Agenda

- Last time:
 - Brief CORBA overview
 - General pros/cons of RPC/RMI
 - Security intro (chap 7)
 - Assignment #1 Due, Assignment #2 Out (due Thur Mar 1 – 2 weeks)
- This time
 - “A Note on Distributed Computing”
 - Security (chap 7)
- Next time (Tues Feb 27)
 - Security (chap 7)
- Note: No class next Thursday Feb 22 (Marty at Conference)

Before we start: Assignment #2

- Sample java socket code is at http://java.sun.com/docs/books/tutorial/networking/sockets/clientServer.html
 - Look at the “knockknockserver” class
- Cygwin not necessary for code dev for Assignment #2
- My files
 - IMServer.java (397 lines)
 - IMServerInterface.java (15 lines)
 - OutwardFacing.java (176 lines)
 - Registered.java (31 lines)
 - testRegistered.java (37 lines)

Before we start: Assignment #2

- Persistence:
 - File system
 - DB
 - String []splits = str.split(" ");
 - The “Vector” class might be useful
 - Use “rebind”, not “bind” (for the java Naming class)
- A reasonable design:
 - Use the file system for persistence
 - Both partners: design protocols and IMServerInterface.java
 - One partner: design and implement OutwardFacing.java
 - One partner: design and implement IMServer.java
- Get “register” working first

Before we start: Assignment #2

- My dev env (note: only one machine used)
 - Jcreator (editing and compiling – configure → options → JDK Profiles → new)
 - Command prompt (with path set): rmiregistry 6666
 - Command prompt (with path set): javac IMServer.java IMServerInterface.java
 - java IMServer IMServer1 6666
 - Command prompt (with path set): javac OutwardFacing
 - java OutwardFacing args
 - Cygwin: run your existing client

Before we start: Assignment #2

- By Friday 5pm, your team is required (10% of your grade) to send me email:
 - Text of email: description of your algorithms for dealing with one server’s failure
 - What to do when one server comes back on-line (after failure), and/or
 - How will you ensure that the two servers are synchronized
 - Attachment: IMServerInterface.java

- Note: this information must “make sense”, but you are not bound by this (i.e., you can change it later if you want to)
Before we start: submission of PA #2

- Partner 1 must:
 1. Hand in a paper copy of his/her answers to Part 1 (the book questions). This paper copy must clearly state the name of Partner 1, and additionally state “Part 2 done with Partner 2 name”.
 2. Email an electronic copy of his/her answers to humphrey@cs.virginia.edu with the subject line “CS451 Assignment 2 Part 1”.

- Partner 2 must:
 1. Hand in a paper copy of his/her answers to Part 1 (the book questions). This paper copy must clearly state the name of Partner 2, and additionally state “Part 2 done with Partner 1 name”.
 2. Email an electronic copy of his/her answers to humphrey@cs.virginia.edu with the subject line “CS451 Assignment 2 Part 1”.
 3. Hand in a paper copy of the team’s Part 2. This paper copy must clearly state the names of both partners.
 4. Email an electronic copy of the team’s Part 2 to humphrey@cs.virginia.edu with the subject line “CS451 Assignment 2 Part 2 (Partner 1 name, Partner 2 name)”.

“A Note on Distributed Computing”

- Jim Waldo: Sun engineer, instrumental in ORB design (while@HP), designed Jini @ Sun
- Java RMI: Feb 1997, this paper: Nov 1994
- “much of the current work in distributed, o-o systems is based on the assumption that objects form a single ontological class.”
- “work on distributed O-O systems that ignores or denies these differences is doomed to failure and could easily lead to an industry-wide rejection of the notion of distributed O-O systems”
- Authors specifically identify CORBA
- Phases in “unified object model” development
 - Phase 1: Write app without worrying where objects are
 - Phase 2: tune performance via “concretizing” object locations
 - Phase 3: test with “real bullets”

More...

- “seeing location as a part of the implementation of an object and therefore as part of the state that an object hides from the outside world appears to be a natural extension of the o-o paradigm.”
- False principles:
 - “natural o-o design is independent of the deployment context”
 - “Failure and performance are tied to the implementation of an object and should be excluded from the initial design”
 - “interface of an object is independent of the context in which the object is used”
 - “The desire to merge the programming and computational models of local and remote computing is not new.”

More...

- The hard problems in distributed computing are not the problems of how to get things on and off the wire.”
- The hard problems...
 - concern dealing with partial failure and a lack of central resource manager....
 - Concern insuring adequate performance and dealing with problems of concurrency...
 - have to do with differences in memory access paradigms between local and distributed entities.

More...

- Major differences between local and distributed computing:
 - Latency: 4-5 orders of magnitude (?) – getting worse?
 - Can’t we just rely on faster hw?
 - Tooling can tell us perf issues
 - Memory access: the use of pointers
 - Distributed shared memory?
 - Partial failure: one component can fail while others continue
 - No global state to allow determination of exactly went wrong!
 - Programs must deal with indeterminacy (at the interface level)
 - Concurrency : truly asynchronous operation invocations
- Just part of the QoS?
- So, what about Java RMI? Consistent or inconsistent with this paper?”

More...

Security – basics

- Security measures must be incorporated into distributed systems.
- Purpose:
 - Prevent malicious or mischievous attacks.
 - Protect integrity and privacy of information and other resources.
- Means:
 - Security policies.
 - Security mechanisms.
Fundamental Models: Security Model

- Chief concern: preventing unauthorized access
- Enemy:
 - can send messages to any process
 - can read/write messages between processes

Fundamental Models: Threats

- Threats to processes
 - How can server ensure the identity of the client?
 - How can the client know that the server has generated the response?
- Threats to communication channels
 - How can the processes ensure that a "man in the middle" cannot understand/replay/delete/alter the messages?
- Denial of service (DOS)
- Approach: crypto (more later in the semester)—doesn’t not immediately aid DOS attacks

Policy and Mechanism

- Policy
 - Determines what should be done
 - Determines who should have access to what and when
- Mechanisms
 - Implement policies
 - Encryption
 - Authentication
 - Authorisation
 - Audit

Security - security model

- Processes encapsulate resources and allow clients to access them.
- Principals can be explicitly authorized to operate on resources.
- Resources must be protected against unauthorized access.
- Processes interact through a network that is shared by many users. Enemies can access the network by, e.g.:
 - Copying/reading messages.
 - Inject arbitrary messages.

Designing secure systems – general issues

- Hard to predict all possible attacks and loopholes.
- Balance cost and inconvenience against threats.
- Worst-case assumptions and guidelines:
 - Interfaces are exposed.
 - Networks are insecure.
 - Limit the lifetime and scope of each secret.
 - Algorithms and program code are available to attackers.
 - Attackers may have access to large resources.
 - Minimize the trusted base.

Establishing Trust

- "assured reliance on the character, ability, strength, or truth of someone or something"

- Who do you trust in your research life?
 - People, software, machines, services
- How do you develop trust in each of these?
 - People: personal relationship, "told" to trust them
 - Software: Know authors personally, see MD5, sandboxing techniques (Java, .NET),
 - Machines: PKI, [Open]SSH
 - Services: PKI, [Open]SSH
Definition of Computer Security

- Confidentiality – assurance that only authorized entities have access to the information
- Integrity – assurance that the data has not been altered without proper authorization
- Availability – assurance that the information is available when required by authorized users
- Authentication – insuring that the identity of an entity is as claimed to be
- Non-repudiation – insuring that an entity can not deny that it has taken an action