, xk = 0. The parameter xk is used to represent
the willingness of node j to answer questions from node
i. Then, the answer quality Q(i,j) is calculate by:

Q(i,j) = α ·Q(i,j)+(1−α) ·
∑
k

(xk · rk/R) (xk = 0, 1). (2)

where α ∈ [0, 1] is a damping factor, rk is node i’s quality
rating for the kth answer received from node j. A larger
Q(i,j) implies that user j is willing and able to provide
high-quality answers to user i.

Considering the high dynamism of the social net-
works, in which the willingness of users to answer
questions and the quality of answers from a user to
another user may change over time, we add a damping
factor α into the answer quality calculation. In this way,
the answer quality between two nodes will be sensitive
to parameters r and x. That is, a node can quickly
notice the active answerers who were inactive before and
identify them as potential answerer to its questions.

4.4.3 Best Answerer Metric Calculation
Based on the Section 4.4.1 and Section 4.4.2, for its
generated or received question qi that it cannot answer,
node i calculates the best answerer metric of each of its
friends. That is,

BA(qi,j) = βS(qi,j) + (1− β)Q(i,j), (3)
where β ∈ [0, 1) is a parameter used to adjust the weight
of the interest similarity and answer quality. Node i
then selects the top K friends that have the highest
BA(qi,j) values and forward the question to them. We
confine the TTL (number of search hops) to 3 since the
social trust between two nodes decrease exponentially
with distance. This relationship has been confirmed by
other studies [77, 78]. Binzel et al. [77] discovered that a
reduction in social distance between two persons signifi-
cantly increases the trust between them. Swamynathan et
al. [78] found that people normally conduct e-commerce
business with people within 2-3 hops in their social
network.

Algorithm 1 shows the pseudocode of the process
for the best answerer metric calculation and best an-
swerer selection conducted by node i. If node i does
not receive answers for its created question during the
time corresponding to TTL, it resorts to the centralized
server for the answers, where all user conduct Q&A
activities as in online Q&A sites. Line4 - Line6 are used to
periodically update answer quality of each of its friends.
Line8-Line13 calculate each friend’s best answerer metric
and generate a list including all metric values. Line14-
Line17 identify the top-K friends with the highest best
answerer metric values and send the question to them.
Answer quality Q(i,j) is pre-processed, and only interest

similarity S(qi,j) needs to be calculated at run time. The
sim(qi,j) calculation has a time complexity of O(|Fi|).
As the number of keywords in a question is generally
very small, the calculation of sim(qi,j) should take a short
time and costs little computation resources of the mobile
devices. This top-K friend selection algorithm has a
time complexity of O(|Fi|). Therefore, this algorithm has
very low complexity considering the limited number of
friends of each user.

Algorithm 1 Pseudocode of the best answerer identification
executed by node i.
1: Input: IDi, IDj , Q(i,j) (j ∈ Fi)
2: Output: top-K best answerers
3: //Periodically update Q(i,j) (j ∈ Fi)
4: for each friend j in friend list Fi do
5: Update Q(i,j) based on Equation (2)
6: end for
7: if create a question or receive a question it cannot answer then
8: if TTL>0 then
9: for each friend j in friend list Fi do

10: Calculate S(qi,j)
using IDqi and IDj based on Equation (1)

11: Calculate BA(i,j) using Q(i,j) and S(qi,j)
based on Equa-

tion (3)
12: Add BA(i,j) to a list List
13: end for
14: QuickSort partition around the Kth largest element in List
15: Find the top-K friends having the highest BA(i,j)
16: TTL-=1
17: Send the question to the identified K friends
18: end if
19: end if
20: if does not receive answers for its created question during the time

corresponding to TTL then
21: Resort to the centralized server for the answers
22: end if

5 PERFORMANCE EVALUATION

We evaluated the SOS system using our crawled ques-
tions from Yahoo!Answers. Since Yahoo!Answers does
not have user profile information, we crawled 1000 users
from Facebook to form a social network. We used one
user as a seed and used breadth-first search to crawl their
personal profile information. We ignored users that did
not fill out their profiles. The crawling stopped when
1000 users were crawled. The users are highly clustered
due to the high clustering feature of the social networks.

Users’ profiles contain their current locations, educa-
tion backgrounds, hobbies and interests, such as books,
movies, music and television programs. This information
was parsed and conversed to FOL and finally encoded
as strings using the method introduced previously. In
the experiment, we focused on evaluating the questions
related to movies, because most of the Facebook users
filled out a large amount of information in the movie
section in their profiles.

Since the Facebook data set is separated from the
Yahoo!Answers data set, we cannot directly tell which
persons can answer which questions. Therefore, to make
the experiment operable, we focused on the questions
in the Movie categories in Yahoo!Answers, where we
manually selected 100 questions with keywords (e.g.,
movie type, directors) that can be mapped to a Facebook
user’s profile interests. For each of the 100 questions, we
randomly assigned the answers of the question to the
Facebook users whose profile interests (i.e., action movie,
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directors) match most to the question’s keywords; one
answer to one Facebook user. We use the answer quality
indicated in the Yahoo!Answer as answer ratings in our
experiment. The best answers have rating 5, the spam
answers have rating 1 and all other answers have rating
3. The 100 questions were replicated for 10 times and
randomly assigned to the Facebook users to ask. We set
β to 0.5 to balance the impact of interest similarity and
answer quality and set α to 0.3 by default. In order to
build the correlations between actors, movie companies,
directors, we imported movie data in Internet Movie
Data Base (IMDB) into the fuzzy database. Thus, when
a question is issued for a certain actor A, the inference
engine can find the movies and directors that are related
to actor A. Then, the users who are fond of these movies
or the directors are considered as the potential questions
answerers. As a result, SOS with an inference engine
can find more matching answerers than SOS without an
inference engine.

By default, the number of friends K that a user selects
for forwarding the question was set to 5. The number
of hops in a social network (social hops in short) that a
question is forwarded was set to 3. We use RLA to denote
the number of ReLevant Answers to a question existing
in the system (i.e., the number of answers to a question
in Yahoo!Answers), and RTA to represent the number of
ReTrieved Answers in the SOS system for a question. In
the experiments, we focus on the following metrics.

• Precision rate: it is a measure of exactness of the
returned results: (|RLA

⋂
RTA|)/|RTA|.

• Recall rate: it is a measure of completeness of the
returned results: |RLA

⋂
RTA|/|RLA|.

• Overhead: it is the number of messages transmitted
in the system during the entire simulation process.

• Delay: it is the time duration between a query is
issued and the first answer is received.

In our evaluation, the users returned by the different
approaches are judged correct if the user has the correct
answer to the question as in the Q&A data set from
the Yahoo Q&A trace. The quality of the answers is
also shown in the trace data. We use SOS-w/-infer to
denote SOS with the FOL inference engine, and use
SOS-w/o-infer to denote SOS without the FOL inference
engine. Unless otherwise specified, we do not have
feedback mechanism in SOS and the answer quality
was always the initial value 1.

5.1 Comparison of the Performance of Different Sys-
tems
In this section, we compare the routing performance
of SOS with the Flooding and Random walk routing
methods. We use the Flooding method to represent the

broadcasting-based social-based Q&A systems [17–19],
in which a node forwards a question to all of its friends
in the social network if it does not have the answer.
In Random walk methods, a node forwards a question
to K randomly selected friends if it does not have the
answer. In both Flooding and Random walk methods, a
node stops forwarding a question it returns an answer.
The Random walk method can mimic the Q&A behavior
pattern of a user in the online Q&A sites, in which
the question is randomly visited by different users until
receiving an answer. In this section, we assume all
the nodes in the system are willing to answering the
questions if they are able to.

Figure 11 shows the comparison results of the preci-
sion rates of the four systems. We varied the number
of selected friends K for each node from 5 to 20 with 5
increase in each step. We can see from the figure that SOS
has the highest query precision rate. This is because SOS
can accurately identify the potential answerers based on
their social information and relationship to the question
and the asker. Since SOS-w/o-infer has much less parsed
information than SOS-w/-infer, SOS-w/-infer outper-
forms SOS-w/o-infer. In Flooding, a node forwards a
question to all of its friends in the social network, so
the precision rate is relative low. In Random walk, the
queries are randomly sent to users, so it generates low
precision rate. It is interesting to find that the preci-
sion is decreased in SOS-w/o-infer and SOS-w/-infer
as the K increases from 5 to 20 while the precision
remains constant in Flooding and Random walk. This is
because some selected questions in the Yahoo!Answers
data set have very few potential answers in Facebook
user profiles. As we choose more neighbors to send
an asker’s question, more users that cannot answer the
question will receive the questions. This contributes to
the decrease in the precision rate of SOS. As K increases,
Random walk performs similar to Flooding as more
users that are unable to answer a question receive the
question.

Figure 12 shows the comparison results of the recall
rates of the four systems. Since more users in the social
network receive questions, the number of relevant users
that receive questions increases. That is why as the
number of selected neighbors K increases, the recall rate
of Flooding, SOS, and Random walk increases. Since
Flooding forwards a question to all the neighbors of a
node in the social network, Flooding has the highest
recall rate. Although SOS can find relevant answerers
with high precision, it may not be able to identify all
the relevant users. Therefore, SOS generates much lower
recall than Flooding. Again, SOS-w/-infer outperforms
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SOS-w/o-infer slightly because of its higher interest
derivation ability. As a user randomly approaches others
for answers in Random walk, its recall rate is even lower
than Flooding and SOS.

To evaluate the scalability of the SOS system, we
test its overhead measured by the number of queries
with different network sizes. For the network with size
N , we selected the first N crawled users in the data
crawling step to ensure that the evaluated social net-
work of these N users maintains the same topology
as the real Facebook online social network. Figure 13
shows overhead with the number of nodes in the so-
cial network. Flooding forwards a question to all the
neighbors of an asker in the social network, leading
to a high overhead, although it can improve its recall
rate significantly. Random walk has lower overhead than
Flooding, but it still has much more overhead than SOS
as it needs to keep on forwarding to randomly chosen
nodes until it finds an answerer. With high precision,
SOS only needs to forward questions to only a few users.
Therefore, the overheads of SOS-w/o-infer and SOS-w/-
infer are much less than Flooding and Random walk.
We can also see from the figure that as the network size
increases, the overhead in Flooding and Random walk
increases, but the overhead in SOS remains constant. In
SOS, most answers can be accurately located. Therefore,
the increase of number of nodes does not lead to the
increase of the number of question forwarding hops.

Figure 14 shows the comparison results of average
question response delay versus network size of the four
systems. We use the medium response delay 12 min in
Twitter as shown in Figure 3 as the response delay in
each hop in the social network. Since Flooding forwards
askers’ questions to all the neighbors in the social net-
work, any neighbor with the knowledge of the ques-
tion can answer the question immediately. Therefore, it
generates the lowest response delay. As SOS-w/o-infer
and SOS-w/-infer can accurately identify the potential
answerers, the average reply delay in SOS is comparable
to Flooding. Since SOS-w/-infer generates much more
inferred information than SOS-w/o-infer for potential
answerer selection, SOS-w/-infer produces much less
response delay than SOS-w/o-infer. In Random walk,
randomly selected friends have low probability to an-
swer the question, thus a node needs to search more
nodes to reach an answerer. As a result, the delay of
Random walk is relatively high compared to the other
two methods. We can also see from the figure that as
the network size increases, the delay of Random walk
increases slightly and the delay of SOS and Flooding
keeps constant due to the same reasons as in Figure 13.

Though Flooding provides constant response delay, this
comes at a high cost of flooding overhead, while SOS
generates considerably lower overhead.

To test the impact of question forwarding distance on
the Q&A performance, we varied the number of social
hops that a question is forwarded from 1 to 3. Figure 15
shows the recall rates of SOS-w/o-infer and SOS-w/-
infer versus the different number of social hops that a
question is forwarded. As the number of social hops
increases, the recall rate of both SOS-w/o-infer and SOS-
w/-infer increases. This is because the increased social
hops lead to more users to be visited. Therefore, more
relevant answers will be received. Figure 16 shows the
comparison results of precision rates of the systems ver-
sus the different number of social hops that a question
is forwarded. We can see from the figure that 80% of the
answers can be retrieved from the direct friends. This is
because in social networks, friends with a close social
relationship are closely clustered and are likely to have
common interests. Therefore, it is very easy for a node to
find the answers from the direct friends. The reason why
SOS-w/-infer has both a higher recall and precision rate
than SOS-w/o-infer is because SOS-w/-infer can identify
the potential answerers with higher accuracy with its
inferred information from users and questions.

5.2 Effectiveness of the Feedback Mechanism

In the experiments below, we evaluate the effectiveness
of the feedback mechanism. We use SOS-w/o-infer-FB to
denote SOS without the FOL inference engine but with
the feedback mechanism, and use SOS-w/-infer-FB to
denote SOS with FOL inference engine and feedback
mechanism. The initial answer quality was set to 1.
Without the feedback mechanism, Q(i, j) is always 1
for each pair of nodes. In this section, the probability
of a node to answer or forward a question is uniformly
distributed between [p, 1]. By default, the value of p was
set to 0.7. We assume that the answer quality update
period is so small that it is updated once an answer is
received. We assigned 1000 questions to 250 randomly
selected users.

Figure 17 shows the precision rate of the received
answers versus the different values of the scaling weight
β. We can see that initially, the precision rate of the
four systems increases as the weight β increases. When
the β value passes a value around 0.5-0.6, the precision
rate of the four systems decreases. A small β implies
that the best answerer metric BA(qi,j) largely depends
on answer quality value Q(i,j). However, Q(i,j) alone
cannot indicate the capability of a friend for answering
the question in terms of interests. A large β implies that
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BA(qi,j) largely depends on the interest similarity S(qi,j).
However, as the quality of the answers also depends on
the willingness of the users to answer/forward ques-
tions, ignoring answer quality for potential answerer
selection will lead to a low recall rate. We notice that
no manner SOS has the inference engine or not, SOS
with FB always has higher recall rate than SOS without
FB. This is because in the latter, the answer quality
is solely determined by their assumed closeness with
their friends, which cannot reflect the willingness of the
friends to answer/forward questions. By considering the
number of the received answers with their associated
quality, the feedback mechanism can estimate the answer
quality value that can reflect activeness and knowledge
quality of their friends. We can also see from the figure
that SOS with inference system has higher precision rate
than SOS without inference system due to the same
reason as Figure 16.

Figure 18 shows the recall rates of SOS-w/o-infer, SOS-
w/-infer, SOS-w/o-infer-FB and SOS-w/-infer-FB versus
different weight value β in calculating the BA metric
in Equation (3). We can see from the figure that as the
weight β increases, the recall rate of all of the four
different systems increases first and then decreases after
β = 0.6. Also, SOS with inference engine can achieve
higher recall rate than SOS without inference engine.
The reasons are the same as Figure 17. The figure also
shows that the difference of precision rate between SOS
with feedback mechanism and SOS without feedback
mechanism is smaller than the difference of recall rate
between these two systems.

Comparing Figure 17 and Figure 18, we see that the
precision rate difference between SOS with FB and SOS
without FB is small, while the recall rate difference be-
tween these two systems is large. Also, when β increases
after 0.5 or 0.6, the precision rate exhibits a slight drop
while the recall rate exhibits a more sharper drop. The
precision rate measures how likely a returned answer
is a correct answer. The recall rate measures how many
correct answers in the system can be returned. Therefore,
the number of dropped questions does not affect the
precision rate but affect the recall rate. The feedback
mechanism helps find answers with high willingness
to answer questions and provide high-quality answers
and avoids question droppings. Thus, it does not signifi-
cantly affect precision rate but would increase recall rate.
As a result, the recall rate difference between SOS with
FB and SOS without FB is large while their precision rate
is small. Also, as β increases after 0.5/0.6, the influence
of answer quality on the answerer selection decreases
based on Equation (3). Thus, the precision rate does not
change much while the recall rate decreases caused by

more question droppings.
Figure 19 shows the precision rates of different sys-

tems versus different willingness value p. The figure
shows that the precision rate of all system increases
as p increases. The reason is that a higher p value
means that more users are willing to answer/forward
questions from others. We can also see from the figure
that even for a small willingness value p, the SOS with
feedback mechanism can still achieve a high precision
value. This is because the questions in SOS with feedback
can be forwarded to a peer that can provide high quality
answers and is willing to answer/forward answers.
That is also why the increase rate of the SOS with
feedback mechanism is much smaller than SOS without
feedback mechanism. We can also see that SOS with the
feedback mechanism has much lower increase rate than
SOS without the feedback mechanism. The reason is the
same as explained in Figure 18. This is because that
the feedback mechanism helps avoid question droppings
and find high-quality answerers even with a low p as
explained in Figure 18. Thus, the precision rate of SOS
with the feedback mechanism is high when p is low,
and it increases slightly as p increases, while that of SOS
without the feedback mechanism increases with a higher
rate.

Figure 20 shows the recall rates of different systems
versus different willingness value p. We can see from
the figure that the recall rate of different systems in-
creases as the willingness value p increases. The reason
is that as the p increases, more nodes are willing to
answer/forward questions from others. As more nodes
actively participate in the Q&A activities, more high-
quality answers are returned to the askers, which in-
creases the recall rate of different systems. We can also
see that no matter SOS has the inference engine or not,
the recall rate of SOS with feedback mechanism is larger
than the recall rate of SOS without feedback mechanism.
The reason is that the feedback mechanism enables the
question to be forwarded to the active nodes, avoiding
the inactive users and users that provide poor-quality
answers. Again, we see that SOS with the inference
engine leads to higher recall rate than SOS without it no
matter SOS has FB or not. This is due to the same reason
as in Figure 16. Comparing Figure 20 with Figure 19, we
see that recall rate increases faster than precision rate as
p increases. This is due to the reason that the feedback
mechanism does not significantly affect the precision rate
but affects the recall rate as explained in Figure 18.

Figure 21 shows the precision rate of SOS-w/-infer-FB
and SOS-w/o-infer-FB versus different values of damp-
ing factor α. The figure shows that as α increases from 0
to 0.2, the precision rates of the two systems increase
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initially. Once α is larger than 0.2, the precision rate
decreases. When α equals 0, the value of answer quality
Q(i,j) is dominated by recent ratings rk, ignoring the
nodes’ previous behaviors. Thus, once a node returns
an answer with a low quality, it has a low probability to
be chosen though it returns high-quality answers previ-
ously. Therefore, the answer quality is not sufficiently ac-
curate, leading to low precision rate. When the damping
factor continues to increase after 0.2, the previous answer
quality gains higher weight and the recent activeness of
the users gains lower weight. Thus, the answer quality
Q(i,j) cannot sufficiently reflect the recent activeness of
the users in the social network. Therefore, α = 2 is
an optimal setting in this experiment environment that
considers node past answering behavior and also assigns
a relatively higher weight to node recent answering
behavior.

Figure 22 shows the recall rate of SOS-w/-infer-FB
and SOS-w/o-infer-FB versus different value of damping
factor. We can see that the recall rate of both systems
increases initially as the damping factor α increases from
0 to 0.2. After the α value is larger than 0.2, the recall
rate decreases. The reason is the same as in Figure 21.
From Figure 22 and Figure 21, we can see that the
precision rate and recall rate of SOS-w/-infer is higher
than SOS-w/o-infer. This is because the inference engine
can derive more interest information as explained in
Figure 11 and Figure 12.

6 PROTOTYPE IMPLEMENTATION AND TEST-
ING
We deployed SOS client in Objective-C with iOS 4.1,
and the server was written in Java using JDBC con-
nector with MySQL. The client was deployed on iPod
Touch/iPhones connecting to a sqlite database. The iPod
Touch/iPhones use WiFi connectivity to access to the
registration server and communicate between each other.
We also developed a forum written by PHP connect-
ing to MySQL, for the Apache2 web server, which is
aimed to receive the unsolved questions from mobile
users. Screenshots of the iPhone clients are presented
in Figure 23. Figure 23 (a) shows the main menu of
the SOS. Users can communicate with each other using
the ask/answer interface and conduct operations for
registration, log in or off, add/delete friends and update
profile information. Figure 23 (b) and Figure 23 (c) show
the question and answer interfaces, respectively. In the
question interface, users type their questions in the text
field and send the questions out by pressing Find Answer
button. In the answer interface, if a user can answer the
received question, s(he) can directly submit the questions
by pressing the submit button. Otherwise, s(he) can
forward the questions to his/her own social friends by
pressing the forward button. SOS then forwards the
question to the user’s K top friends.

We tested the system within a small group of 30
students in Clemson University. The students are from
6 different departments with students in natural science
majors and social science majors. The deployment lasted
about 2 days and about 389 questions were asked. 0.1%
of the questions were sent to the forum and 96% of
the questions were answered. In the experiments, we

(a) Main menu. (b) Question.

Submit Forward

(c) Answer.

Fig. 23: Client software execution on iPhones

mainly focused on four categories of questions: Music,
Book, Movie and Television. We imported 9787 fuzzy
keywords from WordNet that are related to the four
categories into SOS’s fuzzy database and imported 137
rules into SOS’s rule-based inference engine for interest
inference. These rules are designed based on common
sense relation between personal interests. In total, 389
questions were collected from the testing. We set K to
3 considering the small size of our social network in
testing.

For each question an asker asked, the question is
sent to the social network via both the SOS-w/-infer
system and SOS-w/o-infer system. After receiving an
answer, an asker needed to rate the answer with a
0-10 star. The asker was also required to search the
question’s answer through Google and rate the Google
results. This is to compare the performance of SOS and
Google search engine. Figure 24(a) and Figure 24(b)
show the comparison results of average rating values
for factual and non-factual questions for SOS-w/-infer,
SOS-w/o-infer and Google. The figures show that for
the factual based questions such as “Who is the director
of Kung Fu Panda 2?”, “Who is the author of Gone
with the Wind?”, Google has slightly higher ratings
than SOS-w/o-infer and SOS-w/-infer. This is because
the number of the participants in the testing group
is limited, leading to limited knowledge in our social
network. The participants may not remember some of
the facts asked in the factual questions. However, for
some common factual questions such as “What is the
oldest book in the world?”, or technical questions that
relate to their majors or career, such as “The author of
the book Introduction to Algorithms?”, the participants
can give accurate answers.
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(a) Factual based questions.
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(b) Non-factual based questions.

Fig. 24: Comparison of three systems.

On the other hand, as shown in Figure 24(b), for
the non-factual questions such as “How is the course
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ECE613 in Clemson University?”,“How to set the width
of caption in Latex?”, SOS-w/o-infer and SOS-w/-infer
have much higher ratings than Google, since the answers
to these questions cannot be found in Google easily. For
questions such as “Is the movie Transformer 3 worth
going to watch?”, which can be found in both Google
and SOS, SOS even receives much higher ratings than
Google. This result implies that users tend to trust the
answers from their friends. As mentioned by a partic-
ipant, “the results from Google are often overwhelmed
by advertisements”. From both figures, we see that SOS-
w/-infer outperforms SOS-w/o-infer for both factual
question and non-factual questions. This is because that
the inference engine in SOS-w/-infer can provide more
interest information for answerer identification, which
increases the likelihood to identify a potential answerer.
The results are in line with our trace-driven simulation
results. From these figures, we can see that SOS provides
a good user experience for information search, especially
for those non-factual questions that cannot be well an-
swered by Google. Another interesting finding from the
test is that some people even directly used SOS as a
communication tool as in current online social networks.
For example, for some complex questions such as “How
to analyze the complexity of a new algorithm? ”, the
answerers directly asked the asker to go to his/her office
for discussion. Some users asked the question “Who
want to play soccer on this coming Friday.”
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Figure 25 shows the percent of question responses
versus the number of social hops between the asker
and answerer in the social network, and the percent of
dropped questions versus the number of hops between
the asker and the user who dropped the question. The
figure shows that the question dropping rate increases
slightly at the second hop and the third hop. How-
ever, the overall packet dropping rate is still extremely
small. This is because as the questions are propagated
among socially close friends, users do not easily drop
questions considering the close social relationship. The
slightly increased dropping rate may be resulted from
the decreased social closeness between the asker and
question receiver. We can also see from the figure that
as the number of hops in the social network increases,
the number of question responses is reduced. The result
indicates that socially closer friends of a user are more
likely to answer the questions from the user. The figure
also shows that users within one social hop are better at
answering non-factual questions than factual questions
because the small number of users within one-hop social
distance may not have enough knowledge to answer
certain kinds of factual questions. As the social hop

increases, those unsolved questions can be answered by
people in other social clusters that are specialized in
other topics.

Each asker in the test chose the best answer for each
of his/her questions. Figure 26 shows the percent of
best answers to the questions given by the answerers
in different social distances from the askers in the social
network. The figure shows that for the non-factual ques-
tions, more than 80% of the questions can be answered
by the users within one hop in the social network in
both SOS-w/o-infer and SOS-w/-infer. Less than 10% of
the best answers come from the users within 3 hops.
The figure indicates that as the non-factual questions
are normally the questions about suggestions, advises
and recommendations, the answers from socially close
friends are more likely to be accepted. The figure also
shows that for the factual questions, less than 60% of
the best answers are provided by the friends within
1 hop. For SOS-w/o-infer, friends in three hops can
provide better answers than friends in two hops. This is
because factual questions need more specific knowledge
to be answered. The users who have specific knowledge
may be socially far away from the askers. SOS-w/o-
infer can more accurately identify the best answerers
with more inferred interests from the friends and the
question. Section 8 in supplemental material presents
additional experimental results for SOS on 120 devices
and computers.

7 CONCLUSION

In this paper, we have presented the design and im-
plementation of a distributed Social-based mObile Q&A
System (SOS). SOS is novel in that it achieves lightweight
distributed answerer search, while still enabling a node
to accurately identify its friends that can answer a ques-
tion. SOS uses the FOL representation and inference en-
gine to derive the interests of questions, and interests of
users based on user social information. A node considers
both its friend’s parsed interests and answer quality in
determining the friend’s similarity value, which mea-
sures both the capability and willingness of the friend
to answer/forward a question. Compared to the cen-
tralized social network based Q&A systems that suffer
from traffic congestions and high server bandwidth cost,
SOS is a fully distributed system in which each node
makes local decision on question forwarding. Compared
to broadcasting, SOS generates much less overhead with
its limited question forwardings. Since each user be-
longs to several social clusters, by locally selecting most
potential answerers, the question is very likely to be
forwarded to answerers that can provide answers. The
low computation cost makes the system suitable for
low-end mobile devices. We conducted extensive trace-
driven simulations and implemented the system on iPod
Touch/iPhone mobile devices. The results show that SOS
can accurately identify answerers that are able to answer
questions. Also, SOS earns high user satisfaction ratings
on answering both factual and non-factual questions. In
the future, we will study the combination of SOS and
cloud-based Q&A system. We will also release the ap-
plication in the App Store and study the Q&A behaviors
of users in a larger-scale social network.
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8 ADDITIONAL PROTOTYPE EXPERIMENTAL
RESULTS

In this experiment, we installed SOS in 120 devices
and computers. We formed the 120 nodes into a social
network according to the distribution of user connec-
tions in the Facebook trace. The number of friends of
the users conforms to a power law distribution. The
average number of friends of a user is 10. By default, the
parameter values used in this experiment are the same
as in the simulation. We used 100 movie questions and
their rated answers from the simulation and mapped
them to the corresponding users as in the simulation.
The questions assigned to each user are replicated for 10
times. We let the devices automatically initialize these
questions. Each device sent out the questions following
a Poisson distribution with the average rate λ = 5
by default. The experiment stopped when all questions
were sent out and their TTL=0.

Figure 27 shows the average computation time for
a user to generate its interest ID, to select a friend as
question forwarder based on Equations (1), (2) and (3),
and to generate the ID of its question. We see that the
computation time for the interest ID generation is around
3.75ms, for the question ID generation is around 90.2ms,
and for the forwarder selection is around 358ms, which
are all very small.

We classified askers to different groups based on the
number of friends of each user. We then calculated the
average of the total computation time for the interest ID
generation, question ID generation and forwarder selec-
tion per asker and per question in each group. Figure 28
shows the 5th percentile, 95th percentile and average
total computation time of each group of users. We see
that as the number of friends of a user increases, the total
question computation time increases. This is because a
user with more friends needs to do more calculation for
forwarder selection, thus increasing latency.

Figure 29 shows the average storage cost for interest
ID, answer quality of friends, rules and axioms database
and inference engine per node. It also includes the
5th percentile and 95 percentile of the storage cost for
interest ID and answer quality of friends. We see that
the storage cost of interest ID is 339 bytes and rules
and axioms database is 324 bytes. The size of answer
quality is 40 bytes, and the size of the fuzzy database
is 338,944 bytes. The sizes of interest ID and answer
quality are only related with the number of friends of
a user, and their sum equals 379 bytes for a user in a
social network with average number of friends equaling

to 10. In Facebook, the maximum number of friends a
user is allowed to have is 5,000. Therefore, the maximum
storage cost of interest ID and answer quality of a user
is 1.89MB. In the test, we only focused on the inference
among the movie, book, music and television categories.
More rules are needed for the inference with a set of
comprehensive categories (e.g., Yahoo!Answer has 26
categories). Take Yahoo!Answer as an example, since
every combination of four interest categories out of total
26 categories generates rules with file size of 300 bytes
and there are A4

26 = 14, 950 combinations, so the total file
size is 300B∗14950 ≈ 4MB. The storage cost of the fuzzy
word database is about 311KB. The fuzzy word database
is derived from WordNet, which contains keywords from
all different categories. The experimental results indicate
that the storage cost of SOS will not be a burden to an
average smart phone, which has storage capacity up to
GBs.

Next, we compare the performance of a centralized
Q&A system and a distributed Q&A system. We define
the querying latency as the time period from when
a question is generated to the time when a reply is
received by the asker. Each device sends the questions
out following a Poisson distribution with λ varying from
2.5 to 10 questions per minute with a step increase of
2.5. Figure 30 shows the 5th percentile, median and 95th
percentile of querying latency versus the question gener-
ating rate λ. We created 15 threads on the server so that
the server can concurrently handle 15 answers (question
ID generation and forwarder selection). The figure shows
that the nodes in the centralized system experience much
less delay than the distributed system when the querying
rate is small. However, as the querying rate increases,
the querying latency in the centralized system increases
while that in the decentralized system remains constant.
When the querying rate equals 10, the centralized system
experiences higher delay than the distributed system.
Since the computation capability of devices is much
lower than that of the server, to process a question, the
server consumes less time. Therefore, when the querying
rate is small, the querying latency in the centralized sys-
tem is small. As the querying rate increases, the server
receives more queries and more queries need to wait in
the queue, thus increasing the average query delay. In
contrast, in a distributed system, a node only receives
questions from its friends. Therefore, the forwarder is
unlikely to be congested. Thus, the querying latency is
small even when the querying rate is large.

Figure 31 shows the 5th percentile, median and
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Fig. 30: Querying latency.
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Fig. 31: Forwarding and reply-
ing latency.
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Fig. 33: Maximum queue size.

95th percentile of forwarding and replying latency (i.e.,
querying latency minus question ID generation time)
versus the question generating rate λ. The relative per-
formance between the centralized system and the dis-
tributed system is similar to that in Figure 30 due to the
same reasons. Comparing this figure to Figure 30, we
see that the centralized system decreases very slightly
while the distributed system decreases dramatically. This
is because the question ID generation needs much less
time in the server but needs a long time in the mobile
devices due to their different computing capacity.

Figure 32 further shows the querying latency without
the question ID generation component. That is, each
question is associated with an interest category, and is
sent to friends with this category. Comparing Figure 30
and Figure 32, we find that the average querying latency
in Figure 32 is smaller. This is because the systems in
Figure 32 do not need to generate question IDs. We
also see that the delay in the centralized system is con-
sistently larger than the distributed system. This is be-
cause the mobile devices have less computing resources
than centralized server, thus the processing latency on
the mobile devices is greatly reduced by removing the
question ID generation. However, the major delay in
the centralized system is the queuing delay. Removing
the question ID generation process does not greatly
affect processing latency on the server. Since the question
ID generation also generates certain latency and hence
queuing latency, the centralized system produces higher
latency in Figure 31 than in Figure 32.

We measured the maximum queue size of the device in
the distributed system and the server in the centralized
system each second, and then calculated the average of
maximum queue size in each second during the whole
experiment. Figure 33 shows the average maximum
queue size of the devices and the server. We see that as
the querying rate increases, the queue size of the server
increases rapidly in the centralized system but is almost
unchanged in devices in the distributed system. Since
the questions in the centralized server are more likely to
experience queuing delay, the question forwarding delay
in the centralized system is large when querying rate of
the users is high.


