
1

The NP-Hardness of a Minimum-Cost Cloud
Storage Service Crossing Multiple Cloud Providers

Guoxin Liu and Haiying Shen
The Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631, USA
Email: {guoxinl, shenh}@clemson.edu

Abstract—Many Cloud Service Providers (CSPs) (e.g., Amazon
S3, Microsoft Azure and Google Cloud Storage) provide data
storage services with datacenters distributed worldwide. These
datacenters provide different Get/Put latencies and unit prices
for resource utilization and reservation. Thus, when selecting
different CSPs’ datacenters, cloud customers of worldwide dis-
tributed applications (e.g., an online social network) face two
challenges: i) how to allocate data to worldwide datacenters to
satisfy application requirements including both data retrieval
latency and availability (i.e., SLA (service level agreement)), and
ii) how to allocate data and reserve resources in datacenters
belonging to different CSPs to minimize the payment cost.
In order to handle these challenges, in this report, we model
the cost minimization problem under SLA constraints using
the integer programming, and prove its NP-hardness. We then
introduce an optimal resource reservation algorithm to maximize
the reservation benefits under a specific data allocation. This
report is a pre-study for a minimum-cost cloud storage service
crossing multiple cloud providers.

I. INTRODUCTION

Cloud storage (e.g., Amazon S3 [2], Microsoft Azure [4]
and Google Cloud Storage [3]) is emerging as a popular com-
mercial service. Each cloud service provider (CSP) provides
a worldwide data storage (including Gets and Puts) service
using its distributed datacenters. In order to save the capital
expenditures to build and maintain the hardware infrastructures
and avoid the complexity of managing the datacenters, more
and more enterprisers are shifting their data workload to the
cloud storage [19].

Web applications, such as online social networks and web
portals, provide services to clients all over the world. The data
access delay and availability are important to web applications,
which affect cloud customers’ incomes. For example, exper-
iments at the Amazon portal [15] demonstrated that a small
increase of 100ms in webpage presentation time significantly
reduces user satisfaction, and degrades sales by one percent.
For a request of data retrieval in the web presentation process,
the typical latency budget inside a storage system is only 50-
100ms [10], which implies strict deadlines for data access
in data storage services. In order to improve data access
efficiency, the data requested by clients needs to be allocated to
datacenters near the clients, which requires worldwide distri-
bution of data replicas. Also, inter-datacenter data replication
avoids a high risk of service failures due to the datacenter
failure, which are caused by disasters or power shortages, in
order to enhance data availability.

A single CSP may not have datacenters in all locations
needed by a worldwide web application.Besides, a single CSP
may introduce a data storage vendor lock-in problem [14],
in which a customer may not be free to switch to the optimal
vendor due to prohibitively high switching costs. This problem
can be addressed by allocating data to datacenters belonging to
different CSPs. Building such a geo-distributed cloud storage
is faced with a challenge: how to allocate data to worldwide
datacenters to satisfy application requirements including both
data retrieval latency and availability (i.e., SLA (service level
agreement))? The data allocation in this report means the
allocation of both data storage and Get requests to datacenters.

Different datacenters of a CSP or different CSPs offer
different prices for Storage, data Gets/Puts and Transfers.
For example, Amazon S3 provides cheaper data storage price
($0.01/GB and $0.005/1,000 requests), and Windows Azure
in the US East region provides cheaper data Get/Put price
($0.024/GB and $0.005/ 100,000 requests). An application
running on Amazon EC2 in the US East region has data dj
with a large storage size and few Gets and data di which
is read-intensive. Then, to reduce the total payment cost, the
application should store data dj into Amazon S3, and stores
data di into Windows Azure in the US East region. Besides the
different prices, the pricing manner is even more complicated
due to two charging formats: pay-as-you-go and reservation.
Then, the second challenge is introduced: how to allocate data
to datacenters belonging to different CSPs and make resource
reservation to minimize the service payment cost?

To handle the above-stated two challenges, in this report,
we modeled the cost minimization problem under multiple
constraints using the integer programming, and proved its NP-
hardness. We also proposed an optimal resource reservation al-
gorithm, which further reduces the cost by resource reservation
that satisfies all service requests while avoids over reservation.

Though many previous works [7, 8, 17, 6] focus on finding
the minimum resource to support the workload to reduce cloud
storage cost in a single CSP, there are few works that studied
cloud storage cost optimization across multiple CSPs with
different prices. SPANStore [21] aims to minimize the cloud
storage cost while satisfying the latency and failure require-
ment cross multiple CSPs. However, it does not consider that a
datacenter’s capacities for serving Get/Put requests are limited,
which affects its effectiveness in a real environment. For
example, Amazon DynamoDB [1] has the capacity limitation
of 360,000 reads per hour. Considering the capacity limit is

2

critical for guaranteeing SLAs since the datacenter network
overload is common [11, 20]. With this consideration, the
integer program in [21] becomes NP-hard, which cannot be
efficiently resolved. Also, SPANStore does not consider the
resource reservation pricing model, which is widely used in
reality. Reserving resources in advance can save significant
cost for customers. As far as we know, our work is the first
that provides minimum-cost cloud storage service crossing
multiple CSPs with the consideration of datacenter capacity
limits and resource reservation.

II. PROBLEM STATEMENT

We name this minimum-cost cloud storage service cross-
ing multiple cloud providers as DAR. DAR aims to provide
SLA guarantees (with improved data availability and retrieval
latency) and minimize the payment cost of cloud customers.
To this end, DAR spans data storage service across multiple
CSPs due to two reasons. First, the union of datacenters from
multiple CSPs offers more geographically scattered data stor-
age service than any single CSP, so that application data can
be stored in datacenters close to clients. Second, the prices of
storage and bandwidth resources are different between CSPs.
DAR exploits the diversity of pricing to minimize customers’
costs while still satisfying SLAs. It judiciously determines data
allocation schedule and the amount of resource reservation in
each used datacenter to minimize cost.

A. Constraints and Objective

We call a datacenter that operates a customer’s application
a customer datacenter of this customer. A customer may have
multiple customer datacenters. A client’s Put/Get request is
forwarded from a customer datacenter to the storage datacenter
of the requested data. The latency to access data in a cloud
storage consists of two parts: the transmission latency between
the storage datacenters and the customer datacenter, and the
data request latency inside the storage datacenter. The cloud
storage customers need strict data request (Puts/Gets) dead-
lines for their applications, and need to avoid the data request
failures. A SLA can specify the Get/Put bounded latency and
the percentage of requests obeying the deadline [14]. Another
type of SLA guarantees the data availability in the form
of a service probability [5]. DAR uses a form of SLA that
considers both constraints. The SLA specifies the deadlines
for the Get/Put requests (Lg and Lp), the maximum allowed
percentage of data Get/Put beyond the deadlines (εg and εp)
and data availability. There may be several storage datacenter
candidates that satisfy the SLA of a customer and supply
different service prices. Then, it is a challenge to select the
datacenter candidates to minimize the cost for the customer.

The CSPs charge the customers by the usage of three
different types of resources: the storage measured by the data
size stored in a specific region, the data transfer to other
datacenters operated by the same or other CSPs, and the
number of Get/Put operations on the data [1]. The storage
and data transfer are charged in the pay-as-you-go manner
based on the unit price. The Get/Put operations are charged
in the manners of both pay-as-you-go and reservation. In the

TABLE I: Notations of inputs and outputs in data allocation schedul-
ing.

Input Description
Dc the set of a customer’s customer datacenters
dci the ith customer datacenter
Ds the set of all storage datacenters
dpj the jth storage datacenter

ζg
dpj

/ζp
dpj

the Get capacity and Put capacity of dpj
F g

dci,dpj
(x) the CDF of Get latency from dci to dpj

Fp
dci,dpj

(x) the CDF of Put latency from dci to dpj

psdpj
/ptdpj

the unit storage/transfer price of dpj
pg
dpj

/pp
dpj

the unit Get/Put price of dpj
αdpj

the reservation price ratio of dpj
Lg/Lp the required Get/Put deadline of the customer
εg/εp the allowed % of Gets/Puts beyond deadline
Qg /Qp Get/Put SLA satisfaction level
β the minimum number of replicas for any Get
D the entire data set of the customer

dl/sdl the data l of the customer ∈ D/dl’s size
T the reservation time period of the customer
tk the kth billing period within T

v
dl,tk
dci

/udl,tk
dci

the Get/Put rates to data dl generated by dci

Output Description
Rg

dpj
/Rp

dpj
the reserved num. of Gets/Puts for any tk

X
dl,tk
dpj

the existence of dl’s replica in dpj during tk

H
dl,tk
dci,dpj

the % of requests targeting on dl from dci

resolved by dpj during tk
Ct the total cost for storing D and serving requests

reservation manner, the customer specifies and prepays the
number of Puts/Gets per reservation period (e.g., a month).
The unit price for the reserved usage is much cheaper (e.g.,
saving up to 76% [1]) than the pay-as-you-go manner. The
amount of overhang of the reserved usage is charged by the
pay-as-you-go manner. This tiered charging makes the above
challenge more severe: how to make a wise reservation in
order to minimize the cost for future usage. To handle the
challenge, we formulate the cost minimization problem and
provide a solution to the problem. For easy reference, we list
the main notations used in the report in Table I.

B. Problem Statement

A customer has a set of multiple customer datacenters (de-
noted by Dc) serving its application. We use dci∈ Dc to denote
the ith customer datacenter of the customer, and use dpj to de-
note storage datacenter j. In order to maintain data availability
in datacenter congestions or failures, current storage systems
(e.g., Hadoop Distributed File System (HDFS) [18], Google
File System (GFS) [13]) and Windows Azure [9] create a
constant number of replicas for each data block. Similarly,
DAR maintains data availability by guaranteeing there are no
less than β replicas of each data item (denoted by dl) among
all storage datacenters within the deadline from each customer
datacenter. β is determined according to the data availability
SLA required by the customer, and higher data availability
leads to a larger β.

DAR needs to predict the Get/Put request rates of each
data item in allocating data to datacenters. A fine-grained
data division makes the rates vary largely and hence difficult
to predict [21]. For easy prediction, DAR conducts coarse-
grained data division to achieve relatively stable request rates.

3

It divides all the data to relatively large data items, which of
each is formed by a number of data blocks, such as splitting
user data according to their locations [16]. For a customer
datacenter’s Get request, any storage datacenter holding the
requested data (i.e., replica datacenter) can serve this request.
A cloud storage system usually specifies the ratio of requests
for each replica datacenter of a data item during billing period
tk. For a customer, DAR finds a schedule that allocates each
data item to a number of selected datacenters and allocates
request serving ratios to these datacenters in order to minimize
the cost and guarantee the SLA of the customer. Each customer
datacenter maintains a table that maps each data item to its
replica datacenters with assigned request serving ratios. The
data consistency among the replicas is orthogonal to our work.
We rely on each CSP’s datacenter itself to meet the customer’s
data consistency requirement. We formulate the problem to
find the schedule using the integer programming below.

We use F gdci,dpj (x) and F pdci,dpj (x) to denote the cumulative
distribution function (CDF) of Get/Put latency from dci to
dpj , respectively. Thus, F gdci,dpj (L

g) and F pdci,dpj (L
p) are

the percentage of Gets and Puts from dci to dpj within
the deadlines Lg and Lp, respectively. We use rtkdci,dpj and
wtkdci,dpj to denote the Get and Put rates from dci to dpj during
tk, respectively. They are calculated as:

r
tk
dci,dpj

=
∑
dl∈D

v
dl,tk
dci

∗Hdl,tk
dci,dpj

(1)

w
tk
dci,dpj

=
∑
dl∈D

u
dl,tk
dci

∗Xdl,tk
dpj

(2)

where vdl,tkdci
and udl,tkdci

are the Get and Put rates on data
dl generated by dci per unit time during tk, respectively.
Hdl,tk
dci,dpj

∈ [0, 1] denotes the ratio of requests for dl from dci

resolved by dpj during tk. Xdl,tk
dpj

is a binary variable, and it
equals to 1 if dl is stored in dpj during tk; and 0 otherwise.

Then, we can calculate the actual percentage of Gets/ Puts
satisfying the latency requirement within tk for a customer
(denoted as qtkg and qtkp):

q
tk
g =

∑
dci∈Dc

∑
dpj∈Ds

r
tk
dci,dpj

∗ F g
dci,dpj

(Lg)∑
dci∈Dc

∑
dpj∈Ds

r
tk
dci,dpj

, (3)

and qtkp is calculated in the same way.
To judge whether the SLA of a customer is satisfied during

tk, we define the Get/Put SLA satisfaction level of a customer,
denoted by Qg and Qp.

Qg = Min{Min{qtkg }∀tk∈T , (1− εg)}/(1− εg)
Qp = Min{Min{qtkp }∀tk∈T , (1− εp)}/(1− εp).

(4)

We see that if Qg = 1 and Qp = 1, the customer’s deadline
SLA is satisfied. We define the Get storage candidate set
(denoted by Sgdci) as the set of all datacenters satisfying the
Get deadline SLA for requests from dci.

Sg
dci

= {dpj |F g
dci,dpj

(Lg) ≥ (1− εg)}. (5)

We define Gtkdci = {dl|v
dl,tk
dci

> 0∧ dl ∈ D} as the set of data
read by dci during tk. Thus, the data availability constrain can
be expressed as during any tk, there exist at least β replicas

of any dl ∈ Gtkdci stored in Sgdci .

Beside the SLA constraints, each datacenter has limited
capacity to supply Get/Put service. Thus, the cumulative
Get/Put data rate of all data in a datacenter dpj should not
exceed its Get capacity and Put capacity (denoted by ζgdpj and
ζpdpj), respectively. Since storage is relatively cheap and easy
to be increased, we do not consider the storage capacity as a
constraint. This constraint can be easily added to our model,
if necessary. Then, we can calculate the available Get/Put
capacities, denoted by φgdpj /φpdpj :

φg
dpj

= Min{ζg
dpj
−
∑

dci∈Dc
r
tk
dci,dpj

}∀tk∈T

φp
dpj

= Min{ζp
dpj
−
∑

dci∈Dc
w

tk
dci,dpj

}∀tk∈T
(6)

Under the above mentioned constraints, we aim to minimize
the total cost for a customer (denoted as Ct). It is calculated
as

Ct = Cs + Cc + Cg + Cp, (7)

where Cs, Cc, Cg and Cp are the total Storage, Transfer, Get
and Put cost during entire reservation time T , respectively.
The storage cost is calculated by:

Cs =
∑
tk∈T

∑
dl∈D

∑
dpj∈Ds

X
dl,tk
dpj

∗ psdpj ∗ sdl , (8)

where sdl denotes the size of data dl, and psdpj denotes the
unit storage price of datacenter dpj .

The transfer cost is one-time cost for importing data to
storage datacenters. The imported data is not stored in the
datacenter during the previous period tk−1, but is stored in
the datacenter in the current period tk. Thus, the data transfer
cost is:

Cc =
∑
tk∈T

∑
dl∈D

∑
dpj∈Ds

(X
dl,tk
dpj

⊕Xdl,tk−1

dpj
) ∗ ptdpj ∗ sdl . (9)

The Get/Put billings are based on the pay-as-you-go and
reservation manners. The reserved number of Gets/ Puts
(denoted by Rgdpj and Rpdpj) is decided at the beginning of
each reservation time period T . In Section III, we will explain
how to determine the optimal Rgdpj and Rpdpj to minimize the
payment cost. The reservation prices for Gets and Puts are a
specific percentage of their unit prices in the pay-as-you-go
manner [1]. Then, we use α to denote the reservation price
ratio, which means that the unit price for reserved Gets/Puts
is α ∗ pgdpj and α ∗ ppdpj , respectively. Thus, the Get/Put cost
is calculated by:

Cg =
∑
tk

∑
dpj

(Max{
∑
dci

r
tk
dci,dpj

∗tk−Rg
dpj

, 0}+αRg
dpj

)∗pg
dpj

, (10)

Cp =
∑
tk

∑
dpj

(Max{
∑
dci

w
tk
dci,dpj

∗tk−Rp
dpj

, 0}+αRp
dpj

)∗pp
dpj

. (11)

Finally, we formulate the problem that minimizes the cost
under the aforementioned constraints using the integer pro-
gramming.

minCt (calculated by Formulas (8)− (11)) (12)

s.t. ∀dci∀dpj∀tk∀dl H
dl,tk
dcl,dpj

≤ Xdl,tk
dpj

≤ 1 (13)

4

∀dci∀tk∀dl
∑
dpj

H
dl,tk
dci,dpj

= 1 (14)

∀dci∀tk∀dl ∈ G
tk
dci

∑
dpj∈S

g
dci

X
dl,tk
dpj

≥ β (15)

Qg ∗ Qp = 1 (16)

∀dpj Min{φg
dpj

, φp
dpj
} ≥ 0 (17)

Formula (12) represents the goal to minimize the total cost
of a cloud storage customer. Constraints (13) and (14) together
indicate that any request should be served by a replica of the
targeted data. Constraint (15) indicates that for any Get request
at any time, there are at least β replicas to serve the request
to ensure data availability in server failures and congestions.
Constraint (16) guarantees the Get/Put SLA. Constraint (17)
indicates that the number of Gets/Puts processed in any
datacenter cannot exceed its Get/Put capacity.

Table I lists the input and output parameters in this integer
programming. The unit cost of Gets/Puts/Sto- rage/Transfer
usage is provided or negotiated with the CSPs. During each tk,
DAR needs to measure the latency CDF of Get/Put (F gdci,dpj (x)
and F pdci,dpj (x)), the size of new data items dl (sdl), and
the data Get/Put rate from each dci (vdl,tkdci

and udl,tkdci
). The

output is the data storage allocation (Xdl,tk
dpj

), request servicing
ratio allocation (Hdl,tk

dci,dpj
), optimal Get/Put reservation in each

storage datacenter, (Rgdpj /Rpdpj), and the total cost Ct.
After each tk, T will be updated as T\{tk}. DAR adjusts

the data storage and request distribution among datacenters
under the determined reservation using the same procedure.
This procedure ensures the maximum cost saving in request
rate variation. However, this integer programming problem
is NP-Hard, which makes the solution calculation very time
consuming.
NP-hardness. Suppose that all datacenters have unlimited Get
capacities and all reservation price ratios equal to 1, and one
datacenter, dpj , has unlimited Put capacity and the highest
psdpj , ptdpj , and pgdpj . We assume that the Get/Put SLA required
by the customer is loose enough so that all datacenters can
supply a satisfied service to any of customer’s datacenters in
term of latencies. We set β = 1, which means that there are no
data replicas for data availability. Thus, there is one replica of
any data object is enough. We can either store all data to the
datacenter dpj as the first schedule, which has the largest cost,
or for any dl, store it to another datacenter dpn, which has a
lower cost. Thus, our goal as shown in Equation (12) can be
converted to maximizing saved cost from the first schedule,
which has the minimum cost. Since there is one replica of
dl, it is either stored in dpj or another datacenter, we can
get

∑
dpj 6=dpk X

dl
dpk
≤ 1. Additionally, considering the Put

capacity constraints of each other datacenter, we can reduce
our problem to the generalized assignment problem [12]. Since
the generalized assignment problem is NP-hard, our problem
is also NP-hard.

III. OPTIMAL RESOURCE RESERVATION

After the dominant-cost based allocation, we need to de-
termine reserved Get/Put rates for each datacenter using a set

of allocated data items and their Get/Put rate over T in order
to further reduce the cost. Since the method to determine the
reserved Get and Put rates is the same, we use Get as an
example to present this method. We first introduce the benefit
function of the reservation, denoted as fdpj (x), where x is the
reserved number of Gets/Puts in a billing period. The benefit is
the difference between the saved cost from the pay-as-you-go
manner by reservation and the over-reservation:

fdpj (x) = (
∑
tk∈T

x ∗ (1− α) ∗ pg
dpj

)−Odpj (x) ∗ p
g
dpj

, (18)

where Otkdpj (x) is the over reserved Get rates including the
cost for over reservation and the over calculated saving. It is
calculated by

Odpj (x) =
∑
tk∈T

Max{0, x−
∑
dl∈D

∑
dci∈Dc

r
tk
dci,dpj

∗ tk}. (19)

Recall that Rgdpj is the number of reserved Gets for a billing
period during T in the optimal schedule for cost minimization.
In order to find the minimum cost under a data allocation,
fdpj (x) reaches the maximum value when x = Rgdpj . We de-
fine Bdpj =Max{fdpj (x)}x∈N+ . We then prove Theorem 1,
which supports the rationale that allocating as much data as
possible to the minimum cost datacenter in the dominant-cost
based data allocation algorithm is useful in getting a sub-
optimal result of reservation benefit.

Theorem 1: For a given set of data items stored in datacen-
ter dpj , allocating a new data item dl and its requests to the
datacenter, its reservation benefit Bdpj is non-decreasing.

Proof: According to Equation (18), we assume Bdpj =
fdpj (R

g
dpj

). After allocating dl to dpj , we use f ′dpj (x) to
denote the new reservation benefit function. Then, we can
get f ′dpj (R

g
dpj

) ≥ fdpj (R
g
dpj

) since rtkdci,dpj is not de-
creasing in Equation (19). Since the new reserved benefit
B′dpj = Max{f ′dpj (x)}x∈N+ , thus B′dpj ≥ f ′dpj (R

g
dpj

) ≥
fdpj (R

g
dpj

) = Bdpj after dl is allocated.
We define the maximum Get rate in each tk during T

as m = Max{
∑
dl∈D

∑
dci∈Dc

rtkdci,dpj ∗ tk}tk∈T . Then,
according to Equation (18), we can get Rgdpj ∈ [0,m].
Thus, by looping all integers within [0,m], we can get the
optimal reservation. This greedy method however is time
consuming. In order to reduce the time complexity, we first
prove Theorem 2, based on which we introduce a binary search
tree based optimal reservation method.

Theorem 2: For a datacenter dpj , its benefit function
fdpj (x) is increasing when x ∈ [0, Rgdpj), and decreasing when
x ∈ (Rgdpj ,m].

Proof: According to Equation (18), we define the increas-
ing benefit of increment reservation as fI(x) = fdpj (x) −
fdpj (x−1) = (n∗ (1−α)−O′(x))∗pgdpj , where n is number
of billing periods in T . O′(x) = Odpj (x) − Odpj (x − 1)
represents the number of billing periods during T with∑
dci∈Dc

rtkdci,dpj < x. Thus, O′(x) is increasing. At first,
when O′(x) < n ∗ (1 − α), then fI(x) > 0, which means
fdpj (x) is increasing; when O′(x) is larger than n ∗ (1− α),
then fI(x) < 0, which means fdpj (x) is decreasing. Therefore,
fg
st
j
(x) is increasing and then decreasing. Since fg

st
j
(Rgdpj)

5

reaches the largest f(x), we can derive that fg
st
j
(x) is increas-

ing when x ∈ [0, Rgdpj), and decreasing when x ∈ (Rgdpj ,m].

Theorem 2 indicates that when O′(x) = dn ∗ (1 − α)e
or O′(x) = bn ∗ (1 − α)c, fdpj (x) can reach Bdpj . We
use Atkpdj =

∑
dci∈Dc

rtkdci,dpj ∗ tk to denote the aggregate
number of Gets served by dpj during tk, and define A =
{At1pdj , A

t2
pdj
, ..., AtNpdj}. Since O′(x) represents the number

of billing periods during T with
∑
dci∈Dc

rtkdci,dpj < x,
we need to find x as the N th smallest value in A, where
N = dn ∗ (1 − α)e + 1 or N = bn ∗ (1 − α)c + 1.
The x makes fdpj (x) to reach Bdpj . From the above, we
can also get when x ∈ [Atipdj , A

ti+1

pdj
], fgdpj (x) increases or

decreases monotonically. That is because, from the above
we know, if Ati+1

pdj
] ≤ Rgdpj , then for x ∈ [Atipdj , A

ti+1

pdj
],

fgdpj (x) increases monotonically; else that Atipdj] ≥ Rgdpj ,
then for x ∈ [Atipdj , A

ti+1

pdj
], fgdpj (x) decreases monotonically.

Specially, for x ∈ 0, At1pdj], we can rewrite Equation (18) to
be fgdpj (x) = (

∑
tk∈T x ∗ (1− α) ∗ p

g
dpj

). Therefore, we can
get that x ∈ 0, At1pdj], f

g
dpj

(x) is positively proportional to x.
We then use the binary search tree algorithm to find the

optimal reservation number of Gets. Its pseudocode is shown
in Algorithm 1.

Algorithm 1: Binary search tree based optimal resource
reservation.

1 Build a balanced binary search tree of A with Atk
pdj

;
2 N1 = bn ∗ (1− α)c+ 1; N2 = dn ∗ (1− α)e+ 1;
3 x1 = the N1

th smallest value of A;
4 x2 = the N2

th smallest value of A;
5 if fdpj (x1) ≥ fdpj (x2) then
6 Rg

dpj
= x1;

7 else
8 Rg

dpj
= x2;

The time complexity of this algorithm is O(n ∗ log(n)).
It builds a binary search tree using O(n ∗ log(n)), and then
finds the N th and (N +1)th smallest values in the tree using
log(n), and all other operations takes O(1). The previously
mentioned greedy method tries all possible values of x, so
its time complexity is O(m). However, m usually equals
millions even billions per second times the billing time period
in Facebook, which is much larger than n, which is no larger
than hundreds. Therefore, the binary search tree based optimal
reservation algorithm greatly reduces the computation time of
the greedy algorithm.

IV. CONCLUSION

This work aims to minimize the payment cost of customers
while guaranteeing their SLAs by using the worldwide dis-
tributed datacenters belonging to different CSPs with different
resource unit prices. We first modeled this cost minimization
problem using integer programming, and proved its NP-
hardness. We then introduced an optimal resource reservation
to reduce the cost of each storage datacenter. We aims to guide

the design of a minimum-cost cloud storage service crossing
multiple cloud providers.

REFERENCES

[1] Amazon DynnamoDB. http://aws.amazon.com/dynamodb/.
[2] Amazon S3. http://aws.amazon.com/s3/.
[3] Goolge Cloud storage.

https://cloud.google.com/products/cloud-storage/.
[4] Microsoft Azure. http://www.windowsazure.com/.
[5] Service Level Agreements.

http://azure.microsoft.com/en-us/support/legal/sla/.
[6] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. Wattenhofer. FARSITE: Federated,
Available, and Reliable Storage for an Incompletely
Trusted Environment. In Proc. of OSDI, 2002.

[7] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. A.
Becker-Szendy, R. A. Golding, A. Merchant, M. Spa-
sojevic, A. C. Veitch, and J. Wilkes. Minerva: An
Automated Resource Provisioning Tool for Large-Scale
Storage Systems. ACM Trans. Comput. Syst., 2001.

[8] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. C. Veitch. Hippodrome: Running Circles Around
Storage Administration. In Proc. of FAST, 2002.

[9] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
and K. M. L. Rigas. Windows Azure Storage: A
Highly Available Cloud Storage Service with Strong
Consistency. In Proc. of SOSP, 2011.

[10] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silber-
stein, P. Bohannona, H.-A. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni. PNUTS: Yahoo!s Hosted Data Serving
Platform. In Proc. of VLDB, 2008.

[11] J. Dean. Software Engineering Advice from
Building Large-Scale Distributed Systems.
http://research.google.com/people/jeff/stanford-295-
talk.pdf.

[12] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proc. of SOSP, 2003.

[14] A. Hussam, P. Lonnie, and W. Hakim. RACS: A Case
for Cloud Storage Diversity. In Proc. of SoCC, 2010.

[15] R. Kohavl and R. Longbotham. Online
Experiments: Lessons Learned. http://exp-
platform.com/Documents/IEEEComputer2007
OnlineExperiments.pdf, 2007.

[16] G. Liu, H. Shen, and H. Chandler. Selective Data
Replication for Online Social Networks with Distributed
Datacenters. In Proc. of ICNP, 2013.

[17] H. V. Madhyastha, J. C. McCullough, G. Porter,
R. Kapoor, S. Savage, A. C. Snoeren, and A. Vahdat.

6

SCC: Cluster Storage Provisioning Informed by Appli-
cation Characteristics and SLAs. In Proc. of FAST, 2012.

[18] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop Distributed File System. In Proc. of MSST, 2010.

[19] H. Stevens and C. Pettey. Gartner Says Cloud Com-
puting Will Be As Influential As E-Business. Gartner
Newsroom, Online Ed., 2008.

[20] X. Wu, D. Turner, C. Chen, D. A. Maltz, X. Yang,
L. Yuan, and M. Zhang. NetPilot: Automating Datacenter
Network Failure Mitigation. In Proc. of SIGCOMM,
2012.

[21] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and
H. V. Madhyastha. SPANStore: Cost-Effective Geo-
Replicated Storage Spanning Multiple Cloud Services.
In Proc. of SOSP, 2013.

