
A Locality-Aware Similar Information Searching Scheme

Ting Li Haiying Shen
Dept. of Computer Science and Computer Engineering Dept. of Electrical and Computer Engineering

University of Arkansas, Fayetteville, AR 72701 Clemson University, Clemson, SC 29631
txl005@uark.edu shenh@clemson.edu

Abstract

In a database, a similar information search means find-
ing data records which contain the majority of search
keywords. Due to the rapid accumulation of informa-
tion nowadays, the size of databases has increased dra-
matically. An efficient information searching scheme can
speed up information searching and retrieve all relevant
records. This paper proposes a Hilbert Curve based simi-
larity Searching scheme (HCS). HCS considers a database
to be a multidimensional space and each data record to be
a point in the multidimensional space. By using a Hilbert
space filling curve, each point is projected from a high di-
mensional space to a low dimensional space so that the
points close to each other in the high dimensional space
are gathered together in the low dimensional space. Be-
cause the database is divided into many clusters of close
points, a query is mapped to a certain cluster instead of
searching the entire database. Experimental results prove
that HCS dramatically reduces the search time latency and
exhibits high effectiveness in retrieving similar informa-
tion.

Keywords: Hilbert curve, Locality sensitive hashing,
Similarity Searching, Massive databases

1 Introduction

A database aims to store data objects and provide ac-
cess to the content of the data objects. These objects are
called records, and they are represented in the database
by various attributes associated with the objects as in-
dependent dimensions. Therefore, the data objects are
mapped into a high-dimensional data space. For exam-

ple, a text document may be represented by the word fre-
quencies of a very large vocabulary; images may be de-
scribed by the features such as shape, colour and texture.
As the cardinality of data sets increases, efficient high-
dimensional data querying becomes increasingly impor-
tant. One example of querying high-dimensional data is
similarity search. In essence, similarity search is retriev-
ing the objects which are similar to the query object for a
given degree. For example, two records A and B:

A: Ann Johnson 16 Female
B: Ann Smith 20 Female
Because both A and B contain the keywords “Ann”

and “Female”, A and B are similar records, as they con-
tain similar information. A few applications of similar-
ity search include audio and image databases [15], video,
text files, fingerprints [30], face recognition [29], and pro-
tein sequences [8]. In many cases, the high dimensional
space is Euclidean space [25]. Given a query object q, a
database S of objects si, the number of objects n, and a
metric distance function d(x, y) (i.e., Euclidean distance
computation function), the objects that satisfy any of the
following conditions can be located as the similar objects
of a query object q.

1. The object is closest to the query object q, i.e., {sj ∈
S|∀si ∈ S : d(sj , q) ≤ d(si, q)} (nearest neighbour
query).

2. The first k objects are closest to the query object q,
where 0 < k < n (k-nearest neighbour query).

3. The object whose distance with query object q falls
within a given range r, i.e., {sj ∈ S|d(sj , q) ≤ r}
(range query).

It is well known that effective indexing of the data is
necessary for efficient query processing. Because of the
curse of dimensionality [26], indexing high dimensional



data is a harder problem. Often as the dimensionality of
the space increases, the difference in the distance between
the nearest and the farthest objects decreases [5]. Search-
ing in a high-dimensional space can be time-consuming.
For similarity search, O(n) (n is the number of objects in
the database) time is needed to compute the distance be-
tween the query object and every object in the database,
which is not viable for a large database. This has moti-
vated the development of efficient similarity search tech-
niques, such as kd-tree [4], R-tree [19], VP-tree [16] and
Bk-tree [6].

To speed-up the search, a trade-off between searching
quality and searching latency is offered [32]. An accept-
able degradation in the quality of the searching results can
save searching time. Santini and Jain [35] gave an exam-
ple of similarity queries over multimedia data with con-
sideration of the tradeoff. Therefore, a similarity search
result may contain objects that are not similar to the query
object, called false positives. Similarly, an object that is
similar to the query object is named as true positive.

This paper proposes a Hilbert Curve based similarity
Searching scheme (HCS) which can cluster records ac-
cording to their similarity. A Hilbert curve [22] is a space-
filling curve [33]. It is used in image processing, espe-
cially image compression and dithering. A Hilbert curve
is employed in HCS because of its local order preservation
property. It can project high dimensional data points into
a low dimensional space. HCS assigns a Hilbert number
for each record, and then uses the Hilbert curve’s locality
preserving property to cluster similar records. Queries are
conducted in the clusters that have the same Hilbert num-
bers as the queries. We conduct experiments to investi-
gate the operation of HCS and compare the performance
of HCS with linear search. The dimension of the testing
data set is 33,601. Experiment results show that HCS is
an efficient similarity searching scheme. Compared with
linear search, HCS dramatically reduces the query time.

The rest of this paper is structured as follows. Section 2
presents a concise review of similarity searching methods.
Section 3 presents the design of HCS. Section 4 shows the
experimental results. Finally, Section 5 draws conclusions
and summarizes the propositions of the HCS scheme.

2 Related Work
As the dimensionality of the space increases, the differ-
ence in the distance between the nearest and the farthest
objects decreases [5]. The “curse of dimensionality” [26]
makes it hard to index high dimensional data. In order
to tackle the “curse of dimensionality”, various approx-
imate solutions based on dimensionality reduction have
been proposed [2] [14] [17].

Locality sensitive hashing (LSH) [3] [10] [11] [17]
[21] [28] is a method for performing nearest neighbour
searches. LSH is developed in [17]. Its key idea is to
hash the points using a family of hash functions so that
the probability of close points being hashed into the same
value is much higher than that of distant points. With
LSH, close neighbours of a query point can be deter-
mined by retrieving elements with similar hashed values
to the query point’s hashed value. For filtering the search
results, the Euclidean distance is computed between the
query point and every retrieved point. The points whose
distances are greater than a predefined threshold are re-
moved from the results. However, one of the main draw-
backs of LSH is the large memory requirement. LSH must
consume large memory resources to achieve fast query
speeds. The second drawback of LSH is that Euclidean
distance computation leads to long query times and the
distance computation phase is indispensable for LSH in a
high dimensional space.

Another nearest neighbour searching method relies on
tree structures. R-trees (Rectangle trees) were proposed as
an extension of B-trees; they are used as dynamic index
structures for spatial searching [19]. An R-tree uses an
n-dimensional rectangle that is the bounding box to bind
each data object. Each node of an R-tree has many entries.
Each entry within a non-leaf node stores the address of
a child node and a minimum bounding rectangle (MBR)
of all entries within this child node. Leaf nodes contain
pointers to the data objects and their enclosing rectan-
gles [27]. The SS-tree (Similarity Search tree) is similar
to an R-tree. Instead of using MBR, SS-tree [37] employs
minimum bounding spheres (MBS), which can reduce the
requirement for storage. The objects are grouped together
by spheres in a hierarchical manner. The parent node’s
sphere completely bounds all the spheres of the nodes be-
neath it in the tree [12]. The SR-tree (Square/Rectangle
tree) [24] [12] utilizes both MBSs and MBRs to represent



the minimum bounding region, which is the intersection
of MBRs and MBSs. A leaf node of the SR-tree contains
many entries, and each entry contains a point and its at-
tribute data. A non-leaf node also consists of a number of
entries. Each entry corresponds to a child node and con-
sists of four components: a bounding sphere, a bounding
rectangle, the number of points, and a pointer to the child
node. This improves search efficiency over R-trees and
SS-trees. However, as reported in [5], the performance
of an SR-tree is not as good as a sequential scan when
dimensionality is greater than 20.

The M-tree [9] was proposed to organize and search
large data sets from a generic metric space, i.e., where
object proximity is only defined by a distance function
satisfying the positivity, symmetry, and triangle inequal-
ity postulates. The M-tree partitions objects on the ba-
sis of their relative distances as measured by a specific
distance function and stores these objects into fixed-size
nodes that correspond to constrained regions of the metric
space [9]. All data objects are stored in the leaf nodes of
an M-tree. The non-leaf nodes contain “routing objects,”
which describe the objects contained in the branches. For
each routing object, there is a so-called covering radius
for all of its enclosing objects, and the distances to each
child node are pre-computed. When a range query is com-
pleted, sub-trees are pruned if the distance between the
query object and the routing object is larger than the rout-
ing object’s covering radius plus the query radius. Be-
cause a lot of the distances are pre-computed, the query
speed is dramatically increased. The main problem is
the overlap between different routing objects in the same
level [31].

The vector approximation file (VA-file) [36] can reduce
the amount of data that must be read during a similarity
search. VA-file does not use a tree structure but instead
stores an approximation of the vector of each data object
in a sequential file [12]. It divides the data space into
grids and creates an approximation for each data object
that falls into a grid. When searching for near neigh-
bours, VA-file sequentially scans the file containing these
approximations, which is smaller than the size of the orig-
inal data file. This allows most of VA-file’s disk accesses
to be sequential, which is much less costly than random
disk accesses [13]. One drawback of this approach is that
VA-file requires a refinement step, where the original data
file is accessed using random disk accesses [13].

3 Hilbert Curve based Searching
Scheme

The challenge of nearest neighbour search is to effectively
group similar information into the same cluster. We pro-
pose a Hilbert curve based nearest neighbour searching
scheme (HCS). In particular, we assign a Hilbert number
to each record in the database. Because a Hilbert curve
has a locality preserving feature, the Hilbert numbers of
similar records are close to each other. We group records
with close Hilbert numbers into a cluster. For a query
record, HCS searches the cluster of the query’s Hilbert
number and locates the records that have similar Hilbert
numbers.

In the following sections, we first introduce space-
filling curves. We then describe how to represent a record
in n-dimensional space and how to use the Hilbert curve
to map records from a high dimensional space to one di-
mensional space and cluster the similar records using a
hash table. Finally, we present the similar information
searching process of HCS.

3.1 Introduction to Space-Filling Curves

Space-filling curves have garnered increasing interest in
recent years due to their uses in practical applications [20]
[33]. Mokbel and Aref describe a space-filling curve as a
“thread that goes through all the points in a space but vis-
iting every point only once” [7]. Using this mapping, a
point in n-dimensional space can be described by its spa-
tial coordinates, or by the length along the thread, mea-
sured from one of its ends.

There are many space-filling curves available, in-
cluding the Peano, Z, Hilbert, sweep, scan, and gray
curves [7]. The Hilbert space-filling curve is believed to
achieve the best clustering [1] [23]. A Hilbert curve parti-
tions the n-dimensional space into 2nx grids. n represents
the dimensionality of the space and x controls the number
of grids used to partition the multidimensional space. Fig-
ure 1 shows an example of transforming 3-dimensional
points into a Hilbert space-filling curve. The points that
are close to each other in 3-dimensional space are still
close to each other after being projected onto a Hilbert
curve.



close to each other. For a query record, HCS searches the 

database and locates the records have similar Hilbert numbers. 

In the sections that follow, we first introduce space-filling 

curve. We then describe how to represent a record in n-

dimensional space and how to use Hilbert curve to map 

records from high dimensional space to one dimensional space 

and cluster the similar records using hash table. Finally, we 

present the similar information searching process of HCS. 

A. Introduction of Space-Filling Curve  

Space-filling curve has stimulated increasing interest in 

recent years and its use in practical applications [33, 34]. 

Mokbel and Aref described the space-filling curve as a 

“thread that goes through all the points in a space but visiting 

every point only once” [35]. The n-dimensional space is 

considered as an n-dimensional cube, which is mapped onto a 

line such that the line passes once through each point in the 

volume of the cube, entering and exiting the cube only once 

[42]. Using this mapping, a point in the cube can be described 

by its spatial coordinates, or by the length along the line, 

measured from one of its ends.  

There are many space-filling curves available, such as 

Peano curve, the Z curve, the Hilbert curve, the sweep, the 

scan and the gray curves [35]. Hilbert space-filling curve is 

believed to achieve the best clustering [36, 37]. 

A Hilbert curve partitions the n-dimensional space into 2
nx

 

grids. n presents the dimensionality of the space and x controls 

the number of grids used to partition the multidimensional 

space. Figure 1 shows an example of transfer 3-dimensional 

points into Hilbert space-filling curve. The points that are 

close to each other in 3-dimensional space are still close to 

each other after being transferred onto a Hilbert curve. 

 

 

 

 

 

 

 

 

 

 
Fig. 1 An example of space-filling curve 

 

B. Multidimensional Keyword Space Construction 

Hilbert curve can transfer n-dimensional spatial coordinates 

of points to one-dimensional index while preserving the 

locality relationship between points. Therefore, to apply the 

Hilbert curve to the data objects in a database, all data objects 

need to be represented by coordinates. However, a data object 

in a database is represented by a string consisting of a number 

of attributes, and the number of attributes in a data object 

differs in different objects. For example, a data object is 

expressed as “ANN 16 FEMALE 22 MAIN STREET”. It has 

posed a challenge to represent every object by an n-

dimensional spatial coordinates (a vector), i.e. to represent 

each object as a point in a unified n-dimensional space. To 

cope with this challenge, HCS constructs a multidimensional 

keyword space which facilitates to represent each data object 

by a certain number of coordinates. 

Information retrieval (IR) deals with text processing. 

Vector space model (VSM) is one of the information retrieval 

strategies. To retrieve relevant documents to a query, the 

VSM computes a measure of similarity by defining a vector 

that represents each document, and a vector that represents the 

query [38]. VSM uses occurrences of words from the word list 

in the document collection to distinct the vector of the 

document. Consider a document collection with only two 

words, α and β. Therefore, there are only two components in 

the vectors. The first component represents occurrences of α 

and the second represents occurrences of β. If a document D 

contains one occurrences of word α and zero occurrences of 

word β, its vector is expressed by <1, 0> binary representation 

[39]. Therefore, the vector presentation method provided by 

VSM can change a string document into a binary vector. The 

dimensions of all binary vectors of documents are the same. 

Because the records in a database are described by many 

keywords, we use VSM method to transform each record to a 

point in a high-dimensional space. We collect all the unique 

keywords of all the records in the database to make a token 

list with each keyword representing a coordinate. The total 

number of the unique keywords is the number of dimensions 

of the high-dimensional space. For instance, Figure 2 shows a 

3-dimensional space with three keywords. Point A in the 

figure represents a record in the 3-dimensional keyword space. 

It means that the number of unique keywords in the database 

is 3. The vector of point A is (d1, d2, d3), where d1, d2 and d3 

are the number of occurrences of Keyword 1, Keyword 2 and 

Keyword 3, respectively. Therefore, the presentation of a point 

in n-dimensional space is (d1, d2, ..., dn). For each keyword, if 

it appears in a record equal or more than once, “1” is marked 

at the corresponding component in the vector. Otherwise, “0” 

is marked. Given a database consisting of name and address 

keywords as shown in Figure 3, these records will be 

transferred into the form of multidimensional keyword space 

as shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 A point in a 3-dimensional space 

 

 

Record ID Record 

1 TOM SMITH 17 N ELM ST 

2 DAVID RUFF 22 MAIN ST 

 
Fig. 3 Database of name and address 

1 4 

2 3 

5 6 

8 7 

1 2 

4 

5 6 

7 
3 

3-dimensional space Hilbert curve 

A:  (d1, d2, d3) 
d1 

d3 

Keyword 1 

 
Keyword 2 

 

Keyword 3 

 

d2 

Figure 1: An example of a space-filling curve.

3.2 Multidimensional Keyword Space Con-
struction

A Hilbert curve can transform n-dimensional spatial coor-
dinates of points into one-dimensional indices while pre-
serving the locality relationship between points. There-
fore, to apply the Hilbert curve to the data objects in a
database, all data objects need to be represented by coor-
dinates in the same multidimensional space. However, a
data object in a database is represented by a string con-
sisting of a number of attributes, and the number of at-
tributes in a data object differs for different objects. For
example, a data object is expressed as “ANN 16 FEMALE
22 MAIN STREET”. This poses a challenge to represent
every object by n-dimensional spatial coordinates (a vec-
tor), i.e., to represent each object as a point in a unified
n-dimensional space. The challenge is more formidable
if the data is in the form of documents in a database. To
cope with this challenge, HCS constructs a multidimen-
sional keyword space which facilitates representing each
data object by a certain number of coordinates.

Information retrieval (IR) deals with text processing.
The vector space model (VSM) [34] is one such informa-
tion retrieval strategy. To retrieve documents relevant to a
query, VSM computes a measure of similarity by defining
a vector that represents each document, and a vector that
represents the query. VSM uses occurrences of keywords
from the keyword list in the document collection to deter-
mine the vector of the document. Consider a document
collection with only two keywords, α and β. Then, there
are only two components in the vectors. The first com-
ponent represents occurrences of α and the second rep-
resents occurrences of β. If a document D contains one
occurrence of word α and zero occurrences of word β, its
vector is expressed by < α : 1, β : 0 > binary repre-
sentation [18]. Therefore, the vector presentation method
provided by VSM changes a string document into an at-

tribute vector (i.e., record).
Because the records in a database are described by

many keywords, we use the VSM method to transform
each record into a point in a high-dimensional space.
We collect all the unique keywords of all the records
in the database to make a token list with each key-
word representing a coordinate. The total number of
unique keywords is the number of dimensions in the high-
dimensional space. For instance, Figure 2 shows a point in
a 3-dimensional space. Point A in the figure represents a
record in the 3-dimensional keyword space. It means that
the number of unique keywords in the database is 3. The
vector of point A is (d1, d2, d3), where d1, d2 and d3 are
the number of occurrences of Keyword 1, Keyword 2 and
Keyword 3, respectively. Therefore, the presentation of a
point in n-dimensional space is (d1, d2, ..., dn). For each
keyword, if it appears in a record equal or more than once,
“1” is marked at the corresponding component in the vec-
tor; otherwise, “0” is marked. Given a database consisting
of name and address keywords as shown in Figure 3, these
records are transferred into a multidimensional keyword
space as shown in Figure 4.

close to each other. For a query record, HCS searches the 

database and locates the records have similar Hilbert numbers. 

In the sections that follow, we first introduce space-filling 

curve. We then describe how to represent a record in n-

dimensional space and how to use Hilbert curve to map 

records from high dimensional space to one dimensional space 

and cluster the similar records using hash table. Finally, we 

present the similar information searching process of HCS. 

A. Introduction of Space-Filling Curve  

Space-filling curve has stimulated increasing interest in 

recent years and its use in practical applications [33, 34]. 

Mokbel and Aref described the space-filling curve as a 

“thread that goes through all the points in a space but visiting 

every point only once” [35]. The n-dimensional space is 

considered as an n-dimensional cube, which is mapped onto a 

line such that the line passes once through each point in the 

volume of the cube, entering and exiting the cube only once 

[42]. Using this mapping, a point in the cube can be described 

by its spatial coordinates, or by the length along the line, 

measured from one of its ends.  

There are many space-filling curves available, such as 

Peano curve, the Z curve, the Hilbert curve, the sweep, the 

scan and the gray curves [35]. Hilbert space-filling curve is 

believed to achieve the best clustering [36, 37]. 

A Hilbert curve partitions the n-dimensional space into 2
nx

 

grids. n presents the dimensionality of the space and x controls 

the number of grids used to partition the multidimensional 

space. Figure 1 shows an example of transfer 3-dimensional 

points into Hilbert space-filling curve. The points that are 

close to each other in 3-dimensional space are still close to 

each other after being transferred onto a Hilbert curve. 

 

 

 

 

 

 

 

 

 

 
Fig. 1 An example of space-filling curve 

 

B. Multidimensional Keyword Space Construction 

Hilbert curve can transfer n-dimensional spatial coordinates 

of points to one-dimensional index while preserving the 

locality relationship between points. Therefore, to apply the 

Hilbert curve to the data objects in a database, all data objects 

need to be represented by coordinates. However, a data object 

in a database is represented by a string consisting of a number 

of attributes, and the number of attributes in a data object 

differs in different objects. For example, a data object is 

expressed as “ANN 16 FEMALE 22 MAIN STREET”. It has 

posed a challenge to represent every object by an n-

dimensional spatial coordinates (a vector), i.e. to represent 

each object as a point in a unified n-dimensional space. To 

cope with this challenge, HCS constructs a multidimensional 

keyword space which facilitates to represent each data object 

by a certain number of coordinates. 

Information retrieval (IR) deals with text processing. 

Vector space model (VSM) is one of the information retrieval 

strategies. To retrieve relevant documents to a query, the 

VSM computes a measure of similarity by defining a vector 

that represents each document, and a vector that represents the 

query [38]. VSM uses occurrences of words from the word list 

in the document collection to distinct the vector of the 

document. Consider a document collection with only two 

words, α and β. Therefore, there are only two components in 

the vectors. The first component represents occurrences of α 

and the second represents occurrences of β. If a document D 

contains one occurrences of word α and zero occurrences of 

word β, its vector is expressed by <1, 0> binary representation 

[39]. Therefore, the vector presentation method provided by 

VSM can change a string document into a binary vector. The 

dimensions of all binary vectors of documents are the same. 

Because the records in a database are described by many 

keywords, we use VSM method to transform each record to a 

point in a high-dimensional space. We collect all the unique 

keywords of all the records in the database to make a token 

list with each keyword representing a coordinate. The total 

number of the unique keywords is the number of dimensions 

of the high-dimensional space. For instance, Figure 2 shows a 

3-dimensional space with three keywords. Point A in the 

figure represents a record in the 3-dimensional keyword space. 

It means that the number of unique keywords in the database 

is 3. The vector of point A is (d1, d2, d3), where d1, d2 and d3 

are the number of occurrences of Keyword 1, Keyword 2 and 

Keyword 3, respectively. Therefore, the presentation of a point 

in n-dimensional space is (d1, d2, ..., dn). For each keyword, if 

it appears in a record equal or more than once, “1” is marked 

at the corresponding component in the vector. Otherwise, “0” 

is marked. Given a database consisting of name and address 

keywords as shown in Figure 3, these records will be 

transferred into the form of multidimensional keyword space 

as shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 A point in a 3-dimensional space 

 

 

Record ID Record 

1 TOM SMITH 17 N ELM ST 

2 DAVID RUFF 22 MAIN ST 

 
Fig. 3 Database of name and address 

1 4 

2 3 

5 6 

8 7 

1 2 

4 

5 6 

7 
3 

3-dimensional space Hilbert curve 

A:  (d1, d2, d3) 
d1 

d3 

Keyword 1 

 
Keyword 2 

 

Keyword 3 

 

d2 

Figure 2: A point in a 3-dimensional space.

close to each other. For a query record, HCS searches the 

database and locates the records have similar Hilbert numbers. 

In the sections that follow, we first introduce space-filling 

curve. We then describe how to represent a record in n-

dimensional space and how to use Hilbert curve to map 

records from high dimensional space to one dimensional space 

and cluster the similar records using hash table. Finally, we 

present the similar information searching process of HCS. 

A. Introduction of Space-Filling Curve  

Space-filling curve has stimulated increasing interest in 

recent years and its use in practical applications [33, 34]. 

Mokbel and Aref described the space-filling curve as a 

“thread that goes through all the points in a space but visiting 

every point only once” [35]. The n-dimensional space is 

considered as an n-dimensional cube, which is mapped onto a 

line such that the line passes once through each point in the 

volume of the cube, entering and exiting the cube only once 

[42]. Using this mapping, a point in the cube can be described 

by its spatial coordinates, or by the length along the line, 

measured from one of its ends.  

There are many space-filling curves available, such as 

Peano curve, the Z curve, the Hilbert curve, the sweep, the 

scan and the gray curves [35]. Hilbert space-filling curve is 

believed to achieve the best clustering [36, 37]. 

A Hilbert curve partitions the n-dimensional space into 2
nx

 

grids. n presents the dimensionality of the space and x controls 

the number of grids used to partition the multidimensional 

space. Figure 1 shows an example of transfer 3-dimensional 

points into Hilbert space-filling curve. The points that are 

close to each other in 3-dimensional space are still close to 

each other after being transferred onto a Hilbert curve. 

 

 

 

 

 

 

 

 

 

 
Fig. 1 An example of space-filling curve 

 

B. Multidimensional Keyword Space Construction 

Hilbert curve can transfer n-dimensional spatial coordinates 

of points to one-dimensional index while preserving the 

locality relationship between points. Therefore, to apply the 

Hilbert curve to the data objects in a database, all data objects 

need to be represented by coordinates. However, a data object 

in a database is represented by a string consisting of a number 

of attributes, and the number of attributes in a data object 

differs in different objects. For example, a data object is 

expressed as “ANN 16 FEMALE 22 MAIN STREET”. It has 

posed a challenge to represent every object by an n-

dimensional spatial coordinates (a vector), i.e. to represent 

each object as a point in a unified n-dimensional space. To 

cope with this challenge, HCS constructs a multidimensional 

keyword space which facilitates to represent each data object 

by a certain number of coordinates. 

Information retrieval (IR) deals with text processing. 

Vector space model (VSM) is one of the information retrieval 

strategies. To retrieve relevant documents to a query, the 

VSM computes a measure of similarity by defining a vector 

that represents each document, and a vector that represents the 

query [38]. VSM uses occurrences of words from the word list 

in the document collection to distinct the vector of the 

document. Consider a document collection with only two 

words, α and β. Therefore, there are only two components in 

the vectors. The first component represents occurrences of α 

and the second represents occurrences of β. If a document D 

contains one occurrences of word α and zero occurrences of 

word β, its vector is expressed by <1, 0> binary representation 

[39]. Therefore, the vector presentation method provided by 

VSM can change a string document into a binary vector. The 

dimensions of all binary vectors of documents are the same. 

Because the records in a database are described by many 

keywords, we use VSM method to transform each record to a 

point in a high-dimensional space. We collect all the unique 

keywords of all the records in the database to make a token 

list with each keyword representing a coordinate. The total 

number of the unique keywords is the number of dimensions 

of the high-dimensional space. For instance, Figure 2 shows a 

3-dimensional space with three keywords. Point A in the 

figure represents a record in the 3-dimensional keyword space. 

It means that the number of unique keywords in the database 

is 3. The vector of point A is (d1, d2, d3), where d1, d2 and d3 

are the number of occurrences of Keyword 1, Keyword 2 and 

Keyword 3, respectively. Therefore, the presentation of a point 

in n-dimensional space is (d1, d2, ..., dn). For each keyword, if 

it appears in a record equal or more than once, “1” is marked 

at the corresponding component in the vector. Otherwise, “0” 

is marked. Given a database consisting of name and address 

keywords as shown in Figure 3, these records will be 

transferred into the form of multidimensional keyword space 

as shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 A point in a 3-dimensional space 

 

 

Record ID Record 

1 TOM SMITH 17 N ELM ST 

2 DAVID RUFF 22 MAIN ST 

 
Fig. 3 Database of name and address 

1 4 

2 3 

5 6 

8 7 

1 2 

4 

5 6 

7 
3 

3-dimensional space Hilbert curve 

A:  (d1, d2, d3) 
d1 

d3 

Keyword 1 

 
Keyword 2 

 

Keyword 3 

 

d2 

Figure 3: Database of names and addresses.
 

 

Keywords                      ID 1 2 

DAVID 0 1 

ELM 1 0 

MAIN 0 1 

N 1 0 

RUFF 0 1 

SMITH 1 0 

ST 1 1 

TOM 1 0 

17 1 0 

22 0 1 

 
Fig. 4 Multidimensional keyword space 

 

Consequently, each record in the database is presented as a 

10-bit series of binary number, where 10 is the number of total 

unique keywords. The vector of record 1 is <0, 1, 0, 1, 0, 1, 1, 

1, 1, 0>; the vector of record 2 is <1, 0, 1, 0, 1, 0, 1, 0, 0, 1>. 

C. Hilbert Indexing 

We use Hilbert curve to map each vector to a real number, 

such that the closeness relationship among the points is 

preserved. The following hash function is used to map a point 

from n-dimensional space into a Hilbert number: 

          h = H(p),                                     (1) 

where p is the vector of a record in the database, h is the 

Hilbert number. For example, we have records v1, v2 and v3: 

v1: ANN 16 FEMALE 22 MAIN STREET 

v2: TOM 16 MALE 22 MAIN STREET 

v3: JOHN 30 N ELM ROAD 

We can get the vectors of v1, v2 and v3 as following by the 

multidimensional keyword space: 

v1: 1 0 1 0 1 0 0 0 1 0 1 0 1 0  

v2: 0 0 0 0 1 1 0 0 1 1 1 0 1 0 

v3: 0 1 0 1 0 0 1 1 0 0 0 0 0 1 

Then, the vectors of v1, v2 and v3 are input into function (1) to 

get their Hilbert numbers h1, h2 and h3. 

h1 = H(1 0 1 0 1 0 0 0 1 0 1 0 1 0) = 6630 

h2 = H(0 0 0 0 1 1 0 0 1 1 1 0 1 0) = 6688 

h3 = H(0 1 0 1 0 0 1 1 0 0 0 0 0 1) = 16243 

Thus, the ten-dimensional vectors are hashed to one-

dimensional integers. Because v1 and v2 have common 

keywords “16”, “22”, “MAIN” and “STREET”, they are 

similar records. v3 does not have any keyword contained in v1 

and v2, so v3 is not similar as v1 and v2. From the Hilbert 

numbers of v1, v2 and v3, we can notice that the difference of 

similar records v1 and v2’s Hilbert numbers is smaller than the 

difference of the Hilbert numbers of v1 and v3. It implies that 

v2 is closer than v1 than v3. Consequently, close points have 

close Hilbert numbers, i.e., close data records can be clustered 

together based on their Hilbert numbers. To look for close 

records, we only need to check the closeness of the Hilbert 

numbers of records.  

D. Hash-based Similar Records Clustering 

Because a massive database has huge amount of records, it 

will take a long time to search close records by checking the 

Hilbert number of records one by one. Rather than reactively 

searching, we develop database structure and searching 

algorithm to proactively handle close point queries. 

Specifically, we cluster the data records to different groups 

based on their closeness. That is, the records with the same 

Hilbert number are clustered into one group. We divide a 

single record database to a number of sub-databases, with 

each sub-database responsible for a record group with high 

similarity, i.e. with the same Hilbert number. A centralized 

location index is used to record the location of each sub-

database in the database and its responsible Hilbert number. 

Location index is the Hilbert number of a group of records in 

a sub-database. To insert a data point to the record clustering 

model, the Hilbert number of the point is computed at first, 

let’s say 5. Then the location index is referred to get the 

locations of the sub-database with Hilbert number equals to 5. 

If the location does not exist in the location indices, a new 

sub-database with the new index is generated, and the location 

of the sub-database will be added into the location indices. If 

the location index 5 is in the location record, the data point 

will be directly saved in the sub-database pointed by the 

location link. The sub-database is the linked list which all the 

records in the list have the same Hilbert number. To save the 

data point in the sub-database, it is only need to save the index 

of the data point at the end of the link list. Figure 5 shows the 

process of inserting a data point into the corresponding cluster. 

By using hash function (1), data point p gets its Hilbert 

number hp which is 5. There is “5” in the location indices, so 

data point p is saved to the sub-database linked with location 

index 5.  Proactive data structure and clustering algorithm 

significantly reduce the searching cost without the need to go 

through the whole database reactively. Hash table is used for 

record clustering to save sub-databases. The Hilbert number 

of a source record which is also called location index is the 

hash ID in the hash table. The sub-databases are structured as 

link lists which are linked with corresponding hash ID. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 The process of record clustering  

E. HCS Similarity Searching Process 

Hilbert curve may generate different Hilbert numbers for 

similar records. In order not to miss some records similar to 

the query, HCS uses multiple token lists to achieve high 

performance in similar information searching. HCS first 

generates several token lists; the keywords in the token lists 

Data point p: 

 <d1, d2, ..., dn> 

Location Index Database 

hp = H(d1, d2, ..., dn)  

    = 5 

 2 

 3 

 4 

 5 

 6 

 7 

Records with h = 2 

Records with h = 3 

Records with h = 4 

Records with h = 5 

Records with h = 6 

Records with h = 7 

Figure 4: Multidimensional keyword space.



Consequently, each record in the database is presented
as a 10-bit series of binary numbers, where 10 is the total
number of unique keywords. The vector of record 1 is
< 0, 1, 0, 1, 0, 1, 1, 1, 1, 0 >; the vector of record 2 is <
1, 0, 1, 0, 1, 0, 1, 0, 0, 1 >.

3.3 Hilbert Indexing
We use a Hilbert curve to map each vector to a real num-
ber, such that the closeness relationship among the points
is preserved. The following hash function is used to map
a point from n-dimensional space into a Hilbert number:

h = H(v), (1)

where v is the vector of a record in the database and h is
the Hilbert number. For example, we have records v1, v2,
and v3:
v1: ANN 16 FEMALE 22 MAIN STREET
v2: TOM 16 MALE 22 MAIN STREET
v3: JOHN 30 N ELM ROAD
We can get the vectors of v1, v2, and v3 as follows by

the multidimensional keyword space:
v1: 1 0 1 0 1 0 0 0 1 0 1 0 1 0
v2: 0 0 0 0 1 1 0 0 1 1 1 0 1 0
v3: 0 1 0 1 0 0 1 1 0 0 0 0 0 1
Then, the vectors of v1, v2, and v3 are input into Func-

tion (1) to get their Hilbert numbers h1, h2, and h3.
h1 = H(1 0 1 0 1 0 0 0 1 0 1 0 1 0) = 6630
h2 = H(0 0 0 0 1 1 0 0 1 1 1 0 1 0) = 6688
h3 = H(0 1 0 1 0 0 1 1 0 0 0 0 0 1) = 16243
Thus, the ten-dimensional vectors are hashed to one-

dimensional integers (i.e., Hilbert numbers). Because v1
and v2 have common keywords “16”, “22”, “MAIN” and
“STREET”, they are similar records. v3’s Hilbert num-
ber is not close to those of v1 and v2 because it does not
have any keywords contained in v1 and v2, so v3 is not as
similar as v1 and v2. From the Hilbert numbers of v1, v2,
and v3, we notice that the difference of Hilbert numbers
of similar records v1 and v2 is smaller than the difference
of the Hilbert numbers of v1 and v3. This implies that
v2 is closer to v1 than v3. Consequently, close points have
close Hilbert numbers, i.e., close data records can be clus-
tered together based on their Hilbert numbers. To look for
close records, we only need to check the closeness of the
Hilbert numbers of records.

3.4 Hash-based Similar Records Clustering

Because a massive database has a huge number of records,
it will take a long time to search close records by check-
ing the Hilbert number of records one by one. Rather
than reactively searching, we develop a database struc-
ture and searching algorithm to proactively handle close
point queries. Specifically, we cluster the data records
into different groups based on their closeness. That is, the
records with the same Hilbert number are clustered into
one group. The index of a source record is its location
in the database, where the source record can be fetched.
We divide a single record index database into a number
of sub-databases, with each sub-database responsible for
a record index group with high similarity, i.e., with the
same Hilbert number. A centralized location index is used
to record the location of each sub-database in the database
and its responsible Hilbert number. A location index is the
Hilbert number of a group of records in a sub-database.

To insert a data point in the record clustering model, the
Hilbert number of the point is computed first - as an ex-
ample, we use 5. Then the location index is referenced to
get the location of the sub-database with Hilbert number
equal to 5. If the location does not exist in the location
indices, a new sub-database with the new index is gener-
ated, and the location of the sub-database is added into
the location index. If location index 5 is in the location
record, the data point will be directly stored in the sub-
database pointed to by the location link. A sub-database,
which is linked with corresponding hash ID in the loca-
tion index, is constructed as a linked list in which all the
records have the same Hilbert number. To store the data
point in the sub-database, we only need to store the index
of the data point at the end of the linked list.

Figure 5 shows the process of inserting a data point into
the corresponding cluster. By using hash Function (1),
data point v receives its Hilbert number hv , which is 5.
There is “5” in the location index, so data point v is stored
in the sub-database linked with location index 5. This
proactive data structure and clustering algorithm signifi-
cantly reduces the searching cost by eliminating the need
to go through the entire database reactively. A hash table
(i.e., location index) is used for record clustering to save
sub-databases. The Hilbert number of a source record,
which is also location index, is the hash ID in the hash ta-
ble. The links corresponding to hash IDs in the hash table



point to different sub-databases.

 

 

Keywords                      ID 1 2 

DAVID 0 1 

ELM 1 0 

MAIN 0 1 

N 1 0 

RUFF 0 1 

SMITH 1 0 

ST 1 1 

TOM 1 0 

17 1 0 

22 0 1 

 
Fig. 4 Multidimensional keyword space 

 

Consequently, each record in the database is presented as a 

10-bit series of binary number, where 10 is the number of total 

unique keywords. The vector of record 1 is <0, 1, 0, 1, 0, 1, 1, 

1, 1, 0>; the vector of record 2 is <1, 0, 1, 0, 1, 0, 1, 0, 0, 1>. 

C. Hilbert Indexing 

We use Hilbert curve to map each vector to a real number, 

such that the closeness relationship among the points is 

preserved. The following hash function is used to map a point 

from n-dimensional space into a Hilbert number: 

          h = H(p),                                     (1) 

where p is the vector of a record in the database, h is the 

Hilbert number. For example, we have records v1, v2 and v3: 

v1: ANN 16 FEMALE 22 MAIN STREET 

v2: TOM 16 MALE 22 MAIN STREET 

v3: JOHN 30 N ELM ROAD 

We can get the vectors of v1, v2 and v3 as following by the 

multidimensional keyword space: 

v1: 1 0 1 0 1 0 0 0 1 0 1 0 1 0  

v2: 0 0 0 0 1 1 0 0 1 1 1 0 1 0 

v3: 0 1 0 1 0 0 1 1 0 0 0 0 0 1 

Then, the vectors of v1, v2 and v3 are input into function (1) to 

get their Hilbert numbers h1, h2 and h3. 

h1 = H(1 0 1 0 1 0 0 0 1 0 1 0 1 0) = 6630 

h2 = H(0 0 0 0 1 1 0 0 1 1 1 0 1 0) = 6688 

h3 = H(0 1 0 1 0 0 1 1 0 0 0 0 0 1) = 16243 

Thus, the ten-dimensional vectors are hashed to one-

dimensional integers. Because v1 and v2 have common 

keywords “16”, “22”, “MAIN” and “STREET”, they are 

similar records. v3 does not have any keyword contained in v1 

and v2, so v3 is not similar as v1 and v2. From the Hilbert 

numbers of v1, v2 and v3, we can notice that the difference of 

similar records v1 and v2’s Hilbert numbers is smaller than the 

difference of the Hilbert numbers of v1 and v3. It implies that 

v2 is closer than v1 than v3. Consequently, close points have 

close Hilbert numbers, i.e., close data records can be clustered 

together based on their Hilbert numbers. To look for close 

records, we only need to check the closeness of the Hilbert 

numbers of records.  

D. Hash-based Similar Records Clustering 

Because a massive database has huge amount of records, it 

will take a long time to search close records by checking the 

Hilbert number of records one by one. Rather than reactively 

searching, we develop database structure and searching 

algorithm to proactively handle close point queries. 

Specifically, we cluster the data records to different groups 

based on their closeness. That is, the records with the same 

Hilbert number are clustered into one group. We divide a 

single record database to a number of sub-databases, with 

each sub-database responsible for a record group with high 

similarity, i.e. with the same Hilbert number. A centralized 

location index is used to record the location of each sub-

database in the database and its responsible Hilbert number. 

Location index is the Hilbert number of a group of records in 

a sub-database. To insert a data point to the record clustering 

model, the Hilbert number of the point is computed at first, 

let’s say 5. Then the location index is referred to get the 

locations of the sub-database with Hilbert number equals to 5. 

If the location does not exist in the location indices, a new 

sub-database with the new index is generated, and the location 

of the sub-database will be added into the location indices. If 

the location index 5 is in the location record, the data point 

will be directly saved in the sub-database pointed by the 

location link. The sub-database is the linked list which all the 

records in the list have the same Hilbert number. To save the 

data point in the sub-database, it is only need to save the index 

of the data point at the end of the link list. Figure 5 shows the 

process of inserting a data point into the corresponding cluster. 

By using hash function (1), data point p gets its Hilbert 

number hp which is 5. There is “5” in the location indices, so 

data point p is saved to the sub-database linked with location 

index 5.  Proactive data structure and clustering algorithm 

significantly reduce the searching cost without the need to go 

through the whole database reactively. Hash table is used for 

record clustering to save sub-databases. The Hilbert number 

of a source record which is also called location index is the 

hash ID in the hash table. The sub-databases are structured as 

link lists which are linked with corresponding hash ID. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 The process of record clustering  

E. HCS Similarity Searching Process 

Hilbert curve may generate different Hilbert numbers for 

similar records. In order not to miss some records similar to 

the query, HCS uses multiple token lists to achieve high 

performance in similar information searching. HCS first 

generates several token lists; the keywords in the token lists 

Data point p: 

 <d1, d2, ..., dn> 

Location Index Database 

hp = H(d1, d2, ..., dn)  

    = 5 

 2 

 3 

 4 

 5 

 6 

 7 

Records with h = 2 

Records with h = 3 

Records with h = 4 

Records with h = 5 

Records with h = 6 

Records with h = 7 

Figure 5: The process of record clustering.

3.5 HCS Similarity Searching Process

With the previously introduced VSM-based record vector
generation method, the similarity between the vectors of
two records remains the same as the similarity of the two
records.

A token list has a very large number of unique key-
words, so the dimension of a record vector is large. How-
ever, each record contains only a small number of key-
words. Therefore, in the vector of a record, most posi-
tions are 0s. This leads to sparsity of the record vector. In
a high dimensional space, a Hilbert curve is sensitive to
the sparsity of the record vectors, and it may generate dif-
ferent Hilbert numbers for similar records. In order not to
miss some records similar to the query, HCS uses multiple
token lists to achieve high performance for similar infor-
mation searching. HCS first generates m token lists. All
unique keywords in the token lists are in random order.
According to different token lists, a series of vectors is
produced. Because there are m token lists, m vectors are
made for each source record. Figure 6 shows the Hilbert
numbers of a record according to different token lists. T1,
T2, T3 and T4 are the token lists with different keyword
orders. From Figure 6, we can see that different token
lists lead to different Hilbert numbers for a record. HCS
then uses the Hilbert hash function (1) to get m Hilbert
numbers for each vector. Based on each of the m Hilbert
numbers, the indices of source records are clustered and
saved in each of the m databases.

When querying a record, HCS computes Hilbert num-
bers under the different token lists for the query record.
Then, it checks each hash table accordingly, where the
Hilbert number of a record is the hash ID in the hash ta-
ble. With the hash ID, the sub-databases that have the

same Hilbert numbers as the query record are easily lo-
cated, and the records within these sub-databases are con-
sidered to be similar records of the query record.

are in random order. According to different token lists, a 

series of vectors is produced. Because there are m token lists, 

m vectors are made for each source record. Figure 6 shows the 

Hilbert number of a record according to different token lists. 

T1, T2, T3 and T4 are the token lists with different keyword 

order. 

 

 

 

 

 

 

 

 

 
Fig. 6 An example of Hilbert numbers from different token lists 

 

From Figure 6, we can see that different token lists lead to 

different Hilbert numbers for a record.  

HCS then uses Hilbert hash function h = H(p) to get the 

Hilbert number for each vector. Finally, we hash the source 

records into hash tables which are record clustering model 

according to their Hilbert numbers. Therefore, the source 

records are clustered and saved in m hash tables.  

When querying a record, HCS computes Hilbert numbers 

under the different token lists for the query record. Then, it 

checks the hash tables accordingly using the Hilbert numbers. 

The Hilbert number of a record is the hash ID in the hash table. 

With the hash ID, the sub-databases which have the same 

Hilbert numbers as the query record are easily located, and the 

records within these sub-databases are considering as similar 

records of the query record.  

Figure 7 presents the HCS similarity searching process. 

First, m token lists are generated. Second, according to 

different token lists, there are m groups of vectors of source 

records are produced. Third, using Hilbert curve hash function 

(1) hashes each vector. Therefore, there is a Hilbert number 

for each vector. Finally, the indices of the source records are 

saved in m hash tables. Each hash table stores the source 

records according to the Hilbert numbers which are computed 

from a token list. When searching the similar records of query 

record q, m vectors of query q is made base on the m token 

lists. It also uses hash function (1) to get m Hilbert numbers 

for query q. The hash tables are checked one by one. The hash 

table i is checked according to the Hilbert number which is 

computed from token list i, 1 ≤ i ≤ m. From Figure 7 we can 

see that query record q has the same hash ID as record v2 in 

hash table 1 and it has the same hash ID as record v3 in hash 

table m. Therefore, records v2, v3 and other records that have 

the same hash ID as query q in other hash tables are located as 

similar records of the query records. Algorithm 1 shows the 

pseudo-code for the similarity searching in HCS. 

A range also can be employed to enlarge the searching 

scope. With the range r, the records with Hilbert number hj 

that satisfies condition: 

| hj – hq | ≤ r , (1 ≤ j ≤ n) 

are also checked, where hq is the Hilbert number of a query 

record. Therefore, more similar records are located for the 

query record. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 The process of similarity searching in HCS 

 

Algorithm 1. Pseudo-code for HCS similarity searching. 

(1) Generate m token lists token_list[1] ... token_list[m] 

(2) for i = 1 to m do 

(3)     for each record source[j] do 

(4)         Make vector v[i][j] according to token_list[i] 

(5)         Get hashID[i][j] according to vector v[i][j] 

(6)         if hashID[i][j] does not exist in hash_table[i]  

 then 

(7)             Save hashID[i][j] in hash_table[i] 

(8)         end if            
(9)         Save the index j of record source[j] in the  

 corresponding place in hash_table[i] 

(10)     end for 
(11)     for each query record query[k] do 

(12)         Make vector q[i][k] according to token_list[i] 

(13)         Get hashID[i][k] according to vector q[i][k] 

(14)         if hashID[i][k] exists in hash_table[i] then 

(15)             Save all the indices linked with hashID[i][k]  

     into result[k][i] 

(16)         else 
(17)             Save null into result[k][i] 

(18)     end for 

(19) end for 
(20) unite all the results from the result[k][i] 

     

 

 

|CHUCK|COLIN|HAWK||46557|BLACK BIRD|CONCHITA|DA|D603|477|| 

 
2770334192623024163419040190196980740943051426135969 

1524841960784331481191632598300796000607976056005546 

2685324329266397095312716873086792384915450930623140 

9613705750926653054604464900042724468268391009831869 

T1 

 T2 

T3 

 
T4 

 

… 

    V1 

    V3 

V2, q 

 
    V4 

     … 

Hash table 1 

 

    V1 

    V2 

V3, q 

 
    V4 

     … 

    Hash table m 

 

... 

Vectors 1 

Vectors 2 

 

Vectors 

m 
 

… … 
 

Token 

List 1 

Token 

List 2 

 

Token 

List m 

 

… … 
 

Query q 

 

V1 

V2 

V3 

V4 

Source Records 

Hilbert 

Numbers 1 

 
Hilbert 

Numbers 2 

 

Hilbert 

Numbers m 
 

… … 
 

Figure 6: An example of Hilbert numbers from different token lists.
Figure 7 shows the process of record clustering and

similarity searching in HCS. First,m token lists are gener-
ated. Second, according to different token lists, m groups
of source record vectors are produced. Third, each vec-
tor is transformed into a Hilbert number using a Hilbert
curve hash Function (1). Finally, the indices of the source
records are saved in m hash tables. Each hash table stores
the indices of source records according to the Hilbert
numbers, which are computed from a token list. When
searching for records similar to a query record q, m vec-
tors of query q are produced based on the m token lists.
HCS then uses hash function (1) to getmHilbert numbers
for query q. The m hash tables are checked one by one.
The hash table i is checked according to the Hilbert num-
ber that is computed from token list i, 1 ≤ i ≤ m. From
Figure 7 we can see that query record q has the same hash
ID as record v2 in hash table 1 and it has the same hash ID
as record v3 in hash table m. Therefore, records v2, v3,
and other records that have the same hash ID as query q
in other hash tables are identified as similar records of q.
Algorithm 1 shows the pseudo-code for record clustering
and similarity searching in HCS.

A range can also be employed to enlarge the search
scope. With the range r, the records with Hilbert num-
ber hj that satisfy the condition |hj − hq| ≤ r are
also checked, where hq is the Hilbert number of a query
record. Therefore, more similar records are located for
the query record.

Let’s use an example to explain the similarity searching
process of HCS. There are four records in a database and
the query record q is:
v1: Ann Johnson 16 Female 248 Dickson Street
v2: Ann Johnson 20 Female 168 Garland
v3: Mike Smith 16 Male 1301 Hwy



v4: John White 24 Male Fayetteville 72701
q: John White 20 Female 168 Garland

are in random order. According to different token lists, a 

series of vectors is produced. Because there are m token lists, 

m vectors are made for each source record. Figure 6 shows the 

Hilbert number of a record according to different token lists. 

T1, T2, T3 and T4 are the token lists with different keyword 

order. 

 

 

 

 

 

 

 

 

 
Fig. 6 An example of Hilbert numbers from different token lists 

 

From Figure 6, we can see that different token lists lead to 

different Hilbert numbers for a record.  

HCS then uses Hilbert hash function h = H(p) to get the 

Hilbert number for each vector. Finally, we hash the source 

records into hash tables which are record clustering model 

according to their Hilbert numbers. Therefore, the source 

records are clustered and saved in m hash tables.  

When querying a record, HCS computes Hilbert numbers 

under the different token lists for the query record. Then, it 

checks the hash tables accordingly using the Hilbert numbers. 

The Hilbert number of a record is the hash ID in the hash table. 

With the hash ID, the sub-databases which have the same 

Hilbert numbers as the query record are easily located, and the 

records within these sub-databases are considering as similar 

records of the query record.  

Figure 7 presents the HCS similarity searching process. 

First, m token lists are generated. Second, according to 

different token lists, there are m groups of vectors of source 

records are produced. Third, using Hilbert curve hash function 

(1) hashes each vector. Therefore, there is a Hilbert number 

for each vector. Finally, the indices of the source records are 

saved in m hash tables. Each hash table stores the source 

records according to the Hilbert numbers which are computed 

from a token list. When searching the similar records of query 

record q, m vectors of query q is made base on the m token 

lists. It also uses hash function (1) to get m Hilbert numbers 

for query q. The hash tables are checked one by one. The hash 

table i is checked according to the Hilbert number which is 

computed from token list i, 1 ≤ i ≤ m. From Figure 7 we can 

see that query record q has the same hash ID as record v2 in 

hash table 1 and it has the same hash ID as record v3 in hash 

table m. Therefore, records v2, v3 and other records that have 

the same hash ID as query q in other hash tables are located as 

similar records of the query records. Algorithm 1 shows the 

pseudo-code for the similarity searching in HCS. 

A range also can be employed to enlarge the searching 

scope. With the range r, the records with Hilbert number hj 

that satisfies condition: 

| hj – hq | ≤ r , (1 ≤ j ≤ n) 

are also checked, where hq is the Hilbert number of a query 

record. Therefore, more similar records are located for the 

query record. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 The process of similarity searching in HCS 

 

Algorithm 1. Pseudo-code for HCS similarity searching. 

(1) Generate m token lists token_list[1] ... token_list[m] 

(2) for i = 1 to m do 

(3)     for each record source[j] do 

(4)         Make vector v[i][j] according to token_list[i] 

(5)         Get hashID[i][j] according to vector v[i][j] 

(6)         if hashID[i][j] does not exist in hash_table[i]  

 then 

(7)             Save hashID[i][j] in hash_table[i] 

(8)         end if            

(9)         Save the index j of record source[j] in the  

 corresponding place in hash_table[i] 

(10)     end for 

(11)     for each query record query[k] do 

(12)         Make vector q[i][k] according to token_list[i] 

(13)         Get hashID[i][k] according to vector q[i][k] 

(14)         if hashID[i][k] exists in hash_table[i] then 

(15)             Save all the indices linked with hashID[i][k]  

     into result[k][i] 

(16)         else 

(17)             Save null into result[k][i] 

(18)     end for 

(19) end for 

(20) unite all the results from the result[k][i] 

     

 

 

|CHUCK|COLIN|HAWK||46557|BLACK BIRD|CONCHITA|DA|D603|477|| 

 
2770334192623024163419040190196980740943051426135969 

1524841960784331481191632598300796000607976056005546 

2685324329266397095312716873086792384915450930623140 

9613705750926653054604464900042724468268391009831869 

T1 

 T2 

T3 

 
T4 

 

… 

    V1 

    V3 

V2, q 

 
    V4 

     … 

Hash table 1 

 

    V1 

    V2 

V3, q 

 
    V4 

     … 

    Hash table m 

 

... 

Vectors 1 

Vectors 2 

 

Vectors 

m 
 

… … 
 

Token 

List 1 

Token 

List 2 

 

Token 

List m 

 

… … 
 

Query q 

 

V1 

V2 

V3 

V4 

Source Records 

Hilbert 

Numbers 1 

 
Hilbert 

Numbers 2 

 

Hilbert 

Numbers m 
 

… … 
 

Figure 7: The process of record clustering and similarity searching in
HCS.

We generate two token lists for this database. All
the records are transformed into vectors and then Hilbert
numbers, which are shown in Figure 8.

Let’s use an example to explain the similarity searching 

process of HCS. There are four records in a database: 

v1: Ann Johnson 16 Female 248 Dickson Street 

v2: Ann Johnson 20 Female 168 Garland 

v3: Mike Smith 16 Male 1301 Hwy 

v4: John White 24 Male Fayetteville 72701 

And the query record q is: 

q: John White 20 Female 168 Garland 

 We generate two token lists for this database. All the 

records are transformed to vectors and then Hilbert numbers, 

which are shown in Table 1. 

TABLE I 

VECTORS AND HILBERT NUMBERS OF RECORDS 

Token List 1 

Record Vector Hilbert Number 

v1 10010010010100110000 35953 

v2 10010001010010001000 123662 

v3 01001010001001000100 247708 

v4 00100100101000000011 525880 

q 00100101010010001000 123704 

Token List 2 

Record Vector Hilbert Number 

v1 10001001101000100010 493281 

v2 01010001001100100000 30476 

v3 10000100000010011100 188478 

v4 00100010010001010001 998520 

q 01010000001101000001 1034252 

 

Because there are two token lists, two hash tables are used 

to save the records according to Hilbert numbers which are 

computed from different token lists. For the first token list, we 

hash the records to the hash table 1 and the hash table 2 saves 

the records according to the computation result from token list 

2. The two hash tables are presented in Figure 8. The hash ID 

is the location index of record clustering model and a sub-

database consist the indices of the records which are linked 

with a hash ID. When searching the similar records of the 

query record, the hash tables are checked one by one. We 

apply the range query in the searching, and range r is set to 

50000. Assume the Hilbert number of q is 123704 for hash 

table 1 and 1034252 for hash table 2. When searching hash 

table 1, HCS checks the Hilbert numbers of source records hj 

(1 ≤ j ≤ 4), if they satisfy the condition | hj – 123704 | ≤ 5000, 

the source records are considered as similar records of query q. 

Therefore, v2 is retrieved as similar record of query q. When 

searching hash table 2, record v4 satisfies the condition | hj – 

1034252 | ≤ 5000. Therefore, v4 is the similar record of query 

q. Conclude the query results from hash table 1 and hash table 

2, v2 and v4 are similar records of query q. 

 

Hash Table 1 

Hash ID Record 

35953 v1 

123662 v2 

247708 v3 

525880 v4 

Hash Table 2 

Hash ID Record 

30476 v2 

188478 v3 

493281 v1 

998520 v4 

 
Fig. 8 Hash tables 

F. Analysis of HCS 

In this section, we analyse HCS in terms of the similarity 

between the vectors of two records, the sparsity of the record 

vector and the number of token lists needed for locating 

certain percent of similar records. 

Whether the vector presentation method and Hilbert curve 

can corporate to achieve similarity searching is determined by 

whether the vector presentation method is locality preserving. 

That is, whether the similarity of two records remains the 

same as the similarity of the vectors of the two records. Based 

on the vector presentation method, we proved that the vector 

presentation can keep the similarity of records, as shown in 

Lemma 1. 

 

Lemma 1 The similarity between the vectors of two records 

remains the same as the similarity of the two records.  

 

Proof Because the keywords in the token list are unique, each 

component in a vector takes charge of the presentation of a 

keyword. Assume there are three records v1, v2 and v3. They 

all contain the same number of keywords. There are four 

different keywords between v1 and v2, and there are eight 

different keywords between v1 and v3. Therefore, the 

similarity between v1 and v2 is greater than the similarity 

between v1 and v3. For example, 

v1: Ann Johnson 16 Female 20 Main Street 

v2: Ann White 13 Female 20 Main Street 

v3: Tom Smith 22 Male 20 Main Street 

There are four different keywords between v1 and v2: 

“Johnson”, “White”, “16” and “13”. There are eight different 

keywords between v1 and v3: “Ann”, “Tom”, “Johnson”, 

“Smith”, “16”, “22”, Female” and “Male”. There are five 

common keywords between v1 and v2, and three common 

keywords between v1 and v3. Therefore, v1 and v2 have more 

common keywords than v1 and v3. v1 is more similar with v2 

than v3. Now, we make vectors to represent v1, v2 and v3. 

Using Euclidean distance to measure the distances from v2 and 

v3 to v1, respectively, the distances can explain the closeness 

of v2 and v3 with v1 in high dimensional space. When the 

keyword occurs in a record, the corresponding position in the 

vector is marked “1”, otherwise, it is marked as “0”. The 

distance between v1 and v2 is: (1 + 1 + 1 + 1)
1/2

 = 2; the 

distance between v1 and v3 is: (1 + 1 + 1 + 1 + 1 + 1+ 1+ 1)
1/2

 

= 8
1/2

. Therefore, compare with v3, v2 is closer to v1 in high 

dimensional space. The vector presentation is locality 

preserving. 

 

A token list has a very large number of unique keywords. 

Therefore, the dimension of a record vector is large. However, 

q 

q 

Figure 8: Vectors and Hilbert numbers of records.

Because there are two token lists, two hash tables are
used to save the record indices according to Hilbert num-
bers that are computed from different token lists. Hash
table 1 saves the record indices according to the compu-
tation results from token list 1, and hash table 2 saves the
record indices according to the computation result from
token list 2. The two hash tables are presented in Figure 9.
A record’s hash ID is its location index in a sub-database
that consists of the record indices linked with the hash

Algorithm 1 Pseudo-code for HCS record clustering and
similarity searching.
1: Generate m token lists token list[1]...token list[m]
2: for i=1 to m do
3: for each record source[j] do
4: Generate vector v[i][j] according to token list[i]
5: Calculate hashID[i][j] based on vector v[i][j]
6: if hashID[i][j] does not exist in hash table[i] then
7: Save hashID[i][j] in hash table[i]
8: end if
9: Save the index j of record source[j] in the corresponding place

in hash table[i]
10: end for
11: for each query record query[k] do
12: Generate vector q[i][k] according to token list[i]
13: Calculate hashID[i][k] based on vector q[i][k]
14: if hashID[i][k] exists in hash table[i] then
15: Save all the indices linked with hashID[i][k] into result[k][i]
16: else
17: Save null into result[k][i]
18: end if
19: end for
20: end for
21: Unite all the results from the result[k][i]

ID. When searching for records similar to a query record,
the hash tables are checked one by one. We apply the
range query in the search, and range r is set to 50000.
Assume the Hilbert number of q is 123704 for hash ta-
ble 1 and 1034252 for hash table 2. When searching
hash table 1, HCS checks the Hilbert numbers of source
records hj (1 ≤ j ≤ 4). If they satisfy the condition
|hj − 123704| ≤ 5000, the source records are considered
to be similar to query q. Therefore, v2 is retrieved as a
similar record of query q. When searching hash table 2,
record v4 satisfies the condition |hj − 1034252| ≤ 5000.
Therefore, v4 is similar to query q. HCS combines the
query results from hash table 1 and hash table 2, and de-
termines that v2 and v4 are similar records of query q.
Then, HCS calculates the Euclidean distance to measure
the vector distances from located records and the query,
and identifies the records whose distances are less than a
predefined threshold as the final similar records.

Analysis of HCS. Multiple token lists are used in HCS
in order to improve the search performance. The more to-
ken lists, the fewer similar records that will be missed.
One question that arises is what percentage of similar
records can be located with a certain number of token
lists? We assume p is the percentage of similar records



Let’s use an example to explain the similarity searching 

process of HCS. There are four records in a database: 

v1: Ann Johnson 16 Female 248 Dickson Street 

v2: Ann Johnson 20 Female 168 Garland 

v3: Mike Smith 16 Male 1301 Hwy 

v4: John White 24 Male Fayetteville 72701 

And the query record q is: 

q: John White 20 Female 168 Garland 

 We generate two token lists for this database. All the 

records are transformed to vectors and then Hilbert numbers, 

which are shown in Table 1. 

TABLE I 

VECTORS AND HILBERT NUMBERS OF RECORDS 

Token List 1 

Record Vector Hilbert Number 

v1 10010010010100110000 35953 

v2 10010001010010001000 123662 

v3 01001010001001000100 247708 

v4 00100100101000000011 525880 

q 00100101010010001000 123704 

Token List 2 

Record Vector Hilbert Number 

v1 10001001101000100010 493281 

v2 01010001001100100000 30476 

v3 10000100000010011100 188478 

v4 00100010010001010001 998520 

q 01010000001101000001 1034252 

 

Because there are two token lists, two hash tables are used 

to save the records according to Hilbert numbers which are 

computed from different token lists. For the first token list, we 

hash the records to the hash table 1 and the hash table 2 saves 

the records according to the computation result from token list 

2. The two hash tables are presented in Figure 8. The hash ID 

is the location index of record clustering model and a sub-

database consist the indices of the records which are linked 

with a hash ID. When searching the similar records of the 

query record, the hash tables are checked one by one. We 

apply the range query in the searching, and range r is set to 

50000. Assume the Hilbert number of q is 123704 for hash 

table 1 and 1034252 for hash table 2. When searching hash 

table 1, HCS checks the Hilbert numbers of source records hj 

(1 ≤ j ≤ 4), if they satisfy the condition | hj – 123704 | ≤ 5000, 

the source records are considered as similar records of query q. 

Therefore, v2 is retrieved as similar record of query q. When 

searching hash table 2, record v4 satisfies the condition | hj – 

1034252 | ≤ 5000. Therefore, v4 is the similar record of query 

q. Conclude the query results from hash table 1 and hash table 

2, v2 and v4 are similar records of query q. 

 

 

 

 

 

 

 

Hash Table 1 

Hash ID Record 

35953 v1 

123662 v2 

247708 v3 

525880 v4 

Hash Table 2 

Hash ID Record 

30476 v2 

188478 v3 

493281 v1 

998520 v4 

 
Fig. 8 Hash tables 

F. Analysis of HCS 

In this section, we analyse HCS in terms of the similarity 

between the vectors of two records, the sparsity of the record 

vector and the number of token lists needed for locating 

certain percent of similar records. 

Whether the vector presentation method and Hilbert curve 

can corporate to achieve similarity searching is determined by 

whether the vector presentation method is locality preserving. 

That is, whether the similarity of two records remains the 

same as the similarity of the vectors of the two records. Based 

on the vector presentation method, we proved that the vector 

presentation can keep the similarity of records, as shown in 

Lemma 1. 

 

Lemma 1 The similarity between the vectors of two records 

remains the same as the similarity of the two records.  

 

Proof Because the keywords in the token list are unique, each 

component in a vector takes charge of the presentation of a 

keyword. Assume there are three records v1, v2 and v3. They 

all contain the same number of keywords. There are four 

different keywords between v1 and v2, and there are eight 

different keywords between v1 and v3. Therefore, the 

similarity between v1 and v2 is greater than the similarity 

between v1 and v3. For example, 

v1: Ann Johnson 16 Female 20 Main Street 

v2: Ann White 13 Female 20 Main Street 

v3: Tom Smith 22 Male 20 Main Street 

There are four different keywords between v1 and v2: 

“Johnson”, “White”, “16” and “13”. There are eight different 

keywords between v1 and v3: “Ann”, “Tom”, “Johnson”, 

“Smith”, “16”, “22”, Female” and “Male”. There are five 

common keywords between v1 and v2, and three common 

keywords between v1 and v3. Therefore, v1 and v2 have more 

common keywords than v1 and v3. v1 is more similar with v2 

than v3. Now, we make vectors to represent v1, v2 and v3. 

Using Euclidean distance to measure the distances from v2 and 

v3 to v1, respectively, the distances can explain the closeness 

of v2 and v3 with v1 in high dimensional space. When the 

keyword occurs in a record, the corresponding position in the 

vector is marked “1”, otherwise, it is marked as “0”. The 

distance between v1 and v2 is: (1 + 1 + 1 + 1)
1/2

 = 2; the 

q 

q 

Figure 9: Hash tables.

located by using one token list; then, q = 1− p is the per-
centage of similar records not located by using one token
list. Let F (m) denote the percentage of similar records
that can be located using m token lists. Then, we can get
F (n) = 1− qm. Since q = 1− p,

F (m) = 1− (1− p)m. (2)

Function (2) will help us to find the percentage of simi-
lar records located by different number of token lists. For
example, if p equals 0.2 and m equals 5, F (m) equals
0.67232. This means HCS can locate 20% of similar
records using one token list and can locate approximately
67.23% of similar records using 5 token lists.

4 Performance Evaluation
We implemented HCS and conducted the comparison be-
tween HCS schemes with different numbers of token lists
(HCS-k, where k represents the number of token lists)
and the linear search method. We used two data sets in
the experiments. Dataset 1 has 10,000 source records
and 33,601 unique keywords (i.e., the dimension of the
dataset is 33,601). We randomly chose 97 records as
query records. Dataset 2 has 34,513 source records and
62,223 unique keywords. We randomly chose 10,000
queries as query records. Unless otherwise specified, we
used dataset 1 in the test.

Because of the high dimensionality of the space, any
Hilbert numbers are huge real numbers, and the differ-
ence of the Hilbert numbers of close records is a huge
number. As an optimization, instead of using the en-
tire Hilbert number, we only use the first L digits as

the Hilbert number of the record. For example, two
records’ whole Hilbert numbers are 2348910847362 and
2348994736208, so the first 5 digits, 23489, are used
as the new Hilbert number. Two records with the same
Hilbert number are considered to be similar. In the ex-
periments, we used the first 53 digits of the entire Hilbert
number as the Hilbert number of the record, and we re-
gard a record with at least one keyword in common with
the query as a similar record, unless otherwise specified.

The metrics we tested are:

• Total query time. This shows the efficiency of a sim-
ilar information searching method in terms of search
latency.

• Memory consumption. This shows the efficiency of
a similar information searching method in terms of
memory required.

• Effectiveness. This represents the number of true
positives and false positives returned in the located
similar records. A true positive is a located record
which is actually similar to the query record. A false
positive is a located record which is not similar to the
query record. High effectiveness means that a simi-
lar information searching method can locate similar
information more accurately.

• The scope of retrieved similar records. This shows
whether a similar information searching method can
locate similar records with different similarities to
the query record.

• The number of true positives with range R. This
shows the number of true positives located with dif-
ferent R ranges.

Linear search kd tree LSH HCS
2000000(s

)

Linear search kd-tree LSH HCS

1500000

y 
tim

e 

500000

1000000

qu
er

y

0

500000

To
ta

l 

1 1000 5000 10000

The number of query records

Figure 10: Total query time of different similar information search
schemes.



70
80

s
)

50
60

ti
m

e
 (

s

20
30
40

u
e
ry

 t

0
10
20

T
o
ta

l 
q

0
53 106 212 424 848

T

Number of digits in Hilbert numbersg

Figure 11: The total query time
versus Hilbert number length.

14%
16%
18%

m
ila

r 
s
 

10%
12%
14%

o
f 

s
im

e
c
o

rd

6%
8%
10%

n
ta

g
e
 

rn
e
d
 r

e
0%
2%
4%

P
e

rc
e
n

re
tu

r
0%

53 106 212 424 848

P

Number of digits in Hilbert numbersg

Figure 12: Percentage of simi-
lar records versus Hilbert number
length.

4.1 Comparison of Query Times of Differ-
ent Schemes

Figure 10 shows the total query time of the linear search
method, kd-tree search method, LSH search method and
HCS. We see that the query time follows Linear>kd-
tree>LSH>HCS. The linear search method needs to
compare every record with the query, leading to a much
higher query latency. The kd-tree search method and LSH
search method reduce the query latency using the kd-tree
structure and the LSH hash function family. HCS only
needs to hash the query once and then checks the mapped
cluster to find similar records, leading to the least query
latency.

4.2 Effect of the Number of Digits in
Hilbert Numbers

For this experiment, we used dataset 2. Figure 11 and
Figure 12 show the total query time and the percentage
of similar returned records versus the number of digits of
Hilbert numbers, respectively. From Figure 11, we see
that shorter Hilbert number lengths leads to higher to-
tal query times and vice versa. This is because shorter
Hilbert number lengths cause more records to have the
same Hilbert number after the mod operation, thus requir-
ing more filtering time to derive actual similar records.
From Figure 12, we see that the shorter lengths of Hilbert
numbers leads to higher percentages of similar returned
records and vice versa. Since shorter lengths cause more
records have the same Hilbert number, a greater number
of similar records are returned.

Figure 13 shows the percentages of returned simi-
lar records with different similarities to the query using

80%la
r 

d

53 106 212 424 848

50%
60%
70%
80%

o
f 
si
m
il

tu
rn
e
d

20%
30%
40%
50%

n
ta
g
e
 o

rd
s 
re
t

0%
10%
20%

(0% (10% (20% (30% (40% (50% (60% (70% (80% (90%P
e
rc
e
n

re
co

(0%, 
10%]

(10%, 
20%]

(20%, 
30%]

(30%, 
40%]

(40%, 
50%]

(50%, 
60%]

(60%, 
70%]

(70%, 
80%]

(80%, 
90%]

(90%, 
100%]

P

Similarity

Figure 13: The percentage of re-
turned similar records with differ-
ent similarities for Dataset 2.

How much percentage of similar records 
are returned in different similarity?

0%

20%

40%

60%

80%

100%

120%

0% -
10%

10% -
20%

20% -
30%

30% -
40%

40% -
50%

50% -
60%

60% -
70%

70% -
80%

80% -
90%

90% -
100%P

e
rc

e
n

ta
g

e
 o

f 
s
im

ila
r 

re
c
o

rd
s
 

re
tu

rn
e
d

Similarity

53 106 212 424 848

Figure 14: The percentage of re-
turned similar records with differ-
ent similarities for Dataset 1.

Table 1: Accuracy.

Similarity 53 digits 106 digits 212 digits 424 digits 848 digits
1.0 Y Y Y Y Y
0.9 Y Y Y Y Y
0.8 Y Y Y Y Y
0.7 Y Y N N N
0.6 Y N N N N
0.5 Y N N N N
0.4 Y N N N N
0.3 N N N N N
0.2 N N N N N
0.1 N N N N N

Dataset 2. We see that shorter Hilbert numbers have
higher probabilities of locating similar records than longer
Hilbert numbers due to the reasons explained previously.
Also, records with higher similarity to the query are more
easily found regardless of the Hilbert number length. Fig-
ure 14 shows the percentages of returned similar records
with different similarities to the query using Dataset 1.
We have the same observations as in Figure 13.

We define accuracy rate as the total number of located
similar records divided by the total number of existing
records. Table 1 shows the accuracy rate for different
Hilbert number lengths. We see that when more digits
are used to represent the Hilbert number of records, fewer
similar records are found and the records with higher sim-
ilarity can be easily found. This is due to the same reasons
as in Figure 12. Efficiency Rate

85%

86%

87%

88%

89%

90%

91%

92%

93%

94%

95%

96%

53 106 212 424 848

E
ffe

ct
iv

en
es

s 
ra

te

Number of digits of Hilbert numbers

Figure 15: Effectiveness rate with different Hilbert number lengths used.

We define the effectiveness rate as the percentage of



120%ar
  Dataset 1 Dataset 2

80%

100%

120%

f s
im

ila
ur
ne

d

40%

60%

80%

ta
ge
 o
f

rd
s 
re
t

0%

20%

40%

Pe
rc
en
t

re
co
r

0%
1 10 20 30 40 50 60 70 80 90 100

P

Number of token lists
Figure 16: The percentage of re-
turned similar records.

100000

1 token list 2 token lists 3 token lists 4 token lists

10000

co
rd
s

100

1000

m
 o
f 
re
c

1

10

N
u
m

1

0% ‐
10%

10% ‐
20%

20% ‐
30%

30% ‐
40%

40% ‐
50%

50% ‐
60%

60% ‐
70%

70% ‐
80%

80% ‐
90%

90% ‐
100%

Figure 17: Number of similar
records returned in Dataset 1.

15625
1 token list 2 token lists 3 token lists 4 token lists

625

3125

o
rd
s

25

125

o
f 
re
c

1

5

25

N
u
m
 

1
0% ‐
10%

10% ‐
20%

20% ‐
30%

30% ‐
40%

40% ‐
50%

50% ‐
60%

60% ‐
70%

70% ‐
80%

80% ‐
90%

90% ‐
100%

Figure 18: Number of similar
records returned in Dataset 2.

the located similar records in the returned records. Fig-
ure 15 shows the effectiveness rate for different lengths
of Hilbert numbers. We see that longer Hilbert number
lengths lead to lower effectiveness rates. This is because
a longer length produces a finer granularity of data, thus
generating fewer returned similar records.

4.3 Effect of the Number of Token Lists
Figure 16 plots the percentage of returned similar records
using Dataset 1 and Dataset 2. The figure shows that
more token lists help to find more similar records. When
the number of token lists reaches a certain value, a fur-
ther increase in the token lists leads to a slight increase
in the percentage of similar returned records. Dataset 1
needs fewer token lists to locate all similar records due to
the data set’s smaller dimension. This experimental result
shows that the number of token lists needed to locate al-
most all similar records varies based on the dimensions of
data sets.

Figure 17 and Figure 18 show the numbers of simi-
lar records returned in Dataset 1 and Dataset 2, respec-
tively. Figure 19 shows the percentage of returned sim-
ilar records with different similarities. We see that the
records with high similarity with the query can be found
regardless of the number of token lists. However, more

How much percentage similar records 
are returned?

0%

20%

40%

60%

80%

100%

120%

0% -
10%

10% -
20%

20% -
30%

30% -
40%

40% -
50%

50% -
60%

60% -
70%

70% -
80%

80% -
90%

90% -
100%

P
er

ce
nt

ag
e 

of
 s

im
ila

r 
re

co
rd

s

1 token list 2 token lists 3 token lists 4 token lists 8 token lists 12 token lists

Similarity

Figure 19: The percentage of returned similar records with different sim-
ilarity.

token lists are needed to find the records less similar to
the query. Also, we can observe that by adding more to-
ken lists, the number of similar records returned becomes
greater in each similarity area. One token list can almost
locate records with more than 50% similarity; 12 token
lists can locate records with more than 40% similarity.
With more token lists, the records with lower similarities
to the query can be more easily found.

Figure 20 shows the total query latencies of different
methods. In the figure, HCS-m means HCS with m token
lists. The query speed of HCS is much faster than linear
search. HCS clusters the similar records first, enabling
the query to be directly be mapped to specific clusters to
instead of searching the entire database. In contrast, the
liner search method searches the entire database and com-
pares each source record to the query record in order to
find the similar records, leading to a much higher query-
ing latency. We also observe that HCS using more to-
ken lists produces a higher query latency. This is because
when using more token lists in HCS, the time for query-
ing similar records increases. The increase in the num-
ber of token lists leads to the increase in the number of
hash tables for storing the clustered source record indices.
Then, more hash tables should be checked to query the
similar records. From Figure 20, we also see that when
the number of token lists increases by one, the query time
increases about 0.03 seconds. Therefore, approximately
0.03 seconds are needed for searching one hash table.

Figure 21 shows the total query time versus the num-
ber of token lists in HCS. It illustrates that the total query
time increases almost linearly as the number of token lists
increases. This is because adding one more token list
means one more token list needs to be checked during
data search.



100

1000

10000

100000

T
o

ta
l 
q

u
e
r
y
 t

im
e
 (

s
e
c
o

n
d

)

0.01

0.1

1

10

HCS-1 HCS-2 HCS-3 HCS-4 Linear 

search

T
o

ta
l 
q

u
e
r
y
 t

im
e
 (

s
e
c
o

n
d

)

Figure 20: Latency of HCS and
the linear search method.

How fast the query is?

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 8 12

T
o
ta

l 
q
u
e
ry

 t
im

e
 (

s
)

The number of token lists
Figure 21: Latency versus the
number of tokens in HCS.

HCS needs memory for saving token lists, the vectors
of records, and the final hash tables. Figure 22 presents
the memory consumption of different parts of HCS. The
memory for storing vectors can be reused to save vectors
for different token lists after hashing the source records
into a hash table. For instance, HCS requires memory
for saving the vectors that are produced according to a to-
ken list. After hashing the records to a hash table, HCS
continues to generate another token list and produces an-
other vector list. Because the vectors of the first token
list will not be used subsequently, the memory for stor-
ing the vectors of the previous token list can be used for
the new vectors. Therefore, the memory consumption re-
quired for storing vectors does not change in the differ-
ent HCS methods and increases as the number of key-
words increases. From Figure 22, we can observe that the
memory consumed for saving token lists and final hash
tables increases when more token lists are used. When
one more token list is used, one more final hash table is
required to save the source records. Therefore, the mem-
ory required for saving the token list and final hash tables
increases. When the number of token lists increases by
one, 1,400,000 bytes are required for storing the token list
and 400,000 additional bytes are used for storing the final
hash tables. Figure 23 shows the memory consumption of
HCS with different numbers of token lists. We see that the
memory consumption increases as the number of token
lists increases since more hash tables need more memory
space. HCS with 12 token lists still consumes much less
memory than LSH.

Figure 24 presents the total number of located records
including true positives and false positives in different
methods. When HCS employs more token lists, it can
locate more similar records. Using one token list, HCS
can locate about 5% of the actual similar records; using

Token list (4 token list)

Final hash tables (4 token lists)

Final hash tables (3 token lists)

Final hash tables (2 token lists)

Final hash tables (1 token list)

0 2000000 4000000 6000000

Vectors

Token list (1 token list)

Token list (2 token list)

Token list (3 token list)

Memory(bytes)

Figure 22: Memory consumption.

How much memory is required?

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

Hilbert (1
token list)

Hilbert(2
token lists)

Hilbert (3
token lists)

Hilbert (4
token lists)

Hilbert (8
token lists)

Hilbert (12
token lists)

LSH

M
e
m

o
ry

 (
B

y
te

)

Figure 23: Memory consumption.

twelve token lists, HCS can locate about 40% of the sim-
ilar records. However, as more similar records were lo-
cated, more false positive were concurrently generated.
The percentage of false positives in the located records is
much lower than the percentage of true positives. There-
fore, increasing the number of token lists can help to find
more similar records, with the side-effect of returning
more false positives. We also see that HCS finds fewer
similar records than the linear search method. More to-
ken lists enable HCS to find more similar records.

60000

70000

80000

90000

100000

N
u

m
b

e
r
 o

f 
r
e

tu
r
n

e
d

 r
e

c
o

r
d

s

Number of true positive Number of false positive

0

10000

20000

30000

40000

50000

HCS-1 HCS-2 HCS-3 HCS-4 HCS-8 HCS-12 Linear 
search

N
u

m
b

e
r
 o

f 
r
e

tu
r
n

e
d

 r
e

c
o

r
d

s

Figure 24: The total number of located records for HCS and linear
search.

In order to see the degree of similarity located records
have to the query record in HCS, we conducted experi-
ments on HCS with 1, 2, 3, and 4 token lists. We randomly
chose one record, and changed one token to make a new
record for the query each time with the aim of determining
if HCS can still find the original record with the decreas-
ing degree of similarity to the query record. Table 1 shows
whether the methods can find the original record when the
record has different similarities to the query record. In the
table, “Y” and “N” mean that the method can and cannot
find the original record, respectively. Given two records
A and B, their similarity is calculated with the following



Table 2: The scope of retrieved similar record.

Similarity HCS-1 HCS-2 HCS-3 HCS-4
1.0 Y Y Y Y
0.9 Y Y Y Y
0.8 N Y Y Y
0.7 N Y Y Y
0.6 N Y Y Y
0.5 N N Y Y
0.4 N N Y Y
0.3 N N N N
0.2 N N N N
0.1 N N N N

function:

Similarity =
|A ∩B|
|A|

. (3)

Table 2 illustrates that HCS can locate the records with
low similarity when more token lists are used. HCS with
3 and 4 token lists can locate the records whose similar-
ities to the query record are greater than 0.3. HCS with
more token lists is able to locate records with low simi-
larity because it generates more Hilbert numbers for each
record has a large scope of possible Hilbert numbers that
can be checked. The results imply that records having
higher similarities to the query record have a higher prob-
ability of being located than records having lower simi-
larities. Multiple token lists should be used to locate the
similar records with low similarity.

4.4 The Number of Token Lists Needed for
an Expected Percentage of True Posi-
tives

Since increasing the number of token lists can locate more
similar records, we want to know how many token lists are
needed for locating all the similar records. We conducted
another simulation with the help of Function (2). In Func-
tion (2), we set the value of p to the percentage of similar
records located by using one token list. As the value of m
increases, a higher percentage of similar records will be
located. Figure 25 shows the expected percentage of true
positives and the percentage of true positives versus the
different number of token lists. The number that is calcu-
lated by Function (2) is named “Expected percentage of
true positives”; “Percentage of true positives” denotes the
actual experimental result. The figure indicates the num-
ber of token lists needed for locating a certain percentage
of similar records. Figure 26 plots the number of true pos-
itives versus the number of token lists. From the figures,
we notice that the percentage of true positives is consis-

How many token lists do we need?

4.80%
13.80%

17.86%
21.80%

35.77%

47.24%

64.41%

78.24%

86.70% 91.86%95.02% 96.96%98.14% 98.86%

99.30%

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 8 12 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f 
tr

u
e
 

p
o
s
it
iv

e

Num of token lists

Expect percentage of true positive Percentage of true positive

Figure 25: The number of located
similar records for different val-
ues of R.

How many token lists do we need?

5874 7596
14002

20564

30598

40495

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 8 12 20 30 40 50 60 70 80 90 100

N
u
m

 o
f 

tr
u
e
 p

o
s
it
iv

e

Num of token lists

Num of true positive Expect num of true positive

Figure 26: The number of to-
ken lists needed to locate a cer-
tain number of true positives in
our dataset.

tent with the expected percentage of true positives. We
also notice that with one token list, HCS can locate about
5% of the similar records, and 100 token lists are needed
for locating more than 99% of the similar records. Con-
sidering the results of search latency and memory con-
sumption described above, we can determine that the total
query time of HCS with 100 token lists is about 3 seconds,
which is still much faster than the linear search method.
The memory needed to store the 100 final hash tables is
40,000,000 bytes.

4.5 The Effect of Searching Scope R
In addition to checking the hash tables at the exact lo-
cation index of a query record, near neighbours in the
hash tables are also checked in our experiment. For exam-
ple, if a query record’s hash index is 10 and the range R
for checking near neighbours is 2, then we collect all the
records saved in locations 8, 9, 10, 11, and 12. This near
neighbour query increases the searching range, which can
locate the points that are not very close to the query point.
Figure 27 shows the number of located similar records
with different values of R. Figure 28 shows the results
without the linear search method. From the figures, we
can see that the number of located similar records in-
creases as the value of R increases. A larger R can help
to locate more similar records. Increasing the value of
R means more grids can be checked in high dimensional
space, and more points fall in the checking area. This
increases the probability of finding more similar records,
because similar records are close to each other and the
differences between their Hilbert numbers are small.

Figure 29 shows the percentage of returned similar
records versus the searching scope R. We see that as the



50000

60000

70000

80000

90000

100000

N
u

m
b

e
r
 o

f 
tu

r
e
 p

o
s

it
iv

e

HCS-1 HCS-2 HCS-3 HCS-4 Linear search

0

10000

20000

30000

40000

50000

2 4 6 8 10

N
u

m
b

e
r
 o

f 
tu

r
e
 p

o
s

it
iv

e

The value of R

Figure 27: The number of token
lists needed for locating a certain
percentage of true positives.

0

5000

10000

15000

20000

25000

2 4 6 8 10

N
u
m

 o
f 

re
c
o
rd

s

The value of R

1 token list 2 token lists 3 token lists 4 token lists

Figure 28: The number of located
similar records for different val-
ues of R.

120%
Percentage of similar records

Percentage of false positives

80%

100%

ge

Percentage of false positives

40%

60%

80%

ce
nt
ag

20%

40%

Pe
rc

0%
2 4 6 8 10

The value of R

Figure 29: The percentage of returned similar records versus R.

value ofR increases, the percentage of similar records de-
creases, while the percentage of false positives increases.
LargerR values generate more record candidates to check
for similar records to the query. Thus, more false posi-
tives are introduced, and hence the percentage of true pos-
itives is reduced. The result implies that an appropriate R
should be chosen to increase the true positives while min-
imizing the false positives.

5 Conclusions
This paper proposes a Hilbert curve based similarity
searching scheme (HCS). HCS utilizes the Hilbert curve’s
locality preserving property to effectively group similar
records. HCS treats the records in databases as the points
in a high-dimensional space. It uses a vector to present
each point. A Hilbert curve is used to project points from
a multidimensional space to an one-dimensional space.
Therefore, the multidimensional vectors of points can be
represented as a single integer number called a Hilbert
number. Hilbert numbers can reflect the closeness of two
records. Finally, the records are saved in a hash table
according to their Hilbert numbers. This process clas-
sifies the records into a cluster based on their closeness
(i.e., similarity). A query record is also assigned a Hilbert

number that can map the query to a cluster. Comparison
is conducted between the query record and the records in
the cluster, and the similar records are returned. We fur-
ther propose HCS with multiple multidimensional spaces
(i.e., token lists) to improve the similarity searching per-
formance. Simulation results show the superior perfor-
mance of HCS compared to the linear search algorithm
in terms of query latency. HCS dramatically reduces the
query time and exhibits high effectiveness in desired in-
formation retrieval. In our future work, we will investi-
gate how to increase true positives and reduce false pos-
itives of HCS in the similarity searching in a massive
database.

Acknowledgements
This research was supported in part by U.S. NSF
grants OCI-1064230, CNS-1049947, CNS-1156875,
CNS-0917056 and CNS-1057530, CNS-1025652, CNS-
0938189, CSR-2008826, CSR-2008827, Microsoft Re-
search Faculty Fellowship 8300751, and Oak Ridge
Award 4000111689.

References
[1] D. J. Abel and D. M. Mark. A comparative analysis of

some two-dimensional orderings. International Journal of
Geographical Information Science, 4(1), January 1990.

[2] C. C. Aggarwal. Hierarchical subspace sampling: A uni-
fied framework for high dimensional data reduction, selec-
tivity estimation and nearest neighbor search. In Proceed-
ings of ACM SIGMOD Conference, 2002.

[3] A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions. Commun. ACM, 51(1):117–122, 2008.

[4] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18(9), 1975.

[5] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is ”nearest neighbor” meaningful? In Proceedings
of the 7th International Conference on Database Theory
(ICDT), 1999.

[6] W. A. Burkhard and R. M. Keller. Some approaches to
best-match file searching. Commun. ACM, 16(4), 1973.

[7] J. Castro, M. Georgiopoulos, R. Demara, , and A. Gonza-
lez. Data-partitioning using the hilbert space filling curves:



Effect on the speed of convergence of fuzzy artmap for
large database problems. Neural Networks, 18(7), Septem-
ber 2005.

[8] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Mar-
roquı́n. Searching in metric spaces. ACM Comput. Surv.,
33(3), 2001.

[9] P. Ciaccia, M. Patella, and P. Zezula. M-trees: an efficient
access method for similarity search in metric space. In
Proceedings of the 23rd International Conference on Very
Large Data Bases, August 26-29, 1997.

[10] T. Darrell, P. Indyk, and G. Shakhnarovich (eds.). Nearest
Neighbor Methods in Learning and Vision: Theory and
Practice. MIT Press, Erewhon, NC, 2006.

[11] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In Proceedings of the twentieth annual sympo-
sium on Computational geometry (SCG), 2004.

[12] C. Digout. Metric techniques for high-dimensional index-
ing. Technical Report TR 04-19, University of Alberta,
Canada, September 2004.

[13] C. Digout and M. A. Nascimento. High-dimensional simi-
larity searches using a metric pseudo-grid. In Proceedings
of the 21st International Conference on Data Engineering
Workshops (ICDEW), 2005.

[14] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity
search and classification via rank aggregation. In Proceed-
ings of the 2003 ACM SIGMOD international conference
on Management of data (SIGMOD), 2003.

[15] C. Faloutsos, R. Barber, M. Flickner, J. Hafner,
W. Niblack, D. Petkovic, , and W. Equitz. Efficient and
effective querying by image content. Intelligent Informa-
tion Systems, 3(3-4):231–262, July 1994.

[16] A. Fu, P. M. S. Chan, Y. L. Cheung, and Y. S. Moon. Dy-
namic vp-tree indexing for n-nearest neighbor search given
pair-wise distances. VLDB, 9(2), 2000.

[17] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. In Proceedings of the
25th International Conference on Very Large Data Bases
(VLDB), 1999.

[18] D. Grossman and O. Frieder. Information Retrieval: Algo-
rithm and Heuristics. Springer, Netherlands, 2004.

[19] A. Guttman. R-trees: A dynamic index structure for spa-
tial searching. In Proc. of International Conference On
Management Of Data, pages 47–57. ACM, 1984.

[20] J. J. Barthholdi III and L. K. Platzman. Heuristics based
on spacefilling curves for combinatorial problems in eu-
clidean space. Manage. Sci., 34(3), 1988.

[21] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Proceed-
ings of 13th Annual ACM Symposiumon Theory of Com-
puting, 1998.

[22] III J. J. Bartholdi and P. Goldsman. Vertex-labeling algo-
rithms for the hilbert spacingfilling curve. Software Prac-
tice and Experience, 31(5), 2001.

[23] H. V. Jagadish. Linear clustering of objects with multiple
attributes. SIGMOD Rec., 19(2), May 1990.

[24] N. Katayama and S. Satoh. The sr-tree: an index struc-
ture for high-dimensional nearest neighbor queries. In Pro-
ceedings of the 1997 ACM SIGMOD international confer-
ence on Management of data (SIGMOD), 1997.

[25] John L. Kelley. General Topology. Springer-Verlag, 1975.

[26] M. Kppen. The curse of dimensionality.
http://www.npt.nuwc.navy.mil/Csf/papers/hidim.pdf.

[27] S. Kulkarni and R. Orlandic. High-dimensional similar-
ity search using data sensitive space partitioning, volume
4080/2006. Springer Berlin/Heidelberg.

[28] N. Linial and O. Sasson. Non-expansive hashing. In Pro-
ceedings of the twenty-eighth annual ACM symposium on
Theory of computing (STOC), 1996.

[29] X. Lu, Y. Wang, and A. K. Jain. Combining classifiers for
face recognition. In Proceedings of the 2003 International
Conference on Multimedia and Expo - Volume 3 (ICME),
2003.

[30] D. Maio and D. Maltoni. A structural approach to fin-
gerprint classification. In Proceedings of the International
Conference on Pattern Recognition (ICPR), 1996.

[31] Clemens Marschner. Mtree tester applet.
http://www.cmarschner.net/mtree.html.

[32] M. Patella and P. Ciaccia. The many facets of approximate
similarity search. In Proceedings of the First International
Workshop on Similarity Search and Applications (SISAP),
2008.

[33] H. Sagan. Space-Filling Curves. Springer-Verlag, New
York, 1994.

[34] G. Salton, A. Wong, and C. S. Yang. A vector space model
for automatic indexing. Technical report, Cornell Univer-
sity, Ithaca, NY, USA, 1974.

[35] S. Santini and R. Jain. Beyond query by example. In
Proceedings of the sixth ACM international conference on
Multimedia (Multimedia), 1998.



[36] R. Weber, H.-J Schek, and S. Blott. A quantitative anal-
ysis and performance study for similarity-search methods
in high-dimensional spaces. In Proceedings of the 24rd In-
ternational Conference on Very Large Data Bases (VLDB),
1998.

[37] D. A. White and R. Jain. Similarity indexing with the ss-
tree. In Proceedings of the Twelfth International Confer-
ence on Data Engineering (ICDE), 1996.

[

Li,Ting
I want to be a 

scientist 

PhD degree in 
three or four 

years

number one in class

got awards every year when in primary school 

talent competitions, and got 1st, 2nd and 3rd prices

Got MS degree with Distinction in UK

]Ting Li Ting Li received the BS de-
gree in Electronics and Information Engineering from Huazhong
University of Science and Technology, China, in 2007. He is
currently a Ph.D. student in the Department of Electrical and
Computer Engineering of Clemson University. His research in-
terests include distributed networks, with an emphasis on peer-
to-peer and content delivery networks, wireless multi-hop cel-
lular networks, game theory and data mining. He is a student
member of IEEE.

[  
 
Haiying Shen received the BS degree in Computer Science and Engineering from Tongji 
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from 
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant 
Professor in the Holcombe Department of Electrical and Computer Engineering at 
Clemson University. Her research interests include distributed and parallel computer 
systems and computer networks, with an emphasis on peer-to-peer and content delivery 
networks, mobile computing, wireless sensor networks, and grid and cloud computing. 
She was the Program Co-Chair for a number of international conferences and member of 
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow 
of 2010 and a member of the IEEE and ACM. 
 
 

 
Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and 
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong 
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer 
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in 
Open Source Computing and Applications. His research interests are mainly in 
distributed and parallel systems, particularly in scalable and secure Internet services, 
autonomic cloud management, energy-aware task scheduling in wireless embedded 
systems, and high performance cluster and grid computing. He has published more than 
160 articles in peer-reviewed journals and conferences in these areas. He is the author of 
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press, 
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice 

]Haiying Shen Haiying Shen received
the BS degree in Computer Science and Engineering from
Tongji University, China in 2000, and the MS and Ph.D. degrees
in Computer Engineering from Wayne State University in 2004
and 2006, respectively. She is currently an Assistant Professor
in the Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed
computer systems and computer networks, with an emphasis on
P2P and content delivery networks, mobile computing, wireless
sensor networks, and grid and cloud computing. She was the
Program Co-Chair for a number of international conferences and
member of the Program Committees of many leading confer-
ences. She is a Microsoft Faculty Fellow of 2010 and a member
of the IEEE and ACM.


