
Contents

1 Scalable and Secure P2P Overlay Networks 1

1.1 Introduction .1

1.2 P2P Overlay Network Characteristics .3

1.3 Scaling techniques .8

1.3.1 Classification of P2P systems .9

1.3.2 Unstructured P2P .10

1.3.3 Structured P2P .15

1.3.4 Hybrid P2P .20

1.3.5 Cycloid: An Example of Structured P2P DHTs22

1.4 Security Concerns .25

1.4.1 Authenticity .25

1.4.2 Anonymity .27

1.4.3 Attacks on the network .28

1.4.4 Secure routing .30

1.5 Concluding Remarks .32

i

ii CONTENTS

Chapter 1

Scalable and Secure P2P Overlay Networks

Haiying Shen, Aharon S. Brodie, Cheng-Zhong Xu, and Weisong Shi
Wayne State University, Detroit, MI 48202

Abstract

Peer-to-peer(P2P) overlay network is a logical network in which peers are organized without any
centralized coordination. Each peer has equivalent responsibilities, and offers both client and
server functionalities to the network for resource sharing. In this article, we present an overview
of distinguishing characteristics of the network, including decentralization with ad-hoc connectiv-
ity and self-organization, dynamics/churn, scalability, security, performance, fault resilience, and
interoperability. Focus is on the scalability and security issues. Highly scalable systems expand
in size without performance degradation; a secure P2P system provides a safe environment for
participants by resisting different kinds of attacks and avoiding malicious nodes.

P2P systems can be classified into structured, unstructured, and hybrid categories. Represen-
tatives of the systems and related scaling techniques in each class are reviewed. P2P systems
provide security challenges in four aspects: authenticity, anonymity, attacks, and secure routing.
Their requirements and security measures are discussed.

1.1 Introduction

Since the inception of Napster in the late 1990s, peer-to-peer (P2P) computing model has grown
dramatically. In literature, however, there is little consensus about its definition. An Intel P2P

1

2 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

working group defines it as “the sharing of computer resources and services by direct exchange
between systems” [84]. Veytsel defines P2P as “the use of devices on the internet periphery in a
nonclient capacity” [108]. Shirky [101] presents a more detailed definition as “a class of appli-
cations that takes advantage of resources — storage, cycles, content, human presence — available
at the edges of the Internet. Because accessing these decentralized resources means operating in
an environment of unstable connectivity and unpredictable IP addresses, P2P nodes must operate
outside the DNS system and have significant or total autonomy from central servers”. The author
summarizes two criteria to judge if a system is P2P or not: (1) Does it treat variable connectiv-
ity and temporary network addresses as the norm? (2) Does it give the nodes at the edges of the
network significant autonomy?

Essentially, P2P system is a logical network on top of physical networks in which peers are
organized without any centralized coordination. A peer (or node) is an abstract notion of partici-
pating entities. It can be a computer process, a computer, an electronic device, or a group of them.
Each peer has equivalent responsibilities, and offers both client and server functionalities to the
network for resource sharing.

P2P systems are a complement to client/server computing model. Although it is popular in
distributed computing, the client/server model has weak scalability and availability because it is
prone to bottleneck traffic and failures at the servers. On the other hand, client machines on the
network edge have seen a steady increase in processing networking and storage capacities. P2P
computing exploits the potential of distributed resources by shifting the service away from central
servers, outwards to the edge and allowing clients to share data and other resources such as spare
cycles, disk spaces, and network bandwidth directly.

P2P systems bring about many benefits, such as aggregating resource, cost sharing/reduction,
utilizing spare resource, enhancing scalability/reliability, assuring anonymity/privacy in resource
sharing, and being adaptive to dynamic/ad-hoc environments [77]. These benefits are demon-
strated in a wide range of applications, including distributed computing, file sharing, multicasting,
collaboration, platforms, search engines, agent based systems, awareness systems, mirror systems,
naming systems, etc [77, 51].

P2P systems can be traced back to ARPANET in the late 1960s. ARPANET connected hosts as
equal computing peers, which had equal rights in sending and receiving packets. The decentralized
control model of early Usenet bears much resemblance to today’s P2P applications; Domain Name
System (DNS) combines the P2P concepts with a hierarchy of information ownership. The P2P
model gets momentum with the popularity of Napster for music sharing on the Web [80]. An
important novel feature introduced by Napster is that the concepts of ownership and distribution of
information are differentiated so that people can distribute information, which they do not own, in
a free and pseudo-anonymous manner.

Although the Napster web site was forced down due to a lawsuit for copyright infringement,
research on the P2P computing model has never stopped. Many Napster offsprings have been pro-
posed over the past few years. Representatives include Gnutella [38], Kazaa [54] and Freenet [16].

1.2. P2P OVERLAY NETWORK CHARACTERISTICS 3

Gnutella inspired Sun’s Infrasearch for P2P information retrieval. Freenet provides an anonymous
method for storing and retrieving information. That is, a user can make requests for data without
anyone being able to determine who is making these requests. Likewise, if a user stores a file in
the system, it should be impossible to determine who placed the file into the system. Finally, the
operator of a Freenet node should have no knowledge of what data is stored on the local disk. In
Napter and its offsprings, peers are connected in a simple unstructured network, but interacted in
a fairly complicated protocol. Their complex interaction directly affects the overall system per-
formance and network scalability and limits the usefulness of the networks for new applications
beyond traditional file sharing.

On another track altogether, there are studies on distributed hash tables (DHTs) that organize
P2P systems in a structured network. A DHT maps document keys to network peers based on a
consistent hashing function [53]. Representatives of the DHTs include CAN [90], Chord [105],
Pastry [94], Tapestry [122], Kademlia [75], and Cycloid [99]. They organize the peers in various
ways for efficient management of distributed data.

Two primary concerns in the development of P2P systems are scalability and security. Scalabil-
ity refers to the capability of a system to maintain consistently acceptable levels of performance,
while peers are added. A highly scalable P2P system can grow to several million concurrent partic-
ipants without significant performance degradation. Security represents the system ability to resist
different kinds of attacks and avoid malicious peers so as to provide a safe distributed processing
environment for participants. Making a P2P system secure is a challenge because the system is
open and each participant is potentially unreliable. With the P2P model quickly emerging as a
computing paradigm of the future, there is an ever-increasing need for distributed algorithm that
would allow P2P applications to scale to a large community of users, as well as security methods
to make P2P systems secure.

The rest of this chapter is structured as follows. Section 1.2 presents an overview of the charac-
teristics of P2P overlay systems. Section 1.3 and Section 1.4 review scaling techniques and security
measures in both structured and unstructured networks. Section 1.5 concludes this chapter with
remarks on open issues.

1.2 P2P Overlay Network Characteristics

This section presents an overview of distinguishing characteristics of P2P systems: decentraliza-
tion with ad-hoc connectivity and self-organization, dynamics/churn, scalability, security, perfor-
mance, fault resilience, and interoperability. They have a major impact on the effectiveness and
deployment of P2P systems.

4 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

Decentralization and self-organization. As its name implies, P2P upends the traditional client/server
model by decentralization. In a P2P system, each peer has control over its data and resources in-
dependently. P2P computing makes new services available to end users in a novel way by making
use of their machines as active participants in computing processes rather than just resource re-
questors. This decentralization characteristic offers each node in P2P systems a self-organization
function. Self-organization is required for reliability and for the support of ad-hoc connectivity of
the peers. By ad-hoc connectivity, we mean that the connections between peers are improvised in-
stead of preexisting, due to the continuous and fast peer joining, leaving and failure. The objective
of reliability requires P2P systems to adapt to such system membership changes rapidly and keep
system consistency at a low cost. Self-organization has a two-fold objective: self-maintenance
and self-repair. For self-maintenance, node joining and leaving is handled in a distributed manner,
without requiring the member change information to be propagated through the entire network for
re-organization. When a node joins system, it builds connections with other nodes to become an
active participant. When a node leaves, it is removed from the whole system without leaving any
trace of its existence. For example, in Pastry [94, 95], self-organization handles the arrival and
departure of nodes by information exchange within the overlay network.

When a node fails without warning, its connected nodes still regard it as alive. In this case, a
self-repair function helps them to update their routing and neighboring information. In Chord [105],
stabilization implements self-organization for node failures to keep the Chord ring intact.

Dynamics/Churn. Churn represents a situation where a great number of nodes join, leave and
fail continually and rapidly. Previous work shows that an ideal overlay can still locate an object
efficiently even after some fraction of the nodes are failed. Because churn has the potential to in-
crease P2P system workload, reduce the object location efficiency, an ideal overlay should perform
well under churn. Liben-Nowellet al. [65] indicate that P2P systems’ “maintenance bandwidth”
depends on the rate at which nodes tend to enter and leave the system. They prove that stabilization
protocol of Chord is near optimal for churn. Saiaet al. propose a virtual CAN butterfly content
addressable network that routes efficiently in the face of churn [96]. Panduranganet al. present a
centralized algorithm to ensure connectivity when many nodes fail [?]. Ledlie et al. [63] propose
a self-organizing hierarchically-based P2P system. Mahajanet al. [71] describe a new technique
to reduce maintainance cost while providing high reliability and performance. Prakashet al. [66]
regard churn as a security threat and propose a churn-resistant P2P web caching system based on
Kelips system [44] to ensure high cache hit rate without stabilization protocol. Liet al.[64] provide
a unified framework for evaluating cost and performance under churn in different DHT protocols.
Rheaet al. [92] propose Bamboo, a DHT protocol for dealing with network high churn efficiently
and gracefully. Castroet al. [9] present an optimized Pastry, MSPastry, to deal with consistent
routing under churn with low overhead. Based on Tapestry, Hildrumet al. [48] propose algorithms
for adapting to arriving and departing nodes and provide necessary failure recovery mechanisms.

1.2. P2P OVERLAY NETWORK CHARACTERISTICS 5

Table 1.1: Types of Anonymity.

Types of Anonymity Difficult for Adversary to Determine:
Author Which users created which documents?
Server Which nodes store a given document?
Reader Which users access which documents?

Document Which documents are stored at a given node?

Scalability. P2P computing is an alternative to the client/server computing for greatly improved
scalability. However, the problems, such as low bandwidth and high latency on peer connections
combined with large amounts of traffic, pose serious barriers to the scalability of P2P networks.
Napster, as a centralized network, attacked the scalability problem by having the peers directly
download music files from the peers that possess the requested document. However, its scalability
depends entirely on the scalability of the central server. In unstructured P2P systems, such as Kazaa
and Gnutella, a huge amount of bandwidth is required for routing control messages like “I’m alive”
and other network chatter before any actual data messages are transferred. Many architectures and
scaling techniques, approaches such as increasing ring search and random walks, are proposed for
reducing congestion and enhancing the scalability of Gnutella. In addition, structured P2P overlay
networks such as Chord, CAN and Past appeared recently, letting the P2P system scales well to
potentially billions of keys, stored on hundreds or millions of nodes. They use consistent mapping
between the key and the hosting node to ensure the availability of the object when the hosing node
is alive. A comprehensive review of unstructured and structured P2P systems will be presented in
Section 1.3.

Security. P2P systems provide security challenges since they are not structured in the traditional
client/server model. The client/server model allows the server to authenticate users, provide mea-
sures to validate data, and poses smaller security risks because the communication has no inter-
mediaries. P2P systems, on the other hand, especially today’s popular decentralized models, lack
an authoritative entity that can authenticate and verify users and data. Moreover, communication
passes through foreign nodes on the network which can be malicious. P2P systems raise security
issues in four aspects:

• Authenticity. In order to authenticate data on today’s P2P networks, an alternative to central-
ized verification systems must be implemented. Since data is replicated on the network, it
is further necessary to verify existing copies as well. Different aspects of authentication will
be discussed, from originality of data to ensuring copies have not been modified. Different
methods proposed to solve these problems will be introduced, such as reputation systems and
file hashes.

• Anonymity.An important feature in P2P networks is user anonymity. Table 1.2 presents a
summary for the anonymity discussed in [25]. Users do not need to log in, or identify them-

6 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

selves, upon entering the network. In certain P2P implementations, anonymity is achieved
by indirect communication, the client and server communicate through other nodes. While
this is an attractive feature for users, it complicates other aspects of the P2P system. Since a
node does not know whom it is communicating with, great measures must be taken to pro-
tect itself, both in terms of security and data validity. Moreover, in certain implementations,
network usability degrades. Anonymous implementations will be discussed, along with their
advantages and disadvantages.

• Attacks. The insecurity of P2P networks have brought forth numerous attacks. These attacks
include denial of service, node masquerading and data tampering [24]. Attacks discussed
in this chapter are denial of service, which virtually disconnects a node from the network,
and Byzantine and Sybil attacks, which can lead to malicious nodes masquerading as others
as well as communication and data tampering. Daswaniet al. [23] and Lynch [70] provide
ways to minimize the effect of such attacks. Examples of these attacks and their attempted
solutions will be further discussed.

• Secure routing. One of the basic requirements of a P2P network is to provide reliable and
efficient routing of communication between nodes. Reliability focuses on ensuring messages
arrive at their destination despite legitimate, although sometimes unforseen, circumstances.
Secure routing, however, deals with malicious nodes actively attempting to disrupt network
communication. This is a crucial and difficult task, although nodes will actively misroute
messages or segregate nodes from the network, the network would still attempt for the mes-
sages to reach their destination. The three crucial tasks a P2P network needs to implement
securely exist in different aspects of the protocol. Securely assigning node IDs, updating
the routing table [36], and ensuring successful message propagation. These will be further
discussed, along with possible attacks and their solutions.

More details about the security requirements and current security measures will be discussed in
Section 1.4.

Performance. Recall that P2P overlay network is a logical structure constructed upon physi-
cal networks. The shortest path (the least hop count routing) according to the routing protocol
is not necessarily the shortest physical path. The logical structure of the overly should take into
account the physical structure of the underlying network. Techniques to exploit topology infor-
mation in overlay routing include geographic layout, proximity routing and proximity-neighbor
selection [11].

• Geographic layout methodmaps the overlay’s logical id space to the physical network so
that neighboring nodes in the id space are also close in the physical network. Topologically-
aware CAN [91] adopts this approach. But this method can lead to an uneven distribution of
nodes in the overlay, increasing the chances of overloading nodes and rendering the mainte-
nance cost formidable. Xuet al. [115] claim their study shows that for a typical 10,000-node

1.2. P2P OVERLAY NETWORK CHARACTERISTICS 7

Topologically-aware CAN, 5 nodes can occupy 85-98% of the entire cartesian space, and
some nodes have to maintain 450-1500 neighbors. Castroet al. [11] indicate that this method
is not suitable for a one-dimensional id space and neighboring nodes in the id space are more
likely to suffer correlated failures.

• In proximity routing, the logical overlay is constructed without considering the underlying
physical topology. In a routing, the node with the closest physical distance to the object key
is chosen among the next hop candidates in the routing table. This method has been applied
to Chord [105] and CAN [90]. However, the benefits of this method are dependent on the
determination of an appropriate number of the hop candidates.

• Proximity neighbor selectionis a middle-ground approach between the above methods. It
selects the routing table entries pointing to the topologically nearest among all nodes with
nodeId in the desired portion of the id space. Castroet al. [11] implement this method in
Pastry and Tapestry with low overhead. It maintains system load balancing and robustness
with a comparable delay stretch compared to Geographic layout method. Xuet al. [115]
point out some limitations of this application and propose a way to build topology-aware
overlays using global soft-state. It combines landmark clustering and RTT measurement to
generate proximity information and stores the system information (such as proximity and load
information) as objects on the system itself, which is easy to update and retrieve. In addition,
it uses publish/subscribe functionality that allows nodes to subscribe to the relevant soft-state
and get notified as the state changes necessitate neighbor re-selection.

Waldvogelet al. [110] propose an efficient topology-aware overlay network, Mithos. In con-
trast to other approaches, Mithos does not require full topology knowledge, even the forward-
ing and routing information is minimum. At the same time, Mithos provides a close con-
ceptual integration between geographic layout and proximity routing, as well as a powerful
addressing scheme directly suitable for use in DHTs. It provides locality-aware connectivity,
thereby ensuring that a message reaches its destination with minimal overhead.

Fault Resilience. A good P2P system should still work well in the face of failure problems
such as disconnections/unreachability, partitions, and node failures. The most vital issue of fault
resilience is to ensure that all nodes in the P2P system are alive and there is no disconnection.
Therefore, techniques that detect, manage, and recover from failed node or disconnection are re-
viewed [77].

• Detection.Chord uses stabilization, in which each node sends probe queries to its successor,
to maintain intact ring. Sending ”I’m alive” message periodically is a method to detect the
failed nodes and disconnection. Pastry can periodically perform an expanding ring multicast
search for other Pastry nodes in their vicinity to check the disconnected overlay. Gnutella and
Freenet resort to resource intensive naive broadcast queries to tolerate against node failures.

• Management.File replication is a way to solve the problem when the object hosting node
has failed. P2P networks such as Napster and Gnutella have a passive and an uncontrolled

8 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

replication mechanism based only on the file’s popularity. Freenet and Publius [109] use
controlled replication to provide persistence guarantees. OceanStore maintains a two-layered
hierarchy of replicas. In contrast to promiscuous replication [40], OceanStore does not bind
floating replicas to specific machines, and it does not replicate all objects at each server.

• Recover.In a P2P system, how can the connected nodes still collaborate well when a failure
happens? How can the disconnected node join in the ongoing computation when it reappears?
Previous works primarily focused on providing resiliency to servers and network failures for
distributed file systems. For example, Coda [97] adopted server replication and disconnected
operation. Currently, some other methods are proposed. One is to let a ”relay” node to substi-
tute for the destination temporarily, like Groove [97, 83]. Second is to let the source wait with
the messages until the destination reappears, as in Magi [8]. Third, Grid computing solutions,
such as Legion [42], deal with such problems by restarting computations on different nodes.

Interoperability. Different P2P networks have their advantages and disadvantages. For example,
Freenet provides a certain degree of security but cannot ensure object location and each node can-
not control the files stored in itself. By contrast, structured P2P networks such as Chord can ensure
the object availability. Gnutella enables each node to hold what it desires. Therefore, it is desirable
to combine the different kinds of P2P network as a whole to take advantage of each network’s ben-
efits. Because different P2P networks deploy distinct protocols with different characteristics, the
most important issue is to let the P2P systems to interoperate. Luiet al. [67] propose a framework
to integrate various P2P file sharing protocols using P2P gateways in order to maximize the ben-
efit of P2P file sharing application. The community of P2P developers gather together in the P2P
Working Group [84] to build common standards that would enable common understanding among
P2P developers. The project JXTA [50] is Sun’s foray into providing a utility application substrate
for building P2P applications across platforms, OSs, and programming languages. A gateway
project underway is World Free Web (WFW), which is to combine Freenet and World Wide Web.
Wiley [112] explains the characteristics of five popular networks – Freenet, Gnutella, Mojo Na-
tion, Free Haven, and Publius, and evaluates the strengths of each network that can be offered to
the all-encompassing OmniNetwork. P2P interoperability also has commercial significance. For
instance, new file-swapping applications, such as StreamCast’s test version of Morpheus [78], are
bridging separate networks, promising to improve service and content offerings.

1.3 Scaling techniques

An ideal scalable P2P network is that when increasing the number of nodes, aggregate storage
space and file availability should grow linearly, response time should remain constant, and search
throughput should remain high or grow. The following are the main criteria for a system’s scala-
bility:

1.3. SCALING TECHNIQUES 9

• Decentralization. In centralized systems, the central nodes are easily to become hot-spots
that quickly become overloaded as the network grows and their limited bandwidth prevents
systems to grow unlimitedly. Distribution of queries in networks decreases the node’s av-
erage bandwidth and workload, which directly gain the speed of serving and overall system
throughput.

• Nodes’ storage overhead.In P2P systems, nodes need to contribute some storage space for
other users’ data or routing information that are the indices of other nodes. However, when a
large amount of storage is required, some nodes may not afford it, especially when the nodes
grow to a very large number, leading to poor scalability of system.

• Object location cost.Generally, with the growing number of nodes, the object location cost,
namely the number of hops traversed, will increase because searching is performed among
larger number of nodes. Therefore, low object location cost leads to decreased query traffic,
and increases system throughput, resulting in good scalability.

• Workload: bandwidth and processing cost.When a query passes through a number of nodes,
each node uses bandwidth resources because it sends and receives query and response mes-
sages [119]. Low bandwidth and processing cost of each node, and of whole system are
essential for improving scalability.

• System fault resilience.A scalable system can handle nodes join, leave and failure with little
negative affection.

In the following, we present a classification of P2P systems. It is followed by a comprehensive
survey of scaling techniques in unstructured and structured P2P systems.

1.3.1 Classification of P2P systems

Napster is a typical example of centralized P2P, in which the elements of both pure P2P and
client/server systems coexist. Napster client downloads a file directly from another Napster client’s
machine and the Napster servers answering a list of matching files and locations and brokering
client connections. Other centralized models include Aimster [3], Magi [8], Softwax [103], and
iMesh [49]. As a centralized network, it attacks the scalability problem by having the peers directly
download music files from the peers that possess the requested document. However, because file
location is done from the central server, the cost incurred on the central server is so high that
makes it very possible for the central server to be a bottleneck. Yanget al. [118] study issues and
tradeoffs in designing a scalable hybrid P2P including chained architecture, replication and hash
architectures.

Poor scalability of these centralized P2P systems motivates researchers to explore various meth-
ods for robust and scalable distributed P2P systems. As a result, unstructured P2P, structured P2P
and hybrid P2P (combination of unstructured and structured P2P) are developed. Figure 1.1 shows

10 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

Systems

Centralized Decentralized

Unstructured Structured Hybrid

Variable-degree Constant-degree

Figure 1.1: A Classification of P2P Overlay Networks.

a classification of P2P systems of Napster offspring. Unstructured P2P overlay networks such as
Gnutella and Freenet do not have strict control over the topologies, and they do not assign respon-
sibility for data to specific nodes. Nodes join and leave the network according to some loose rules.
On the contrary, structured overlay networks such as Chord, Pastry, Tapestry, CAN, have strictly
controlled topologies and the data placement and lookup algorithms are precise. According to the
node degree, that is, the number of entries in a node’s routing table, structured P2P can be classifies
into variable-degree P2P and constant-degree P2P.

Unstructured system has improved system stability by removing central servers. Its advan-
tages include overall simplicity, its ability to endure high rate churn and its support for key word
searches. However, it cannot ensure the object location and too many massage forwarding can eas-
ily result in network congestions. Structured system is developed to improve systems scalability by
reducing the amount of forwarding messages and nodes’ storage for routing indices. It guarantees
object location within a bounded lookup cost even if the system is in a continuous state of change.
Because of their potential efficiency, robustness, scalability and deterministic data location, struc-
tured networks have been studied intensively in recent years. But it also has some disadvantages.
First, DHT is less adept at supporting keyword searches because it is designed for exact-match
query. Second, it incurs substantial repair operations for high churn rate. Third, hot-spots are gen-
erated for too frequently accessed files. People are realizing each system’s benefits and drawbacks
from the theoretical work, experiments and practice, and trying to develop better scalable systems.
Hybrid network is such an example which takes advantages of unstructured and structured P2Ps.
Representatives of it are Yappers [35] and distributed ties-based DHT [33].

1.3.2 Unstructured P2P

Gnutella is a typical example for unstructured P2P. Gnutella uses flooding-based search to perform
object locations. That is, to find a file, a node sends a query message to each node connected with
it. The nodes then rebroadcast this query in turn to every node they are connected to, except for the

1.3. SCALING TECHNIQUES 11

original node, and so on. Each query contains a time to live (TTL) and will be forward until the
TTL is expired. If a node has the desired file, it will respond and the file will return along the route
the query comes from. In a sense, Gnutella improves the scalability of Napster because it does not
need to depend on the central server. However, the number of queries and the number of potential
responses increases exponentially with each hop. For instance, each node has 2 connections to
other nodes and the TTL is 7, then the number of queries sent will be 128 and the number of
response may depend on the file’s popularity. As a result, the load on each node grows linearly
with the total number of queries, query number increases with the system size, and large systems
quickly become overwhelmed by the query-induced load. So, Gnutella does not scale very due to
a large amount of traffic. Besides, without heterogeneity consideration, some nodes with limited
capabilities become bottlenecks when the network size surges, resulting in slower response time,
and few availability. In the following, we will present a survey for key techniques for improving
unstructured P2P scalability.

Gnutella TTL control. TTL selection is very important in Gnutella; too high a value generates
much network traffic, whereas too low will result in no search results. Lvet al. [68] propose in-
creasing ring search to help solve this problem. Increasing ring achieves the savings at the expense
of slight increase in delay to find the object, which improves Gnutella’s scalability to a certain
degree. However, the method may cause the problems of same value TTL, query reprocessing and
message duplication, which may lead to more redundant network traffic. These problems can be
solved by iterative deepening search method proposed by Yanget al. [119]. Based on Gnutella,
this method iteratively sends the query with different TTL with a mechanism to avoid query re-
processing until the query is satisfied. It greatly improves Gnutella’s scalability by reducing the
number of lookup hop.

Intelligent peer selection. Gnutella’s poor scalability is mainly caused by its flooding-based
search. Some proposals suggest to reduce the number of query receivers to improve the system’s
scalability, that is, a query is sent to a part of a node’s neighbors rather than all of its neighbors.
Ripeanu [93] measure the Gnutella network and find that network following the power-law pattern
and estimate the generated traffic via the percentage of each kind of messages with the crawler
program. Lvet al. [68] propose random-walkers search, which greatly reduces the load produced
by a query. Random-walks forwards k query messages, and each query is sent to a randomly
chosen neighbor at each step until the object is found. It also adopts active replication which
produces lower overall query load than non-active node-based replication. In addition, it uses
uniform random graph building algorithm instead of power-law random graph [2] to reduce the
likelihood of very-high degree nodes. Portmann [87] studied the cost of Gnutellas broadcasting
and proposes the use of rumor mongering or gossip protocol as an alternative routing method to
reduce the cost via simulation. Yanget al. [119] claim that Gnutella uses breadth-first traversal
(BFS) over the network with depth limit TTL. They propose direct breadth-first traversal (DBFS)
to overcome time consuming problem of multiple iterations. DBFS reduces the number of nodes
that query reaches, as well as maintain the quality of responses. Yanget al. [119] also propose

12 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

local indices technique, in which a node maintains an index over the data of each node within
r hops of itself, where r is a system-wide variable. Queries are then processed by a smaller set
of nodes than without this technique, while yielding as many results. Crespoet al. [22] propose
routing indices (RI) schemes including compound RI, hop-count RI, and the exponential RI. A
RI is a data structure that returns a list of neighbors for a query. Simulations show that RIs can
improve performance by one or two orders of magnitude compared to a flooding-base system, and
by up to 100% compared to a random forwarding system.

Heterogeneity consideration. Heterogeneity is an important factor to consider for scalability.
Heterogeneity means that different nodes have different capabilities, particularly in terms of band-
width, but presumably in terms of other resources such as CPU, memory and disk. Attention to
node heterogeneity means to avoid overloading any of the nodes by taking into account the nodes’
capacity constraints. In an ideal scalable system, nodes with more capability should be respon-
sible for more work, while nodes with less capability should have less work. Flow control and
topology adaptation are such methods proposed by Lvet al. [69] based on their previous work.
These methods is used to achieve (1) restricts the flow of queries into each node so they don’t
become overloaded and (2) dynamically evolves the overlay topology so that queries flow towards
the nodes that have sufficient capacity to handle them. The random-walks based search combined
with TTL and ”state-keeping”algorithms [2, 68] lets the query being forwarded to high capacity
nodes, and thus makes it more possible to find the targeted files.

Chawatheet al.[14] indicate the DHT’s disadvantages, and proposeGia to make Gnutella more
scalable, which has the ability to deal with much higher aggregate query rates and function well
even with growing system size. It modifies Gnutella’s algorithms to include dynamic topology
adaptation, flow control, one-hop replication, and attention to node heterogeneity. Simulations
show that Gia improves Gnutella’s system capacity by three to five orders of magnitude.

Super-peer topology. FastTrack [29] is one of the super-peer topology. Currently, two file shar-
ing applications, KaZaA and Morpheus are based on the FastTrack protocol. For instance, the
KaZaA application has had upwards of 20 million downloads and it can have anywhere up to
800,000 users connected at one time. The Morpheus multimedia file-sharing system reported over
470,000 users sharing a total of 0.36 petabytes of data as of October 26, 2001.

The FastTrack architecture consists of SuperNodes with fast connections and Nodes with slower
connections. A SuperNode connects with other SuperNodes and some Nodes at the same time. A
Node connects with a SuperNode. Consequently, a two-tier topology is generated in which the
nodes at the center of the network are faster and therefore produce a more reliable and stable
backbone. This allows more messages to be routed than if the backbone were slower and therefore
allows greater scalability.

Routing on FastTrack is almost the same as on Gnutella, but broadcasting is between the Su-
perNodes only. A Node sends its query to its SuperNode only. Every SuperNode that broadcasting

1.3. SCALING TECHNIQUES 13

reaches searches an index that contains all the files of its connected Nodes. The fast connection
SuperNodes lessens the workload produced by a large amount of messages. In addition, FastTrack
use the nodes’ heterogeneity to its advantage as the nodes with limited capabilities are shielded
from query processing and traffic. By combining the P2P and client/server models, this topol-
ogy provides a useful balance between the efficiency of centralized search and the autonomy, load
balancing, and robustness of distributed search.

Recently, it is proposed to apply the hierarchical designs of FastTrack to the Gnutella net-
work [37]. However, its scalability has neither been measured nor been analyzed. Yanget al.[120]
present practical guidelines and general procedure for the design of an efficient super-peer network
that is almost the same as FastTrack. They also point out a potential drawback of super-peer node
network, that is, when a SuperNode fails or simply leaves, all its clients (the Nodes in the same
cluster with that SuperNode) become temporarily disconnected until they find a new SuperNode
to connect to. To address this problem, the method of super-peer redundancy is proposed. Instead
of a single SuperNode in a cluster (the SuperNode with its clients), there are some redundant Su-
perNode partners with the same responsibility in a round-robin manner. To reduce the individual
query load, each partner is connected with half of the clients.

Caching and content placement. Caching is a short-term solution to increasing the scalability
of Gnutella. Kunwadee [104] finds that the popularity of search strings follows a Zipf-like distribu-
tion. He proves that caching a small number of query results significantly decreases the amount of
traffic of network. He finds that caching at one Gnutella node can result in up to a 3.7-time reduc-
tion in traffic while using only a few megabytes of memory. As more nodes implement caching,
more traffic is reduced. Markatos [74] proposes another caching mechanism that caches Gnutella
query results for a limited amount of time to reduce the query traffic. Simulations show that it
improves performance by as much as a factor of two.

FastTrack [29]’s proactive replication is far from optimal as the relative index capacity dedicated
to each item in the SuperNodes is proportional to the number of copied nodes. Cohenet al. [17]
study optimal way to replicate data given fixed constraints on per-probe capacity. They show that
the Uniform and Proportional strategies constitute two extreme points of a large family of strategies
which lie ”between” the two and that any other strategy in this family has better expected search
size. They then show that one of the strategies in this family, square-root replication, minimizes
the expected search size on successful queries.

Clustering/arrange overlay topology. Panduranganet al. [?] propose techniques for construct-
ing Gnutella-like networks in a distributed fashion. In their heuristic proposed protocol, newly
arriving nodes decide which network nodes to connect to, and existing nodes decide when and
how to replace lost connections. The proposal results in connected networks of constant degree
and logarithmic diameter. This method is focused on pure-search networks without copying con-
tent indices.CAP[57] is a cluster-based architecture for P2P systems, which uses a network-aware
clustering technique [56] to group hosts into clusters. Each cluster has one or more delegate nodes

14 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

that act as directory servers for the objects stored at nodes within the same cluster. A central server
tracks existing clusters and their delegates. To reduce query latency, delegate nodes maintain a
cache of recently received queries. CAP would also be more stable since clusters join and leave
the network less frequently than individual clients.

In Gnutella, the network topology is unrelated to the data placement, and the nodes receiving
a query are unrelated to the content of the query. A node doesn’t have any information about
which other nods may best be able to resolve the query. Some proposals improve Gnutella by
reorganizing network topology based on content location, that is, to cluster peers based on property
similarity or results availability to avoid query messages flooding, reduce traffic, gain the number
of query hit messages and save resources in handling irrelevant queries in the P2P network. In
these approaches, in stead of blind flooding in Gnutella, the queries are forwarded to those nodes
that most like to have the desired data to improve query performance.

Ramanathanet al. [89] propose a mechanism, using only local knowledge, to let a peer connect
to the peer that frequently provides good results. This leads to clusters of peers with similar inter-
ests, and in turn allows us to limit the depth of searches required to find good results. Schlosser
et al. address the scalability problems by imposing a deterministic shape on P2P networks, called
HyperCuP [98], which relies on the concept of prefix-based routing and allows for very efficient
broadcast and search. They describe a broadcast algorithm that exploits the topology to reach all
nodes in the network with the minimum number of messages possible. They also provide an effi-
cient topology construction and maintenance algorithm which does neither require a central server
nor super nodes in the network. Moreover, they show how their scheme can be made even more
efficient by using a global ontology to determine the organization of peers in the graph topology.
Hanget al. [47] propose a method for clustering peers that share similar properties together. They
also propose a new intelligent query routing strategy, the firework query model. Crespoet al. [22]
propose semantic overlay networks (SON) based on the semantic relations among peers. SON
establishes semantic relations between query and peers and routes query directly to relevant peers.
Furthermore, layered SONs are proposed in order to increase the availability of results.

The SON supports only limited meta data such as simple filenames. On the other hand, currently
schema based networks such as the Edutella [81, 6, 46, 1, 61, 82] provide complex query facilities
but no sophisticated means for semantic clustering of peers and their broadcasting does not scale
well. In this condition, a new class of P2P system that combines SON, super-peer topology, and
schema based networks have emerged [60, 62]. Cooperet al. [21, 20] present a Search/Index
Link (SIL) model for analyzing and visualizing P2P search networks. They suggest to reduce or
eliminate redundant work of network to improve network efficiency. The SIL model describes
existing networks such as super-node networks and global index networks, while also yielding
novel organizations such as parallel index networks and parallel index cluster networks. Based on
SIL, Cooperet al.[19] examine how to reduce the load on nodes by allowing peers to self-organize
into a relatively efficient network, and then self-tune to make the network even more efficient.
Unlike their previously studied architectures, they propose ”ad hoc, self-supervising” networks
that avoid restrictions on whom a node can connect to or what information can be exchanged. This
network is optimized for a heterogenous network as well as for a more homogenous network where

1.3. SCALING TECHNIQUES 15

all nodes have roughly similar capabilities. Their results indicate that their ad hoc networks are
more efficient than popular super-peer topologies for several important scenarios.

New protocols. Gnutella2[39] is a reworking of the Gnutella protocol. It uses the same peer-
based network as Gnutella, but it drops all of the old Gnutella protocol except for the connec-
tion handshake and adopts an entirely new and complex system. Gnutella2 uses UDP rather
than TCP/IP network protocol for searches, an extensible binary XML-like packet format and
includes many extensions such as intelligent query routing, SHA1 checksums, parallel download-
ing in slices (swarming), etc. Preceded by their previous work, iterative deepening search, DBFS,
super-peer network, SON and SIL, which are based on Gnutella, Yanget al.[117] propose non-
forwarding architecture (NFA) in the context of the GUESS protocol. In GUESS, peers directly
probe each other with their own query message, instead of relying on other peers to froward the
message. Unlike the flooding-based search in Gnutella, in NFA, the messages are not forwarded,
and peers have complete control over message receivers and message receiving time. As a result,
NFA greatly reduces the message forwarding overhead.

1.3.3 Structured P2P

The different proposals for improving scalability of Gnutella made a significant progress toward
better scalability. At the same time, another class of P2P, structured P2P systems, are developed
with more scalable architecture. These systems have no central directory server, and so are de-
centralized. ”Structured” means that the P2P network topology is tightly controlled and that files
are placed not at random nodes but at specified locations that will make subsequent queries easier
to satisfy. These structured P2P systems include Chord, Pastry, Tapestry and CAN, etc., which
support a DHT functionality. Each object is stored at one or more nodes selected deterministically
by a uniform hash function. Though these DHT systems have great differences in implementation,
they all support a hash-table interface of put(key,value) and get(key) either directly or indirectly,
queries for the object will be routed incrementally to the node. Although hash functions can help
locate content deterministically, they lack the flexibility of keyword searching – a useful operation
to find content without prior knowledge of exact object names. These structured systems are highly
scalable as it make very large systems feasible; lookups can be resolved in a bounded number of
overlay routing hops.

In the following, we review and compare some of the structured DHTs by focusing on their
topological aspects within variable-degree and constant-degree P2P systems each.

16 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

Variable-Degree Structured P2P

In variable-degree structured P2P, the routing table size is related to the network size, typically is
O(log n). As a result, the routing table size is increased with the growing number of nodes in the
system.

• Hypercube-based.Plaxtonet al. [86] develops perhaps the first routing algorithm that could
be scalably used for P2P systems. Tapestry and Pastry use a variant of the algorithm. The
approach of routing based on address prefixes, which can be viewed as a generalization of
hypercube routing, is common to all theses schemes. The routing algorithm works by cor-
recting a single digit at a time in the left-to-right order: If node number 12345 received a
lookup query with key 12456, which matches the first two digits, then the routing algorithm
forwards the query to a node which matches the first three digits (e.g., node 12467). To do
this, a node needs to have, as neighbors, nodes that match each prefix of its own identifier
but differ in the next digit. For each prefix (or dimension), there are many such neighbors
(e.g., node 12467 and node 12478 in the above case) since there is no restriction on the suffix,
i.e., the rest bits right to the current bit. This is the crucial difference from the traditional
hypercube connection pattern and provides the abundance in choosing cubical neighbors and
thus a high fault resilience to node absence or node failure. Besides such cubical neighbors
spreading out in the key space, each node in Pastry also contains a leaf set L of neighbors
which are the set of|L| numerically closest nodes (half smaller, half larger) to the present
node ID and a neighborhood set M which are the set of|M | geographically closest nodes to
the present node.

• Ring-based.Chord uses a one-dimensional circular key space. The node responsible for a
key is the node whose identifier most closely follows the key numerically; that node is called
the key’s successor. Chord maintains two sets of neighbors. Each node has a successor list of
k nodes that immediately follow it in the key space and a finger list ofO(log n) nodes spaced
exponentially around the key space. Theith entry of the finger list points to the node that
is 2i away from the present node in the key space, or to that node’s successor if that node
is not alive. So the finger list is always fully maintained without any null pointer. Routing
correctness is achieved with such 2 lists. A lookup(key) is, except at the last step, forwarded
to the node closest to, but not past, the key. The path length isO(log n) since every lookup
halves the remaining distance to the home.

• Mesh-based.CAN chooses its keys from a d-dimensional toroidal space. Each node is iden-
tified by a binary string and is associated with a region of this key space, and its neighbors
are the nodes that own the contiguous regions. Routing consists of a sequence of redirec-
tions, each forwarding a lookup to a neighbor that is closer to the key. CAN has a different
performance profile than the other algorithms; nodes haveO(d) neighbors and path-lengths
areO(dn1/d)hops. Note that when d=log n, CAN hasO(log n) neighbors andO(log n) path
length like the other algorithms. This actually gives another way to deploy the hypercube as
an overlay network.

1.3. SCALING TECHNIQUES 17

eCAN [116], which means expressway CAN, augments CAN’s routing capacity with routing
tables of larger span to achieve logarithmic routing performance. To build the expressways,
CAN’s entire Cartesian space is partitioned into zones of different spans with the smallest
zones correspond to the CAN zones. Therefore, each node owns a CAN zone and is also a
resident of the expressway zones that enclose its CAN zone. By this way, the message can be
traversed between not only CAN neighboring zones but also neighboring expressway zones.

• Tree-based.Maymounkov [75] proposes a novel XOR-based metric topology, Kademlia. It
effectively treats nodes as leaves in a binary tree, with each node’s position determined by
the shortest unique prefix of its ID. For each node, the binary tree is divided into a series
of successively lower subtrees that don’t include this node, which knows at least one node
in each of its subtrees. Kademlia defines the distance between two nodes is the XOR of
their IDs. Its routing table is a binary tree whose leaves areO(log n) neighbors, where the
ith neighbor is a node within an XOR distance of[2i, 2i+1]. Kademlia employs a recursive
algorithm for node lookups, which forwards the lookup message to a constant number of
nodes in the current node’s routing table in parallel. This way can avoid timeout delays from
failed nodes. The number of hops per lookup isO(log n). By increasing the routing table’s
size to2b log2b n, the lookup hops can be reduced tolog2b n. PRR’s algorithm [86] uses a
tree-like structure. It is to maintain and distribute object locations information to let access
requests locate the addresses of copies of objects in order to ensure fast access and efficient
network resource utilization.

• Butterfly-based.Fiat et al. [30] build a butterfly network of depthlog n − log log n that can
tolerate massive adversarial node failures and random object deletions. Each search for a
data item in the network takes O(log n) time and requires at most O(log2 n) messages. This
network is censorship resistant in the sense that even after adversarial removal of an arbitrarily
large constant fraction of the nodes in the network, all but an arbitrarily small fraction of the
remaining nodes can obtain all but an arbitrarily small fraction of the original data items. The
network can be created in a fully distributed fashion. It requires only O(log n) memory in each
node. A variant of the scheme is also given that is highly spam resistant: an adversary can
take over complete control of a constant fraction of the nodes in the network and yet will still
be unable to generate spam. Saiaet al. [96] create another highly fault-resilient CAN based
on butterfly structure withO(log3 n) state at each node andO(log3 n) per message routing
overhead. Xuet al. [113] present Ulysses. The name space of Ulysses k-butterfly consists
of k level and k-dimensional cuboids. Each node with randomly assigned level l represents
a zone which is a subcuboid of l level-cuboid. By maintaining routing tables no larger than
O(log n), Ulysses achieves lookup cost ofO(log n

log log n
) with high probability.

• Random graphs-based.So far we have discussed the deterministic graphs, another direction
for building DHTs relies on properties of random graphs to achieve logarithmic-time routing.
H-graph [59] network composed of d Hamilton cycles is proposed. In a layered construction
of such random expander networks, any node can be located inO(log n) time with O(log n)
degree, a join operation takesO(log n) time andO(log n) messages, while a leave operation
takesO(1) time andO(log n) messages. Aspneset al. [4] propose a P2P system where nodes
are embedded at grid points in a one-dimensional real line. Each node is connected to its

18 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

immediate neighbors and to multiple long-distance neighbors. They examine greedy routing
in the random graph with degree l+1 (l is a polylogarithmic value) and derive upper and
lower bounds on the expected routing distance and prove that the greedy routing can be a
nearly optimal mechanism for searching even in the presence of many faults. Their results
show that both bounds are proportional tolog

2 n
l log log n

.

• Hybrid structured-based.Actually, some P2P network structure employ different geometric
models. Let’s take Pastry [94] as an example. Pastry’s structure is the combination of a Hy-
percube and a Ring. Each node’s routing table has the nodes information that share the current
node’s nodeId in the first n digits, but whose n+1 the digit has one of the2b−1 possible values
other than then + 1th digit in the present node’s id, which is used in the hypercube routing.
Each node’s leaf set has the information of numerically closest node Ids, which is used in the
ring routing when the hypercube routing is failed. As mentioned in [43], sequential neighbors
can make progress towards all destination identifiers and the ring is the only geometry that
supports sequential neighbors. Several designs such as Chord [105] and CAN [90] have incor-
porated sequential neighbors to improve proximity and resilience. Ganesan and Manku [34]
propose optimal routing algorithms for Chord. The standard Chord routing algorithm uses
edges in only one direction. These algorithms exploit the bidirectionality of edges for opti-
mality. Given that Chord is a variant of the hypercube, the optimal routes possess a surprising
combinatorial structure.

Constant-Degree Structured P2P

Contrast variable-degree P2P, in which the routing table size is increased with the growing number
of nodes in the system, constant-degree DHTs let each node maintain the same size routing table
no matter how large the system scales. As a result, storage space is saved and the bookkeeping
required to respond to system membership changes remains small, enabling the network to scale
to a large system.

• Ring-based.Inspired by Kleinberg’s small worlds [55], Symphony [73] is proposed. It ar-
ranges all nodes along a ring. Each node manages the ring segment between its own id and it
predecessor and it has two short links with its immediate neighbors and k long distance links.
With k=O(1), the lookup path length is proved as O(1

k
log2 n).

• Mesh-based.Kleinberget al. [55] construct a two-dimensional grid where every point main-
tains four links to each of its closest neighbors and just one long distance link to a node cho-
sen from a suitable probability function. They show that small world can route a message by
greedy routing inO(log2 n) hops with constant degree. Barriereet al. [5] study Kleinberg’s
construction and prove its optimality under certain conditions.

• Butterfly-based.Viceroy [72] maintains a connection graph with a constant-degree logarith-
mic diameter, approximating a butterfly network. Each Viceroy node in butterfly levell has 7
links to its neighbors, including pointers to its predecessor and successor pointers in a general

1.3. SCALING TECHNIQUES 19

ring, pointers to the next and previous nodes in the same level ring, and butterfly pointers to
its left, right nodes of levell + 1, and up node of levell − 1, depending on the node location.
In Viceroy, every participating node has two associated values: its identity∈ [0, 1) and a but-
terfly level indexl. The node id is independently and uniformly generated from a range[0, 1)
and the level is randomly selected from a range of[1, log n0], wheren0 is an estimate of the
network size. A node’s ID is fixed, but its level may need to be adjusted during its life time
in the system. Viceroy routing involves three steps: ascending to a level 1 node via up links,
descending along the down link until a node is reached with no down links, and traversing
to the destination via the level ring or ring pointers. Viceroy takesO(log n) hops per lookup
request.

Xu et al. [113] study the fundamental tradeoff between the routing table size and the network
diameter and prove that the Tapestry, Pastry, Chord and CAN schemes are indeed asymp-
totically optimal as uniform algorithms. They found that O(log n) is the routing table size
threshold that separates the tradeoff region dominated by congestion and the region domi-
nated by reachability for uniform algorithms. They proposed a graph based on a modified
static butterfly which can achieveO(log n

log log n
) andO(logd n) lookup cost when the routing

table size islog n and d respectively.

• Random graphs-based.Panduranganet al. [?] propose a random DHT graph with a constant
degree and logarithmic diameter; however, the paper does not provide an efficient routing
algorithm for the proposed structure that can deterministically explore the low diameter of
the graph.

• De Bruijn graph-based.Koorde [52] combines Chord with de Bruijn graphs. Like Viceroy, it
looks up a key by contactingO(log n) nodes withO(1) neighbors per node. As in Chord, a
Koorde node and a key have identifiers that are uniformly distributed in a2d identifier space.
A key k is stored at its successor, the first node whose id is equal to or followsk in the
identifier space. Node2d − 1 is followed by node 0. Due to the dynamic nature of the P2P
systems, they often contain only a few of the possible2d nodes. To embed a de Bruijn graph
on a sparsely populated identifier ring, each participating node maintains knowledge about
its successor on the ring and its first de Bruijn node. To look up a keyk, the Koorde routing
algorithm must find the successor ofk by walking down the de Bruijn graph. Since the de
Bruijn graph is usually incomplete, Koorde simulates the path taken through the complete de
Bruijn graph, passing through the immediate real predecessor of each imaginary node on the
de Bruijn path. Koorde can also be a variable-degree P2P. WithO(log n) neighbors per node,
it needO(log n/ log log n) hops per lookup request.

The Distance Halving DHT network proposed in [79] is isomorphic to the r-dimensional
de Bruijn graph. The network is a discretization of a continuous graph based on a dynamic
decomposition of the underlying Euclidean space into cells where each node is responsible for
a cell. It consists of2r nodes and2r+1 directed edges, and each node has 2 out-degree and 1 in-
degree. Its routing has two phases, the first phase is routing to an almost random destination,
the second phase is from the random destination to the target. It allows logarithmic routing
and load, while preserving constant degrees. In a continuous graph with the edges:fi(y) =
y
c

+ i
c

(i=0, 1,...,c-1), when c=log n or c=nε(ε is a constant) the lookup path length can be

20 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

reduced toO(log n)
log log n

) or O(1).

Another network structure based on de Bruijn graph is D2B [31]. Its lookup cost isO(log n)
with O(1) degree. The expected number of keys managed by a node of an n-node D2B
network is|K|/n (K is node representation binary string length), and is, with high probability,
at most O(|K| log n/n). It achieves a trade-off between the latency for node joining or leaving
the network, and the latency of a lookup. Also, a large node degree increases the connectivity
of the network, and thus its robustness against processor crashes.

• Comb-based.Considineet al. [18] develop Chord to constant degree comb structure with
logarithmic time searches. It has much similarities with Viceroy. In the minimal topology,
there are allm·2m nodes which are grouped with rank. Each node of rank i has two links, short
pointer points to the node’s clock-wise closest neighbor on the circle and another is called
jump pointer which points to the node of rank i that is2i groups away moving clock-wise.
In the searching, the jump pointer is followed if it does not exceed the target, otherwise, the
short pointer is followed. More links can be added for maintenance and robustness purpose.
However, this comb structure needs more updates when nodes join and leave, which is within
O(log2 n) hops and it needs to estimate network size to properly construct the structure.

• CCC-based.Cycloid is a combination of Chord and Pastry. It emulates a Cube-Connected-
Cycles (CCC) graph in the routing of lookup requests between the nodes. We will explain the
details in Section 1.3.5.

• Hybrid structured-based.Like variable-degree P2P system, some systems are actually hybrid
structure-based in a more accurate sense. For example, Koorde, Viceroy and Cycloid, they
are actually the combination of the ring and their own main topology. All systems regard all
nodes on a ring, and each node keeps its predecessor and successor indices on the ring.

We summarize the architectural characteristics of various P2P systems in Table 1.2. Their
topological properties in variable-degree and constant-degree P2P systems respectively are shown
in Table 1.3.

1.3.4 Hybrid P2P

So far, we have discussed unstructured and structured P2P systems. Another class of P2P is hybrid
network which is the combination of unstructured and structured P2P systems. It brings together
the advantages of unstructured and structured P2P systems, and avoids their disadvantages, to
achieve higher scalability.

Recently proposed Yappers [35] is an example of hybrid network. It has no explicit control
of the overlay network. Its key space is partitioned into a small number of buckets, in which the
DHTs are used, and intelligent forwarding is used outside the buckets. Compared to Gnutella, its
lookup cost is reduced by an order of magnitude. Freedmanet al. [33] propose a DHT based on

1.3. SCALING TECHNIQUES 21

Table 1.2: A Comparison of representative DHTs; d=log n in CAN and n=d · 2d in Cycloid.

Systems Base Network Lookup Cost Routing Table Size

Pastry [94] hypercube O(log n) O(|L|)+ O(|M |)+O(log n)

Tapestry [122] hypercube O(log n) O(log n)

Chord [105] ring O(log n) O(log n)

CAN [90] mesh O(dn1/d) O(d)

eCAN [116] mesh O(log n) O(d)

Variable- Kademlia [75] tree O(log n) O(log n)

degree PRR [86] tree O(log n) O(q log2 n)

ZIGZAG [107] tree O(logk n) k2

Ulysses [113] butterfly O(
log n)

log log n
) log n

Censorship Resistant P2P [30] butterfly log n log n

Dynamically Fault-Tolerant CAN [96] butterfly log n log3 n

H-graph [59] random Graph O(log n) O(log n)

Koorde [52] de Bruijn O(log n/loglog n) O(log n)

Symphony [73] ring O(1
k

log2 n) k=O(1)

Small Worlds [55] mesh O(log2 n) O(1)

Viceroy [72] butterfly O(log n) 7

Low-Diameter [?] random Graph O(log n) O(1)

Constant- Distance Halving [79] de Bruijn O(logd n) O(d)

degree Koorde [52] de Bruijn O(log n) ≥2

D2B [31] de Bruijn O(logd n) O(1)

Constant State Indexing comb O(log n) ≥2

based on Chord [18]

Cycloid [99] CCC O(d) 7

Table 1.3: Structured P2P systems summary.

Base Network Variable-degree P2P Constant-degree P2P

hypercube Pastry [94]

Tapestry [122]

ring Chord [105] Symphony [73]

mesh CAN [90] Small Worlds [55]

eCAN [116]

Kademlia [75]

tree PRR [86]

ZIGZAG [107]

Ulysses [113] Viceroy [72]

butterfly Censorship Resistant P2P [30]

Dynamically Fault-Tolerant CAN [96]

random Graph H-graph [59] Low-Diameter [?]

Distance Halving [79]

de Bruijn Koorde [52] Koorde [52]

D2B [31]

comb Constant State Indexing

based on Chord [18]

CCC Cycloid [99]

22 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

<2,000>

<1,000>
<0,000>

<2,001>

<1,001>

<0,001>

Figure 1.2: A 3-dimensional Cube-Connected-Cycles.

distributed tries. It employs dynamic-assignment approach, in which peers replicate lookup struc-
ture partitions that they frequently access and organize those partitions as a trie. The distributed
trie converges to an accurate network map over time. Its lookup algorithm shares many similarities
with the algorithm proposed in [86]. The lookup node first check its local storage for the value
corresponding to the lookup key. If not present, then it initiates a distributed lookup process.

1.3.5 Cycloid: An Example of Structured P2P DHTs

Cycloid [99] is a constant-degree structured P2P overlay network, which is part of authors’ work.
It combines Pastry with CCC graphs. In a Cycloid system withn = d · 2d nodes, each lookup
takesO(d) hops withO(1) neighbors per node. Like Chord, it employs consistent hashing to map
keys to nodes. A node and a key have identifiers that are uniformly distributed in ad · 2d identifier
space.

Structure and Key Allocation. A d-dimensional CCC graph is a d-dimensional cube with re-
placement of each vertex by a cycle ofd nodes. It containsd ·2d nodes of degree 3 each. Each node
is represented by a pair of indices(k, ad−1ad−2 . . . a0), where k is a cyclic index andad−1ad−2......a0

is a cubical index. The cyclic index is an integer, ranging from 0 tod − 1 and the cubical index
is a binary number between 0 and2d − 1. Figure 1.2 shows the 3-dimensional CCC. In a Cycloid
system, each node keeps a routing table and two leaf sets with a total of 7 entries to maintain its
connectivity to the rest of the system. Table 1.4 shows a routing state table for node (4,10111010)
in an 8-dimensional Cycloid, where x indicates an arbitrary binary value, inside leaf set maintains
the node’s predecessor and successor in the local cycle, and outside leaf set maintains the links to
the preceding and the succeeding remote cycles.

In general, a node(k, ad−1ad−2 . . . ak . . . a0) (k 6= 0) has one cubical neighbor(k−1, ad−1ad−2 . . . akxx...x)
wherex denotes an arbitrary bit value, and two cyclic neighbors(k − 1, bd−1bd−2 . . . b0) and
(k − 1, cd−1cd−2 . . . c0). The cyclic neighbors are the first larger and smaller nodes with cyclic

1.3. SCALING TECHNIQUES 23

Table 1.4: Routing table of a Cycloid node (4,101-1-1010).

NodeID(4,101-1-1010)

Routing table

cubical neighbor: (3,101-0-xxxx)

cyclic neighbor: (3,101-1-1100)

cyclic neighbor: (3,101-1-0011)

Leaf Sets (half smaller, half larger)

Inside Leaf Set

(3,101-1-1010) (6,101-1-1010)

Outside Leaf Set

(7,101-1-1001) (6,101-1-1011)

indexk − 1 modd and their most significant different bit with the current node is no larger than
k − 1. That is,
(k-1, bd−1 . . .b1b0) = min{∀(k-1, yd−1 . . . y1y0)|yd−1 . . . y0≥ad−1 . . . a1a0}
(k-1, cd−1 . . .c1c0) = max{∀(k-1, yd−1 . . . y1y0)|yd−1 . . . y0≤ad−1 . . . a1a0}
The node with a cyclic indexk = 0 has no cubical neighbor and cyclic neighbors. The node with
cubical index 0 has no small cyclic neighbor, and the node with cubical index2d − 1 has no large
cyclic neighbor. The nodes with the same cubical index are ordered by their cyclic index modd
on a local cycle. The left inside leaf set node points to the node’s predecessor and the right inside
leaf set node points to the node’s successor in the local cycle. The largest cyclic index node in
a local cycle is called the primary node of the local cycle. All local cycles are ordered by their
cubical index mod2d on a large cycle. The left outside leaf set node points to the primary node in
the node’s preceding remote cycle and the right outside leaf set node points to the primary node
in the node’s succeeding remote cycle in the large cycle. Our connection pattern is resilient in the
sense that even if many nodes are absent, the remaining nodes are still capable of being connected.
The routing algorithm is heavily assisted by the leaf sets. The leaf sets help improve the routing
efficiency, check the termination condition of a lookup, and wrap around the key space to avoid
the target overshooting. How the routing table and leaf sets are initialized and maintained will be
explained later. The Cycloid DHT assigns keys onto its id space by the use of a consistent hashing
function. For a given key, the cyclic index of its mapped node is set to its hash value modulated
by d and the cubical index is set to the hash value divided byd. If the target node of a key’s id
(k, ad−1 . . . a1a0) is not a participant, the key is assigned to the node whose id is first numerically
closest toad−1ad−2 . . . a0 and then numerically closest to k.

Cycloid Routing Algorithm. Cycloid routing algorithm emulates the routing algorithm of CCC [88]
from source node(k, ad−1 . . . a1a0) to destination(l, bd−1 . . . b1b0), incorporating the resilient con-
nection pattern of Cycloid. The routing algorithm involves three phases, assuming MSDB be the
most significant different bit of the current node and the destination.

1. Ascending: When a node receives a request, if its k<MSDB, it forwards the request to a node

24 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

(0,0100) à (3,0010) à (2,1010) à (1,1110) à (3,1111)) à (2,1111)

ascending descending traverse cycle

Node (0,0100)
Routing table

Cubical: null
Cyclic : null
Cyclic: null

Leaf Sets
Inside Leaf Set

(3,0100) (1,0100)
Outside Leaf Set

(3,0010) (3,0110)

Node (3,0010)
Routing table

Cubical: (2,1010)
Cyclic: (2,0010)
Cyclic : (2,0010)

Leaf Sets
Inside Leaf Set

(2,0010) (0,0010)
Outside Leaf Set

(3,0001) (3,0011)

Node (2, 1010)
Routing table

Cubical: (1,1110)
Cyclic: (1,1010)
Cyclic: (1,1010)

Leaf Sets
Inside Leaf Set

(1,1010) (3,1010)
Outside Leaf Set

(3,1001) (3,1011)

Node (1,1110)
Routing table

Cubical: (0,1100)
Cyclic: (0,1110)
Cyclic: (0,1110)

Leaf Sets
Inside Leaf Set

(0,1110) (2,1110)
Outside Leaf Set

(3,1101) (3,1111)

Node (3,1111)
Routing table

Cubical: (2,0010)
Cyclic: null
Cyclic: (2,1110)

Leaf Sets
Inside Leaf Set

(4,1111) (2,1111)
Outside Leaf Set

(3,1110) (3,0000)

Figure 1.3: An example of routing phases and routing table states in Cycloid.

in the outside leaf set sequentially until cyclic index k≥MSDB.

2. Descending: In the case of k≥MSDB, when k=MSDB, the request is forwarded to the cubical
neighbor, otherwise the request is forwarded to the cyclic neighbor or inside leaf set node,
whichever is closer to the target, in order to change the cubical index to the target cubical
index.

3. Traverse cycle: If the target Id is within the leaf sets, the request is forwarded to the closest
node in the leaf sets until the closest node is the current node itself.

Figure 1.3 presents an example of routing a request from node (0,0100) to node (2,1111) in a
4-D Cycloid DHT. The MSDB of node (0,0100) with the destination is 3. As (0,0100) cyclic index
k=0 and k<MSDB, it is in the ascending phase. Thus, the node (3,0010) in the outside leaf set
is chosen. Node (3,0010)’s cyclic index 3 is equal to its MSDB, then in the descending phase,
the request is forwarded to its cubical neighbor (2,1010). After node (2,1010) finds that its cyclic
index is equal to its MSDB 2, it forwards the request to its cubical neighbor (1,1110). Because
the destination (2,1111) is within its leaf sets, (1,1110) forwards the request to the closest node to
the destination (3,1111). Similarly, after (3,1111) finds that the destination is within its leaf sets, it
forwards the request to (2,1111) and the destination is reached.

Each of the three phases is bounded byO(d) hops, hence the total path length isO(d). The key
idea behind this algorithm is to keep the distance decrease repeatedly. Also, the routing algorithm
can be easily augmented to increase fault tolerance. When the cubical or the cyclic link is empty
or faulty, the message can be forwarded to a node in the leaf sets.

Self-Organization. Cycloid deals with node joining and leaving in a distributed manner, without
requiring hash information to be propagated through the entire network. When a new node joins,
it needs to initialize its routing table and leaf sets, and inform other related nodes of its presence,
which will update their neighbors. Before a node leaves, it needs to notify its inside leaf set
nodes. The need to notify the nodes in its outside leaf set depends on whether the leaving node
is a primary node. Upon receiving a leaving notification, the nodes in the inside and outside leaf
sets update themselves. In addition, the nodes in the outside leaf set need to notify other nodes

1.4. SECURITY CONCERNS 25

in their local cycle one by one, which will take at most d steps. Updating cubical and cyclic
neighbors are the responsibility of system stabilization, as in Chord. Undoubtedly, low degree
P2P networks perform poorly in failure-prone environments, where nodes fail or depart without
warning. Usually, the system maintains another list of nodes to handle such problems, such as
the successor list in Chord [105] and the bucket in Viceroy [72]. In our proposal, we assume that
nodes must notify others before leaving, as the authors of Koorde argued that the fault tolerance
issue should be handled separately from routing design.

Simulation results show that Cycloid delivers a higher location efficiency in the average case,
it has a much shorter path length per lookup request in the average case than Viceroy and Ko-
orde, another two constant degree overlay networks. Cycloid distributes keys and query load more
evenly between the participating nodes than Viceroy. Also, Cycloid is more robust as it continues
to function correctly and efficiently with frequent node joins and leaves.

1.4 Security Concerns

Currently, most of the P2P systems assume that the nodes involved are cooperative or trustful.
However, because of P2P systems’ openness feature and decentralization, it is not desirable to
constrain the membership of a P2P system. As a result, P2P systems are faced with threats such
as denial of service, masquerading and tampering. In these situations, the system must be able to
operate even though some participants are malicious. In the following, we will explain security
issues in P2P systems from four aspects: authenticity, anonymity, attacks and secure routing.

1.4.1 Authenticity

Searching for data on a P2P network is a straight forward process. A node on the network issues a
request for a file, and the request propagates the network until nodes who have that file are found.
Finally, these nodes send back a reply informing they have the file, and the file transfer can begin.
While this might seem simple, there is an important question that complicates this process. How
can a node know it is downloading the exact file it was searching for? This file could have been
altered or be a different file altogether.

There are a number of definitions for an authentic file, and a number of approaches to ver-
ify authenticity. If we view an authentic file as being the original file on the network, then a
time-stamping system would be helpful in determining which of the search results is the oldest
file available. An example is Mammoth [27], a file system which presents objects with unique
identifiers made up of the creator’s node address and a timestamp. Another is PAST [95] which
assigns unique identifiers to files and storage nodes. These identifiers are used to determine which
nodes will store replicas of the file. If we were to have trusted nodes which kept signatures of
files uploaded by users, nodes would be able to compare signatures of files they downloaded with

26 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

Step 1: Constructing search

Hash: Left.mp3-> DHT = HA13$2Z

A
Step 2: Send query (DHT of filename) to
nodes on the network

Do you have file
HA13$2Z?

BA
Files: left.mp3 -> DHT = Ba2Q77
HA13$2Z != Ba2Q77
Node B thinks it does not have the file
Step 3: Node compares DHT in search
to DHTs of local files stored

B

Figure 1.4: An example of a DHT file search.

signatures on these servers. Identical signatures would verify a file is identical to the original file
uploaded and has not been modified. An example of such a signature is the MD5 checksum which
creates a virtually unique signature for every file. Even the smallest modification to the file would
create a completely different signature and the change would be detected. Finally, the reputation
based approach, in which nodes deemed more trustworthy than others have a bigger influence on
the decision of a query. This type of approach would require the system to maintain and propagate
node reputation throughout the network. There has been significant research in this area, such as
deploying a reputation system for the Gnutella network [45]. There are, however, many inherent
problems with reputation systems on P2P networks. For example, nodes might not be eligible to
vote on other nodes. This could be because of their location on the network or the tasks that they
are required to perform. This issue has been addressed by introducing the need for different types
of reputations for different scenarios on the same network [111]. Another proposal has been to add
reputation policies which would determine the pairs of nodes eligible to interact [106].

Since P2P networks consist of nodes which can join the network without being verified as
legitimate, these nodes can not be trusted to have authentic data or to make a valid vote. Also,
since P2P networks have taken a decentralized approach, there is no central main node which
can be used to verify nodes or files. A solution to these problems was created, however, it is not
without its drawbacks. P2P programs such as Freenet [15, 16] attempt to answer these problems by
introducing a variation of a DHT. This is a unique hash made, in this case, of a file name. Unlike
other P2P programs such as Kazaa [54] or Gnutella [38] where a search is constructed of a partial
or complete file name, a file search on Freenet is composed of a DHT. A user searching for a file on
the network would have to know its exact name in order to compose the correct DHT. If a file name
is different by even one character, hashing it would result in a different DHT and the search would
be unsuccessful. Figure 1.4 illustrates an example of a DHT file search where only one letter is
different by being uppercase. This search is unsuccessful because the DHT constructed does not
match the original.

A few question arise about Freenet and its DHT approach.

(1) How can a user know the exact name of a file if he or she can not search for it to begin with?

(2) By using a DHT search, isn’t the user missing search results of identical files that are named
differently?

(3) What are the benefits to using a restrictive DHT search instead of a standard name search?

1.4. SECURITY CONCERNS 27

The answers to these questions lie with the solution Freenet has developed on how to find files
on its network. In order to publicize files on Freenet, users publish SHA hashes on their Freenet
sites. Users retrieve this information from these sites and search for the acquired hash on the
network. This ensures that the user is downloading the exact file requested, even though other
copies of the file named differently could exist. Since the download is limited to a file a user has
information about, the two main authenticity issues are resolved. First, tampering with data in
the file could easily be detected by adding a file integrity hash to the site the file is published on.
Secondly, file renaming, where a different file is named like the one a user is searching for, can
also be easily detected by publishing file integrity hashes. This hash could be compared to the
hash of a file just downloaded to verify its authenticity. The clear benefits of this approach are that
since the user will have identifying information about the file being downloaded, it will be simple
to assure it is authentic. On the other hand, performance considerably degrades since nodes that
do have this file under a different name will not return positive search results. A more important
feature disabled by this approach is the partial name search. Having to know the exact file name
beforehand makes it more difficult to find a file. Since nodes are not authenticated, and there is no
authoritative entity to verify data, so far this has been the only completely successful approach to
circumvent these issues.

1.4.2 Anonymity

Anonymity has been an important issue in P2P networks. Most implementations such as Kazaa,
Napster or Gnutella offer no anonymity and have brought forth numerous lawsuits by companies
seeking to protect their copyright material. The main focus of anonymous peer networks is not
only to allow sharing or retrieving of any data desired, but also to allow individuals who live under
internet-censure laws to freely browse the internet and express their ideas.

There are different ways to achieve anonymity on a network, depending on the user’s ac-
tions [32]. A user who wishes to upload or share a file but remain anonymous, will need to use
a peer network that keeps the originating IP address or node ID hidden. Freenet [16] is one such
example of an anonymous P2P program that ensures author anonymity, while Free Haven [26]
provides server anonymity. Once a file is available on the network, users may want to retrieve it
anonymously. Nodes retrieving a file will need to have their IP addresses or node IDs hidden as
well.

Many P2P programs increase file availability by replicating files on various nodes on the net-
work. This can be done by path replication [16], where copies of files are stored along the path they
are retrieved, or by replicating files based on calculations such as distance [7]. This brings forward
another form of anonymity, one that protects a user from its own data. Since a user’s P2P program
might unknowingly be replicating data that is illegal, such as copyrighted material, it is necessary
to protect that user from being held responsible for it. This can be accomplished by encrypting
the data stored locally on a node and only allowing the P2P program to decrypt it when it is being
accessed [7, 109]. Another solution would be to split the file into chunks and allow a node to only

28 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

A B C D E

Table:
Request: A -> B
Reply: B -> A

Table:
Request: A -> B -> C
Reply: C -> B -> A

Table:
Request: B -> C -> D
Reply: D -> C -> B

Table:
Request: C -> D -> E
Reply: E -> D -> C

Table:
Request: D -> E
Reply: E -> D

Figure 1.5: A tunnelled communication between nodes A and E.

store a part of the file. This, combined with data encryption would prevent a user from tampering
with data it is replicating on the network.

In order to hide the source and destination of a communication on a P2P network it is necessary
to form an anonymous path between the two nodes and ensure that nodes on the path do not know
where the endpoints are. This is implemented with an overlay network that restricts a node’s view
only to its neighbors. A node on a message path knows only the previous and next step in the
path, two of its neighbors. Figure 1.5 depicts a tunnelled communication between nodes A and
E. The path of the communication is not directly between the two nodes, rather it travels through
three other nodes. Each node on the path does not know of the source and final destination of the
messages transferred. For example, node C does not know if the communication is between nodes
B and D or if they are passing the messages elsewhere.

Providing anonymity on the network has proven to affect network efficiency. The amount of
messages on the network increases significantly since extra nodes are used to relay messages in-
stead of using direct communication. And most importantly, download and upload speeds decrease
since data must be routed through a prolonged path.

1.4.3 Attacks on the network

The lack of security on P2P networks has not gone unnoticed. Many attacks have been introduced
in the last few years, most of which deny access to the network. These range from being aimed
at a single node, to attacks which can cause a large branch of the network to fail. The three most
powerful attacks will be introduced here, Sybil, Byzantine, and DOS attacks.

The Sybil attack [28] is named after Sybil Dorsett who suffered from a multiple personality
disorder. This attack involves one node on the network which masquerades as multiple identities.
This can lead to many situations which are harmful to the network. With this attack it would be
possible to actively monitor and control communication between nodes. A malicious node can
impersonate all the different routes to another node and control all of its communication. Even
worse, a malicious node can segment off a part of the network if it positions itself accordingly.
Figure 1.6 shows an example of such an attack. In this example, node 4 controls communication
between two network segments. It can monitor, alter or disrupt communication passing between
the segments, and can even separate them effectively disabling all communication between them. A

1.4. SECURITY CONCERNS 29

1 3 2

7 6 8

1 3 2

7 6 8

4

(a). An example of a partial mesh.
Nodes 3 and 6 bridge the two parts of the
network.

(b). Attacker (node 4) positions itself
between nodes 3 and 6. Each assumes node
4 has been placed legitimately.

Figure 1.6: An example of a Sybil attack.

more direct attack involves masquerading as a node and performing actions on its behalf. If illegal
actions are undertaken, such as download of illegal content, an innocent user can be prosecuted.

Another form of attack capable of disrupting a node’s network communication is called a Denial
of Service attack. A node can cause a DOS attack against another in a number of ways. The
traditional DOS attack involves the malicious node sending messages to the victim at a high rate.
On P2P networks this is accomplished by forwarding all requests a malicious node receives to the
victim node. However, today with available high speed internet and fast processing speeds at the
node, such attacks originating from only one node do not generate messages fast enough to cause
a real threat. The victim node will most likely be able to process the incoming messages before
they fill up the message queue and cause legitimate messages to be dropped. A more efficient
way to successfully construct a DOS attack is for a malicious node to reply to every request it
receives stating the victim node as a source for the file. Therefore, all the nodes whose queries
reach the malicious one, will be directed to contact the victim for files it does not have. On
large P2P networks such as the ones deployed today on the internet, thousands of nodes query the
network every few minutes. If the victim receives a large number of requests in a short time, it
will be bombarded with more messages than it can process, and will be unable to send or receive
legitimate communication.

Finally, the Byzantine attack brings forward the problem of reaching a consensus among nodes
when an unknown number of them may be traitors [58]. In a P2P network where decisions can
be based on neighboring nodes’ responses, it is important to act on the legitimate ones. For ex-
ample, P2P implementations that use a voting system to decide from which node to download a
file, or those that determine the message path based on nodes’ input of their network load. In these
cases, decisions based on data sent from malicious nodes can be devastating to the network. The
Byzantine attack involves multiple nodes collaborating to disrupt the network. This attack is more
difficult to set up than the Sybil attack, because multiple nodes must be set up on the network
instead of one. The malicious possibilities a Byzantine attack can cause are similar to those a Sybil
attack can achieve. However, after malicious nodes have been placed on the network, Byzantine
attacks becomes significantly more powerful and are easier to execute than the Sybil attack. Fig-
ure 1.7 illustrates a Byzantine attack. A Sybil attack would not be able to segment the network
efficiently since one node is not present in different segments of the network. In this attack, how-

30 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

G G

G

G

G

G

G

G

(a). 3 groups partially connected to each other.

G

(b). Two malicious nodes, M1 and M2, have
been placed where they control all network
communication between groups G1 and G2.

G G

G

G

G

G

G

G

M

M

G

Figure 1.7: An example of a Byzantine attack.

ever, the malicious user has placed nodes in different segments of the network, taking control of
each one. There has been significant work in solving the Byzantine problem. One method proposed
an algorithm for Byzantine fault tolerant (BFT) state machine replication [13] which ensures that
eventually clients receive correct replies. Another approach separates agreement from execution
on a BFT state machine [121]. Agreement is what orders requests and execution is what processes
requests, these have both been coupled together in other BFT state machine architectures.

Since P2P networks are insecure by design, these attacks have remained an open problem. The
solutions discovered by research so far have not managed to eliminate the threat, only to minimize
it.

1.4.4 Secure routing

Secure routing implementations are necessary to ensure that a message will be delivered despite
malicious node activity such as message corruption or misrouting. There are three crucial tasks a
P2P protocol must implement securely in order to ensure node connectivity [10].

First, node IDs must be securely assigned to nodes on the network. This will prevent attackers
from choosing node IDs. If a malicious node were to choose its node ID, it could choose where to
place itself on the network. This is especially dangerous in P2P networks using ordered IDs [105].
Attackers placing malicious nodes in strategic places on the network can control traffic of messages
and data, connections can be manipulated or blocked altogether. Figure 1.8 shows an example
of malicious use of a node’s ability to choose its location on the network. This attack can be
prevented if node IDs are related to the node’s IP address [102], as is the case with Pastry [94].
The assumption is that a malicious node can not gain a large number of diverse addresses and
position itself in multiple places on the Internet.

Another task that must be securely implemented is the constant updates to the routing table.
This involves ensuring that the fraction of faulty nodes in the table will be lower than the fraction
of faulty nodes in the network. A large number of faulty nodes inserted in the routing table can
cause nodes to depend on a route which consists of malicious nodes.

1.4. SECURITY CONCERNS 31

(a). An ordered P2P
network.

1

3
4

5

6

7

98

1

3
4

5

6

7

98

1

3
4

5

6

7

98

1

3
4

5

6

7

98

1

3
4

5

6

7

98

1

3
4

5

6

7

98

1

3
4

5

6

7

98

1

6
7

10

14

17

2118

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

6
7

10

14

17 2118

666666615
Malicious

node

(b). A malicious node is interested
in disrupting the communication of
node 17. It inserts itself between
nodes 14 and 17.

3 3

Malicious
node

(d). Node 15 does not forward file
to Node 17. (Optional: Node 15
forges message from node 6 stating
it does not have file.)

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

6
7

10

14

17 2118

666666615
Malicious

node

(c). Node 17 requests a file from
node 6.

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

3
4

5

6

7 98

1

6
7

10

14

17 2118

666666615

3 3

Figure 1.8: Malicious use of a node’s ability to choose its location on the network.

Finally, message propagation must be securely implemented. Messages must be able to reach
nodes which will further replicate them on the network. It is not required for all copies of a
message to reach message-replicating nodes, only a minimum of one is required. Although the
rate of replication and amount of results will be lower, if a node’s routing table is poisoned with
invalid entries, the desire is not to keep the connection efficient, it is to keep it connected.

Assigning node IDs securely without the use of a central authority remains an open problem.
There have been attempted solutions but they have not been successful. First, an introduction
of cryptographic puzzles [76] which need to be solved before a node can join. This proposal
only slows down the malicious users from connecting, it does not prevent them from doing so.
Assuming a malicious user would obtain enough resources to solve the puzzle faster, this would
be ineffective altogether. Also, since connecting to the network is done anonymously, a node can
connect as many times as it wants. Another proposal suggested sending a message on the network
and waiting for a reply, confirming the route is active and correct. However, since malicious nodes
can act as intermediaries of a communication they can choose to forward the confirmation message
untouched while modifying the remaining data transferred. Also, a malicious node can masquerade
as the destination node and confirm the route is correct. This would be more difficult to accomplish
if nodes would have predetermined keys to encrypt the communication. However, it is unrealistic
to require every communication to use a unique predetermined key. P2P networks are dynamic,
searching and retrieving files from nodes on the network requires no previous communication or
prior knowledge of them. All solutions that exist to encrypt the communication or verify file
integrity with checksums are prone to failure. A malicious node on the path can intercept the
key exchange in the beginning of the communication and modify the checksum as well as the
data being transferred. Since central authorities on today’s decentralized P2P networks are not
a feasible option, a possible solution is to use PGP keys available on public servers worldwide.
This would require all users on the network to create such keys and keep them secure. The main
problem with this solution, however, is that user anonymity will not be available.

32 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

1.5 Concluding Remarks

In this chapter, we have presented an overview of P2P overlay networks with a focus on scalability
and security issues. P2P systems can be classified into structured, unstructured, and hybrid classes.
Representatives of the systems and related scaling techniques in each class were reviewed. P2P
systems provide security challenges in four aspects: authenticity, anonymity, attacks, and secure
routing. The requirements and current security measures are discussed.

We conclude this chapter with discussion about a number of open issues for building P2P co-
operative computing applications.

• Heterogeneity. With the increasing emergence of various end devices equipped with net-
working capability, coupled with the diverse network technology development, the hetero-
geneity of participating peers of a practical wide-deployed P2P system is pervasive in the
Internet domain. Their instinct properties, including computing ability, differ a lot and de-
serve serious consideration for the construction of a real efficient wide-deployed application.

• Data integrity. Due to the heterogeneity of end devices, we envision that the transformation
is very likely happening in distributed cooperative applications, including image transcoding,
personalized Web pages, etc. It is easy for this transformation to provide data integrity for
static files. However, for dynamic generated content (e.g., dynamic Web content by con-
tent assembly [100], transcoded content by adaptation [41]), it is really a challenge for both
content providers and clients to validate the correctness of the content. By taking advantage
of other peers’ effort to leverage the content (including transcoded content, dynamic pages)
transferring burden, we realize that the data integrity becomes a more and more serious prob-
lem.

• Application-specific behavior.This is neglected in most existing applications, but we believe
it will play an important role in the future. In a distributed cooperative application, only
peers showing application-specific interest would carry out the application-specific actions.
Otherwise, there is no obligation for peers to serve the heavy burden of those un-interested
applications. For example, to build an application-layer multicast tree, asking a peer that is
not interested in the specific multicast streaming content, to contribute its computing power
to help the construction of the multicast tree seems reasonable. However, routing the high
bandwidth streaming content is too high a price for that peer. Therefore, we envision that
application-specific behavior should be considered in partner discovery.

• Proximity. Mismatch between logical proximity abstraction, derived from DHTs algorithms,
and physical proximity information in reality is a big obstacle for the deployment and perfor-
mance optimization issues for P2P applications.

• Reconfiguration semantics and overhead.Using dynamic reconfiguration to adapt to dy-
namic environment changing and/or peer failures has been widely proposed in several sys-
tems [12, 114, 123]. However, few of these previous work takes the reconfiguration over-

1.5. CONCLUDING REMARKS 33

head into consideration. We argue that the dynamic reconfiguration should consider the
application-related semantics and further the overhead of reconfiguration as well.

References

[1] K. Aberer, P. Cudr̀e-Mauroux, and M. Hauswirth. The chatty web: Emergent semantics
through gossiping. InProc. of the 12nd International World Wide Web Conference, 2003.

[2] L. A. Adamic, B. A. Huberman, R. M. Lukose, and A. R. Puniyani. Search in power law
networks. InPhysical Review E, volume 64, 2001. 46135-46143.

[3] Aimster. http://computer.howstuffworks.com/question587.htm.
[4] J. Aspnes, Z. Diamadi, and G. Shah. Fault-Tolerant Routing in Peer-to-Peer Systems.
[5] L. Barriere, P. Fraigniaud, E. Kranakis, and D. Krizanc. Efficient routing in networks with

long range contacts. InProc. of the 15th International Conference on Distributed Computing
(DISC), pages 270–284, 2001.

[6] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and I. Za-
ihrayeu. Data management for peer-to-peer computing: A vision. InProc. of the 5th Inter-
national Workshop on the Web and Databases, 2002.

[7] S. Blackheath. The grapevine project. http://grapevine.sourceforge.net/.
[8] G. A. Bolcer. Magi: An architecture for mobile and disconnected workflow.IEEE Internet

Computing, 4(3):46–54, 2000.
[9] M. Castro, M. Costa, and A. Rowstron. Performance and dependability of structured peer-

to-peer overlays. Technical report, MSR-TR2003 -94, Microsoft Research, 2003.
[10] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure routing for

structured peer-to-peer overlay networks. InProc. of the 5th USENIX Symposium on Oper-
ating Systems Design and Implementation, 2002.

[11] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Topology-aware routing in structured
peer-to-peer overlay networks. InFuture Directions in Distributed Computing, 2002.

[12] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBBLE: A large-scale and
decentralized application-level multicast infrastructure.IEEE Journal on Selected Areas in
Communications, 20(8), 2002.

[13] M. Castro and B. Liskov. Practical byzantine fault tolerance. InProc. of the 3rd Symposium
on Operating Systems Design and Implementation, pages 173–186, 1999.

[14] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-like
p2p systems scalable. InProc. of ACM SIGCOMM, 2003.

[15] I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and B. Wiley. Protecting free expression
online with freenet.IEEE Internet Computing, 6(1):40–49, 2002.

[16] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous infor-
mation storage and retrieval system. InProc. Int’l Workshop on Design Issues in Anonymity
and Unobservability, pages 46–66, 2001.

[17] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer networks. In
Proc. of ACM SIGCOMM, 2002.

34 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

[18] J. Considine and T. A. Florio. Scalable Peer-to-Peer Indexing with Constant State. Technical
report, CS Department, Boston Universiay, 2002.

[19] B. Cooper and H. Garcia-Molina. Ad hoc, self-supervising peer-to-peer search networks.
Technical report, CS Department, Stanford University, 2003.

[20] B. Cooper and H. Garcia-Molina. SIL: Modeling and Measuring Scalable Peer-to-Peer
Search Networks. InProc. of the International Workshop on Databases, Information Sys-
tems and Peer-to-Peer Computing, 2003.

[21] B. Cooper and H. Garcia-Molina. Studying search networks with SIL. InProc. of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[22] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. InProc. of the
22nd International Conference on Distributed Computing Systems (ICDCS), 2002.

[23] N. Daswani and H. Garcia-Molina. Query-flood dos attacks in gnutella. InProc. of the 9th
ACM Conference on Computer and Communications Security, 2002.

[24] N. Daswani, H. Garcia-Molina, and B. Yang. Open problems in data-sharing peer-to-peer
systems. InProc. of the 9th International Conference on Database Theory, 2003.

[25] R. Dingledine, M. Freedman, and D. Molnar. Free haven. In A. Oram, editor,Peer-to-Peer:
Harnessing the Power of Disruptive Technologies, chapter 12. O’Reilly & Associates, 2001.

[26] R. Dingledine, M. J. Freedman, and D. Molnar. The free haven project: Distributed anony-
mous storage service. InProc. of the Workshop on Design Issues in Anonymity and Unob-
servability, July 2000.

[27] B. Dmitry, B. Alex, P. Jody, G. Shihao, F. Michael, and H. Norman. Using file-grain con-
nectivity to implement a peer-to-peer file system. InProc. of the 21st IEEE Symposium on
Reliable Distributed Systems (SRDS), 2002.

[28] J. Douceur. The sybil attack? InProc. of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS), 2002.

[29] Fasttrack product description, 2001. http://www.fasttrack.nu/indexint.html.
[30] A. Fiat and J. Saia. Censorship Resistant Peer-to-Peer Content Addressable Networks. In

Proc. of the 13rd annual ACM-SIAM symposium on Discrete algorithms (SODA), 2002.
[31] P. Fraigniaud and P. Gauron. An overview of the content-addressable network d2b. InProc.

of the 22nd ACM Symposium on Principles of Distributed Computing (PODC), 2003.
[32] M. J. Freedman, E. Sit, J. Cates, and R. Morris. Introducing tarzan, a peer-to-peer anonymiz-

ing network layer. InProc. of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[33] M. J. Freedman and R. Vingralek. Efficient Peer-to-Peer Lookup Based on a Distributed
Trie. In Proc. of the 1st International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[34] P. Ganesan and G. S. Manku. Optimal routing in chord. InProc. of the Symposium on
Discrete Algorithms (SODA), 2004.

[35] P. ganesan, Q. Sun, and H. Garcia-Molina. YAPPERS: A Peer-to-Peer Lookup Service over
Arbitrary Topology. InProc. of IEEE Conference on Computer Communications (INFO-
COM), 2003.

[36] A. Ganesh, A. Rowstron, M. Castro, P. Druschel, and D. Wallach. Security for structured
peer-to-peer overlay networks. InProc. of the 5th USENIX Symposium on Operating Sys-
tems Design and Implementation, 2002.

1.5. CONCLUDING REMARKS 35

[37] Gnutella development forum. The Gnutella Ultrapeer Proposal, 2002.
[38] Gnutella home page. http://www.gnutella.com.
[39] Gnutella2 home page. http://www.gnutella2.com.
[40] J. Gray, P. Helland, P. ONeil, and D. Shasha. The dangers of replication and a solution. In

Proc. of ACM SIGMOD, pages 173–182, 1996.
[41] S. D. Gribble and et al. The Ninja Architecture for Robust Internet-Scale Systems and

Services.Journal of Computer Networks, 35(4), 2001.
[42] A. Grimshaw, W. Wulf, J. French, A. Weaver, and Reynolds Jr. P. Legion: The next logical

step toward a nation-wide virtual computer. Technical report, CS-94-21, Department of
Computer Science, University of Virginia, 1994.

[43] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The impact
of DHT routing geometry on resilience and proximity. InProc. of ACM SIGCOMM, August
2003.

[44] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Kelips: building an efficient
and stable p2p dht through increased memory and background overhead. InProc. of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS), pages 81–86, 2003.

[45] M. Gupta, P. Judge, and M. Ammar. A reputation system for peer-to-peer networks. InProc.
of the 13rd International workshop on Network and operating systems support for digital
audio and video, 2003.

[46] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data management infrastruc-
ture for semantic web applications. InProc. of the 12nd International World Wide Web
Conference, 2003.

[47] C. Hang and K. C. Sia. Peer clustering and firework query model. InProc. of the 12nd
International World Wide Web Conference, 2003.

[48] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed Object Location in a
Dynamic Network. InProc. of the 14th ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA), 2002.

[49] iMesh. http://www.imesh.com/.
[50] Jxta 2001. JXTA home page: www.jxta.org.
[51] F. Kaashoek. Peer-to-peer computing: a new direction in distributed computing. InProc. of

the 21st ACM Symposium on Principles of Distributed Computing (PODC), 2002.
[52] M. F. Kaashoek and R. Karger. Koorde: A simple degree-optimal distributed hash table. In

Proc. of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS), 2003.
[53] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and Panigrahy R. Consistent

hashing and random trees: Distributed caching protocols for relieving hot spots on the World
Wide Web. InProc. of the 29th Annual ACM Symposium on Theory of Computing (STOC),
pages 654–663, 1997.

[54] Kazaa, 2001. Kazaa home page: www.kazaa.com.
[55] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. InProc. of the

32nd ACM Symposium on Theory of Computing, pages 163–170, 2000.
[56] B. Krishnamurthy and J. Wang. On network-aware clustering of web clients. InProc. of

ACM SIGCOMM, 2000.
[57] B. Krishnamurthy, J. Wang, and Y. Xie. Early measurements of a cluster-based architecture

36 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

for p2p systems. InProc. of SIGCOMM Internet Measurement Workshop, 2001.
[58] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.ACM Transactions

on Programming Languages and Systems, 4(3):382–401, 1982.
[59] C. Law and K.-Y. Siu. Distributed Construction of Random Expander Graphs. InProc. of

IEEE Conference on Computer Communications (INFOCOM), 2003.
[60] A. L öser, F. Naumann, W. Siberski, W. Nejdl, and U. Thaden. Semantic overlay clusters

within super-peer networks. InProc. of the International Workshop on Databases, Informa-
tion Systems and Peer-to-Peer Computing in Conjunction with the VLDB, 2003.

[61] A. L öser, W. Nejdl, M. Wolpers, and W. Siberski. Information integration in schema-based
peer-to-peer networks. InProc. of the 15th International Conference of Advanced Informa-
tion Systems Engieering (CAiSE), 2003.

[62] A. L öser, M. Wolpers, W. Siberski, and W. Nejdl. Efficient data store discovery in a scientific
p2p network. InProc. of the Workshop on Semantic Web Technologies for Searching and
Retrieving Scientific Data, International Semantic Web Conference (ISWC), 2003.

[63] J. Ledlie, J. Taylor, L. Serban, and M. Seltzer. Self-organization in peer-to-peer systems. In
Proc. of the ACM SIGOPS European Workshop, 2002.

[64] J. Li, J. Stribling, T.M. Gil, R. Morris, and F. Kaashoek. Comparing the performance of
distributed hash tables under churn. InProc. of the 3rd International Workshop on Peer-to-
Peer Systems (IPTPS), 2004.

[65] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Observations on the dynamic evolu-
tion of peer-to-peer networks. InProc. of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS), 2002.

[66] P. Linga, I. Gupta, and K. Birman. A churn-resistant peer-to-peer web caching system. In
Proc. of the 3rd International Workshop on Peer-to-Peer Systems (IPTPS), 2004.

[67] S. M. Lui and S. H. Kwok. Interoperability of peer-to-peer file sharing protocols.ACM
SIGecom Exchanges, 3(3):25–33, 2002.

[68] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-
to-peer networks. InProc. of ACM International Conference on Supercomputing (ICS),
2001.

[69] Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity make gnutella scalable? InProc.
of the 1st International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[70] N. A. Lynch. Distributed algorithms. Morgan Kaufmann Publisher, 1996.
[71] R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost of reliability in peer-to-peer

overlays. InProc. of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS),
2003.

[72] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and Dynamic Emulation of
the Butterfly. InProc. of the 21st ACM Symposium on Principles of Distributed Computing
(PODC), 2002.

[73] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in a Small Wold.
In Proc. of the 4th USENIX Symposium on Internet Technologies and Systems (USITS),
2003.

[74] E. P. Markatos. Tracing a large-scale peer-to-peer system: an hour in the life of gnutella.
In Proc. of 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid,

1.5. CONCLUDING REMARKS 37

2002.
[75] P. Maymounkov and D. Mazires. Kademlia: A Peer-to-peer Information Systems Based

on the XOR Metric. InProc. of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[76] R. C. Merkle. secure communications over insecure channels. InCommunications of the
ACM, pages 294–299, 1978.

[77] D. Milojicic, V. Kalogerai, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and
Z. Xu. Peer-to-peer computing. Technical report, HP Laboratories Palo Alto, 2002.

[78] Morpheus home page. http://www.musiccity.com.
[79] M. Naor and U. Mieder. Novel Architectures for P2P Applications: the Continuous-Discrete

Approach. InProc. of the 15th ACM Symposium on Parallel Algorithms and Architectures
(SPAA), 2003.

[80] Napster. http://computer.howstuffworks.com/napster2.htm.
[81] W. Nejdl, W. Siberski, M. Wolpers, and C. Schmnitz. Routing and clustering in schema-

based super peer networks. InProc. of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS), 2003.

[82] W. Nejdl, M. Wolpers, W. Siberski, A. L̈oser, I. Bruckhorst, M. Schlosser, and C. Schmitz.
Super-peer-based routing and clustering strategies for rdf-based peer-to-peer networks. In
Proc. of the 12nd International World Wide Web Conference, 2003.

[83] Groove Networks. Groove networks product backgrounder, groove networks white paper,
2001. www.groove.net/pdf/grooveproductbackgrounder.pdf.

[84] Peer-to-peer working goup, 2001. www.p2pwg.org.
[85] G. Pandurangan, P. Raghavan, and E. Upfal. Building low-diameter peer-to-peer networks.

In Proc. of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2001.

[86] C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of replicated objects in
a distributed environment. InProc. of the 9th ACM Symposium on Parallel Algorithms and
Architectures (SPAA), 1997.

[87] M. Portmann and A. Seneviratne. The cost of application-level broadcast in a fully de-
centralized peer-to-peer network. InProc. of the 7th IEEE Symposium on Computers and
Communications (ISCC), 2002.

[88] F. P. Preparata and J. Vuillemin. The cube-connected cycles: A versatile network for parallel
computation.CACM, 24(5):300–309, 1981.

[89] M. K. Ramanathan, V. Kalogeraki, and J. Pruyne. Finding good peers in peer-to-peer net-
works. InProc. of International Parallel and Distributed Processing Symposium (IPDPS),
2002.

[90] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. InProc. of ACM SIGCOMM, pages 329–350, 2001.

[91] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware overlay con-
struction and server selection. InProc. of IEEE Conference on Computer Communications
(INFOCOM), 2002.

[92] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. InProc. of
the USENIX Annual Technical Conference, 2004.

38 CHAPTER 1. SCALABLE AND SECURE P2P OVERLAY NETWORKS

[93] M. Ripeanu and I. Foster. Mapping the gnutella network.IEEE Internet Computing special
issue on Peer-to-Peer Networking, 6(1):50–57, 2002.

[94] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. InProc. of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), 2001.

[95] A. Rowstron and P. Druschel. Storage management and caching in past, a large-scale per-
sistent peer-to-peer storage utility. InProc. of the 18th ACM Symp. on Operating Systems
Principles (SOSP-18), 2001.

[96] J. Saia, A. Fiat, S. Gribble, A.R. Karlin, and S. Saroiu. Dynamically Fault-Tolerant Content
Addressable Networks. InProc. of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[97] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasadi, E. Siegel, and D. Steere. Coda: A
highly available file system for a distributed workstation environment.IEEE Transactions
on Computers, 39(4):447–459, 1990.

[98] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Hypercup - Hypercubes, Ontologies and
Efficient Search on P2P Networks. InProc. of the Workshop on Agents and P2P Computing,
2002.

[99] H. Shen, C. Xu, and G. Chen. Cycloid: A scalable constant-degree p2p overlay network.
Performance Evaluation (To appear). An early version appeared in Proc. of International
Parallel and Distributed Processing Symposium (IPDPS), 2004.

[100] W. Shi and V. Karamcheti. CONCA: An architecture for consistent nomadic content access.
In Proc. of the Workshop on Cache, Coherence, and Consistency (WC3), 2001.

[101] C. Shirky. What is p2p...and what isn’t?The O’Reilly Netowrk, 2000.
[102] E. Sit and R. Morris. Security considerations for peer-to-peer distributed hash tables. In

Proc. of the 1st International Workshop on Peer-to-Peer Systems (IPTPS), 2002.
[103] SoftWax. http://www.softwax.com/.
[104] K. Sripanidkulchai. The popularity of gnutella queries and its implications on scalability.

In Proc. of the O’Reilly Peer-to-Peer and Web Services Conference, 2001.
[105] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking, 1(1):17–32, 2003.

[106] G. P. Thanasis and D. S. George. Effective use of reputation in peer-to-peer environments.
In Proc. of the International Workshop on Global and P2P Computing (GP2PC), 2004.

[107] D. Tran, K. Hua, and T. Do. Zigzag: An efficient peer-to-peer scheme for media streaming.
In Proc. of IEEE Conference on Computer Communications (INFOCOM), 2003.

[108] A. Veytsel. There is no p-to-p market... but there is a market for p-to-p. InAberdeen Group
Presentation at the P2PWG, 2001.

[109] M. Waldman, A. Rubin, and L. Cranor. Publius: A robust, tamper-evident, censorship-
resistant web publishing system. InProc. of the USENIX Security Symposium, 2000.

[110] M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay network. InProc. of the 1st
ACM Workshop on Hot Topics in Networks (HotNets-I), 2002.

[111] Y. Wang and J. Vassileva. Trust and reputation model in peer-to-peer networks. InProc. of
the 3rd International Conference on Peer-to-Peer Computing (P2P), September 2003.

1.5. CONCLUDING REMARKS 39

[112] B. Wiley. Interoperability through gateways. In A. Oram, editor,Peer-to-Peer: Harnessing
the Power of Disruptive Technologies, chapter 19. O’Reilly & Associates, 2001.

[113] J. Xu, A. Kumar, and X. Yu. On the Fundamental Tradeoffs between Routing Table Size
and Network Diameter in Peer-to-Peer Networks.IEEE Journal on Selected Areas in Com-
munications, 22(1):151–163, 2004.

[114] Z. Xu, C. Tang, S. Banerjee, and S. Lee. Rita: Receiver initiated just-in-time tree adaptation
for rich media distribution. InProc. of the 13rd International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV), 2003.

[115] Z. Xu, C. Tang, and Z. Zhang. Building topology-aware overlays using global soft-state.
In Proc. of the 23rd International Conference on Distributed Computing Systems (ICDCS),
2003.

[116] Z. Xu and Z. Zhang. Building Low-maintenance Expressways for P2P systems. Technical
report, Hewlett-Packard Labs: Palo Alto, 2001.

[117] B. Yang, , P. Vinograd, and H. Garcia-Molina. Evaluating GUESS and Non-Forwarding
Peer-to-Peer Search. InProc. of the 24th International Conference on Distributed Comput-
ing Systems (ICDCS), 2004.

[118] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-peer systems. InProc. of the
27th International Conference on Very Large Databases, 2001.

[119] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. InProc. of the
22nd International Conference on Distributed Computing Systems (ICDCS), pages 5–14,
2002.

[120] B. Yang and H. Garcia-Molina. Designing a super-peer network. InProc. of International
Conference on Data Engineering (ICDE), 2003.

[121] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating agreement from
execution for Byzantine fault tolerant services. InProc. of the 19th ACM Symp. on Operat-
ing Systems Principles (SOSP-19), 2003.

[122] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. Tapestry:
An Infrastructure for Fault-tolerant wide-area location and routing.IEEE Journal on Se-
lected Areas in Communications, 12(1):41–53, 2004.

[123] S. Zhuang, B. Zhao, A. Joseph, R. Kotz, and J. Kubiatowicz. Bayeux: An architecture
for scalable and fault-tolerant wide-area data dissemination. InProc. of the 11th Interna-
tional Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), 2001.

